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2-D EULERIAN HYDRODYNAMICS WITH FLUID INTERFACES,
SELF-GRAVITY AND ROTATION

Michael L. Norman aad Karl-Heinz A, Winkler

[Los Alamos Nationa! Laboratory and
Max-Planck-Institut fitr Physik und Astrophysik

1. INTRODUCTION

The purpose of this paper is to describe 1n detail the numerical approach we
have developed over the past five years for solving 2-dimensionai gas-dynamical
problems in astrophysics involving inviscid compressible flow, self-zravitation,
rotation, and fluid instabilities of the Rayleigh-Taylor and Kelvin-Helmholtz
types. The computer code to be described has been applicd most recently to
modcling jets in radio galaxies (Norman et al. 1981, 1982) and is an outgrowth
of a code developed for studying rotating protostellar collapse (Norman, Wilson
and Barton 1980; Norman 1980). The basic methodology draws heavily on the
techniques and experience of James R, Wilson and James M. LeBlane of the
Lowrence Livermore National Laboratory, and thus the code is designed to be a
general purpose 2-D Eulerian hydrocode, and is characterized by a high degree of
simplicity, robustness, modularity and speed. Particular emphases of this article
are: 1) the recent improvements to the code'’s accuracy through the use of
vanlLeer's (1977) monotonic advection algorithm, 2) a discussion of the
importance of what we terin consistent advection, and 3) a description of a
numerical technique for modeling dynamic fluid interfaces in multidimension.:!
Eulerian caleulations developed by LeBlance,

The outline of this paper is as follows. In Sec. 2 we present the physical
cquations and our two-step methodology for solving them. Finite-difterence
cquations for these two steps -the source step and transport step- are given in
Sces. 3 and 4, respectively. The fluid interface technique we use is then
described and discussed ia See. §. In Sec. 6 we summarize our iterative
alternating-direction-implicit (ADI) procedure for solving the Poisson equation.
Our timestep control procedure is given in Sec. 7. Finally, Sec. 8 contains
several applications of this code to astrophysical problems of current interest
involving fluid interfaces, self-gravity and rotation,



2. BASIC EQUATIONS AND METHODOLOGY
2.1 Fluid Equations in moving coordinates

In applications involving gravitational collapse or explosions, a moving
coordinate mesh is used to maintain zdequate problem coverage and zoniny
resolution. We theiefore begin by writing the basic equations of self-gravitating
ideal gas dynarnics in such a coordinate system:

continuity equation
ardt [ pdt + [ p(v-vy)dE =0, (1)
momenium gquation
drdt [ pvdt + [ pv(v-v,)dE + | (VP + pV)dt = 0, (2)
drdt J pedt + J pe(v-v )aZ + [ PV-vdr - 0. ()

Here, the time derivatives and spatial integrations operate on the moving grid
zong of volume dt and surface area dZ moving with velocity v, with respect to a
fixed (Eulerian) observer; p, € and v are the fluid's mass dersity, specific
internal energy and Eulerian velocity, respectively. The pressure P will usually be
computed from the ideal gus low P-(y-1)pe, where y is the ratio of specific heats,
although introducing a general equation of state P-P(p.£) ofrers no principle
ditficulties. The gravitational potential @ is computed from the Poisson cquation

v = 4rGp. )

Equations (1)-(4) form a complete set once v is spec.fied, and are sufticient
to determine the problem for given initial and boundary conditions. Note that if
one scts v --0 in eqs. (1)-(3), then d/du becomes the Eulerian time derivative o/ot,
which corfimutes with the volume integral. Applying the divergence theorem, one
casily recovers the Eulerian differential equations, of hydrody namics,

2.2 Two-step solution procedure

Explicit multi-step solution procedures for solving the equations of
hydrodynamics are generally more aceurate than a single step that simply
extrapolates forward in time on the basis of old data. Before we specialize eqs.
(1)-(4) to a particular geometry and begin writing down difference equations, we
would like to describe our two-step approach to solving the fluid equitions which
is independent of geometry or dimensionality.

Eqs. (1)-(3) are solved in two logically independent steps which we call the
source and transport steps. In the source step, we accelerate fluid velocities and
perform pressure work on the gas internal energy by solving finite-ditference
approximiions to the following differential equations:



pdv/dt = - (VP + pV®) - V.Q (5)
pde /dt =-PV.v- Q:Vv. (6)

We have introduced additional terms involving Q in eqs. (5) and (6), which
represent accelcration and heating due to artificial viscous stresses used to
mediate the numerical shock transitions. In the transport step, fluid is transported
through the compulational mesh by solving finite-difference approximations to
the following integral equations:

didt [pdt = -fp(v-v)dE, )
d/dr ,[pvd'l: = —I pv(v-vs)-dz, (8)
dide J pedt = - [ pe(v-v,)dE. 9)

The updated values of v and € from the source steps arc used to evaluate the
right-hand-sides of eqs. (7)-(9), and enter as the old values in the time-discretized
left-hand-sides of eqgs. (8) and (9).

To understand the origin of these equations, consider the momentum
equation in differential form, whicl. can be derived from eq. (2) using the idemity

V'Va =d/dt (Inde). (10)
Letting S = pv, we have
dS/dt + SV-\'g + V-l(v-v“)Sl r VP4 V-Q v pVO =0 (i)

which we solve incrementally as

dS/dt -~ dS/d0 e + 90y nc0n (12)
where

dS/dO e = (VP4 pVD) = V-Q, qR)
and

dS/d0 yngpont = = Vo LV-V S| = SVev, (14)

Noting dp/dt),,, . -0 ineq. (13), we recover eq. (5); integrating eq. (14) over a
moving volume we recover eq. (B) using eq. (10), ‘The advantage of the integral
formulation for the transport step is that it is in conservitive torm in i moving
ceordinate system, whereas eq. (14) is not due to the grid compression term.
Moreover, an irtegral formulition is manditory for advecting tuid interfaces,
which, since we treat them numerically as true discontinuities, cannot be
described by differential equations.



