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DERIVATION OF THE EQUATIONS OF CONSERVATION OF MASS,
MOMENTUM, AND ENERGY OF COMPRESSIBLE FLUID MECHANICS
IN BOTH LAGRANGIAN AND EULERIAN FORMS FROM AN
INTEGRAL VIEWPGINT

by

Philip L. Browne

ABSTRACT

This report derives, then shows the equivalence
of, the Lagrangian and Eulerian equations by use of
Reynolds' Transport Theorem. The differential forms
of the equations are also deduced from the integral
forms. Finally, some common simplifications of the
equations are derived.

I. INTRODUCTION

The three fundamental equations of compressible fluid motion are those
based on

(a) conservation of mass (the equation of continuity),

(b) conservation of momentum (the equation of motion), and

(¢c) conservation of energy (total).

These can be derived and written in the so-called Lagrangian or Eulerian forms

with the distinction not always made clear, resulting in confusion, especially
for those unfamiliar with the subject. Also, these equations may be written as

differential equations, holding at a point in time and space, or in a form

involving integrals over some element of volume over some period of time. Use

of the integrals for derivation of the equations seems to the author to be more

intuitively physical and offers a more comprehensible means of obtaining the




finite difference approximations for numerical wor'k,1 especially when more than
one dimension is being considered.

In the following pages an attempt will be made to start with the physical
or intutitive (integral form) approach. Definitions of the meaning of
Lagrangian and Eulerian will be made which are quite intuitive, and from thece
the meanings of certain operators (derivatives) will be made. For each of the

three conservative laws, a Lagrangian integral form and an Eulerian integral

form will be written from a physical approach. An attempt will then be made to
show the equivalence of these two forms and to derive some corresponding dif-
ferential forms, which will also be shown to be equivalent.

From a pure mathematics point of view, one should probably use tensors and
tensor notation to achieve the most general forms of the equations for all
types of coordinate systems. However, since this is written for physical un-
derstanding, the work and proofs have been limited to vector notation (to be
true in two and three dimensions), and in a Cartesian coordinate system. The
only tensor notation used is X Xg = X,X, + X5X, + x3x3. The discussion may
seem lengthy and detailed, but it is intended to be understandable and
comprehensive. An attempt has been made in each case to begin with a physi-
cally visualizable Lagrangian integral form of the law and then derive a
Lagrangian differential form. Next, starting with a physically visualizable
Eulerian integral form of the same law, one is led to an Eulerian differential
form of the law. The equivalence of the two integral forms and the two dif-
ferential forms is shown. Other things are then pursued, such as
simplification of the law of conservation of momentum by the conservation of
mass equation and simplification of the energy equation by the mass and momen-

tum equations.

II. EULERIAN AND LAGRANGIAN VIEWPOINTS

By the Eulerian approach we mean that in which at a point (x1, X5 x3) in
space at time t, one observes

(a) the changes that occur in time as one remains fixed at (x1,x2,x3)

(This change denoted by %E) (1)
(b) the variations that exist in space at that particular time
3 3 3
(denoted by , , ) .
8x1 ax2 3x3




By the Lagrangian approach we mean that in which one follows or rides along
with a particle or set of particles and observes the rate of change that
occurs (denoted by %E’ often called the material or (2)
total or hydrodynamic or Lagrangian derivative).

Since one of our objectives is to relate the various conservation laws in the
two points of view, it is of fundamental importance that we first relate the

various derivatives defined above.

ITI. THE RELATION OF LAGRANGIAN AND EULERIAN DERIVATIVES
As defined above, the material derivative is the time rate of change of a
scalar or vector function, K, as one moves along with a particle. Thus, for a

%
particle which has coordinates (x1, X5 x3) and velocities (v1, Vor V ) at the

3

time t, and hence moves to the point (x1 + v1At, X, + v2At, x3 + v3At) at time
t + At, the strict mathematical definition of %% is given by

> R(x, + v At + v AL + VAL, t + At) - A( t)

dn _ 1im [ X, viAt, x, + VAL, x3 v3 . Xis Xo x3, ] )
dt At-+0 At '

