
LA-12671-MS

C9o
--”-y .+.--7-...

. . . . . . . . . .—.!-...2-: -a...-.,. -.%.
.. ’,.,. .-. -::=

... ,. .-
. -. . .--. > :...-,

—. . — ..
.-. : .,.- - -.7*TP.!7

+.. .-l .,.:, .. -- -----, ... :-=. ..- . . . ... ., ..?.,,..-+
-..—- ——. . .~.

- %-+’&:?-. _ .4-, .,+ ..>

4 . ..- .,.7

..-. . . . . . . .’ -
~...

~ . ..—s. -“-
s?=-- /.. ,.=T

,. ..r--:+a-:_——---- {—
. . -.,. -. ....

,,,. ,. ......... ‘
-.’ -. . . . . . ...
— , ,,”... ~-..

~-...+’.—.—
% --, ‘
. . . .-. .

, .“-,.

- 5.
,-.

-,, . .;-

b--- . ...”.
----- ... .. .,..-y:.q.

L——— ‘. -.,. .>6 . . ..-
—..
EsztY-

. .:. ”..&” .’Y---~:,
..

\ . -- -..-’ ..r’..
~,~- .-,. -.,:.— —

(21C-14 REPC)FIT COLLECTION

REPRODUCTION
COPY

Two-Point Correlation Equations for

Variable Density Turbulence

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratoy is operated by the University ofCalifornia
for the United States Department of Energy under contract W-7405-ENG36.



Edited by Virginia B. Cletzy, Group ClC-l
Photocomposition by Margaret A. Findky, Group T-3

An Affirmative Action/Eqnal Opportunity En@oyer

This report was prepared as an account of work sponsored by an agency of the
UnitedStates Government. Neither The Regents of the University of Cal~ornia, the
United States Government nor any agency thereqj nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usq%lness of any injonnntion, apparatus, product,or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any spenjic
commercial product, process, or service by trade name, trademark, rnanujacturer, or otherwise,does
not necessarily constituteor imply its endorsement, rewmmendation, orfamring by The Regents
aj theUniversity o~(Wifomia, the United States Government, or any agency thereofiThe views
and opinions of authors expressed hereindo not necessarily state or rt’’ect thoseof The Regents of
the University of Cal[fomia, theUnited States Government, or any agency thweofi



LA-12671-MS

.,

UC-91O
Issued: June 1995

Two-Point Correlation Equations for

Variable Density Turbulence

T.T.Clark
P. B. Spitz”

“Commjssatit a l’Energie Atomique
Cadarache, FRANCE

Los Alamos
NATIONAL LABORATORY

Los Alamos, New Mexico 87545

ABOUT THIS REPORT
This official electronic version was created by scanningthe best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.For additional information or comments, contact: Library Without Walls Project Los Alamos National Laboratory Research LibraryLos Alamos, NM 87544 Phone: (505)667-4448 E-mail: lwwp@lanl.gov



TWO-POINT CORRELATION EQUATIONS FOR

VARIABLE DENSITY TURBULENCE

by

T. T. Clark and P. B. Spitz

ABSTRACT

A complete set of two-point correlation equations for variable-
density turbulence is derived to consistent order in mass-weighted
variables (Favre averaging). The derivation is based on a two-point
generalization of the Reynolds stress tensor. The equations are
transformed with respect to the separation between the two points to
Fourier space. The correlation equations, as well as the Fourier-
transformed equations, provide insights that are unavailable in the
one-point equations. The derivation of spectral closures is
significantly more complicated than that of constant-density closures
or one-point variable-density closures due to the complex nature of
isotropic scalar-vector correlation functions for nonsoienoidal fields.
Several necessary constraints for the correlation functions are
presented. In addition, a simple spectral model that satisfies these
constraints is presented for illustrative purposes, and a discussion of
the two-point correlations and their relationship to the corresponding
correlations arising in one-point derivations is provided.

L INTRODUCTION

The theoretical understanding of the turbulence of fluids with large-density

fluctuations is in its infancy. In the case of constant-density turbulence, we have made

much progress in understanding the nature of the large-scale structure (e.g., Saffman,

1967), the inertial range dynamics (e.g., Kolmogorov, 1941, 1962; Kraichnan, 1964a,b;

Onsager, 1945; Heisenberg, 1948; Grant et al., 1962; Kida, 1987; Yakhot et al., 1989),

energy transfer in Fourier space (e.g., Kraichnan, 1971, 1987; Lesieur and Schertzer,

1978; Domaradzki and Rogallo, 1990; Waleffe, 1992), and dissipation range dynamics

(e.g., Yakhot et al., 1989; Kraichnan, 1964a), relatively little can be said regarding the

variable-density case. The paucity of theoretical results and models of variable-density

turbulence is due to the complexity introduced by the fluctuating density.



In spite of its difficulties, variable-density turbulence remains an important area of

research, having relevance to many areas of industrial interest. As a consequence, a

number of engineering models (one-point statistical models) have been proposed, e.g., the

Reynolds stress-e (Besnard et al., 1992; Cranfill, 1992). These models, primarily

intended to describe multimaterial compressible flow, represent extensions of concepts

from incompressible constant-density turbulence modeling and incorporate ideas from

multiphase flow models.

In this report we seek to derive a consistent set of unclosed two-point correlation

equations for turbulent flows with large density fluctuations, beginning from a particular

generalization of the Reynolds stress tensor in mass-weighted variables. Some

interesting properties of the resulting correlations will be highlighted. The resulting

equations will be then recast for the case of homogeneous incompressible variable-

density flow driven by a simple homogeneous pressure gradient. Finally, a simple

closure of these equations will be presented for illustrative purposes.

II. A DESCRIPTION
FLUCTUATIONS

A. Governing Equations

For constant-density

OF TURBULENCE WITH

turbulence, the fluid flow may be

LARGE DENSITY

assumed to be exactly

described by the Navier-Stokes (NS) equations with appropriate boundary conditions.

For engineering applications the complexity of the solutions of the NS equations usually

precludes a numerical solution of them and, instead, the so-called Reynolds-averaged

Navier-Stokes equations are solved, wherein the averaged velocity is computed, and the

effect of the fluctuations (i.e., the turbulence) is manifested in the Reynolds stress tensor.

For the case of fluids with density fluctuations, additional equations are needed to

describe the evolution of the density field, and an internal energy equation is needed for

the case of compressible flow. The equations for momentum, pu; density, p; and internal

energy, F, are

aPu, + aPuiun = aam + Pgi,—— —
at axn axn

(2.1)

*+aPun =~

at axn ‘
(2.2)

(2.3)
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where Qn is the heat flux,

Qn+

n

K is the thermal conductivity, T is the temperature, and Oti is the total stress tensor:

and

(2.5)

Fick’s law for diffusion with a constant diffusion coefficient, D, is

[)aPCa +apunca= a ac=

at axn ~ ‘D= ‘
(2.6)

where c. is the mass fraction of species CX.Note that the concentration equation leads to

the following result for incompressible (low Mach number) flows:

aun_

(1

a Dap————
~– axn P axn -

(2.7)

For present purposes we assume that the fluid is incompressible, i.e~ the density is not a

direct function of the pressure. The internal energy equation may be neglected, and

Eq. (2.7) provides an additional constraint. Note that the velocity field of this

incompressible flow is no? solenoidal. Equation (2.7) leads to a diffusive form of the

density equation for incompressible mixing (as distinguished from the conservation form

given in Eq. (2.2) for compressible and incompressible mixing):

~+u ap

(1

a Dap———
at naxn=p axn P axn “

(2.8)

An evolution for the specific volume v, i.e., the inverse of the density,

1
v =—,

P
(2.9)
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is usefuf. Note that because p is positive indefinite, then v is also positive indefinite.

From the conservation form of the density equation the v-equation is

(2.10)

An incompressible diffusive form of the v-equation is

B.

dvav [)t3 D&———
z+u”~=vdxn v dxn “

(2.11)

Mass-Weighted Averaging and the Fluctuation Equations

Following the usual conventions of turbulence modeling, we decompose the

equations into averaged quantities and fluctuating quantities. The averaging procedure

will be that introduced by Favre since this mass-weighted averaging method leads to a

conservative form for the Reynolds stress tensor in the averaged momentum equation.

The decompositions are

p=p+p’,

v =V+v’,

P= F+P’,

Ui=tii+qf’,

and

Ui= g. +U:,

where the overbar denotes a non-mass-weighted

(2.12a)

(2. 12b)

(2.12C)

(2. 12d)

(2. 12e)

ensemble average, a single prime

denotes a fluctuation about the non-mass-weighted average, the tilde denotes a mass-

weighted ensemble average, and the double prime denotes a fluctuation about the mass-

weighted average. The mass weighting of the velocity possesses the following traits:

pui
Lii==,

P
(2013a)

(2. 13b)
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I

and

( –q)=~.~.p’ Oi+u: (2. 13C)

The mass-weighted fluctuating velocity is related to the non-mass-weighted fluctuating

velocity

where

A one-point density

u;= ai + u;, (2.13d)

ai =q. (2. 13e)

velocity correlation may be defined as I

When the NS equation is decomposed and averaged, we get

where

(2.13~

(2.14)

(2.15)

is the Reynolds stress tensor in the mass-weighted average variables. Two forms of the

equation for the fluctuating velocities will be useful:

When the conservation form of the density equation is decomposed and averaged, we get

(2.17)

lNote that this definition of a uses the opposite sign than that used by Besnard et al., 1992.
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and the corresponding conservation-form equation for the fluctuating density is

apt
( )=+* p’q+pu” =0.

n

The decomposed and averaged specific-volume equation is

(-g+aOnv+aanv+dQ=2 ~af7n+vaun+vau;—— —
at axn axn axn 1axn ~ ~’

and the fluctuating specific-volume equation is

z+’(v%-%)-a(v’’:im)

av’ + av’on = ‘v, ao——
at axn

(2.18)

(2.19)

(2.20)

A useful equation relating the averaged density and specific volume maybe derived from

Eq. (2.9):

pv=(p+p’)(v+v’)=1, (2.21)

and averaging gives

pv-b=l, (2.22)

where

b= –p’”’. (2.23)

C. The Two-Point Turbulent Stress Tensor

As shown in Eqs. (2. 14) and (2.24), the turbulent stress tensor, Rf, is the average

of the product of three field variables-the density and two fluctuating velocities:

~j(x~t) = P(X t)~f(X, t)U~(X, t). (2.24)

In contrast, the Reynolds stress tensor, ZU, appearing in the Reynolds-averaged constant-

density NS equations, which are the average of the product of two fluctuating velocities

alone:

%J(xt)=U;(X?O@, 1).