3. SOURCE STEP
3.1 Grid and vanables

Let U, V and W be the velocity components of a fluid element in the Z, R
and O directions, re ,pectively, of a cylindrical coordinate system, and let S=pU,
T=pV, and A=p ' YR=pQR- be the element's associated linear momentum
density components and angular momentum density, respectively. Then, using
the fact that dpidt), .. = 0, we write eq. (5) in the explicit component form in
which it is differenced as

dS/dt), yree = — OPIOZ — pO®/IZ - 9QP2/0Z, (15)
dT/dt) e = = OPIOR — pOD/IR — IQRR/IR + pQIR. (16)
dA/d) . = 0, (17

and write eq. (6) as

dE/dt) - P(QU/Z + R"'ORV/OR - QZZ9U/0Z - QRROV/OR, (18)

\()Ul'(.(!
where E=pe is the internal energy density. Notice that oniy the diagonal clemants
of the artificial viscosity tcnsor havc been rctamcd in eqs. (15, 16 and 18), and
that geometric terms such as QR¥/R and QRRV/R have not been included. The
reasons for this are, first, we want artificial viscosity to be sensitive only to
compressions to pick out shock fronts, hence we discard the off-diagonal
clements, and second, we want the numetical shock width to be the same
regardless of its distance from the symmetry wxis, as it would be in nature on a
macroscopic scale. Note, however, that a proper tensor formulation may he
required for the artificial viscosity if special properties are sought (sce Wink or
and Norman, this volume).

The centering of the variables on the finite difference mesh and zone
mecasurements are shown in Fig. 1. The 7, and R grid lines have indices k and
respectively. Lincar momentum and velocity components, are Deated at the zo
faces; scalar densities, the gravitational potential and the angular momentiun.
density are located at the zone center. The velocity components U and V' oare
derived by dividing their respective momentum components by an arithmetic
average of the two adjacent mass densitie

3.2 Difference equations

The location of the quantities on the mesh (Fig, 1) allow for simple centered
differences and averages of the terms appearing on the right-hand-sides of eqs.
(15,16 and 18). These equations are solved in steps as follows: 1) accelerate §
and T due to pressure, gravitational and cu\tnfu;_..al forces; 2) using the updated
velocities, compute the artificial viscous heating and acceleration; 3) using the
updated Fand velocity components from step 2), perform compressional heating
on the gas. Thus, letting the superseripts @, q and p represent the updated values
from the three steps and the unsuperseripted quantities represent values at the old
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Fig. 1 Centering of the primary and secondary (derived) quantitics on the mesh
(Z,,R).
j

time level, we solve the following explicit difference equations:

step l

(S%S) ;7 Ot = - [Py =Py )+ (p)z((bk'j—-(bk ) 1 AZ, (19)
('l“'-T)KJ/ ot = - [(Py =Py )+ <p>R((Dk,j_(Dk,j-l)] I AR,
+{My (Q)RzR. (20
\VhLIL tl* sp.ltml averages are defined (X), = (X, it )2 and (X)y -
(X ¥ X .72 The form of the centrifugal lmcc term m\xy v‘{ry .lLCOtdlnb m

Apphc‘nmn averaging on €2 as opposed to W, say, is superior when
CHR)~constiunt.

(89-8),;/ 5t . — (Q”'k.j" Q7 1) Dy (1)
(TOT9, 7 8t = = (QRR - QR 1 )/AR,, (22)



(E9-E )y ;/ 8t = = Q%% (Usy 1 U )/AZ, 11

— QRR (VA VAR Ly, (23)

where
szkd = pk.j(Uak+I,j‘Uak,j)[-Cla + szin(Uak+1,j-Uak,j’0)]’ (24)
QRRK,,: =Py (Vi jor “ViICra + Cmin(Ve ATV (25)

Here C, and C, are constants of order unity which govern the linear and
quadratic artificial viscosities and a is the adiabatic speed of sound. The linear
viscosity is rarely used, and then only sparingly to damp oscillations in stagnant
regions of the flow.

stepd

Here, to improve energy conservation, we yvritc an implicit difference equation
involving the time-centered pressure P“*"-=[P“+(y-1)EEP]/2 in PV-v which can
be rearranged and solved explicitly:

(EP-E9), /8t = - [PM4(y-DEPY2 (V-v), 5, (26)
or

Epk‘j = [EQ—P"St(V-v)/Z)kJ / [lrt-(y-l)St(V-v)/;Z]k.j, (27
where

(Vo) = Ul = U ALy 0
[¢ - 3 9
(R VI =RV DR AR ). (28)
This procedure explicitly assumes a gamma-law gas; for a genceral cquation of

state P- Pip,e), we use a predivior-corrector approach to find the time-centered
nressure, thus

(BB, /8t = - P(Yv), (29)

(EP-EA), 7 8t = - [P P 12(Vev)y 0 (30)
where

P Pp ) . @31

Experience has shown that energy conservatic. is improved by using the same
g )



pressure in eqs. (19-21) as is used for acceleration (i.e., P" rather than, say
(y-1E9.)

4. TRANSPORT STEP

We now describe our nuinerical procedure for solving egs. (7-9), whi: n are
all of the form

drdt [ qdt =~ [q(v-v)dE. (32)

Equation (32) is manifestly in conservative form, and describes the advection of a
quantity q on the moving mesh allowing for volumetric changes due to fluid (v)
and zonal (v,) convergence. This compound process we term transport. The
obvious secofid-order accurate finite-difference approximation to eq. (32) is

(qn+ltr.+l_qntn)k'j/8t = - (FqL+l.j - Fqk,j+ GA - qu'j)n+l/2 (33)

k,j+1
where 1y, ; is the zone volume and F9 and G9 are the time-centered fluxes at the
taces of the zone at k,j in the axial and radial directions, respectively. Note that
since q is assumed to be located at zone centers and at time-level n, interpolation
and extrapolation procedures are in general required to compute the value of q at
zone faces and at time-level n+1/2. A variety of such procedures have been
developed over the years; indeed, the history of numerical Eulerian
hydrodynamics is largely concerned with devising accurate estimates for the
fluxes while insuring numerical stability. We employ Van Leer's (1977)
second-ord~zr accurate monotonic interpolation scheme for the spatial centering,
and extrapolate q along the relative streamline given by dx/dt = v-v_ for the
temporal centering. This is illustrated below for a model one-dimensional
problem, and then applied to our two-dimensional problem:.