Making the Taylor Series expansion of the first term

k=24

> > >
oA JA oA 3A
ox 1 ox 2 ox 3 ot

Y
dA lim 1 >
& - [Rx,, x

dt - At»0 AL t) +

2
20 X3 At + 01(At)

. 02(At)3 ¢ - ROy, xy, xgrt)]

> > > >
lim o4 3R 3k, o4 2
ats0 LV TR A T P 0,(at) + 0,(a8)% ...]

where 01, 02, ete., are functions of order At, (At)2 etc. As we approach the
limit At-»0,

d 3 > e ] ] e
EE[K(x1, X,» x3,t)] = Gp v R Gy, 3xim . (4)
q dx
* The vy are actually defined in terms of ac’ that is, vy = ol time rate of

change of Xi0 X5 moving along with the particle. (See next page).



This describes the material or Lagrangian derivative, %E’
Eulerian derivatives, %;—, %E’ in both vector and tensor notation.
i

in terms of the

A pertinent example., In any coordinate system, if K = ;

the position vector

of a given particle in the fluid, then by the physical definition of the
velocity of the particle,

>
<>

vV = %% = time rate of change of ;, moving with particle.

+> > 3>
Proof in Cartesian coordinates. Let A = r = ikxk. Then by (4),

dr _ or p
dt at

.;

Now by definltlon of gt in (1), at = 0, that is, change in r if one stays

fixed at position r in space. Also, since the unit vectors ;k are constant in

space and time and since the coordinates x, are independent of each other,

i
9X
3 -> _? k_-»
ax (1 xk> = 1 ax; R
dr >
r
This gives -0 vili v o, (4a)

which is none other than the velocity, which makes sense.

IV, REYNOLDS' TRANSPORT THEOREM

This theorem (Aris2), at least to me, concerns the meaning of the material

derivative, when applied to an integral of some scalar or vector function

d
dt’ N
over a given volume. In short, if A(xT, X t) is either a scalar or vector

2’ x3’
function, then Reynolds' Transport Theorem is

x U AdV) =/ [— + RV - ¥)]av (5)

BA

fV at

av + f Rv - ad) (5a)



[(Sa) comes from the divergence thereom]. Thus for a volume, V, which is im-
bedded in and moves with the fluid, the total time rate of change of fVKdV is
given by (5). The first term represents the time rate of change in R inside
the volume, V, as it moves. The second term represents the amount of K which
passes through the surface, S, of V, in unit time, as it moves. K is measured
per unit volume, and 3 . d§ (velocity x surface = change in volume per unit
time) is the volume swept out, d§ being in the direction of the outward drawn
normal and having the magnitude of the area element.

Proof, Aris2 has a very neat proof (P. 85) using Jacobians, etc. However, I
prefer to give a proof which uses the physical notions of %E’ Jdv, ete. Since
V moves with the fluid, then the fundamental meaning %E in (2), (3) may be
utilized, that is,

a4
dt

lim 1

t+AtL
rta0 BT Rav] [s

Iy Rav = (s ravity . (6)

V(t + At) V(t)

But an integral is defined as the limit of sum, that is,

lim
AV2+O )

ns®

vadv - AV )

n e~
b d

1

Now we can write (6) as

¢
at0 at tlav 0 aV,»0 L. Rav)®]

. : n :
g{ IVKdV L lim 1 [ ( lim ) KlAvg)t+At - ( lim
27 e=1 278

e~

where we assume that the sz are also imbedded in and move with the fluid (that

+
is, szt At contains the same material as Avlt). The limits may now be inter-

changed so that

n
d -+ 1lim lim 1 -+ t+At > t
at TvA9 = v a0 221 {0 7t LRgaV)) (Rpavy)7ll
n
lin ¥ [d g
- S (R,av,)]
avgs0 b tat ety
© > d(av,)
lim dAa > A
" av,»0 121 [qe2 vy + &, — 1. (7)




>
In the limit the first term approaches fv %% dV, but the second term is a bit
more difficult to interpret. Since we have assumed that the AV, move with the

L
fluid, then for each Avl

d(Avl) _ rate at which volume is swept out by the surface of AVQ
dt (that is, surface integral of velocity)

=Y
= fS(sz)v . ad .
> > >
Now by the divergence theorem fs v . dS = fv (V - v)av .
30
d(Av,)
A >
% - IAV (V » v)adv .