6
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In the latter case the generalization to a two-point statistical quantity is obvious; each

fluctuating velocity is taken at a different point:

%+,?% t)=U;(x,>+;(x,)t), (2.26)

and possesses the symmetry property

%n(xl~x2Jt) = %n(x2~xl~t) (2.27)

for any flow, thus ensuring that the Fourier spectrum of the energy is always real. For I?j,

the appropriate generalization to a two-point statistic is less clear. Two obvious choices

m

~j(x,, ‘~,t) = p(x,,t)u~(x~, ‘)”~(x2,t), (2.28)

or

Z$(x,, x2, t) = p(x2, t)u:fx,,t)u;(x2,?). (2.29)

Both forms reduce to Eq. (2.15) when xl = x2 but neither form manifestly satisfies the

symmetry property when x, and x* are interchanged. However, a simple linear

combination of these two generalizations does satisfy the symmetry property, thus

ensuring that the energy spectrum is always real:

The superscript (+) indicates that the densities at two points are summed and

distinguishes the correlation from a subsequent correlation wherein the difference of the

two densities is involved. For convenience the superscript (–) will generally be

suppressed and only the superscript (–) will be explicitly retained in all cases.z

This definition of the generalized turbulent stress tensor for variable-density

turbulence also reduces to Eq. (2.15) when xl = X2. There are, of course, many ways of

constructing the generalized two-point tensor to satisfy the symmetry constraint and

reduce to Eq. (2.15) when xl = X2. However, it is not clear that other definitions will be

superior to Eq. (2.30) and thus (2.30) will be used as a starting point for the derivations.

2The Fourier spectra association with (2.30) will not necessarily be nonnegative definite nor will any of the

spectra associated with subsequently derived correlations.
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D. Rti -Transport Equation

From Eqs. (2.16a-b), we can derive an exact unclosed transport equation for Rj

(x, ,x*):

~Rti(xl, x2)+ a

at ~[Rti(xl$x2)tin(x*)]+*[%(x,x2)o.(x2)]
In 2n

)
aoj(x,) aoi(x, )

‘Rn(xl$ ‘2 ax ‘Rj(xl’ x2) ax
2n In

[
][

atin(x,) + atin(x,) I
- :%(X1) ‘2) ax,n ax,n z ‘~+’ (xl$x2;x2

—— )+ H;+)(x,jx,;x,)]

[
][

aun(x2) _ atin(x,) 1
- ijRij-)(xl$ ‘2) ax2n ax – ~ ‘$-’ (X*, X2; X2 )– H,:-)(x,,X,; XJ]

In

,,. (%X2X2)+ aq:(x,$%; %)+ aTR(+)

axln ax,.

= +{Y;(XIX2)+Y;(X2X,)}

1

{[ 1[~i(x,,x,)a6n,(x2)
ai(xl, ‘2

‘z )-
1}

+ CZj(X2,x,)- ‘J(x2~x1) a~in(x,) (2.31)
i5(x2) ax2n p(%) h “

The new correlations appearing in Eq. (2.3 1) are

Rj-)(%x2) =3P(%)-P(X2)]%’(% )U;(YC2)3

[1P(xl) a6Sj(x2)
‘W%’X2)=4’ (X,) l+—

P(X2) ax2fl ‘

‘,(X1JX2) = ‘V(XI)P(X1)V(X*)3

(2.32)

(2.33)

(2.34)
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‘j(x]) X*)=‘f{x,)P’(x*),
and

H!(+)(X,, X2;Xv ‘) =+[P(x1)+P(x2)]u:(x, )u:(x2)a$:;’),
n

au:(x’)
H)-) (x,,X2; X’) = ;[P(X, )– p(xJ]u:(x, )U;(XJ ax, ,

n

T:) (x,, X2;x’) =$p(x, )+ p(x2 )]U:(x,)U;(X2)U;(X’).

(2.35)

(2.36)

(2.37)

(2.38)

The first line of Eq. (2.3 1) represents the time rate of change and advection of Ri. The

second line is production and destruction of RJ due to coupling with the mean flow. The

third line represents production and destruction of Rj due to mean field dilatation and

contraction and due to dilatation and contraction of the fluctuating field. The fourth line

is production and destruction of Rti due to inhomogeneity in the dilatation and contraction

of the mean field and the fluctuating field. Note that if the instantaneous velocity field is

solenoidal (i.e., D = O and low Mach number), then lines three and four are each equal to

zero. Line five is turbulent self-diffusion. Line six is the correlation of the fluctuating

velocity, the fluctuating density, and the fluctuating pressure and viscous stresses,

analogous to the pressure-strain rate correlations of constant-density turbulence. Line

seven represents coupling of the turbulence with the mean pressure and mean viscous

stresses, and line eight represents the coupling of the turbulence with the turbulent

stresses.

The R~-)-correlations are active only if the turbulence is inhomogeneous. Also

note that in the one-point limit (i.e., xl = XJ

1
ai(x, x) = –—?ni(x,x).

p(x)
(2.39)

Of the subsequent correlations appearing in Eq. (2.31),only ~, m,, R~.-),and Y~” are of

the same order or of lesser order as the turbulent stress tensor. Thus transport equations

will be derived for q, m, and ~~-). The Y~(+)and H-terms will be modeled.



E. ~-)-Transport Equation

The $)-transport equation is derived in the same manner as the Ri-Wuation:

Mp(x,$x,) + a (_)

at
~[%j (X*X2)U.(XI)]+* [RJ-)(XIX2)U.(X2)]

In 2n

q%) (-]

+ K)(%X2) ;X +% (%X2 Y::XJ
2n In

[
][

~~n(x2) + ‘Un(xl) _ ~ #-) (x,, X2;X2)+ H}(-)(x,, x,;x,
)]– +Z?,j-yxlj X2) ~x2n ax

2
tIn

[
][

imn(x,) _ wn(x,) 1 ~,/&)(x,, X2;X2
+$(%X2) ax ax,n ‘? d

)- Hf+)(x2,x,;x, )]
2n

+
a7$)(x1,x2;x2) + aqu(x2)7t,;x,)

ax,n ax,n

= ;[Y;-’(X1X2)-Y;-)( X2$X1)]

1

{[
)

1[ -1 }

nzi(x,, x2) aqj(x,) ~(x,,x,)+mj(x~!xi) il??in(X1)
(.zi(x,,x2 +

‘z F(x2) ax2n - I P(%) %.

1——
2 {[ 1[ai(x,,x~)+‘f’’x,) a%(x,) 1}aj(x,,x,)+‘&2yx’)a%(x,)(2.40)

P(x,) ax,. – P(%) k “

The new correlations that arise are

Yf-)(x,,x2)=u;lx, )[--l]Ejy ,

and

T;;-)(x,)Jw’) = +[P(x,)-P(x2)]ff@J4’(x2)ff’(x’).

(2.41)

(2.42)

10



T!(-) is of a higher order than the Rj and thus no transport equation will be derived for it.m)

The Y,~’-)couples the turbulence to the fluctuating pressure field and will be modeled.

The terms of Eq. (2.40) are directly analogous to the corresponding terms in the Z?l-

equation (2.3 1) and thus the same interpretations apply.

F. ai -Transport Equation

An exact unclosed transport equation for ai may be derived from Eqs. (2. 16b),

(2. 19), and (2.20), noting that

%(V%) = W(%)P(O’(%) = 4’(%)P(%)V’(X2)”

The ai-equation is

~aj(x,,x*)+ a
at

~[”.(x\)ai(xl,x2)] +*[u.(x2)ai(xl, x’2)]

in 2n

[

a~n(x2)+H?(x,,x2;x2
)
i)tii(x, ) _2 ~i(x,, x2) ax I

+ an(xl~ ‘2 ax )]
In 2n

au(x,)
- 2[Rin(x\?x~)+@-)(x,>x2)]~- ~{~(xz)[%(x,x~)+% -)(x,x~)]}

2n 2n

) aq(x,, x2;x2)+ a~,;(xl, X2; X1 +

ax,n ax,.

[

b(x,, X2) =ni % _ 1() Wi(xl) +Ya(X2,XI).
i

= p(x1) ~X,n axln

The new correlations arising from the ai-equation are

b(x,, x,)= -p’(x, )v’(x2),

aqi (xJ
Y;(x,, X2)= V’(XJ ax ,

in

(2.43)

(2.44)

(2.45)

(2.46)

11



HI%X2;X’) =~:(x*)P(xl)v’(x2 )a5::’) ~
n

and

q%, xv%’)=U;(x,)p(x,)v’(x+:(x’).

(2.47)

(2.48)

The f~st line of Eq. (2.44) represents the time rate of change and advection of ~ .