4.1 Van Leer monotonic interpolation scheme

Consider a one-dimensional strip 0.’ zones with index i, and a set of zone
averages {q;} as in Fig. 2. Second-order accurate interpolation functions q(x)
result from assuming a piecewise linear distribution of q within zones q,(X) = q;
+ dq;x, -1/25x<1/2, where x is the normalized distance from the zone's center.
I'rom this definition, it is clear that q; is a zone average, since fqi(x)dx=q.. Van
Leer's (1977) monotcnic interpolation scheme chooses the largest (in absolute
magnitude) dq; such that q,(-1/2) and q,(1/2) do not exceed the neighboring zone
AVCrages Q. In the event that q; is a local extremum, dq;=0. Mathematically,
letting Aq;=q;-q; ., then

dq, = {2AqAq;, / (Ag;+Ag;, ), AqAq;, >0,
0, Aq,Aq;, ,£0. (34)
The flux of q at interface i is then taken to be

Fqi - q*i(v_vg)inH/innrl/Z, (35)



Ki-1 Xi Xi+1

Fig. 2 Van Leer monotonic interpolation scheme. Zone interfaces are at x,, and
zone averages q; are at zone centers. Piecewise- linear irterpolation function (sohd
lines) is constructed such that the interface values do not exceed the nei ighboring
zone averages (dashed lines). Zone differences dq; are given by eq. (34).

where £.7+172 is the time-centered area of the zone face, and q . is the upstream
1nterpolatcd value of q given by (Fig. 2)

Q= (g +x,,-8)dq, /22, ), 820,
q - (Ax; +8))dq,/(2Ax)), 3, <0, (36)
where §, = (v-v )i“+“2(8t 12), and AX; = X;,;-X;.
The physical picture behind tnis prescription is illustrated in Fig. 3. To first
order, the value of q on the interface at the half time-level is that ob‘ained by
passive advection of q" for half a timestep. The relative streamline has slope

Dx/Dt-dx/dt = v-v_, hence eq. (36). Since q*; appears in eq. (33) through a
centered difference, fhe method is formally second-order accurate.

tn+1

Fig. 3 Upwind procedure for computing time-centered value q in the flux F9,,
The relative streamline is tracked upstream from the half time- |evcl a distance
d;=(v- v§)8tl2 q*; is then computed using ihe interpolation function of Fig. 2 via
eq (34



4.2 Continuity equation

Letting q=p in eq. (33), we have the finite difference form to eq. (7), where
the fluxes are given by

*
FP =" (U%;~U, O(R;, AR, 1 )™ 72, (37
»
GPyj= p*j(vqkj_\’g.k) R jAZ 2 (38)
Here, p"‘k and p*. are the interpolated values of density, wi*h the index denoting

the direction (i.€., Z or R) of interpolation.The time-centered coordinates are
given by

R"-*“ZM,2 =R, 2+ GUA)(Vyi,+Y, ), (39)
n

AR 1 p = ARY 1 + BUD)(Vyj, 1~V (40)

AZ2 1= A2 + B2)(Ugy,1=Ug ) (41)
and

x

R'y = R = @U2)(VY -V, ), (42)

the mean radius of the advected fluid element.
The new density is then simply

pn+lkJ = pnthnkJ/tn :-lk.j’ (43)
where

1""(H)k.j = (Rj+lleRj+1/2AZk+1/2)n(+l)' (44)

4.3 Consistent advection and the local conservatign of angular momentum

In principle, the procedure just described for transporting the mass density
could be applied to all the other densities in the problem - E, S, T and A - with
out any further thought, remembering only thiat we must define appropriate
control volumes for the linear momentum components S and T. In the case of
angular momentum transport, however, such an approach is far from optimal,
and in some circumstances, has disasterous results on the local conservation of
angular momentum (see Fig. 4). The concern about local conservation of angular
momentum in rotating protostar collapse calculations led to the notion of
consistent advection (Norman, Wilson and Barton 1980), in which the angular
momentum flux is calculated by multiplying the mass flux with a best quess for
the specific angular momentum of the advected fluid element. Thus, angular
momentum is transported consistently with the mass. The physical rationale for
this is that K=A/p is conserved along a fluid strcamline in axial symmetry in the
absence of viscous torques, and thercfore the spatial interpolation should be
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Fig. 4 Numerical diagnostic of the local conservation of angular momentum in a
rravitationally co'lapsing rotating protostellar cloud showing the importance of
consistent advection. Local conservation of angular momentum is monitored
through changes in the specmc angular momentum spectrum, defined as
M(K)=[KdM(k), where K=QR? and dM(k) is the mass at specmc angular
momentum k. M(K) is a constant of the motion for inviscid axisymmetric flow,
therefore any changes in the spectrum show numerical redistribution of angular
momentum. a) Significant evolution of the specific angular momentum spectrum
results from using the highly innacurate donor-cell procedure. Various symbols
correspond to the indicated times, measured in initial freefali times. b) Same
collapse problem computed using second-order accurate consistent advection
procedure described in Sec. 4.3 showing improved local conservation of angular
moimenturn. From Norman, Wilson and Baiton (1980),



performed on K rather than A, since K is the physically more relevant quantity.

Letting q=A in eq. (33), we have the finite-difference form of

wdtJ Adt = -] A(v-vydL, (45)
describing conservation of angular momentum, where the fluxes are given by

FA =K' FPy, (46)

GA =K GP s (47)

with K*k being the interp »lated value of specific angular momentum in the axial
direction, and K**. is computed by interpolating on the flattest of three angular
quantities. Definin§

Kii = A/ Py (48)
Wi = K BRi12/ (R%,; + Ry, Ry + sz)], (49)
Qk,j = Kv;‘ m. \R2j+1 + sz)], (50)

that is, the values of K, W aud  assuming they are uniform in a zone, then we
take

* * .
QYR )? i 1dQ/ Q| smallest,

x* * .
K .= W j(R k,j) if Ide/WkJI smallest, Snh

* . -
K i if | dhj / Kkj | smallest.
Here, the single asterisk means values determined bty monotonic interpolation as
described in Sec. 4.1.

An equation analogous to €q. (43) is then solved to find AP+,

Likewise are temperature and velocity intrinsic properties of fluid elements,
and therefore it makes physical sense to construct fluxes of energy and
momenturn density by multiplying the mass flux by the appropriate interpolated
values of €, U and V, even though these quantities are not conserved. We follow
this procedure here. A numerical justification is that a product of monotonic
functions is monotonic; e.g., E¥=p*e*, while the same is not true of the quotient
of monotonic functions; .g., €*=E*/p*, which could lead to difficulties if, for
example, the physical model contained a source term with a strong nonlinear
dependence on €. As we shall see in the next section, consistent advection of
momentum is manditory in the vicinity of fluid interfaces, where the momentum
density may jump by orders of magnitude but the normal velocity component is
continuous.

Letting q=E in ¢q. (33), we have the finite-differcnce form of eq. (9), where



the fluxes are given by
x
%

where E*k and e", are computed in the same fashion as the interpolated densities.
An equatiol. analogous to eq. (43) is then sclved to find E™*-.