)

In the limit, as AV +0, by the mean value theorem,

2

d(AVQ)
dt

_)
= (V o v)z AVl .

we can now write (7) as

a , = dk 2 >

5t JyAdv = Sy [EE + KV« v)]av ,
which completes the proof.

Other Forms of the Transport Theorem

If we substitute in (5) for the material derivative %E as defined in (4),

ok

3t

d +
SRV = 1y [

v + (Ve DR+ R@ V) Jav (8)

Now, if in Cartesian coordinates we define, when K is either of the scalars, p,

pE, or vector p;, an operator

> ov
v.@h - g;— v = v, gé- + 1 5;1 RNCENE 3Y S (o AT (9)
i i i



(see Appendix A).

Then (8) may be written

9 s Rav-s, [2+v.D]av . (10)

dt "V
Also in Cartesian coordinates it is possible to suggest a divergence type

>
theorem for V « (vA) (see Appendix B),

V o (VA) av = S R(v « dd) (11)

fV S

so that (10) becomes

d > 3 »> > > >
at fVAdV = 3% fVAdV + fSA(V e dS) . (12)

The %E can be moved in or out of the integral at will because of its definition
in (1) which says that %E means observing a change in time while remaining
fixed in space. The form (12) in effect states that for a scaler or vector
function K, the time rate of change of vadV as V moves with the fluid is given
by the time rate of change of IVKdV for V fixed in space plus a flux of K

through the surface S of V.

V. THE EQUATION OF CONSERVATION OF MASS
The mass enclosed by a volume, V, is given by the integral fvpdV. The rate
of mass flow out through a surface S is given by fsp; . d§, where ; is the

velocity of the fluid with respect to the element dg.

Lagrangian Forms. If V is imbedded in the fluid and moves with it, then the

rate of change (%E) of mass in V as one follows V, is zero, that is,

d

because no mass is lost or gained through the surface S of V. This is an

integral Lagrangian form of the equation of conservation of mass.

Applying the Reynolds' Transport Theorem, (5), with K =p,




4, 0w .Nlav=0 . (14)

IV [dt

Since this holds for any volume, V, used, the integrand must vanish, or

Ly vev)=0 . (15)

This is a differential Lagrangian form of the equation of conservation of mass.

Eulerian Forms. If V is fixed in time and space, then the rate of change (%E

of mass in V equals the mass lost through the surface, or

9 > >
T fvpdV = fspv + dS

- - SV . (WAV (16)

the last step using the divergence theorem. This is an integral, Eulerian form

of the equation. Since V is constant in time, %E may be taken inside the in-
tegral to give

v D] a0 (17)

and since this is true for any V,

Q)

Lav.on-0 (18)

which is a differential Eulerian form. It could also be written in other ways

by expanding V - (pz) by (9).

Equivalence of Forms

Using the Reynolds Transport Theorem as written in (12) with A = p we see
that the integral forms (13), (16) are equivalent.

The differential forms (15), (18) are equivalent, for if the material

derivative, %%, in (15) is expanded by (4),

a—‘t’+(¢-\7)p+p(v-3)=o i (19)




Using K=p in (9), we have
Ve (pv) = (Vo V)p + p(V + ) (20)

and we see that (20) in (19) gives (18), which proves that the differential

forms (15), (18) are equivalent,

VI. THE EQUATION OF CONSERVATION OF MOMENTUM

The momentum enclosed by a volume, V, is given by the integral fvp3dv.
The rate of actual mass flow across a surface d§ is given by pz . d§. This
carries with it across the surface a momentum/time of ;(p3 . dg). There is
another term which is usually thought of as the force acting on volume, V, due
to the pressure acting on its surface, namely -fSPd§, which may also be inter-
preted as a rate of momentum flow across S caused by the random motion of the

particles. (See Appendix C.)