The first term on the left side of the second line represents production and destruction due

to coupling to mean flow gradients, the second term represents coupling to mean field

and fluctuating field dilatation. Note that the terms in the [ ]-brackets in the second line

will equal zero if the velocity field is solenoidal. The third line represents generation of

ai due to coupling of the turbulence with the density and specific volume gradients. The

fourth line may represent a self-difksion-type process. The first term on the left of the

fifth line represents coupling of the turbulent field to the mean field pressure and viscous

and turbulent stresses. The second term of the fifth line represents coupling of the

fluctuating velocity and density fields with the fluctuating pressure and viscous stresses.

Note that of the subsequent turbulent correlations arising out of Eq. (2.44), only b
and Y; are of the same order or lesser order than the turbulent stress, Ri. The correlations

T,: and H,”are of the same order or higher order than the turbulent stress, e.g.,

~;(X,, X2; X’)= ~(x2)[i?&xl, X’) + ~$-)(X,, x’)] + U:(X1)(++)V’(+;(x’) . (2.4%

where the first terms on the right-hand side are of the same order as R j and the second

terms are of higher order. A transport equation will thus be derived for b. The terms Y:,

T,;, and Zil,Uwill be modeled.

12



G. mi -Transport Equation

An exact unclosed transport equation for ~i may be derived from Eqs. (2. 16a) and

(2.18):

atii(x, ) i3L7n(xl)_H:(x,, x2;xl)
+ m“(xl, X2) ax,n

– r?zi(x,,X2) ax,n

+ a~i”(x,, x2) a@-l(x,,x2) + a7-;(x,, x2;x, )

ax2n - ax2n ax,n

where the additional correlations are

(2.50)

aqi(x,)
y’(x,, XJ = P’(X1)?(X2) &n ‘ (2.51)

au:(x’)
H~(Xl, X2;x’) = P’(X2)4’(XI ) ax, Y

n

and

7-;(X,, X2;X’) = p’(x2)u/!’(x,)u:(x’).

The b-correlation in Eq. (2.50) is identical to that appearing

(2.52)

(2.53)

in the q-equation and is

defined in Eq. (2.45). The first line of Eq. (2.50) represents time rate of change of mi and

conservative advection (e.g., pure advection plus coupling to mean flow velocity

gradients). The first term of the second line represents production and destruction of mi

due to coupling to mean-flow velocity gradients. The remaining two terms represent

production and destruction of m i due to mean-field dilatation and contraction and

fluctuating field dilatation and contraction, respectively. The last two terms in the second

line sum to zero if the instantaneous field is solenoidal. The third line describes turbulent

self-diffusion and mixing, and the fourth line shows coupling of the turbulence with the

pressure and viscous stresses. Note that Z7,rnand T,: are of higher order than is Rj and

13



thus no transport equation is derived for them. The term Y? involves the fluctuating

pressure and fluctuating viscous effects and is modeled as is the Z1-term.

H. b -Transport Equation

The exact, unclosed b-transport equation is derived from Eqs. (2. 18) and (2.20):

w(xl, x2) + a

at ~[~(xltx2)~n(xl)]++[~(xlJx2)~n(x2)]
In 2n

-[

Wn(x2) _ Hb(x,, x2;x2)
2 b(xl} ‘2) ax

2n 1
hn(x,,x,) a7(x2)

+ i7(xJ ax –mn(x2, x1 )
2n ax2n

(2.54)
ihn(xpxz) a~$(xl!x2; x2) so

ax,n – ax,n

The new correlations are

H’(X,,X2;X’)= p’(x,)v’(x2)a!j’:;’) , (2.55)
n

and

T/!’(x,,X2;X’)=p’(x,)v’(x,)ufl(x’). (2.56)

These correlations are of higher order than Ruand thus no transport equation will be

derived for them. Note that the average specific volume (i.e., the inverse density) appears

in the b-equation. Rather than carry an evolution equation for the average specific

volume, we may use the simple algebraic relationship (2.22), yielding

-_(x) =1+ b(x)

p(x) “
(2.57)

The physical significance of the various terms arising in the b-equation is not

immediately obvious, but the following interpretation of terms is defensible. The first

line of Eq. (2.54) represents the time rate of change and the advection and production of

b. The second line describes the

field dilatation and contraction

14
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(the first term) and fluctuating field dilatation and



contraction (H). The first term on the left of the third line describes the production and

destruction of b due to coupling of the mean-field inverse density to gradients of the

turbulent field, and the second term describes the turbulent advection of the inverse

density that causes production and destruction of b. The fourth line represents turbulent

dift%sion and advection of b.

I. Discussion

Exact, unclosed, transport equations have been derived for the two-point

correlations of order equal to or less than the order of the generalized two-point turbulent

stress tensor. Recall that the transported quantities are

(+)(X*,X2J) = +[p(x,,r)+p(x,, t)]u:(x,,f)u;(x,,t),z?v(x,,x2,f)d?ti

~;-)(%%)= ;[P(XJ-P(X2)]U;(X JU;(XJ,

ai(xl>x2)=4’(XI)P(XI)V(X2)J

‘i(xl~xz)=4’(X1)P’(X*)9
and

b(x,, x2)= -p’(x,)V’(x,),

In the one-point limit, i.e., xl = X2,these correlations reduce to

Rti(X,X)= p(X)U:(X)U~(X),

~f:yx, x) = o,

ai(x, x) = u;(x),

mi(x, x) = –p(x)u;(x) = –j5(x)ai (x, x),

and

b(x, X) = –P’(X)V’(X) .

(2.30)

(2.32)

(2.34)

(2.35)

(2.45)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

Thus, in the one-point limit, R; reduces to the usual turbulent stress tensor in Favre-

averaged variables, Rj-) vanishes, and w is directly related to ai. The one-point b and ai

15



are identical to the turbulence quantities used by Besnard et al. (1992), except for the sign

of@.

The additional correlations for which transport equations are not written can be

placed into three categories: turbulent dilatation correlations (El -terms), triple

correlations (T-terms), and fluctuating pressure-viscous strain correlations (W-terms).

Recall that the turbulent dilatation correlations are

and

all:(x’)
z-i;(”)(x,, X2;x’) = +[P(X, ) + p(xJ]4’(% )4(X2)

ax: ‘

au:(d)
H;(-) (x,, X2;X’)=;[P(X,) – P(X2)]4’(%)4(X2) ax, ~

n

au:(xq
H,:(x,, X2;x’)= U:(X1)p(x, )v’(x J~ ,

n

au:(x’)
27,?(X,,X2;X’) = P’(Q.4’(%) -dX, ‘

n

H’(X,,X2;X’) = p’(x,)v’(x,)a’jy .
n

(2.36)

(2.37)

(2.47)

(2.52)

(2.55)

For a transport equation for a turbulence quantity, say ~, the form of the H-correlation is

H7x,,x2;x’)=@(x,, xJa5:7 .
n

(2.63)

A consistent modeling is sought for this class of terms. Note that the divergence of the

fluctuating velocity field is expressed in Favre-averaged variables that may be

nonsolenoidal even if the instantaneous field is solenoidal. In addition, because this

fluctuating field has a nonzero mean, it may be advantageous to decompose u: further

into ai and U; and model the part involving the divergence of the zero-mean-velocity

fluctuation. Thus the H-terms will be written as

Z#(x,,x,;x’) = (i)(x,,x,)aa;::’)+ fiyx,,x,;x’),

n

(2.64)

where
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‘“”7
If the

terms

iqx,,x,;x’) = L!)(x,,x2)yy . (2.65)
n

instantaneous field is solenoidal (e.g., mixing of immiscible fluids), then the #-

are zero.

Recall that the triple correlations are

T$) (Xl,X2; X’)= :[p(X1 )+ f3(X2)]U:(Xl)L$(X2)U:(X’),

T;;) (Xl,X2; X’) = ~[p(Xl )– P(X2)]4’(X1)U;(X2)U:(X’),

(2.38)

(2.42)

and

Tj(x,, X2; X’) = U:(X, )f)(X, )V’(X2)U:(X’),

T:(x,,x2;x’) = P’(x2)#’(x,)U:(x’),

7’:(x,, x2; X’) = fl’(X,)V’(X2)U/f’(X’).

The form of the triple correlations is

~~n(xl~xp;x’) = @...(x*>x2)uf()’)‘@...(x*~x2) %( X’)+CI(X1JX2;X’)> (2-W)

(2.48)

(2.53)

(2.56)

where

l!n(xl~xz;x’)= $..,(xl,x~)u~ (x’).