4.4 Momentum transport

Letting q=S and T in eq. (33), we have the finite-difference approximation to
eq. (8), where now S and T are interpreted as zone averages over their respective
control volumes. Since S and T are face-centered quantities, their contro!
vol.:mes are offset by a half zone-width in thz Z and R directions, respectively,
from the control volume centered on p. The situation is illustrated in Fig. 5. The
momentum fluxes are computed by multiplying an appropriate average of the
mass flux by the appropriate velocity component interpolated to the zone face.
Thus, to transport S, we have (cf. Fig. 5a)

FSeny= PP+ FP D UT 12 (54)

W it+! ’
S _ ! - 3 w ;
Gojr1 = Py + CP ) U7 20 (3)
An additional step is involved in the radial momenwm transport calculation.
Specifically, because the ccutrol volume for T is cffset in the radial direction
from the mass control volume (cf. FFig 5b), the radial area factors are removed

from the mass fluxes prior to averaging, and then the offset radial area factors are
multiplied back in. Thus, we have

Fleary = WFPIZ )5 + (FPIE ) L ENVEL17 2, (56)
Gy jur = HGPIR™), g + (GPR™ IR VY172, (5D
where

z’l‘J - (Ri ARJ)MUZ, 158)

L

R jeiz = RY,p2 = SUDVY, 1V =V =V (59)

E.J-Fl)'

with analogous expressions to eqs. (39,40) fur the iime-centered quantities
appearing in caq (58).

The new momentum densitics S"*! and T ' are computed in analogy to eq
(43) using the appropriate momentum control volumes,

5. FLUID INTERFACES

A Muid interface is 2 numeical representation of a boundiry between Muids
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Fig. 5a Masy and momentum contro! volumes and fluxes for the transport of S,
the Z-momentum density.

R Tk,j+1 Vk,j+|
j...] CIIIIIESITIIIS “PIIITIIIIII SIS

VWUV,

2 Zy a1

Fig. Sb Muss and momentum control volumes and fluxes for the transport of T,
the R-momentum density. Otherwise, key as above,



of different material properties in Eulerian hydrodynamics computations. Some
examples of material properties that one might like to distinquish using interfaces
are the constitutive properties of the fluid (¢.g., equation of state and opacity), the
underlying physical model, or simply density or temperature. Since we are
modeling ideal (i.e., inviscid) gas flow, such boundaries are idealized as contact
discontinuites, and the function of ihe interface is to prevent the numerical
diffusion of the adjacent gas elements into one another. Examples of this
technique's use are given in Sec. 8 on several problems in astrophysics where we
would like to preserve and track the interface between a hot diffuse medium and a
cold dense medium.

Operationally, :ach material in the calculation is labeled. The label {5 used as
an indicator of material properties. A mixed zone is a zone containing more than
one material. Zones containing a single material are called clean zones, which are
advanced ir. time as described in Secs. 3 and 4. In this section we describe the
algorithms we use to advance mixed zones, which were developed by J.M.
LeBlanc of the Lawrence Livermore National Laboratory. But first, we give
some background on inter{ace methods in general.

a) b)

L. interface via

<< <

) —=

|}
oO—]O0—-]10 ~—

Fig. 6 Numerical representation of i fluid interface on the mesh a) by an array of
fractional volumes b). Mixed zones are shaded, clean zones are not.

5.1 Mcthod of fractional volumes

The most obvious approach to modeling fluid discontinuites in
multidimensional Eulerian caleulations is to discretize the surface of reduced
dimensionality, such as a set of points approximating a line in a 2-D computation,
and then to evolve this surface by solving additional numerical equations
approximating the Rankine-Hugoniot jump conditions in its immediate vicinity
(sce, for example, Richtmyer and Morton 1967, p378). While potesitally
powerful, this approach has been difficult to implement in an efficient and robust
fashion in general-purpose hydro cades, and thus is not commionly used. Recent



progress using advanced programming languages (Glimm 1985) may change this
state of affairs, however.

A secend and more approximate approach, first develoned by deBar (1974)
and in extensive use today for handling contact discontinuities, is i> represent the
global structure of the interface bv a function that is defined locally. This function
is the fractiona! volume occupied by each material in a zone, and is denoted V",
where i is the material index. V' is a vector of unknowns defined at every zone
k,j satisfying the constraint £ V' = 1. In a clean zone containing material with
index j, V! = 8Y, where 8" is the Kronecker delta. In a mixed zone, more than
one fractional volume is nonzero. Fig. 6 illustraies how an interface between two
different fluids would be represented on the computional mesh using fractional
volumes.

In addition to specifying the fractional velumes of a mixed zone, one also
specifies the composition of the mixed zone through its fractional densities of
mass, encrgy and any other fluid property (e.g. specific angular momentum) that
may be discontinious at the interface. The basic tasks of this approach are 1) to
reconstruct the giobal structure of the interface given V' .. and 2) to find
equations of motion for the fractional volumes and densities tmlt are simple and
casy to program, and which give a reasonably accurate discription of the
evolution of the interface in a variety of circumstances.

Two basic paths have been followed over the past decade addressing task 1.
The first follows the work of deBar (1974) as implement=d in the KRAKEN
code, in which the position and orientation of the interface within u mixed zone is
recenstructed using the distribution of fractional vol. mes in all the sdjacent zones
(e.g.,in a 3 x 3 block of zones in 2-D). The method of LeBlanc is in example of
the second approach, whereby the multidimensional problem is reduced to a
series cf 1-dimensional problenis, and only the adjacent zones in i-D are used to
determine the interface position and orientation. A consequence of this reduction
is that the interface geometry is no longer unique; that is, its representation within
a zone is different in the X and Y passes. The disadvantage of the
directional-splitting approach, ot which the SLIC method of Noh and Woodward
is another example (see Woodward, these proceedings), is a potential loss of
accuracy. The advantage is one of considerably simplifying the algorithm and
hence the programming task. Surprisingly, the results obtained with splitting
compare quite favorably to the KRAKEN approach (Noh and Woodward 1976).

5.2 Method of LeBlanc
We now describe the interface method of LeBlanc as it is implemented in our
code. The following quantities are stored for cach material i present in a mixed
rone;
Vi.ti/g, fractional volume, (60)

D! = pt v fractional mass density,

B Dl fractional internal energy density,



Al = DIKI, fractional angular momentum density,

where 7 is the volume of the zone, ard 7', p!, €' and K' are the vclume, density,
specific internal energy, and specific angular momentum of material i(in this and
in subsequent equations, we will suppress the dependence on zone indices k and
j).The quantities D', E' and Al are therefore the densities material i would have if
it occupied the entire volume of the zone. It follows from these definitions that

1=i2vi, (61)
- Y
p=«D,
E - XE|
1
A= XAl
1

where the summation is over the material index i. Only a single set of velocity
and momentum density components are carried for a mixed zone, as they are
vector quantities.

