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ABSTRACT

Two finite difference methods are presented for representing the

L}

critical frequencies of a shaft as the eigenvalues of a matrix. The
metrices are well suited for high speed digital computation., The

methods are applied to a uniform shaft and compared with the known

frequencies.,
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I. A simple model of the steady displacement of a rotating shaft

is provided by the differential equation
1"
(1) (EIy") =A3%qy , EI >0, ¢ >0

with boundary conditions; for example, if the shaft is simply supported,
y(0) = y"(0) = y(L) = y"(L) where L is the length of the shaft. EI is
the flexural rigidity and q is the linear mass density. The eigenvalues
2
M
of the shaft.

of this differential problem are known as the critical frequencies

The literature on the subject of numerical approximation of A2
seems to be devoted to the adaptation of Mikelstadt's method to high
speed computing, with one exception, that being a recent paper [2] on
an integral equation approach. Mikelstadt's method is described in [3].
Neither of these methods uses a direct attack on (1). In this paper we
apply two well-known and powerful fihite difference methods directly to
(1), obtaining in both cases linear systems of the form AX = u®BX where
A and B are symmetric, positive definite, and striped. In the first case
B is diagonal and pi are obtained by the LR method. In the second case

we evaluate det|A - p®B| by Gaussian elimination and find its zeroes by




regula falsi, The first method provides apparent lower bounds for AZ;

the second gives rigorous upper bounds.

II. The first method is based on a continuity principle., To

simplify the notation let p = EI, so that

(2) (py") = A%qy

We suppose that p and q are step functions with common points of dis-
continuity. If we now assume that solutions of (2) are integrable,
then by successive integrations it can be shown that the followling

functions are continuous

nt = (py")’
h? = py"
h® = y*

ht = y

It must be understood that these continulty conditions are physical

ones, If they do not hold it means that (1) is not the proper model.



We set up a mesh

*k

Yert Beaje K= O L we, N

in such a way that every discontinuity of p and q is some Ko Set

pk+:./2 = P(xk-l-l/a) s ete.

The derivation of the difference equations is started by setting
xk+:./2 "

¥y = 2 f (pz") dax
Ak+:L/2 + Ak-:|./2 ’H;..l/a

- 2 /hllx. ” hlt-le + hl:l{.+1/2 ” hl::
Ak+J./2 + Ak-:L/e\ -1/ Yot /2

If we spproximate the continuity of y by the relation

xk ( )n xk"'l/z ( 1
1 py" __ 1 py"
D= 1/2 / T & Pt 1/2 f T =
*k-1/2 *x




then we can eliminate hi't to obtain

1
By = = (h11:+1/2 " hlt-l/a)

Qe

where

3, = Uerr/z Berrfe ¥ %-1/z Sk-1/2

2

Since a1l functions are smooth at k+i/2, put

B = s ™ M

Ak-l-l/a

Proceeding as before, we write
Ter1/2

N D-1/2 f Der1/2 / By
*k-1/2

and

xk+1/2

1 1 S
Bk-1/= _/ By ox Per1fz _[
*k-1/2 *x

pyIl d.x




to get
by = Sk(h'i+1/2 - hi-l/a)

vhere

3. = 2Py_1/2 Prt1/2
K P iz Barfe * Piaafe D1z

Finally

Ners ~ Y

Bleya/2 = e

The resultant difference equation is

— Y - Y Y - ¥
(22) (kl-z ktr ekl k)

2 - 1
B Q¥ = x—|P -
k'k Ak+1/2 ket 1

Pera/2 Mer1/2

" P Br1f2 By-1/2
o Sk(yk” "V Yk T Yk
Pk-1f2 Mer1f2 P a2

— (Y% = Y-z Yx-1 " Yk-2
= Py,

Zﬁ::—:!./a i Ak--a/a

- (yki-l =Y Yk yk-:_)




with boundary conditions

<
|

..yN=O

po.—.pN=O

In matrix form we have

(3) AX = uZBX
where

A= f(a,), B = (v,,)
and

8y = 2y

aid=01f|i—,j|>2

—_—

U | 1 s, 1
11 A:L+1/:z 1 A1+1/.2 iA1+J./2 Y




AN Y 1
Bioafa|t Ai+1/2 1-1/9’ Piea Ai-J./:a

1 — 1 1 - 1
8514y = = x| * + P x—
171+ A:$.+:|./:z 1+1(Ai+s/2 Ai+J./2) 1 Ai+.1./2