The fluctuating pressure–viscous stress correlations, Y,

“standardized” form. From Eq. (2.33),

(2.67)

may be rewritten in a

Y:(X,, XJ=
a(Y:j(x2)

U;’(X,)[f+l )+ P(X2)]+2) ~x2n ‘ (2.68)

17



from Eq. (2.41),

aqj (X2)
‘-qf) (x,, X2)= 4’(% )[P(%) - P(x2)]+2) &n ‘

from Eq. (2.46)

aqj(x,)
Yf(x,t x,)= P(X2)V(XI)V(X2) ax ‘

2n

(2.69)

(2.70)

and from Eq. (2.53),

aqj(x2)
Y7(x,9x2) = P’(X1)V(X2) ax,n “

Unlike their constant density analog, the Y-correlations may

product of two nonzero terms,

(2.71)

be decomposed into a

Y~.oj(Xlj X2)= [Tj.(xl$‘2) + Wj...(xlJ‘2 )]Ifij(x2)+z~(x2)]

(2.72)

= Ti...(xl, ‘2)RJ(X2) + ~f...(xl~ ‘2)z~(x2)>

where

aqj(x)
7Cj(X) = ‘(x) ax $

n

(2.73)

‘d Wi...(xl? ‘2 ) is expressible in terms of the two-point variables already defined. In the

limit as density variations approach zero, ~i and ~i. (x,, X2) become zero mean, the y
~(+)

correlation becomes identical to its constant-density analog, and the additional Y-

correlations vanish. These data suggest that the product of the means represents a

phenomenon unique to the case of variable-density turbulence, and the correlation of the

fluctuating parts represents analogs to the constant-density case. The constant-density

case typically is modeled as a “slow part” governed by triple correlations and causing a

tendency toward isotropy, and a “rapid part” governing the coupling of the turbulence to

mean-flow gradients.
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III. ISOTROPIC TURBULENCE AND HOMOGENEOUS ACCELERATED
TURBULENCE

A. Isotropy and Homogeneity

The theoretical study of the turbulence-transport equations is made more tractable

when simplifying assumptions are made regarding the geometry of the turbulence domain

and of the turbulence. The assumptions usually applied in theoretical studies of constant

turbulence are of statistical isotropy or statistical homogeneity. Statistically isotropic

turbulence is defined as turbulence that is statistically invariant under translation and

rotation of the coordinate axes. Statistically homogeneous turbulence is invariant under

coordinate translations but not necessarily invariant under coordinate orientation. In

other words, an isotropic turbulence exhibits no statistical y preferred orientation or

position; homogeneous turbulence may possess a statistically preferred direction but not a

statistically preferred position.

For present purposes we will examine variable-density turbulence under the

assumption of statistical isotropy and a specific case of statistical homogeneity. The

assumptions of statistical isotropy and homogeneity are the same for variable-density

turbulence as they are for constant-density turbulence, i.e., statistical invariance under

coordinate rotation and translation for isotropy, and statistical invariance under

translation for homogeneity. The specific case of a homogeneous turbulence subjected to

an acceleration will be examined. Because this case may be counterintuitive to some, it

deserves further explanation. A physical model can be described as a tank with sides of

length, L, in which fluids of varying densities are vigorously mixed to such a degree that

at points away from the walls the turbulence is essentially isotropic. This tank is then

accelerated (gravity is “turned on”). In this situation the denser fluids will flow toward

the bottom of the tank and the lighter fluid moves toward the top of the tank. If the fluid

is incompressible, there is no net volumetric flux of fluid from the bottom of the tank to

the top or vice-versa and

Z7,=tii+ai=0. (3.1)

Note that the heavy fluid will eventually accumulate at the bottom of the tank as the

fluids separate, thus producing gradients in the mean density and violating the assumption

of homogeneity. However, for present purposes, we will assume that the tank is large

(the limit as L approaches infinity) and the time for separation to affect the region of the

tank of interest is large compared with any time scales of interest.
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With the above assumptions in mind, we may simplify the mean-flow equations

and the two-point turbulence correlation equations. Spatial arguments of single-point

statistical quantities are omitted because these quantities are invariant under translation.

B. The Two-Point Correlation Equations for Homogeneous Accelerated Turbulence

For homogeneous accelerated turbulence, the single-point statistics and quantities

are invariant under coordinate translation and thus all spatial gradients of these quantities

are zero. The mean-velocity equation is

ad, = I a~— .—— + gi,
at p axi

the mean density is constant,

and the mean-specific volume is given by

~= ~v au: 1 ab(x, x)
—=2HV==

at axn pat”

The Reynolds stress spectral tensor equation for this case becomes

%(%X2)+0

[

%(%X2) + %(%X2)
at n ax,n 1ax2n -

(3.2)

(3.3)

(3.4)

1 [q(’) (x,, X2; X2) + fi,~’)(X2, X,;x, )] – yf(-’ (x,, X2; XJ—— – H,:’-)(X2, X,; x
2

I)]

agj(x,, x2) aRJi(X2,x,)+ af,;:+) (XI$X2; X2) + @$’ (X2)X1;X1)
+ an

ax,n + an ax,n ax,n ax2n

= ;[Y:(x1tx2)+Yj(x2, x,)]

(3.5)

1.—

{[
ai(xl,xz

2 1[ 1})-mi(~x2)~+ aj(x,$x,)-m’(~’x’)~ $j i
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the I&)-equation is

a)?,j-yxl, X2)+ ~

[

N?p(x,, X2 ) + tl~$-)(x,)J%)
at n axln ax,n 1

[(1ii!(”)X,, X2; XJ + AJ:(-)(X2.XI;X1——
2“

)] - +[fi:’(x,, x2;x2)-fi:’(x2, x,;x, )]

+ ~, dR}n-)(x1jX2) dRji)(x2) x,) afg-) (xl, X21X2)+ aif (X2,X1;X, )+ ai 1
J ax,= ax2n + ax,n ax2n

= +[Y?-)(XIJX2)-Y$-’(X2XI)]

1——

{[
)ai(xl, X2 + 1[‘i(x*>x2) a~ a,(x,,xl) q(x24 a~—_

2
+

F axj J F 1}~’

the ai-equation is,

dai(xl)x,)+ti

[

dai(xl, x2) + dai(xlj x2)

at n ax,” ax2n 1

‘[~i.(x,x2)+Ai-)(xlx2)l–2fi,”(XI,xz;xz)– ‘ax
2n

(3.7)

+ Za aai(xl~x2) + afi(%)x,;xl)+ af:(x,jx,; x,)

n ax,n ax,” ax,n

b(xl, x2)y+y:(x2)xl)?
=—

F axi
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the W-equation is

azq(x,, X2) a~fl(x,,x,)+a ami(xI’ x2)+afg(xl$x2; xl)
– ii,m(X~,X~;xi)+ax – ax n

2n 2n ax,n ax,.

aF
= b(x2~xl)axi )—+ Yy(x2, x, ,

and the b-equation is

ab@2)+ti

[

ab(xl, x2) + ab(x,, X2)

at n ax,n 1ax,n “

(3.8)

(3.9)

)
-awzn(x2jx,)_ aan(x,)x,) aqx,, x2) a~fl(xl, x2; x2) =0

+ 2Z?(X,, X2;X2 +V
ax2n ax,n -an ax2n – axzn “

Equations (3. 1)–(3.9) represent the complete set of unclosed equations for the

homogeneous accelerated turbulence.
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IV. TRANSFORMATION TO THE CENTER COORDINATE + RELATIVE
COORDINATE FRAME

A. Coordinate Definition

The correlation equations will next be rewritten in terms of a center coordinate, X,

and a relative coordinate, r:

x= ;[X, +X2], (4.la)

)-=X*-X2, (4.lb)

so

The derivative operators become

x, =X+~r, (4.2a)

xz=X–~r. (4.2b)

ao=aoaxn+aoarn=lao a.—— —.
ax,, ax” ax,i drn ax,i 2 axi + &-i ‘

and

ao=aodx.+aodrn lao a.—— __
dxzi aXn ilqi ilrn ax2i = 2 axi dri “

(4.3a)

(4.3b)

The following notational convention will be adopted. A variable that is a function of two

of the independent variables xl or Xzbecomes a function of X and ef r if the arguments

are in the order (xl ,xz) or –r if the arguments are in the order (X2,X1). If the variable is

represented with three arguments, for example Tfi(xl ,xz;x’), the arguments to the left of

the semicolon follow the same rule as described for the correlations with two spatial

arguments. The argument to the right of the semicolon becomes either r or –r depending

on whether x’ = xl or x’ = X2, respectively. For the present homogeneous problem the

variables are no longer fi.mctions of X, but only of r. As an example, consider the

variable Z_jJx,,xz;Xz), after the coordinate change and if the assumption of homogeneity is

used, this correlation is denoted ~jJ~-r). In all cases, the time dependence is assumed

but not explicitly represented in the arguments.
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B. The Correlation Equations for Homogeneous Accelerated Turbulence

The mean-velocity equation, the mean-density equation, and the mean specific

volume equations are unchanged by these transformations.

R:)(r) = R~~)(-r) and R~-)(r) =

From symmetry

–R},:)(–r). The transformed Rg equation is

ilR..(r) 1 A~(.)
*-J iJ (-)H. r“ r + fir (-r;r)]- ~[fi~-) (r;-r) - tij-) (-r;r)] (4.4)

+ +[f:’)(r;-r)-f;:)(-r;r)]
n

{[ -y]:+[.j(-r)-m’;r)]g},=+[y$(r)+yf(-r)]-+~i(r)

the ~j-)-equation is

[
A‘(-’(-r; r)] -~[fifl (r;-r)- fi~+) (-r; r)] (4.5)

dz$)(r) _ ~ fi~(-) (r; –r) + ‘ji

at 2

+ +[2anRj-)(r)+fff-) (r;-r)-f,U(-r;r)]
n

= +[y$-)(r)-y$-)(-r)]-;{[.i(r)+y]~-[.j(-r)+fi;r)]g
the ~ -equation is

ihi(r) ~fi:(r;-r) +2——
at dr {~[%(r)+R&-)(r)]+2anai(r)+~~(r;r)+ti(r;-r)} (4.6)!n

n
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the ~-equation is

am.(r)
- – 12,”’(r; r) +

at
$[d-)(r)-%(r)+%mi(r) +ft(r;r)]

n

(4.7)

—

= b(-r)~ + Y~ (–r),
i

and the b-equation is

ah(r)+2#’(r;-r) + ~[anb(r) –
at

Vm.(–r) – a. (r) + f~(r;–r)] = O. (4.8)
n

C. The Fourier Transformed Correlation Equations For Homogeneous
Accelerated Turbulence

Next, the equations are Fourier transformed with respect to the relative

coordinate, r

~(~ t) = JJJ@(r, t)e-i’”r”dr. (4.9)
-- to +-

The mean-velocity equation, the mean-density equation, and the mean specific volume

equations are again unchanged by these transformations. The transformed R j-equation is