5.2.1 source step

The pressure in a mixed zone is found by adding the partial pressures:
P=Z (y-DE. (62)
1

The angular velocity of a mixed zone is computed as a mass-weighted average of
the fractional angular velocities. Thereafter, mixed zones are accelerated like ~lvan
zones [cf. eqs. (19,20).]

Heating from artificial viscosity and compressional work is equally
partitioned to each material 1 in @ mixed zone:

El9 = (EVE) E,

EiP . (EP/EY) EM (63)
where the superscripts refer to steps 2 and 3 of Sec. 3.
5.2.2 transport step
The motivn of the interface comes about by transporting the fractional volumes
along with the other fractional densities. As in the clean caleulation (Sec. 4),
transport is done in 1-D sweeps, however a first-order nethod (donor dell) is
used in the vicinity of the interface as an aid to numerical stability.

Consider the triad of zones containing at least one mixed zone as shown in

Fig. 74, and suppose we wish to update the middle zone, Define 37 as the
fractional fluxes of material i on the left and right, respectively, of this zone, and
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Fig. 7 Advection procedure in a triad of zones contaming at least one mixed
zone, ) Intertace geometry is inferred from the distribution of fractional volumes
(cf. Fig. 6). The fractional fluxes 3! are derived according to the following three
situiations, b) Advection from a clean zone to a mixed zone. ¢) Advection from a
mixed zone to a clean zone. d) Advection from a mixed zone to a mixed zone +.
and o are the aperture as defined in ¢q. (70).



I, g as the areas of the left and right zone faces, rcspectively. The difference
equations for the transport of the fractional densities and fractional volumes are
then
vinrlo pin o Al T - ALY ) /T, (64)
Din+l-pin = (3L, -3\ T/ T, (65)
and similarly for E'and Al, Here, the mass flux is defined

i, g = Al g DYV, (66)

where the subscript d stands for the donor cell values and the AiL g dre comnputed
according to the following three cases. '

Referring to Fig. 7b, in the case of flow from a clean zone containing
material 1 to a mixed zone, we have simply

Al= (U-U,)5t 8. (67)
The donor cell remains clean and the acceptor cell remains mixed.
g,!:-!‘ :' mizscd tQ §|!|I]n

Rcfcn‘in%to Fig, 7c, we sce that material | may become negative in the donor
cellif [U-U [t > (V'Ax)y. Therefore

Al = sign (U-Up) min[ [U-U,I3t, (V'Ax), 181 (68)
If |U-Ug|5t > (V'Ax)d, then we take the next material in line according to
A= sign (U-U)) min[ [U-U I3t -A', (VIAx)y 87, (69)

and so on until everything |U-U |8t behind the flow has been taken. In this case,
the donor cell may become clean™and the acceptor cel! may become mixed.

CiLit i. u]lm.d tQ n“'!s\d

Referring to Fig. 7d, we define aperatures o through which material i may
pass as follows:

ol - (Vi ViR, (70)
Then we have simply
Al = ol (U-U )8t (71)

Notice that X o - 1, so that the scheme is conservative.



Total densities for the zone are found by summing the fractional densities. if
the interface is in a region of the flow with a velocity gradient normal to its
surface, then in general ZVh"+! # 1, in which case the fractional volumes are
renormalized so that they sum to unity. Finally, integrated mass fluxes are
computed for use in the linear momentum transport calculation (cf. Sec. 4.4):

FP = q: 3HZ/8t. (72)

5.3 Properties of the interface method

‘The interface method just described works best on, and in fact was
developed for, isolated contact discontinuities in flows with little velocity shear
both normal and tangential to the discontinuity's surface. This will not be the case
if the discontinuity is interacting with a strong shock or rarefaction wave, nor if
it is a slip discontinuity. This can be seen by noticing that only one set of velocity
components are used to dz2scribe both mixed zones and clean zones alike. Indeed,
incorporating "fractional velocities" into a such a technique would be difficult
because the orientation of the interface is only loosely defined, and one would
naturally want to work in terms of discontinuities in the normal and tangentiai
velocity components. By definition, the normal component of velocity is
continuous at a contact discontinuity, and therefore in such probl ms as material
boundaries moving normal to their surface, as arise in Rayleigh-Taylor
instabilities, one velocit per zone is adequate to give an accurate representation
of the interface's motien. In problems with a large amount of slip across the
discontinuity, as arise in Kclvin-Helmholtz instabilities, the interface dvnamics is
driven by the mean flow in which it is cmbedded. In both cases, the primary
function of the fluid interface is to act as a material separator | as they v ere
termed originally, preventing numerical diffusion from artificially broadening the
discontinuity into several zone-widths.

fepunoq auo2

{
\
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N

Fig. 8 One-dimensional interfuce advection in a uniform velocity field U,
Discontinuity beiween p=p, and p=,., initially coincides with the
sccond-from-the-left zone boundary. Consistent momentum advection (cf. Sec.
4.4) insures that U remains constant despite a large jump in mass and momentum
densities.



We shall now demonstrate that the LeBlanc interface method is exact when
applied to *he uniform advection in 1-D of a discontinuity normat to its surface.
Consider three zones as shown in Fig. 8 with a density discontinuity initially
coinciding with the zone boundary second from the left. Let the density to the left
and right of the discontinuity be p, and p,, respectively, and let there be a
uniform velocity field U pointing to tlhe rnght In time dt, the interface wiil move
to the right a distance U8t and the new fractional volumes in the .niddle zone will
be V!=1- USt/Ax and V%= USt/Ax. This is precisely what egs. (64) and (67)
yield if we set U =0, £=1 and t=Ax.

In addition, we can show that consistent advection of momentum [cf. Sec.
4.4 and eq. (72)] insures that the uniform velocity field willl be unaltered by the
interface tre. ~ment. Summing eq. (65) over material index, we find

*1 = (1-0)p, + op,. (73)

where o=Ubt/Ax. Updating the average momentum in the zone centererd about S
in Fig. 8, we have from eq. (54)

(S™1-(PYUY/BE = -((p)-p,)U%/Ax, (74)
or

St = [(1-0)p) + op,JU (75)
where {p) = (p,+ P,)/2. It is then easy to show from eqs. (73,74) that

U+l = 280 (ptriy py = U, (76)
Thus, we have passive advection of the interface with no modification of the

background velocity ficld.