Lagrangian Forms. If V is imbedded in the fluid and moves with it, then the

rate of change (gf) of momentum in V as one follows V is given by

g— fvadv - -ISPd§ (21)

because no actual mass is lost or gained through the surface S of V. If one
prefers to think of -fSPd§ as representing the force on V, then (21) is an ex-
pression of Newton's Law, force = rate of change of momentum. Equation (21) is

an integral Lagrangian form. Using the transport theorem, (5), with K = pz,

and the well-known
>
fSPdS = fVVPdV ’ (22)
one can write (21) as

1S V) + 0V (7 - D] av = -f RV (23)

J

Since this is true for any V,

V) ¢ VW - V) = =T, (24)




a differential Lagrangian form of conservation of momentum.

Eulerian Form. If V is fixed in time and space, then the rate of change (%E)

of momentum in V is given by the momentum lost through the surface, namely,
~fgWN(V + ad) or ~sgV[(pV) + @S]

plus the pressure integral, so that

S pvdV = -fs(p$)<3 . a4d) - fspd§ , (25)

Q)IQJ
cr

v

which is an integral Eulerian form.

Since V is fixed in time and space, %E may be moved inside the integral.
Converting surface integrals to volume integrals using (11) with K = p;, and
(22), we have

Iy 3%%¥l Qv = £ {7 « [V(pM] + VPlav . (26)

Since this holds for any V, the integrand must be zero or

3(oV) .
ot

- {v . [V(ew] + vp} 27)

which is a differential Eulerian form of conservation of momentum.

Equivalence of Forms

The transport theorem, (12), with = pG, demonstrates the equivalence of
the integral forms (21) and (25). The differential form (24), with the
material derivative %E (p;) expanded by (4) gives

>
_P_agt") (Ve V) + (VY + ¥) = -VP . (27a)

By (9) this gives (27) the corresponding Eulerian differential form.

10



VII. THE EQUATION OF CONSERVATION OF MOMENTUM - SIMPLIFIED BY USE OF THE
EQUATION OF CONSERVATION OF MASS

d(pv)  3(p¥)
PV or azv terms and

This simplification amounts to expanding the

dt
eliminating the v %% or v %% by means of the conservation of mass equation.
>
d(pv) .

Lagrangian. Expanding at in (23), a Lagrangian integral form of conservation

of momentum, we get

>
dv > gﬂ S . > o
Slege * v g8 + oWV« W] av = -5 Pad . (28)
Using the Lagrangian differential equation of conservation of mass, (15), two

terms drop out, leaving

>
dv

T

av = -fspd§ , (29)

a Lagrangian integral momentum equation.

Converting the surface integral by (22), one can then get the correspond-

ing Lagrangian differential equation

p=r = -VPp . (30)

This could also have been obtained from the Lagrangian differential momentum

equation, (24), simplified by the mass equation, (15).

->
a(pv)
at

form of momentum equation, we get

Eulerian. Expanding and using (Appendix A) in (26), an Eulerian integral

== V{G[v « (V)] + p[(¥ « V)V] + VPlav . (31)

Using the Eulerian differential equation of conservation of mass,

(18), this simplifies to

fv{p %% (V- V);]}GV = - fVVPdV , (32)

11




an Eulerian integral momentum equation, and the corresponding differential

Eulerian form

o[+ (Ve VIV] =P . (33)

This could also be obtained from the Eulerian differential momentum equation

(27), simplified by the mass equation, (18), and Appendix A.

VIII. THE EQUATION OF CONSERVATION OF ENERGY

The energy per unit mass in any material is given by

v2
E=e+3 (34)

2
¥y

2
unit mass. The energy enclosed by a volume, V, is then given by the integral,

where e is the internal energy per unit mass and is the kinetic energy per
fva dvV. Also, since Sv . d§ represents the rate of actual mass flow across a
surface element of d§, this mass then carries with it across the surface an
energy/time of E(pz . d§). The rate at which work is being done by the
material inside V on that outside V is given by ISP¢ . d§, that is, a pressure

acting through a distance.