W.(k) 1 ~~,.~
*-J ,, ( - )H.. k“ k + fi,:) (–k;k)]- +[fi/[-) (k;–k) – fi,:-) (–k;k)] (4. 10)

+ ikn[f::+) (k;-k) - ff:) (-k; k)]

2{[1‘*]~+[aj(-k)-mjJk)]$},=~[yf(k)+yf(-k)]-Aa(k)
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the ~-)-equation is

i3Z$)(k) 1 A~(-)
at - &ti (k;-k) + fi:[-) (-k; k)] - ~[fi~ (k;-k) - fi~+) (-k; k)] (4. 111

the ~-equation is

aai(k)
— – 2fi,U(k;-k) + ik~{7[Ri~(k) + Rf~)(k)]+ 2anai(k) + ~~(k;k)t~(k;–k)} (4.12)
at

b(k) ~~ + y:(–jc)s
= ———

p ax,

the m,-equation is

am,(k) - fi,”(k.k)+ik [~-)(k)- Rifl(k)+an~~Zi(k)+ ~~(k;k)] (4.13)
at’””

—

= b(-k): + Y:(-k), -
1

and the b-equation is

ah(k) + 2#(k;-k) + ik~[anb(k) - i%zn(-k) – an(k) + ~$(k;–k)] = O. (4. 14)
at
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D. Discussion of the Fourier Transformed Equations

The Fourier transformed equations demonstrate a degree of complexity not

present in the case of constant-density turbulence. However, a few general features are

readily apparent, particularly in the case of isotropic turbulence. The terms in the

isotropic equations fall into three categories: the turbulent dilatational terms ( H-terms),

fluctuating pressure-, velocity-, and density-specific volume correlations (Y-terms), and

terms multiplied by ik..

As noted before, the H-terms are not conservative and thus apparently represent

production and destruction due to turbulent dilatation of the velocity field-these terms

vanish if the instantaneous velocity field is solenoidal. It is not known under what

condition these terms are “productive” or “destructive,” and the direct numerical

simulations of these equations currently being undertaken by D. Sandoval and J. Riley at

the University of Washington will provide information about their behavior. Note that

the @ term may relate to the “dissipation” of b(x) due to viscous diffusion, thus giving

some indication of at least one correlation of this type. A similar conclusion may be

readily demonstrated from the one-point correlation equations for isotropic turbulence:

ab apv – a~ au:
–—= —=2pv’—

Z- at pat ax=
= 2pH’ . (4.15)

Hence the turbulent dilatational correlation in this case, #, represents the production

and destruction of b. Note that since the trend for b in isotropic turbulence is for the

materials to mix at the molecular level (if the molecular diffusivity is nonzero), one may

deduce that & is negative and represents a “destruction” or “dissipation” of b.

The Y-terms represent correlations with the fluctuating pressure and with the

fluctuating viscous stress tensor. In constant density situations, the Y-term in the Rj-

equation is solved by the inversion of a Poisson equation and yields, for homogeneous

turbulence, a “rapid term” coupling of the mean-field velocity gradient to the turbulence,

and a “slow term,” involving triple velocity correlations that is modeled as a tendency

toward isotropy. Analogy between the constant density and variable-density cases is

exploited in the variable-density single-point turbulence model (BHR) of Besnard et al.

(1992) to close not only the Rti-equation, but the ai-equation as well. This approach is

undoubtedly correct in the limit (p’v’) + O, wherein the equations approach the constant

density equations exactly. However, there may be effects of large-density fluctuation that

have no analogy in

entirely by such an

the constant-density case, and which therefore might be missed

approach. Note that the b-equation does not possess a Y-term.
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Although we will model the effects of this term by appealing to physical arguments, a

more detailed discussion of other possible approaches is not within the present scope of

this paper.

The terms multiplied by fin apparently represent a variety of effects. Such effects

might include

● cascade of turbulence kinetic energy from low wavenumber/large scales to

high wavenumber/small scales,

● “clumping” of heavier fluid “blobs” due to “Venturi-like” effects caused by

the passage of the lighter fluid between the blobs, causing a tendency toward

“blob coalescence,” an inverse cascade of b(k) and perhaps of ~(k) and mi(k),

and a corresponding inhibition of forward cascade in &,

“ break-up of “blobs” due to interaction of turbulent velocity fluctuations of the

same size/length scales as the blobs, contributing to a forward cascade in k-

space of b(k) and perhaps of ~(k) and mi(k).

Averaging these terms over all angles in k-space leads directly to an ambiguity.

The non-Fourier-transformed statistics are real, i.e., have a zero imaginary component.

Thus the Fourier transformed correlations possess a complex conjugate symmetry:

~(r) = Re[$(r)] = $“(r),

so

$(k) = $*(-k).

(4. 16a)

(4. 16b)

Consequently, averaging over all angles in k-space (referred to hereafter as “shell

averaging” —averaging over spheres of radius Ikl centered about the origin in k-space)

captures only the real part, but not the imaginary part, of the spectrum. Hence a shell-

averaged set of equations contains only information regarding the evolution of the real

parts of the spectra and must depend in some fashion on the imaginary parts for which the

evolution equations contain no information. Note that this problem also occurs in the

constant-density case concerning the triple-velocity correlations only, which are typically

modeled. In the variable-density case, these terms include not only the higher order

“triple” correlations that will be modeled, but the “lower order” correlations, which are

handled with evolution equations rather than modeling. For example, consider the b(k)-

equation for isotropic turbulence. Evolution of the real part of b(k), or 6( Ikl), depends not

only on the imaginary part of the “triple” correlation T/’(k) but also on the imaginary

parts of ~(k) and m ;(k). For the simple accelerated case, the real part of b( k) depends
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also on the imaginary part of b(k). This term in the b( k)-equation for accelerated

turbulence would appear to lead to simple oscillations of the b-spectrum, rather than any

actual transfer of b(k) through k-space. Such issues may be resolved when the results of

the direct numerical simulations of Riley and Sandoval are available.

V. A SPECTRAL MODEL FOR VARIABLE-DENSITY TURBULENCE
SUBJECTED TO ACCELERATION

A. Introduction

The model to be constructed will represent an attempt to describe the evolution of

the “shell-averaged” scalar k-space statistics. As noted in the previous section, the exact,

non-shell-averaged equations indicate that a substantial portion of the physics may not be

adequately described by the shell-averaged quantities. Nevertheless, there may be some

value in presenting a model that is at least dimensionally correct, satisfies the tensor

symmetries and energy conservation, and gives a depiction of turbulence in the limit of

vanishing density fluctuations that is consistent with our present understanding of

turbulence of constant-density fluids. In addition, it might be argued that derivation of a

more sophisticated model is unwarranted when there are so few experimental data

available to verify any proposed closures. Consequently, we do not claim that our model

accurately describes the evolution of the spectra of variable-density turbulence; in part,

because we do not know how turbulence with large density variations evolves.

We have derived evolution equations for five spectral quantities: R;), R~-), ai,

mi, and b. Note that the Fourier spectrum of R$-) must be entirely imaginary, and since

we desire a “shell-averaged” model that incorporates only the real parts of the spectra, we

have dropped the R}-)-equation. Next, note that the single-point statistics of ai and mi

must be related to each other by a simple factor of –~. The single-point statistics are

equal to the scalar-k-space statistics integrated over all k. Thus we have

~aj(kt)~~‘-AJmj(k?t)dk.
o PI)

(5.1)

This integral equality does not imply a “spectral” equality: m,(k, t) = –~ai(k, t). Thus,

even though an evolution equation for w(k,t) might conceivably give spectra that do not

satisfy a spectral equality, it must satisfy the above integral inequality. Note, however,

that an initially stationary variable-density mixture subjected to a sudden pressure

gradient the mi and ai-equations appear to indicate that
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aai(k) b(k) il~

Ts-—— ~ dXi ‘

and

(5.2)

(5.3)
d~i(k) ~ b(-k)~=

a
b“(k)=,

1 i

from which one might reasonably deduce that

mi(k, t)= -j5a~(~ t), (5.3)

indicating that the shell-averaged quantities may satisfy a spectral equality, at least to this

limit. Due to a lack of more detailed knowledge regarding the spectral behavior of the

turbulence, and also realizing that we have perhaps already made a tremendous

concession to physical fidelity by describing the physics in a scalar-k-space, we will

assume the spectral equality

mi(k, t)= –~ai(k, f).