6. SELF-GRAVITY

Sections 3-5 describe the hydrodynamic part of the calculation whereby the
fluid variables arc advanced from timelevel n to n+1. In problems where the
self-gravitational forces of the fluid are important, we must also solve the
Poisson equation (4) subject to appropriate boundary wndmons in order to
determine (hu ;,ravxtauonal potential at the new timelevel h+! ki which enters in
eqs. (19,20

The boundiny values of gravitational potential are computed from a multipole
expansion,

Dy = -GE Py ry *OMy, amn
where the multipole moments are given by

M, ~ [dtpm) P, (78)



Here r is the position vector from the center of the self-gravitaring structure,
usually at Z=0, R=0; r=[r|; U is the cosine of :he angle between the rotation axis
and r; and P, are the Legendre polynomials. The subscript B means that these
quantities are to be evaluated on the boundary of the compurational domain. With
assumed equatorial symmetry, the odd moments vanish, and thie boundary value
at Z=0 becomes d®/0Z-=0). In practice only the 1=0, 2 and 4 teims are used,
which has proven to be adequate if the outer beundary is sufficiently removed
from the structure. The boundary value at the axis is, of course, d®/dR=0.

As we generally deal with nonuniform meshes in both coordinate directions
which are not spatially periodic, Fourier transform methods to solve eq. (4) are
ruled out. Also, direct methods such as Gaussian eliminaii.. would be too
time-consuming, and kence we must consider iterative tech..iques. The solution
technique for the Poisson equation we use has been described by Black and
Bodenheimer (1975), but will be repeated here. The plan is to find the
steady-state solution to the diffusion equatiou

0D/t = V2D - 4rGpn+! (79)
using the ADI method (Peaceman and Rachford 1955) for a series of iterative
“timesteps”. The time appearing in eq. (79) bears no relation to the physical time
of the evolution; the timesteps are chosen to specd convergence.

Let ®P be the p™" esiimate for the gravitational potential, and &tP be the
timestep for the p™ iteration, Defining

Az®Pyj2 Dy - Dy 5, (80y
APy 2 @ i= Dy s (81)
then @P is advanced to ®P*! by the following two-step ADI procedure:
(DP*V2.QP), IBIP = (A,®P, | /AZ, | = AyOP, IAZ LT,
+ (R, | Ag®P*12, . /AR

~R;Ag P12, JARD/(RAR);,; o= 4RGP

I.l ’
(82)

j+1 i/
followed by

(OPHLOPHIZ, JBIP = (AP | JAZy =0y 0P*Y IAZ, VLT,

+ (R Ag@PHY2 AR (~RiALOPH2, JARDIRAR),, | ~4nGp™*, 1.
(83)

The iinplicit sweeps generate a sct of tridiagoral matrix equation which are
solved directly using the well-known technique of "forward sweep. backward



substitution" described by Richtmyer and Morton (1967).

Fas. (82,83) are solved for 0<p<P-1, where the iterative timesteps 8tP form
a geomietric series

otP = aPdt . ; p=0,1,....,P-1, (84)
with
and Stmﬂ = max(zmaxz’Rmnxz)/ 4' (85)
0t = (Bt /St a0 F Y, (86)

8t_,, = min(AZ_, 2,AR . 2)/4 . (87)

The new potential is given by d™*1=®P, This timestep prescription is constructed
in analog to a treatment by Peaceman and Rachford (1955), who solved diffusion
in a square, rectangulur mesh. The timesteps are chosen to reduce the
ag\gl}gcation factors of eqs. (82,83) for modes of wavelength comparable to
(0tP)/e,
Convergence is checked by monitoring
X = max IV2®-4nGp| / 4nGp, (88)
J
which should be < 10°% to achieve a potential gradient accuracy of about a

percent. We find typically that 106<x<10-19if P is approximately half the
number of zones :n one dimension.

7. TIMESTEP CONTROL

The final operation in the problem cycle is the calculation of a new timestep
to be used in the next cycle. Explicit hydrodynamics requires the timestep to
satisfy the Courant condition for stability, which for a one-dimensional problem
is

ot < min Ax/(C+|U)), (89)
Where C and U are the local sound speed and flow speed, and the minimum is

taken over the entire domain. A simple and effective prescription for
multidimensional calculations which we use is

3
nel _ . 2 2,112
ot _bl_nl\t:’gx(ElSti )yt (90)

where b is the safety factor, usually = 0.5, and the 8t are defined for cach zone
k.j as follows:

dt, = min (AZ,AN)/C, 2]
o, = AZ/IU-U |, 92)



3ty = AR/|V-V,| . (93)

The artificial viscosity also limits the imestep, since Q%% and QRR are used to
form a momentum diffusion problem. For an explicit diffusion scheme the
timestep is limited by

S5t < Ax*/ 4v %94)

where V is the kinematic viscosity. A comparison of eqgs. (21,22,24 & 25) with
C,=0 to the Navier-Stokes equation shows the numerical kinematic viscosity to

vZ = AZ(C,Q%!p)\2 = C,|AUIAZ , (95)

VRR = AR(C,QRR/p)"2 = C,|AVIAR (96)
thus we defire a fourth timestep for zones with nonzero Q,

8ty = min (AZ/4C,/AU|, AR/4C,|AV]) . 97

Finally, the tiinestep is limited to a 30 percent increase per cycle to maintain
accuracy wiien the system makes abrupt dynamical changes, yet may decrease by
an arbitrary amount in order to maintain numerical stability.

8. NUMERICAL EXAMPLES

In this section we illustrate the use of ovr numerical techniques on a nuriber
of problems of astrophysical interest involving static and dynamic fluid
interfaces.

8.1 Self-gravitating isothermal clouds

The picture of a cold, dense isothermal cloud in pressure equilibrium with a
hot intercloud medium is a paradigm for the interstellar medium that is often used
as initial conditiors for calculztions of gravitational collapse and star formation.
Unlike self-gravitating equilibria with polytropic equations of state, isothermal
equilibria are infinite in spatial extent unless truncated at some finite radius with a
finite boundary pressure, such as would be provided by a hot intercloud medium.
Such truncated self-gravitating isothermal equilibria possessing zero angular
momentura are called Bonner-Ebert spheres, named after the men who first
determined their structure (Bonner 1956; Ebert 1955). The roiating analogs to the
Bonner-Ebert spheres were first investigated by Norman (i1980) using the
hydrodynamic techniques described sbove, and subsequently by Stahler (1983)
and Hachisu and Eriguchi (1984) using hydrostatic codes.

In the hydrodynamic approach, a fluid interface was used to delineate the
cloud-intercloud boundary, which is a ‘ree boundary. As initial conditions for the
calculation, Norman assumed a constant density and temperature sphere with a
specified rotation law embedded in a constant pressure background. The initial
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Fig. 9 Equidensity contours of rotating, isothermai equilibria of constant mass,
angular momentum and distribution of angular momentum for several values of
o=|internal energy / gravitational energy| #nd B=|rotational energy / gravitational
energy| (in parenthesis). One quadrant is displayed and the rotation axis is
horizontal. The lower, right-hand model is necar criticality to gravitational
collapse. The cloud boundary (>utermost solid line) is described by a fluid
interface. From Norman (1980).



conditions were then evolved to equilibrium hydrodynamically with a
velocity-dependent damping term added to the momentum equation in order to
hasten the approach to equilibrium. Once equilibrium was reachea, the cloud
temperature was slowly decreased, generating a "cooling sequence” of
quasi-static isothermal sphercids of constant mass, angular momentum and its
distribution. During the initial relaxation phase and cooling phases, the intercloud
medium was not evolved hyd-odynamically, but rather was kept at constant
density and pressure.