Lagrangian Forms. If V is imbedded in the fluid and moves with it, then the

rate of change [g;] of energy in V as one follows V is equal to the rate at

which the material outside V does work on the material inside V, that is,

d
at v

EdV = -ISP3 . a8 . (35)

There is no gain or loss of energy from mass flowing through the surface,
S, because V moves with the fluid. This is an integral Lagrangian form of the

conservation of energy.
Using the transport theorem, (5), with A = pE, on the left hand side and
the divergence theorem on the right hand side of (35),

5 (8E) | p(v . T)]av = I AR (36)

(pE
V[ dat

12




Since this is true for any V,

d(pE)
dt

+ pE(V » v) = -V « (P¥) (37)

which is a differential Lagrangian form of the energy equation.

Eulerian Forms. If V is fixed in time and space, then the rate of change (%€~
of energy 1is affected by the energy lost through the surface, S, namely fsE(p;
. d8), so that

gg JPEAV = =S E(pV » ad) = PV - a§ (38)

which is an integral Eulerian form of conservation of energy.

Since V is now fixed in space, %E may be moved inside the integral. Also,

using the divergence theorem on the surface integrals, we have

s, 2B 4y o o

v 5 [V« (Epv) + V » (PV)]aV . (39)

v

Since this is true for any V, the integrand must vanish or

3(pE) _

5 -[v o« (BpV) +V - (PV)] (40)

which is a differential Eulerian energy conservation equation.

Equivalence of forms. The transport theorem, (12), with A = pE, immediately

gives the equivalence between the two integral forms, (35) and (38).
Starting with the Lagrangian differential form, (37), if one expands the
material derivative according to (4)

3 (pE)

S+ (V + V)pE + pE (V » V) = =V « (P¥)

and then uses (9) with A - pE, the Eulerian form (40) is obtained.

13



IX. THE EQUATION OF CONSERVATION OF TOTAL ENERGY - SIMPLIFIED BY USE OF THE
DIFFERENTIAL EQUATIONS OF CONSERVATION OF MASS AND MOMENTUM TO GIVE THE
CONSERVATION OF INTERNAL ENERGY EQUATIONS

The simplification amounts to expanding the various terms and then elimat-
ing terms containing the derivatives of p and 3 by the equations of
conservation of mass and momentum to leave expressions for the derivatives of
e, the internal energy.

Lagrangian. Starting with the Lagrangian integral equation, (35), substituting

(34), and using the divergence theoren,

2

d
fvpedV T prE— dv = —f v . (Pv)dV . _ (41)

Now applying the transport theorem (5) to the second term, and (9) to the third

term,
v2
d(pE—) v2 > > >
dt fvpedV + f [ It *p3 vV - v] dv = —fv[(v « V)P + P(V « v)]dV . (42)
But
v2 v2 v2
d(px) 2 d(=-) 2 d(==)
2 AN 2 o4 A -
G ter Vv gt lg e Nl =5 (43)

using the differential equation of conservation of mass, (15), which makes the

bracket term vanish.

Also,
4 (!E) - (vivi) - dvi < 0V o av v . av
P at ‘2 P at 2 PViar = ° at LT
= -v « VP (44)

by the differential equation of conservation of momentum (30). Using (44),
(u3) in (u2)v

4 _ . 2
I J yredV = IVP(V v)dv , (45a)

14



or substituting for V - 3 from the differential equation of conservation of

mass, (15),

4
dt

- 1de
fvpedV IVP(p dt)dV . (45b)

These are simplified integral Lagrangian equations of conservation of energy

(internal energy).

Now applying the transport theorem, (5), to (45b), we get

dlpe) «3lav -~ Spl S
IySge - tee Vs v]av = Jp(o GRIav (46)
or
de do i - 1de
Iyle Ge v ege * eeW - Ml av = [P Gbiav . (47)

Once again, the conservation of mass, (15), eliminates the two middle terms to
give
de 1

1do
av = fp e AV, (48)

Typ & v

which is true for all V, so that

de _ 144
5 =P (pz) i (49)

which is a simplified differential Lagrangian form of the energy equation. To

put it in a more familiar form, define the specific volume

*
* 1 . dav _ 1 dp
v 5 with Ty ;5 3 . (50)

which gives the familiar thermodynamic form of law of conservation of energy
with no heat flow (dQ = 0),

*
de _ _p dv_

dt dt ’ (51)

15




These simplified differential Lagrangian energy equations can be derived in a
similar way from the unsimplified equation, (37), by use of (15), (34), (44),
and Appendix A.