Further, in the absence of molecular effects (viscosity

energy conservation. This requires that

(5.4)

and diffusion), we will require

$[”n(t)on(r)+R.. (~)]=o, (5.5)

which for the simple accelerated turbulence reduces to

[ 1
~ ja.(~f)~~an(.$t)~.+ ~~nn(k,t)dk =0. (5.6)

o 0 0

Finally, in the limit of vanishing b, we require that ai (and thus nq) also vanish and that

the turbulence will behave like constant-density turbulence with a passive scalar.
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B. Modified Spectral Equations for Homogeneous Accelerated Turbulence

If we assume spectral equality between m~ and ai, then

rni(k, t) = -~a~(k, t) = –~ai(–k, t),

the spectral equations may be simplified as follows: the Z?~-equation becomes

a%;k)-;{[, (;- ) ,,%(’) k k + tiR(”)(-k;k)]+[fi$-)(k; -k) - fi$-)(-k;k)]}

+ ikn[f:’) (k;-k) - f::) (-k; k)]

{

a~

}
~+ ~f?[CZj(k)]~ ‘= Re[Yf(k)] - Re[a,(k)] ax,

)

the ZW-equation becomes

aRg(k)-:{[“’(-)(‘- )H, k, k + fi$)(-k;k)]+[fi }’+) (k;-k)- fi_f’+’(-k;k)]}

(5.7)

(5.8)

(5.9)

+ 2iknanRj-)(k) + ikn[f:-) (k;-k) - f::) (-k; k)]

{

—

ZWZ[Y$-’(k)]- ~~[~i(k)] 1~++j(k)]%‘=
1

the ~-equation is unchanged,

au,(k)
—- 2fif(k;-k) + ikn{u[~.(k) + R}n-)(k)]+ 2ana,(k) + f~(k;k) + fj(k;-lc)} (5.1O)

at

h(k) il~= ——— +Y:(–k),
P ax,

and the b-equation becomes

~+ 21?’(k; –k) + ikn[anb(k) + ban(k)] + iknf~(k; –k) = O. (5.11)
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C. Modeling

As stated previously, we attempt to construct model equations that describe the

evolution of the shell-averaged spectra of the turbulence quantities. Obviously, the shell

average of R$-) is zero, and hence this quantity is of no use for present purposes. This

leaves three turbulence quantities for which to construct equations: ~(kt), ai(~t), and

b(kt). We will require the model to satisfy the following constraints:

1. If b vanishes, so must ai.

2. If& vanishes, so must a..

3. In the limit of vanishing b, the turbulence must behave as a constant density

turbulence with a passive scalar.

We will assume that transfer in scalar-k-space can be described by nonlinear

advection and diffusion, as was assumed in the diffusion approximation of Leith (1967)

and in the constant-density spectral model (BHRZ) of Besnard et al. (1990). Note that

this model of Besnard et al. (1990), when extended to the isotropic decay of a passive

scalar, does not yield the so-called Batchelor k-l scaling range for the passive scalar at

high Prandtl number. This is clearly due to the fact that for the case of finite turbulent

Reynolds number, the turbulence time scale used in the BHRZ cascade model goes to

zero at high wavenumbers, and therefore does not permit the passive scalar to

be’’advected” past the turbulence energy dissipation range. Therefore, an integral time

scale for the turbulence cascades

used by Besnard et al. (1990).

D. The Rjj Model Equation

will be used, rather than the nonintegral (“local”) form

First, we begin with the Z&equation. As noted previously, the fi-terms represent

production or destruction of turbulence due to the dilatation of the instantaneous

fluctuating velocity field. The dilatation of the velocity field in our case will be due to

molecular diffusivity, as indicated in Section 2, Eq. (2.7), by

aun _

(1

a Dap—_- —
axn ax” ~~ “

It thus seems reasonable to assume that these terms will scale in some sense like other

molecular effects, e.g., viscous dissipation or molecular diffusion. These terms must

have the dimensions of [(mass)] (length) s(time)-s]. As the density fluctuations vanish or
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as the molecular diffusivity vanishes, the instantaneous velocity field becomes solenoidal,

and these terms must also vanish. Thus a candidate model for these terms is

+ cR#,~(k, t) Dk21$(k, t) , (5.12)

where ~~~ is a dimensionless function of b(k,t),which, for simplicity, we will choose to

be

~R/f(k, f) = kb(k, t) . (5.13)

(There are, in fact, an infinity of possibilities for ~-terms.) We are currently ignorant as

to whether these terms represent production or destruction (or perhaps both); hence, the

ambiguity of sign. c~” is a dimensionless model constant, presumably with an order of

magnitude of one.

Next, consider the terms explicitly multiplied by ik.. The term that also involves

triple correlations is identical to terms arising in constant-density turbulence and is said to

represent turbulence cascade in k-space. These terms are modeled by Besnard et al.

(1990) as an advection and diffusion in k-space. We will use an advection/diffusion

model in k-space but will also include the possibility of an alteration of cascade due to the

presence of density fluctuations and will use an integral form for the time scale:

where again the ~

cascade due to the

same ~ as before:

is a dimensionless function of b(k, t) and represents an alteration of

presence of density fluctuations. For simplicity, one may choose the

PRB(kt) = kb(k,t), (5.15)

thus, in the limit as b vanishes, the cascade terms become identical to those proposed by

Besnard et al. (1990).

Next, we consider the fluctuating pressure part of the viscous stress correlations.

A simple Poisson equation cannot be derived for the fluctuating pressure in the same

sense that one may be derived for constant-density turbulence. If the instantaneous

velocity field is assumed to be solenoidal, than a type of Poisson equation can be derived

[See Besnard et al. (1990)]. However, it is not apparent that this Poisson-like equation
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can be inverted (i.e., solved) via a Green’s function operator as is done for the constant-

density case. We also note that even in the case of constant-density turbulence, the

solution of the Poisson equation provides guidance only for modeling of the pressure-

velocity correlations, rather than being an actual term for use in the model [see, for

example, Besnard et al. (1990)]. Thus for present purposes, we will base our model of

the effects of the pressure-velocity correlations on dimensional consistency, physical

arguments, and analogy with the constant-density case. First, we note that the model for

the fluctuating pressure-velocity correlations must approach the form for constant-density

turbulence in the limit of vanishing b. Thus, the model should include a “slow part,”

reflecting a tendency toward isotropy and, in the more general case, a “rapid part” that

couples the spectral tensor to mean-flow velocity gradients. Because there are no mean-

flow velocity gradients in our homogeneous accelerated turbulence and our isotropic

turbulence, we may at present neglect the rapid part. The tendency toward isotropy is

modeled in direct analogy to the constant-density case:

(5.16)

Next, we consider additional effects that may arise due to the presence of density

fluctuations. We expect that the interpenetration of one fluid into the other results in a

net production of Reynolds stress, and this net production is also reflected as a net

decrease in q. due to drag effects. The effects leading to drag/decay of ai are more easily

intuited than is the consequent production of R ~, and thus we will first discuss the

modeling of the drag/decay of ai arising from fluctuating pressure correlations and then

assure that the corresponding term in Rj is consistent and satisfies energy conservation.

For the model of the fluctuating pressure correlations of the ai-equation we will assume

the form

-{ [

1/2

cRPl~RPl (k) ‘)k2~~ + cRP2~RP2(k~ ‘) +~q’%(% ‘)dq

1}
a,(k, t) .(5. 17)

The ~-terms are again dimensionless functions of b and the Cm ~ and CR~2 are

dimensionless model constants. Note that the left-hand term in the []-braces represents

the wavenumber-dependent time scales for the drag of ai due to the spectral distribution

of the interpenetrating fluids. The right-hand term in the braces represents a time scale
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for the destruction of ai due to a disorganization, or isotropization, caused by the presence

of the turbulence. As noted previously, in the absence of molecular effects and external

forcing, energy conservation requires that

[ 1
~ jRnn(kt)dk+~afl( k,f)~~j~n(~,t)~k ‘O. (5.18)

o 0 0

Thus energy conservation requires that the production term in the Rti-equation must have

an integral form. The form we will assume is

+ F[c/?Pl~RPl(k~ ‘)k’~~][ai(k, ‘)aj(t) + aj(k f)ai(~)]

(5.19)

'F{cRp2pRp2(k`)[~Jq
The coupling of ai with the mean-pressure gradient need not be modeled. One purpose of

these ~-terms is to ensure that aj vanishes as b vanishes. The form for both these terms is

chosen as

~J?~!(k~t)= ~RP,(k, t) = ~, (5.20)

thus, as b(t) vanishes, the drag term becomes infinite, forcing ~ to vanish. We do not

anticipate that this will cause an infinite production in the Rj-equation because a, appears

quadratically in the production term in the Rj-equation and will vanish in the limit as b

vanishes, thus forcing the production term to zero. We also do not argue that these ~-

terms are correct or that they are the only reasonable choice. They appear to be, however,

the simplest forms that satisfy both the dimensional requirements and also provide a

consistency between the vanishing of b and the vanishing of ai. The fluctuating viscous

stress tensor will also be modeled by direct analogy to

- 2%#, t),
P

the constant-density case:

(5.21)
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where fluctuations in the molecular viscosity are negIected and any apparent stresses

arising from the dilatation of the turbulent field are assumed to be taken into account by

the modeling of the A-terms. The model for the evolution of Ri (kt) is, therefore,

at '-C~z${[l+C..~~~,kt,][+~q2Rnn,qt,dq~[~kR,j,k,t,-k2dR~f`)]
dR,/(k, t)

.

+ [CRPIPRPI (k, ‘)Fk2&F7ZF3][ai(k* ‘)aj(t) + aj(k, ‘)ai(f)]

'{cRP2~RP2(kt)~[~~~2%n(~f)d~~}[ai(~t)aj(t)+aJ(~t)~(t)]

-[

a~ a~
ai(k, t) ~+aj(k, t)~

J 1 1

E. The ai Model Equation

The modeIing of the ai-equation follows from the same assumptions used in the Rf
modeling. The l%’-term is modeled as a dissipation term (molecular diffusion of density

causes a decrease in ai), and the viscous dissipation is modeled in the same fashion as for

the Ru-equation:

(5.23)

The terms explicitly by ikn are assumed to represent transfer in k-space. Note that the

cascade terms may include time scales from the so-called triple correlations: the spectral

tensor components, spectral ~, and the spectrally integrated ai. In addition, if we assume

that a “clumping,” or agglomeration, of interpenetrating fluid “blobs” may occur due to

“Venturi-like” effects of flow between smaller clumps, it seems reasonable that this effect

will be present in both b(~t) and ai(k,t) and maybe described as an inverse cascade in k-

space. This assumption is justified

interpenetrating material is given
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correlation between density fluctuations may be growing. In addition, we anticipate that

as the density fluctuations become vanishingly small, the density fluctuations will behave

in a manner analogous to a passive scalar, the dominant transport in k-space will be

toward higher wavenumbers, and the time scales for transfer will be identical to the time

scales for transport of the turbulence energy itself, which we will here assume is given by

the model of Besnard et al. (1990). Three different time scales (or k-space velocity

scales) will be used to describe the advection and diffusion in k-space:

a– cao2~
{ [

k3~’ &_ai(k, t)-k_
au2 1}

{[ 1}
+Cd2~~$ k2 -$ai(k, t)+kau$’t) .

aA2

The first line is turbulence transport of ai in k-space due to the turbulent velocity field.