+ 1 - 1
Bio1fz "1 Buafe
a., —7 i
i’ i+2 Ai+l/2 it Ai+8/2
bij =0, id ]
by = (g)

ITI. The second method is based on a variational principle. Let
L

p(y")? ax
(%) p2(y) =

ay® dx

C§""‘5r*C§‘""‘s

Let Z be the space of all continuously differentisble functions on

L with piecewlse continuous second derivatives which also satisfy the




boundary conditions, Let Sm be any m-dimensionsl subspace of Z, Let
w2, i=1, 2, *++, m be the stationary value of p®(y) as y varies over

Sm. Then it is known that
xig'ﬁi, i=1, 2, ese, m

We choose as the subspace C2(N-1)’ vwhich we define as the set of
all continuous functions having continuous first derivatives, and which
are cubic polynomials in the intervals (xk ’ xk+1)’ k=0, 1, ¢o¢, N~ 1,

Each function in C is determined by the value of it and its first

2(N-1)
derivative at all the interior mesh points. Call these values Yi0 and

¥}, i=1, 2, *v+, N - 1, Then for any y(x) in C2(N-1)
¥(x) = y(x, ¥y 5 *r 5 ¥L, o)

The conditions for stationarity of p2(y) are

3(®(y) _ ¢
S -

or

10



L L ) .
a ]
.!yzqaxggfp(y)de‘*[p(y")adxg%fyzqu

and

L

L L
L
f yzq dxyal— f P(y")z éx = p( ")2 dx 3
J Yy y 3] ¥?q dx
0 0

Using (%) we have

L L
a 1?
&;fp(y)a %fyzqu
0 0

(5)

L L
9 "ny2 .2 d
B;iifp(y) ”gﬂ ¥Rq ax
0 0
so that again

(6) AX = ®BX




wvhere A and B are of necessity positive definite and can be chosen
symmetric, The calculation of A and B is extremely tedious and will

be omitted., We will give the equations for the cubics in order to aid
the reader who wishes to use this method with other boundary conditions.

We have
v(x) = ax® + bx® + cx + 4
vhere

a) For0<i<i+1l<N,x <x<x

1 i+

) - -
C Bapaf20] + ¥h,) - 2y, - )

a = i
3
(A1+1/2)
- - ' '
b = 3(y1+1 yi) A1+y2(2y1 + y:'L+:|.)
2

(Ai+1/2)
c = yi
d = yi

b) In the simply supported case, for O <x<x

12




a =
3
Q(Al/z)
Pb=0
3y, yi &
o= i 712
2A1/2
d=0

andf’orxN_lsxsxN

N1 Pn-1fz t Y§-a

Q(Al‘l-:l./z):3

_ S¥N-1 * AN-1/2 -2

AN-1/2

b=d4ad=0

If the vector x is taken to be

X = (Yi, yi, *tt yN—l’

13

IN-1

)



then the matrices A and B are block tridiagonal, as follows:

% B, 7,

AN

-1 Py-a

AN

-1 PN-2

-2kp; 1/2 -12p;_ 1/2

3
A:i.- 1/2 8y 1/2

12p

i-1/2 l"p:'L--J./e

2
M.1/2 Bi_1/2

1k



2“’Pi+:|.[2 . 2kp, _ 1/2

12pi+1/2 ) 2P 4 /2

A:;+1/2 A?Is.ml/e ACia+1/2 Ai—l/z
By =
12Psra/2 12p1-1/2 81)i+1/2 8p i-1/2
A?.+l/2 A?-:L/z Bira/z Y
24D 1/ 12850/,
A:is+1./a A?:i—l/Z
73 =
-12p;, 1/z b'pi+ 1/2
A.€L+1/2 Prraf2
214p3[2 + 6p1/2 1293/2 _ 691/2
A2/:2 A?13./2 Ai/a A?./2
B, =
1293/2 + 6P1/2 8p3/2 . 6p.1/2
Ag/2 Ai/a A3/:2 A1/2

