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EFFECTS OF PHYSICAL PROPERTIES ON THE INITIATION BENAVIORS
OF HETEROGENEOUSHIGH EXPLOSIVES

——
P. K. Tang,—C. A. Forest, J. N. Johnnon, ●nd-tl. L. Saitz

Los Alamos National Laboratory
University of California

Los Alamos, N- Flexlco, USA

VQ pr~sant the rccults of ●n invoatigation into the shock initia-
tion of high -ploaivea with roapect to the cffactc of danaity ●nd
Brain ●iz*8. Ve USA ● ❑odel of trazting high-axploslwo raaction with
● multistep procesr which includes tho hot-opot acitation, dacompoal-
tion, ●nd the propagation of r~ction into the ragion outside tho hot
Rpo:s. The rolos of various paramotcrs ●ro dfscussad; in particular,
the hot-spot mass fraction, tha rcfarenco hot-spot t~poratur~, ●nd
th~ tcmperaturo sensitivity paramotor ●re citd ● s the kcy factors in
tht obaonad bahaviors.

INTRODU~ION

ThQ initiation procass of hat~rogmnarms high -plosivcs 1s vsry
complex; the initial loading dansity ●nd t-poraturo ●r- strong lnflu-

Wlcc# , but so is tha grain size. Thus wc balievo that tho physical
●apccts of th~ high axploaivs ara just as important as the ch~ical
on~s i)) controlling initiation balmvlor.

;~~~,~’ ● ‘uncti

Tha -. distanco to dtion*-
on of initial shock prassur~, sanarally known *S PGp

has boa vid~ly used ●n ● maasura oi the sanoitivlty of tho ax-
plosivt under shock condition. ~a axparim.mtally obsofied result
usually follows ● linaar relation in ● log-lag B:alco Incr sins dan-

V
aity raduc~s tha smsitlvity, as doam incrms[ng train SISO; howavmt
with ragard to the Iattor, racant works have indica A dlfformnt

!trends whm tho shock prossur~ i. ●ufficlantly lCW, ~b Uming ●

burn mdol for ●imulationb wa triad to quntify the ●formmntion~d ●f-
focta, ●n evaluation navm done bcforo, avm indirectly.

f

D,tailj of
ttio m ●l hsvo b,an prasantod ●ISW ●rc, ●long with rcviw of othar

1!medals ●nd computational uamplas.

‘MI! tlODl!L

The hatoroganaous nature of aplosi~am is widaly rocogniscd-,
●~pacially th~ rolo of hot spots. Howcvor, tho m~hanisma l-ding to
tha condition of aarly r-ction ●ro still sp-ulativ~. Ew- wtthout
knouladgc of d~tails, it is r~aonablo to axpact that bot ●pot. bahava
quit~ diffarcntly from tho rest of tho ●atarial in r~pomdin.g to tho

shock . A mod~l is surnarisod in this swtion. In tho Iwt-mpot
rqion, tha reaction progras vatiabl~, Ah, ia aproscod as followsl



(1)

where t repreaenta time and Td the ch~racterlatic time of the decom -
poaitlon process. The overa:j reaction progreaa
termined by ——.——— —————— ———-——-

variable, l., ig de-

—.—

uhtre 1, is tho hot-spot mess fraction, f. the threshold of hot-spot
burn and Ta tke m-rgy tranmfex chrract@ristic time. Hare the de-

pendence on f. differe slightly from the previous formulation so
that th~ absolute ●mount of the hot-spot burn La ●cccunted !or.E
Equations (1) ●nd (2) ❑ ust bc solved aimultancously.

The paaPago of ●n initial shock WAVP of amplitude pc produces

●n avarage hot-spot temperature B, glv~ W

(3)

where m, 6fi, amd PC arc constant ●nd a is the Arrhenius ●ctivation
tmparature. For a given hot-rpot tmptrature 9, th.re iS an induc-
tion time of thermal axplesion uhict, wc iduntify with th~ cbaracteris-
tfc tfme %dl

(6)

In Eq. (6!, B ia the tempcraturo cocfficiant rasulting from chemical
r~ction ●nd Z is the frquency factor for Arrhenlua reaction. Aft@r
the shock proctco, a y furthtr changa of e, will be cauad by the
compreaaion prococal z

T - [cop + G(p)l-l ,
8 (6)



The linear term In p represents the weaker mnergy tranafm phase, bl:
at higher pressure range, G is the dominant one. In fact, WQ can
identify that term with the pressure ?zpendmnce in ?orast Fire rate.’

JIl

‘)G(p) - ●xp ( ~ ●ipi .
.. i-() ,.’

(7)

-—

where ●l ‘s are :onstant. Tho rolas of th? hot-epot mmsa fraction,
~, the reference temperature, eo, ●nd the t-porature sanaitivity

parameter, ❑ , ●re discussed in the next section.