The second line describes the transfer due to length- and scale-dependent interpenetration

and mixing. The third line describes clumping and “inverse” transfer to large
scales/small wavenumbers due to the Venturi-like effects caused by interpenetration of

the ensemble (i.e., the spectrally integrated time scale) of fluids. The choice of ~s will be

deferred until the discussion of the b(k,t)-equation.

The fluctuating pressure correlations are modeled as drag and are discussed in

previous subsection, Eq. (5.17). We will repeat them here for convenience:

-{ [

1/2

c,p,P,p,(k f)k2~~ +C,,zPR,,(k, ~);~q’~nn((Lt)fq
1}

a,(k, t).
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Note that the fluctuating pressure correlations for the R j(kt)-equation also include a

return to isotropys. However, for our vector ai(~t), a return to isotropy is equivalent to a

decay of ai and is thus physically analogous to a decay and will be assumed to be

included in this drag term. The coupling of b(k,t) to the mean-pressure gradient does not

need to be modeled. The model equation for @cJ) is thus

– Caa,$
{ [

ila.(k, t)
k’~~ ~ai(k, t)–k ~k

all2 11

a

{[

aai(k, t)
+ Cd2J~z k2 $ai(k, t)+k ak

a.42 1}

-{ [

m

GAm (k t)k2J~ + GA3Rp2(k t) #q2%n(~~ ?)c@

1}
ai(k, t)

b(k, t) a~

[ 12 (k,t).~+ 2Ca#aD(k, t)~ k aj-— —.
~ ilxi p

(5.25)

F. The b Model Equation

The modeling of the b-equation follows the same rationale as does the modeling

of the ai-equation. Again we assume the fib-term represents a molecular diffusive

dissipation of b due to turbulent dilatation. The rationale for this assumption was

discussed in Section 11.F. Thus the fib-term is modeled as

– 2~k2b(k, t). (5.26)

3Rment direct “Umefic.l ~imUlatiOn~ by S~dOv& Riley and Clink have also identified a “rapid-term” in

the fluctuating pressure-specific volume correlation that responds immediately to the mean pressure

gradient. This is analogous to the so-called “rapid-term” in Reynolds stress-Epsilon models that couples

mean flow gradients directly to the Reynolds stresses, but is neglected in the above model.
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The transfers in k-space are assumed to arise from the terms explicitly multiplied by ikn

and will be modeled in direct analogy to the transfer terms for the ai-equation. The b-

equation is simply

– Cba,;
{ [
k’~~ ~b(k,+~–

ba2 1}

{[

+ C~A2~~$ k2 &b(k, t) + k ab$’ ‘)1}–2~k2b(k, t) . (5.27)
bA2

Note that if the mixing fluids are immiscible, then by definition the mixing fluids

never diffuse into each other due to molecular effects. In the immiscible case the

interspersed fluid may form “droplets” of a small but finite size wherein the surface

tension effects counterbalance the turbulent shearing. In this case the cascading to

smaller scales due to breakup of fluid blobs will cease, and the interspersed fluid is never

diffused into the surrounding fluid due to molecular effects. Likewise, if we assume that

one of the mixing fluids is in fact a particulate field (e.g., fluidized beds) the “fluid”

lumps can be broken up no further than the size of a particle. In both of these cases, the

density fluctuations as represented by b(t) are conserved in a homogeneous field, even if

the turbulent Reynolds number is infinite. The density fluctuations, b, cannot be

conserved by simply setting the diffusivity to zero because at infinite Reynolds number, b

will be cascaded to infinity where the distinction between “molecular mixing” and

“chunk mixing” is irrelevant. In other words, the density fluctuations will be dissipated

at infinite Reynolds number in the same manner as the velocity fluctuations are dissipated

unless the cascade terms for b(k, t), and consequently ai (~t), are modified in some

fashion. Thus a simple model for ~~ is proposed that permits b(t) to be conserved at

infinite Reynolds number by negating the turbulent cascade at high wavenumbers. Thus

in this case, PN represents a spectral “block” at high wavenumbers,

P,.(k) = exp(-[~,l”p)-&--,
bB
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where DPrepresents a length scale (say, a measure of particulate or droplet size) and nPis

an exponent to be selected. Of course, this model for ~~ is simply heuristic, but will

permit b(~t) to be cascaded to smaller scales due to turbulence and will also permit it to

be conserved, Note that fluids that diffise at the molecular level are described by setting

DP to zero. A similar choice is made for ~~ in the @@equation.

G. Discussion

A model has been proposed for the evolution of the shell-averaged spectra of

variable-density turbulence subjected to an acceleration. The model is constructed from

arguments of dimensional and tensorial consistency with the unmodeled equations, from

heuristic arguments regarding the effects of large-density fluctuations, and by analogy

with constant-density turbulence. The model possesses many terms and many unknown

model constants, reflecting both the complexity of the problem of modeling variable

density turbulence and the uncertainty of our knowledge of the problem. Some

coefficients may be determined by comparison to the BHRZ model of Besnard et al.

(1990) (see also Clark, 1992). However, other coefficients must be determined by

comparison with experimental data, which in most cases are not adequate for

determination of the spectral behavior of the turbulence, or by comparison with direct

numerical simulations of variable-density turbulence, such as those currently being

undertaken by Sandoval and Riley at the University of Washington. Until these results

are available, the choice of model coefficients must be considered tentative, guided

largely by intuition and reason.

H. Sample Computations with the Spectral Model

The cases to be computed are of homogeneous turbulence subjected a body force,

i.e., an acceleration. The model equations, in abbreviated notation, are

{

k - space~~n(k~’) = {production of R..}+ transfer of R

}
-2a,(k,t)~, (5.28)

at nn I

aa’$t) =-{Drag of a,}+{J:~L1-%w(5.29)

and

{1i3b(k,t) = k-space

at transfer “
(5.30)

40



I

The mean velocity is given by

au, (t) = 1 m(t)
at

––—+g, (t).
F ax,

(5.31)

The acceleration, g,, is imposed and the mean-pressure gradient is computed by noting

that, by definition,

(5.32)

(5.33)

Note that in the absence of density fluctuations, this expression for the mean-pressure

gradient reduces to the hydrostatic case:

aF
=&-= F&(~)’

1

(5.34)

The model constants are shown in Table I. Some of the coefficients have been chosen by

comparison with the BHRZ spectral model (Clark 1992). Other coefficients are unknown

and must be determined by comparison with relevant experiments or direct numerical

solutions of the governing equations. Thus the values presented for these coefficients

must be regarded for now as being provisional.

The computations are for turbulence subjected to abrupt changes in acceleration

and must be considered as illustrative until suitable data are available to verify the model

and coefficients. The first three cases represent a miscible mixture of two fluids with a

Schmidt number of Sch = 1.0. All three cases share the same initial conditions, which is

a quiescent fluid (R ~ and ai = O) with an initial distribution of density fluctuations for

which b(k, t) = bo(k /~)2e-(k’k0)2, where ~ = 1, and ho is chosen so that b(to) = 1.0. In

Case 1 the fluid is subjected to a constant acceleration, g = 1, for a total time oft= 30.

In Case 2, this quiescent fluid is subjected to an acceleration g = 1 for a time of t=4, and

then allowed to freely decay. In Case 3, the fluid is subjected to an acceleration of g = 1

for a time of t =4, and then subjected to a acceleration reversal, g = –1. In all three cases

the molecular diffusivity is 10-s, the viscosity is 10-3, and the initial value of b(t)is 1.

Note that, in the following discussion, spectrally integrated (one-point) values will be
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distinguished from the spectral values by the absence of the wavenumber in the

arguments. Also note that Knn(t)is one-half the value of l?~(~t) integrated over all k.

Figures 1 through 4 show the evolution of the density-specific volume comelation,

b(t), the turbulent mass flux, a.(t), the turbulent kinetic energy, K.n(t), and the mean-

pressure gradient, respectively, for all three cases. Examination of the data indicates that

at very early times (t c 2) b(t) is essentially constant, K..(t) is growing quadratically,

and a,(t) is growing linearly in time. At intermediate times (t = 2) b(t) is beginning to

decay, Kn.(t) is growing at an approximately linear rate in time, and al(t) is growing at a

less than linear rate in time, reflecting the process of spectral equilibration. At time of

approximately t = 3, ax(t) actually begins to decay, even though the acceleration is

continuing, apparently because of the decreased coupling with pressure due to the

decrease in b(t) as well as the effects of the drag terms. For later times during the

constant acceleration (Case 1), the J&(t) reaches a maximum at about ? = 5 and begins to

decay in response to the drop-off of aJt) and turbulent dissipation. The a~tj and b(~t)

continue to decay. For the case where the acceleration is “turned off” at t= 4 (Case 2),

the turbulence kinetic energy and turbulent mass flux begin to decay immediately. Note

that for Case 2, b(t) actually decays somewhat more slowly than it does for the

continuously accelerated case, apparently due to the decrease the turbulent cascade to the

dissipation region, as reflected by the smaller value of Knn(t)in Case 2 as compared with

Case 1 (see Figure 3). Where the acceleration is reversed (Case 3), the turbulent kinetic

energy is significantly suppressed after the reversal and the subsequent growth is small,

due to the small response of ax(t), which is attributable to the small values of b(t)

available to couple with the pressure gradient to drive a~t).