Eulerian. It is possible to begin with the unsimplified Eulerian intergral
equation, (38), and with steps similar to those used above on the Lagrangian
equation to achieve an Eulerian equation in terms of (pe), but it is much
easier to achieve the same result by starting with the simplified Lagrangian
integral equation (45a,b). Applying the transport theorem, (5), to (45a) with
A = pe, we get

fv[%_zsl +pe(V « V)] av = [ PV - VYAV . (52)

Now expanding the material derivative by (),

IV[%%e_). + (; o V)pe + pe(V . \-;)] dv = -IVP(V . \-l’)dv . (53)

Using (9) with A = pe and taking %E outside integral,

lo:

Sy(pe)dv = -1,V - (epv)dV - INION Vv, (54)

[+

t

or by the divergence theorem

Io)

S (pe)dV = -felpv - ad) - SPV - VAV (54a)

Qo

t

These are simplified integral, Eulerian forms of the conservation of energy.

The physical interpretation of (54a) might be that for a fixed volume, V, the
change in internal energy is given by the loss of internal energy through the
surface and the integral of the rate at which P is doing work locally. This
latter concept comes from the equation of conservation of mass, (15), which
defines

*
QR) - (l dv ) = rate of volume change
dt

»> 1
(V.ev)=( ° TR per unit volume

(55)

16



so that

*
2y _p¢_ 1 dp 1_dv , _ rate of work done per
PET = v) = M at) p(v* at unit volume

We can achieve further simplification by starting with the Eulerian
integral equation (54), with %E inside the integral

Iyle Q% te %%]dv + LV s (eoV)AV = <[ P(V + V)AV . (56)

Using (9) with 1= e, v = p;,
V. [e(oW)] = eV« (p¥) *+ p(v » Ve ;

we have

Flp 824 e384 v (o] + p(V - Ve @V = S P - M@V

The conservation of mass, (18), eliminates the bracket to give

fyle 32+ o3+ Welav - fipcd Syav . 57)

This holds for any volume, giving

%
de > .. P dp _ _pdV
3t (v « Ve ;3 a PEE—— (58)

This is a simplified Eulerian differential equation of conservation of energy.

It could be obtained more simply from the simplified Lagrangian differential

equation, (51), by use of the definition (4) of the material derivative.
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APPENDIX A
EXPANSIONS OF THE OPERATOR V « ( )

i ox, ax

8vi
i i

-b_L _ ap i
(pv) = axi (pvi) = v, + p

<¢-v>p+p<v-w7>=(¢-V>K+K<v-3> )

COR =V D) - v [R] - ;L [Vipv.)]
X5 i
+ 3 P > > > > >
[ vy (pv.) + pv, 2. 3 or V[V . (pv)] + p(v » Vv
xi i axi
av >
v (o —1 3p_ v
v (p ax * vi x.J * pvi X
i i i
> v
> ap ﬂ ->~
vvi X, ¥ pvi IxX. toev 3x
i i i
v,
) > > i
Ve 37 (pv) + pv =21
i axl axi
v-nR+E (.3 .
- Ry = v - [3(E)]
av.
9 9 i
Py (ViDE) = Vyoae (pE) + pE =
i i i

(3-V)K+K<v.3) )
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APPENDIX B
A DIVERGENCE TYPE THEOREM FOR V - (VA)

o0 o (Vhyav = /g v - ad)

v

Proof.

For K = p, pE, these quantities can be considered scalar coefficlents of
3, and the divergence theorem holds directly.