. Fig. 9 shows four equilibria from a cooling sequence initiated wtin a sphere
whose angular velocity was ten times higher at its center than at its edge. The
fluid interface is indicated by the outermost solid line. A consequence of this
angular momentum distribution is toroidal equilibria for a<1, where a is the ratio
of the cloud's internal energy to its gravitational self-energy. As the temperature
is further decreased, the minimum o. for stable equilibrium o, is encountered.
Below o, the cloud is dynamically unstable to gravitationai colfapse. Collapse is
computed numerically at constant cloud temperature without the damping term in
the equation of motion. Fig. 10 shows the cloud structure well into the collapse
phase when the peak density on the toroidal axis exceeds 10° times the edge
value. For a complete discussion of the collapse dynamics and its dependence on
angular momentum distribution, the reader is referred to Norman (1980).

8.2 Supersonic jets

Calculations of supersoric jets of the sort displayed in Plate i have been
performed in connection with radio galaxy studies and their associated radio jets
(Norman et al. 1982; Norman, Winkler and Smarr 1983,1985; Norman, Smarr
and Winkler 1984; Smarr, Norman and Winkler 1584; Smith et al. 1985). The
calculations are performed in 2-D axisymmetry neglecting self-gravity and
rotation. Initially, the computational domain is filled with a uniforn, static
background gas which is to represent the intergalactic medium surrounding the
radio galaxy. Subsequently, a perfectly collimated supersonic beam of gas is
continuously injected through an area on the domain boundary, and its interaction
with the ambient gas is computed. The beam's incident pressure is chosen to
match the undisturbed ambient pressure, whereas its incident density and velocity
are varied from evolution to evolution. A fluid interface (shown in black) is uscu
to track the contact discontinuity seperating the jet gas from the ambient gas.

Plate 1a shows the establishment of a Mach 3 jet with an input density of
10% th= background density. A characteristic of low density jets is that as they
propagite, they enshroud themselves in a cocoon of gas that has "splashed back"
from the leading end of the jet. The cocoon is generally ‘ess dense and hotter than
the beam gas because of shock-heating at the terminal shock front. This can ve
seen as a difference in colors between the central beam (green) and cocoon (blue)
in Plate 1, where different densities have been assigned different colors according
to the scale accompanying Plate 2. As can bee seen in Plates 1b-d, the jet
boundary is subject tc Kelvin-Helmholtz instabilities which lead to turnover and
mixing of the jet and ambient gases. The fluid interfacc allows one to follow
these interfacial instabilities into the nonlinear regime with a minimum of
numerical diffusion. A wealth of hydrodynamical detail can be extractred from
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Fig. 10 Gravitational collapse from the equilibrium toroidal cloud shown in Fig.
9d. The calculation was halted at a density contrast of 1,.5x10%, when the zoning
resolution became inadequate to follow the subsequent condensation. Isodensity
contours are plotted. From Norman (1980).



the calculations using the color imaging techniques described by Winkler and
Norman in these proceedings. A comprehensive overview of the key physicel
results is given in Smarr, Norman and Winkler (1984).

Plate 2 illustrates a second application of our numerical techniques to the
propagation of supersonic gas jets. In this calculation, 2-D cartesian geometry is
assumed so that nonaxisymmetric "kink" instabilities can be studied. The
numerical procedure is idendical to the axisymmetric jet calculations described
above, except now the jet is admitted with a transverse velocity component which
varies sinusoidally in time according to

vy(t) = 0.05 v,sinwt,

where w satisfies Woodward's resonance condition (Woodward, these
proccedings) for the fastest-growing unstable mode

o, = 7y, (M>- 1)1V 4W

where v_is the beam velocity, M is its internal Mach number and W is the slab
width. Plates 2a-d show the rapid growth of the kink instability and its disruptive
cffect on the directed bulk flow.

8.3 Blastwavcs in exponential atmospheres

A strong point explosion in a plane-stratified exponential atmosphere
presents some interesting phenomenit not found in the Taylor-Sedov type
blastwaves produced in a undiform atmosphere. Plate 3 illustrates these
phenomena. At t-0. the background gas is distributed according to

P(Z) = pyexp(-Z/h(7))
1) =T,
and in hydrostatic cquilibrium with the gravitational potential given by
D7) = B - RTIn(p/pyy).
h(Z) is the local scale height given by
h(7) h(’/,c) I u('/,-'/.‘,_).

where 7., is the height of the explosion above the midplune. Although the
problem is wcaje-fre, the following ustrnpl_‘xsicnl numbers were ‘uscd:
P :1.07x10 2 g em Ty SOOK, 7, L4x10%%em, h(Z) 4.21x10" ¢m,
a -0 125 em ', A sphere of high temperature (T, 4x10'K) and low density
(p, 6x10 20 g em 1) is emplaced at 7 7, with initial radius v, 101 em. A uid
interface seperates the high pressure "driver gas” from the constant temperature
background gas. ‘The computational domain spans 6x10'" em = 7, < 3.9x10%0
em, 0 SRS L Ix10™ ¢m. "The subsequent evolution is computed assuming a
v 5/3 adiabatic equation of state in both gases,



Plate 3a shows the color-coded entropy distribution shortly after the
explosion begins. The distribution of colors in the atmosphere indicates a stable
entropy stratification. The red circular rzgion is the high entropy explosion gas
that has been shocked by the expanding blastwave. As the blastwave barely
extends over one atmospheric scale-height at this time, it is still circular. Plate 3b
shows how the blastwave distorts and becomes egg-shaped as it samples
different regions of the stratified pressure distribution. The upper apex of the
blastwave propagates the fastest since it is following the steepest pressure
gradient. Plate 3c and 3d show blastwave "breakout" as firs¢ predicted by
Kompaneets (1960), and the subsequent buoyant rise of the hot bubble. Note the
growth of Rayleigh-Taylor instabilities on the leading edge of the bubble,
indicating the necessity of using a fluid interface in this calculation.