EFFECTS OF PHY51CAL PROPERTIES AND RESULTS

ThQ dlffcrant degree of compaction or loading in the high explo-
sive producaa differing porosity that in turn ia rafl~ctad In tha dan-
●ity. Lowar-density matarial containa ❑or~ voids and tharefora more
surface ● raa to Incraaam thm hot-spot maas fraction. A formal rala-
tion between th~ porosity ●nd tho hot-spot ●ass fraction is not faa-
●ibla ●t this ataga. Also, tharc is ● characteristic langth ●gsoci-
●ted with the cavity SIZO, D, which ■ ust bs bigger for the ❑ ora porous
cs8a. Tho ro~ulting hot-spot rcformnct t-peraturc has to b~ graatar
bacautc of ❑ ora sevare dissipation. Hath-atically, 00 ia llkcly ●

monotonically increasing function of D, but again WQ cannot utablish
that formulation hero. This ●rguman: IS ●upportd by tho rosulta of

::::o~:$rom~’ hani

L ●tudi~s on the hot spots with r~spect to the cavity
Us!.ng PBX-9604 (9Q HHX/3% NC/3% CEF), wo examinad tho

dansity ●ffcct on th~ init ●tion bahavior w
the densitiot of 1.86 g/cm

~~:~.~h” ‘p”rimmtal

4
, ~~h th. Pop plot data for

●nd 1.72 glCEI . For c~libration, wc
Pop plot ●nd gaugo aata from tnc h$.gh,r density

To #imulat@ tho initiation behavior ●t lovar dansjty, wo must
coloct tho quation of state for that particular dmtity but usc moat
of tha burn param~tars from th~ I?ighor density ca>t mxc~pt two. Thoso

● rt tht higher valuas of the hot-spot mass ftaction, M, m
‘1

the rafar-
anco t~pcraturc &j. With DYRA2D •~ the computation tool, 1 tha cal-
culat~d run-to-d~tonation diatanccs vatsus initial #hock pr asuros,
●long wit} th. axpcrimental data for dcnsitiaa of 1.86 C/cm

f
●nd 1.72

●/cm ● ro shown in Fig. 1. iho featuro in tho modol to aimulato the
dansity cffoct is avident.

Tc fJatarmina th~ rola of train @lSe, the hot-npot mass fraction,
1A, muot O- rwlatad to tha ~rkin oisa through tha #urfac@ •r~ ●nd in-
tergrani,lar Iahomogenaity. Tho smaller th~ grain slta, th~ largar tha
hot-8po: mass fraccion. Thcrafo-a it ID natural to concludo that
Simar #ra n should lwd to chortar run distance, ●a oamo axpozimantc

ir.dical.~. !
Howov@r, tho grain olza has the oppoaito ●ffwt on tho in-

itial roftratlc~ hot-spot tmpcracuro e. throu~h tho irrevarcibl~ pro.
Coss. As tho grain bacomas smaller, tht tiatorial batomu ●or. homo-
S&I@OJS. D bacomas omallar, so tho diassp. titm coming from tho irr~
vorsibla ttrasa cotapcnents 1S r~ducod. Tha mffect is tho louariq( of
rafw”encc hot-spot t~poraturo thus incrucins tho aplosioa time, d+

cretaing tho hot-spot bum rstc, ●nd eventually rcsultins in longor
run distance. MO can ●T#ue that largar stain also f~vors tho initia-

. .



tion phase, but smaller grain is advantageous to the propagation.
?.xperimental evidence also supports this trend
fine unless the shock intensity 1s high aiough.

~~~ the grain ia very
?inally, the -

t-poratule senaitfyity parameter ❑ raflects the ●ffactlren~ss of the
shock in producing the locally hot condition and is certainly related
to the diaaipation. An ●nalysia haa determined that as the voida be-
come smaller viscoplastic work depends ❑uch more on the characteristic
dimension of the %old~—t%a-oe~nvlgfi~pla~tic-ork. In fact, the
hot-o ot tauporcture must be hi~her whm viscoplastic work is doml-

8nant. The preeminence of one form of dissipation over othars ● a the
cavity drastically changea size leada ua to speculate the increasing
value of m when the grain gets really small.

Using the porous TATB data of poro#ity about 6.7%, both arperfine
●nd ❑ic onized (ultrafine) with the latter bein& much finer than the
former,

E
we simulate the effect of grain ●ica following thm reamoning

ma have Just diacumaod. Firmt W, ob
experimental Pop plot ●nd gauga data

~~~n the bun p.ramet.r. from the
for supcrfin~ TATB then us cal-

culate the run distances ●t given shock prosaures to co~firm the ~de-
quacy of those paramctars in reproducing the Pop plot. By increasing
both tho sasltivity Paramatar m and the hot-spot mass fraction v but
dscreaaing tha hot-spot rcf~rence tmperaturo 6., wa can r~plicate the
Pop plot for the micronized TATB with tht information be-cd on t~e
superfine on~. Roaults are shown in Fig. 2. Tho initiation behavior
of porous micronized TATB diff~ro from the #up@rfine not only in
larger grain surfaco ● rma ●nd amall~r vcid size, but ●lao in the dio-
sipativa mechanism of producing local hot condition. Tho ●bility of
tha model to simulato tho exparimmtal initiation behaviors with phy-
sical insight rather than curvo fitting is ●gain Illustrated. AC
shall r~port th~ data usad in tho futura.

CONCLUSION

WC havg demonstrated the ability of tha ~odsl to aimulat. tho
dmnsity aa w*11 aa tho grain SIZQ ●ffacta with tha data ●valltblo.
Hera casaa including gauge racords, must be studied to validato this
r~lativ~ly ●implc concept in Intorproting their ●ffects on the initia-
tion. ?utur@ ●ffort will includs tho cffoct of initial tmpgratura.
Now , tha data nccdod for tha model ●rc limited ●nd in ooma caaos,
preliminary. Here Invamtication work 18 required to 8upport the ❑od~l
tafinemmt and actual application.
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O 1.84, experiment
● 1.84, calculation
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Figure 1. PBX-9404, u~ sltv effects
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Figure 2. Porous TATB grain size effects