For %= p3 from Appendix A,

[V

N Ghav = s ¥ - [V ]av

= f —%— [3(pvi)]dv

3 >
=f . J T [v(pvi)]dx1dx2dx3

> + »> -
fx3fx2 {v(pv )T - [v(pv)1 } s,

+

> + > -
fx1fx3{[v(pv2)] - [v(ovz)] }dS2

+

X, X

-+ + > -
S { 2{[v(pv3>1 - [vpvy)] }ds3 ,

where dS1 = dx2dx3, dS2 = dx1dx3, dS3 = dx1dx2

SO

50 [Vewn] av - [V - ad) .
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APPENDIX C
THE PRESSURE MOMENTUM TERM

Consider a one-dimensional system (Fig. 1) in which

P>0 | S P=0

Fig. 1. One-Dimensional Flow

an imaginary surface, S, separates material of pressure P > 0 on the left from
material of pressure P = 0 on the right. Pd§ represents the gain of +x momen-
tum on the right from material on the left, so -Pd§ represents the gain (really
a loss since it is negative) of momentum of the material on the left. For a

more detailed study see Spitzer,3 pages 94-98.
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SUMMARY OF RESULTS

Total or Material Derivative:

=¥

d

”I>+

+ (v - DR

cr

Reynolds' Transport Theorem:

EE vadv =f [QE + 32w . w] d

Lagrangian

Conservation of Mass:

d

dt (A-1)

fvpdV 0
Conservation of Momentum:

> >
fvpvdV = —fSPdS (A-2)

[+
dt

Conservation of Energy:

Eulerian

> >
fvpdV = -fspv - ds

010’
o

+
fvpvdv

s a8 - S vV« ad)

oqu
ct

[+

+> >
rvs fvadV -fsEpv « ds

-fst - a3

Differential Forms

d > >
EE fvEdV = -fSPV « dS . (A=3)
%% s oV V) =0 . (A-1a)
d(pv) . =+ »

dzv + pv(V « v) = -VP ,(A-2a)
9_(LE) + pE(V « ¥)
dt

= -V - (PY) . (A-3a)

22

30 _ oy, (p3
Yo V. (pv)
.)
3a(pv) o _ L2
Yo VP -V (vpv) .
AR g (pEV) - 7 - (PY)

(A-1)

(A-1I)

(A-111)

(A-1a)

(A-IIa)

.(A-IIIa)



Lagrangian
Using (A-1a)

>
TS
dt dt

= -VP

in (A-2a)

pGLV/</;)

<

(A-1a) in (A-3a)

dE >
pat * Ege t pE£2/4/i)

= =P(V

Using

V) -V - VP

Simplifications

(A-2b)

. (A-3b)

Using (A-2b) in (A-3b) with (4)

de g//dcg’ >
[ a—t + = a?- = ~P(V « v) (A"3C)

> d»

v
v egg)
Using (A-1a) in (A-3ec)

(A-3d)

Eulerian
Using (A-Ia) in (A-IIa)

<>
oV > 3 _ 2 . >
a ! V/d{= -vp - v[V ]

- o(v . V)V (A-1Ib)

Using (A-Ia) in (A-IIIa)

°%% * E/%%‘ 'ECV/(/pz)] (A-ILIb)

-p(¥ - V)E -V » (PV) .

Using (4) in (A-IIIb)

2

3"2—-(* V(e + L)
Foo 7 PV s Ve s 5=

©
o)lc)
ct{D
+
o

PV e V) -V eV .
Expand and use (A-4)

> 2
. Py - %% - (V- Ve -p (V- DE

o€

P 3t
> >

~P(V o+ v) - v « VP

Rearrange and use (A-5) and (A-IIb)

g: . p/gzt/= -o(v - Ve
> > > >
:/gﬁx,f’ﬁj; - P(V - v) - X/;/§;
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028 4 0¥ e We=-P (V. V) . (A-IIIc)

ot
CHUG B P DAL U SNt
dt ‘2 dt 2 dt 2 i dt
2 V.V ov
> v 9 i‘iy i
(v « V) > Vi 5;; ( > ) = LA Sxk

i+ dv

v

v at . (A-14)
v

AN 5;; = v, (v o V)vi

(A-5)
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