8.4 Twin-exhaust jets

As a final example, we consider the production of jets via the
Blandford-Rees (1974) Twin-Exhaust mechanism. This mechanism was first
proposed to account for the production of twin iets in the nuclei of radio galaxies,
and is currently being applied to jet production by protostars embedded in
molccular clouds in our own galaxy (Konigl 1982). The model holds that if a
continuous source of hot, buoyant gas is established in a relatively colder, denser
background gas that is gravitationally confined, then the buoyant gas will
preferentially escape along the path or paths of least resistance; i.e., parallel to the
steepest pressure gradient, which in a radio gilaxy nucleus could be taken to be
along the minor axis of a rotationally-flattened central gus cloud. According to
this model, the boundary between the cold confining gas and the buoyant
outflowing gas would naturally assume the shape of a del.aval nozzle, which
would accelerate the outflow to supersonic speeds and collimate it into jets. This
is manifestly a two-ﬂuidfproblcm requiring a dynamic fluid interface to study the
formation and stability of the flow channel boundary.

Plate 4 illustrates the nozzle formation process. The confining atmosphere is
initiali- isothermal, plunc-strutificd and in hydrostatic equilibrium. The density
and hence pressure distribution is a power-law with a central plateau given by

’ o)

P(Z) = po/ 1 1+(Z/h)7]

P(Z) o (.!" 1 )P(Z)l’-().
where pg and €, are the midplane density and specific internal energy,
respectively, Hot gas is continuously created in a spherical source region ol
radius W/10 with zero velocity at a mass rate m with specific internal energy €,.
Both fluids were assumed to obey y=5/3 ideal gas cquations of state. 'I‘h{:
rollowing dimensionless quantities define the evolution:

A~ mey / pyegVh?



This example illustrates an energetic (A=2) source of hot (6=100) gas, which we
had previously determined to be susceptible to Rayleigh-Taylor instabilities
(Norman et al. 1981). The con:putational domain spans 0 £Z < 10h, 0 SR <
10h,

Plate 4a shows the initial bubble of hot gas inflated by the central source.
Gas temperature is color-coded such that high temperatures are red and low
temperatures are blue. The bubble is elongated in the direction of the pressure
gradient as its size exceeds the plateau scale-length h. Since the interface between
the bubble gas and the background gas is Rayleigh-Taylor unstable, any kinks or
ripples on the bubble surface will be amplified by the instability. The growth of
these instabilities in subsequent frames is tracked with our numerical fluid
interface, shown in black.

Plates 4b and 4c show the establishment of the cavity-nozzle-jet structure.
The throat of the nozzle forms as dense Rayleigh-Taylor "fingers" penetrate the
bubble from the side and converge toward the axis. As the throat necks down,
tha cavity inflates with subsonic gas (Plate 4d), and now the top of the cavity
develops the characteristic Rayleigh-Taylor "spike and bubble" struciure. The
dense spikes merge on axis in Plate 4e forcing the jet gas to flow out in an
annular region. The annular jet breaks through the layer of dense gas seen in blue
in Plate 4e to form the continuous diverging jet of Plate 4f. The jet has an
embedded spindle of dense gas along its axis of symmetry, which is slowly
being blown downstream by the jet ram pressure,

Further numerical evolutions of this sort are described in Norman et al,
(1981), and an aaalytic discussion of the flow stability is given in Smith et al.
(1983). The relevance of these calculations to jet formation in active galactic
nuclei is discussed in Smith et al. (1981).
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Captions to color plates

Plate 1. The time evolution of an axisymmetric supersonic jet. The plane of the picture
contains the symmetry axis of the jet. Gas is continuously introduced from a circular inlet at
left, with an internal Mach number of 3, a density 0.1 times the ambieni density, and a pressure
equal to the ambient pressure. Gas density is represented in 73 shades of color, each color
representing an equal logarithmic interval between the maximum and minimum value of the
density. The colors are ordered according to the color scale accompanyingPlate 2. Dark blue is
minimum and ruddy red is maximum. The jet is divided into a forward moving svpersonic beam
(green) and a surrounding backward moving cocoon (blue). The boundary between the cocoon
and the ambient mecium is subject to nonlinear Kelvia-Helmholtz instabilities, which lead to
turnover and mixing of *he two gases. The computational half-plane comprises 640 equidistant
zones in the axial direction and 60 equidistant zones in the radil direction out to 7.5 beam radii,
with an additional 15 ratioed zones out to 15 beam radii.

Plate 2. Nonlinear kink instability in a 2-dimensional "slab" jet. Gas is continuously
introduced from a slit at the bottom, with an internal Mach number of 3, a density 10 times the
ambient density, and a pressure equalt to the ambient pressure. The inst. vility is excited by
applying a time-varying transverse velocity equal to §% of the longitudinal velocity, with a
frequency corresponding to the fastest-growing unstable mode. Gas density is displayed in color
as described in the caption to Plate 1. The instability grows to ronlinear amplitude after
convecting a few wavelengths downstream, etfectively disrupting the directed bulk flow.
Computation performed in  Cartesian geometry. The computational plane comprises 300
equidistant zones in the longitudinal direction, 20 equidistant zones across the slab width, and 70
ratioed zones on either side of the midplane extending out (o ¢ 10 slab widths.

Plate 3. Strong point explosion in s plane-stratified exponential atmosphere. Entropy is
displayed in color as described in the caption to Plate 1. &) Initial spherical expansion of the
high entropy "driver gas” (red) and blastwave-heated ambient gas (yellow). Blastwave radius = 1
scale height, b) Nonspherical evolution of blastwave arnd hot bubble as it encompasses many
scale heights. ¢) "Breakout” of the blustwave apex as oredicted by Kompaneets (1960). d)
Bouyant rise of the hot bubble and growth of the Rayleigh-Taylor instability on the leading
surface of the bubble. Computation performed in cylindrica! geometry assuming axisymmetry,
with axis running vertically through the center of each plot. Computstional half-plane
comprises 360 axial by 120 radial equidistant, square zones.

Plate 4. Time evolution of jet formation vi.. the Blandford-Rees (1974) Twin-Exhaust
mechanism, Gas temperature is displayed in ¢o! v as described in the caption to Plate 1, a) A
bubble of hot gas is initially inflated by the central source, b-¢) The nozzle forms as the but ble
rises due to bouyancy. d) Nozzle consteicts leading to inflation of the subsonic cavity
surrounding the central source, e<f) A global Rayleigh-Taylor instability introduces dense
ambient gas into the newly-formed jet. Computation performed in cylindrical geometry
assuming axisymmetry and equatorial symmetry, Computationad domain comprises 100 x 100
ratioed zones in the radial and axial directions spanning 0<Z<10h, 0<R .10h, with a central zone
size of W10, where his the plateau scale height,