Figures 5 through 7 show the evolution of spectra of b(k,t)lal (~tj and Rnn(k,tj

respectively, for Case 1. Note that initially only the b(k,t) is nonzero. At early times

(t= 0.1 ) the spectra for a~k,tj and R.n(k,t) are driven directly by the coupling between

the mean-pressure gradient and b(~t) [for aX(k,t)] and ax(k, t) [for RJk,t) ]; hence, the

spectra look qualitatively like the initial b(~ t) spectrum. As time increases, an inertial

range develops in the region from O S log,(k) <4. For b(k, t) and Rnn(~t), the inertial

range follows the typical Kolmogorov (1941) scaling of k-~j. However, the spectrum for

a.J~t) approximately scales as k-its, somewhat steeper than b or Rn. , apparently due to

the influence of drag.

Figures 8 through 10 show the evolution of the spectra during free decay at t>4,

subsequent to the acceleration of g = 1 fort S 4. The spectra of b(~t) and RJ~t) show

an approximately self-similar decay of the high wavenumber spectra, and the low

wavenumbers appear to be invariant in time. Note that the spectrum of a~~t) shows a
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“collapse” of spectrum at log,(k, ) 2 –1. This is apparently a manifestation of the

influence of the “destruction” of a, due to drag, wherein the production of ax due to

coupling of b(k, t) with the mean-pressure field is no longer active. The result of the

“destruction” of the high-wavenumber part of the spectrum due to drag is that a “peaked”

spectral form for aX arises (the peak at t = 24 is located at loge(k) = –1 .5).

Figures 11 through 13 show the evolution of the spectra after a reversal of the

acceleration at t = 24. As shown in Figure 11, b(k, f) continues to decay in an

approximately self-similar fashion. Figure 12 indicates that aX(k,t) changes sign at the

higher wavenumbers before changing sign at the lower wavenumbers. The more rapid

behavior of the high wavenumbers of aX is due to the combined influence of the drag

(which tends to drive the high wavenumbers toward zero faster than it does the low

wavenumbers) and of the change in sign of the mean-pressure gradient, which, when

coupled to b, drives aXto change sign. Note that the relatively slow response of the low-

wavenumber part of the aX spectrum combined with the change in sign of the mean-

pressure gradient causes a suppression of the large scales (low wavenumbers) of Rnn(~t),

as shown in Figure 13 at t = 8.0. However, after a,(k,t) fully changes sign, RJk,t)

resumes its growth in an approximately self-similar fashion.

Figures 14 through 16 show scaled spectra at t = 24.0 for the three cases. mote

that /ch,m is the value of k where b(~ t) is a maximum. Likewise, at k = kae~DXthe value of

aX(k,t) is external; and at k = k~,m, the value of RJ/Gt) is a maximum.] The purpose of

these figures is to compare the shapes of the spectra that have evolved for each of the

three cases. Figure 14 shows a scaled plot of b(k,t) for the three ”cases. This figure shows

that in all three cases, the spectra look similar at wavenumbers below the dissipation

region (log~k) = 6). The same is true of RJk, t), as shown in Figure 16. Note that the

spectrum of ax(k,t) during free decay (Case 2) is strikingly different from the spectra of

the two accelerated cases (Cases 1 and 3), as shown in Figure 15. The reasons for the

suppression of the high-wavenumber part of the aX-spectrum during free decay were

discussed above.

Cases 4 and 5 utilize the spectral “block” at high wavenumbers to mimic the

possible consequences of a surface tension between two fluids or of the presence of

particles wherein the collective “cloud” of particles constitutes one of the fluids. For

these cases, the viscosity of the fluid is the same as that of the first three cases, the

molecular diffusivity is zero, and the spectral block is placed at log,(k) = 6.0. In Case 4

the fluid is subjected to a continuous acceleration of g = 1. In Case 5 the acceleration is

“bumped” up from g = 1 tog= 10 at time t = 10.O.
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Figure 17 shows the evolution of b(t) for Cases 4 and 5. Note that b(t) is

conserved for both cases because the molecular diffusivity is zero and the spectral

“block’’preventsb (~t)frombeing cascaded toinfinity. Figure 18 shows theevolutionof

aX(t) for Cases4 and 5. In both cases, aX(t) increases in response to the acceleration,

reaches anextremum, and then diminishes. Throughout this time, b(t) remains constant,

and the mean-pressure gradients grow to approximately constant values (see Figure 19).

The cause of the subsequent decreases in the magnitudes of a~t) is apparently due to the

fact that the spectrum of b(k, t) is being moved to higher wavenumbers where it is

“captured” by the spectral block in a region where viscous effects dominate the behavior

of a~t) (this is demonstrated in Figures 20 and 21). Hence the coupling of b(~t) with the

mean-pressure gradients to produce aX(k,t) is overwhelmed by the viscous effects, drag

effects, and turbulence cascade effects on aX(k,t). Similarly the bump in acceleration to

g = 10.0 at t = 10.0 does not produce as big an increase in aX(t) as did the initial

acceleration of g = 1.0 because by t = 10.0, b(k,t) has moved to wavenumbers where it is

less effective at producing tq.(k,t) .

Figure 22 shows the evolution of the turbulent kinetic energy for Cases 4 and 5.

In contrast to the behavior of ax(t), K..(t) responds dramatically to the bump in

acceleration at t = 10.0. Rnn(~t) is driven by the coupling of the mean-pressure gradient

to aJk,t), which has not moved to high wavenumbers as has the spectrum of b(k,t). Thus,

although the pressure coupling to b(k, t) is overwhelmed by viscosity, drag, and

turbulence cascade, the pressure coupling with aJ~ t) is not likewise overwhelmed. Thus

K.n(t) responds much more dramatically to the acceleration than did a.(t).

Figures 23 through 25 show the evolution of the spectra b(kt), a~kt), and Rnn(kt),

respectively, for Case 4. Figures 20, 21, and 26 show these spectra for Case 5 for

t210.0. The important feature to note in these graphs is the distribution of b(kt) at the

inverse particle size, logC(k) = 6.0. As seen in Figures 20 and 23, a local maximum of

b(~t) is formed at the inverse particle size scale, whereas for a~k,t) (Figures 21 and 24)

and R.J~t) (Figures 25 and 26), a “knee” or “kink” is formed in the spectrum at this

point. Note the these are log-log plots, and thus a significant portion of b(k, t) has

accumulated at the particle size scale. However, for both aX(k,t) and RnJ~t), the

dominant scale is clearly at wavenumbers that are small compared with the particle size.
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VI. CONCLUSIONS

The two-point correlation equations for variable-density incompressible

turbulence, represented in mass-averaged variables, have been derived. For the restrictive

case of homogeneous turbulence-subjected acceleration, Fourier transformed equations

have been used with respect to the separation distance between the two points. Several

necessary constraints on the correlations have been derived, and a spectral closure in

scalar-k-space which satisfies these constraints has been postulated. The model reduces

to the BHRZ spectral turbulence model for the case of constant-density turbulence.

Computations with the model produced conditions wherein departures from spectral self-

similarity of the model spectrum occur due to changes in the acceleration driving the

turbulence. These departures from self-similarity were also manifested in variations in

the ratio of the turbulence length scales for the turbulent kinetic energy, the turbulent

mass flux, and the fluctuating density correlations and represent phenomena that one-

point engineering models are ill-equipped to capture due to their implicit assumptions

regarding the relationships of the length scales and time scales of the turbulence.

The proposed spectral model has not been subjected to rigorous comparisons with

experimental data or direct numerical simulations, and thus the model’s predictions

should be viewed with some caution. However, as a conceptual tool, the model provides

a more general description of the physics of turbulence with large-density gradients than

is provided by the one-point engineering closures. The spectral model may thus permit

the researcher to study the consequences of the restrictions implicit in one-point closures,

as well as to formulate more general one-point descriptions of variable-density

turbulence. Future work with the model should include both rigorous testing of the

model against appropriate experimental results and direct numerical simulations of

variable-density turbulence and include as well analytical and numerical investigations of

the model. The analytical and numerical investigations may include various schemes for

reducing the model to a one-point model under various assumptions and restrictions in

order to study the behavior and adequacy of these one-point models as compared with

existing one-point closures.
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TABLE I

A. Ru Model Constants

Coefficient Value Rationale

CR, 0.121212 Equipartition, Kolmogorov const.

c. 0.060606 Equipartition, Kolmogorov const.

c~p* 0.5 Provisional

c~p~ 0.5 Provisional

c~~ 0.17508 BHRZ coefficient CM

cm o Preliminary DNS results

c~~ 1.0 Provisional.

B. ai Modei Constants

Coefficient Value Rationale

ca~j 0.121212 Passive scalar-related to Rn

caf/~ 0.060606 Passive Scalar-related to &

CO.! -0.121212 Provisional—inverse cascade

c ad 0.060606 Provisional

cd, 0.0 Provisional

c~~ 0.0, Provisional

c~p, 1.0 Determined ‘for Rii model

c~p~ 1.0 Determined for Rji model

cm 0.0 Preliminary DNS results

COD 1.0 Provisional

C. b Model Constants

Coefficient Value Rationale

cb~] 0.121212 Passive scalar-related to Rq

c~f/~ 0.060606 Passive scalar-related to &

c~, -0.121212 Provisional—inverse cascade

c~~ 0.060606 Provisional

c~*\ 0.0 Provisional

cb*~ 0.0 Provisional

c.. 0.0 Preliminary DNS results
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