15



2upN-3/2 . 6PN-1/2 -12PN-3/2 N 6PN—1/2
3 3 2 2
MN-3/2 MN-1/2 N-3/2 AN-1/2
BN-1 -
'12PN-3/2 + 6I’1\1-:./2 8pN-3/2 + 6pN..1/2
2
N-a/2 N-1/2 MN-sfz  “N-1/2
9 13 2
35 Pi.1/z 310 Yi-1/z2
8y =
-13 2 -1 .
310 Y11/ 0 in—J./z
9 -13 2
35 Pur1/2 315 Pir1/2
ci =
15 2 -1 3
716 Lit1/2 70 ®i+1/2

16




2 . 11 [ = 2
3—'5<in+1/2 * qA1.1/2> Io—s(%iﬂ/e il ®i-1/2>

bi =
11 ( 2 2 2 3 3
'IO—‘j(in+1/2 - in-1/2> T{)S(qﬁi-u/a + in—l/z)
26 3 3 I 6 o
35 ¥a/at 35 Pyfe 105 ¥a/2 - 35 ¥y/e
bl =
11 2 6 2 2 3 L 3
105 ¥s/= " 355 ¥, 105 ¥s/2 t 105 ¥y
26 3k 6 o 11
35 q'AN-:s/:z * 35 qAN-l/z 35 q'AN--J./a ~ 105 an—a/z
bN—l =

6 2 11 2 2 3 L 3
35 ¥W-1/2 ~ 105 ¥N-s/2 105 ¥iN-a/z ¥ T05 P-1/2

T

IV. To solve (3) for E? we use the SS™ method [1]. First, since

B is diagonal with positive diagonal elements we can write

17




B-1AX = u®X

The matrices A and B are positive definite end symmetric, but B~*A

is not symmetric., It can be symmetrized by setting
c = o33/
so that Bl = C?
Then 1if
D = CAC
we have
CDC™Y = C%A = B™2A
50 that D is similar to B"1A and has the same eigenvalues. D is

symmetric and positive definite. Any such matrix D has a square root;

that is, there exists a matrix S, lower triangular, such that

18



If D is striped so is S, The SST algorithm is the following:

a) ret (9 = p

k)

b) Given D(k), find s such that

o(8) _ (0T

¢) Let pl1) _ g(k)T4(k)

(k)

The sequence of matrices D converges to a diagonal matrix with the

(0) on the diagonal, The off-diagonal elements of the

eigenvalue of D
last row and column converge to zero first, at which time they can be
discarded and the process continued with successively smaller matrices.

(0) the smallest eigenvalue appears first, then

For our particular D
the next smallest, etc.

The matrix S is found by the following recursion, If D = (Dij)

J-1
S., = D,, - s2
Jd Jd Z Jr

=1

J-1

-l 3 . 3

Sij= Dij_ztsirsjr Sjj i=J+1, j+2, -

r=1

Cae
!
=

.
n

.

L]
[ ]
L]

19




If we now consider the variational method we find that the matrices
occurring there do not lend themselves to the above method, the reason
being that now B is not diagonal so B"*A is not striped. It turns out
to be quite feasible with the Stretch computer to find the zeroces of
det|A - 7B|, with A and B defined in part III, by direct computation.

So, let
f(t) = det|A - 7B|

For any 7 the determinant is evaluated by Gaussian elimination without
pivoting, but programmed to teke advantage of the sparseness of A - TB.

The zeroes of f(1) are found by regula falsi; that is, the iteration

LE1) () ek 7. R

£(F) - (51

To find 5:21 we start with

= E?(l + €)

for some small e, The Eﬁ are the solutions of (3).

We are able to report on only one actual calculation with the

20



above method, We took

We used 20 intervals with the continuity method and 10 intervals with

the variational method and obtained the following values:

- B A K
102 & 102 B 107 &=
1.56757 1.570799 1.57081
6.23168 6.2832 6.28387

13.877 14,137 14,145

For this problem it is easy to show that yu < A; however, this is
not known in general, We have observed that for some problems with
discontinuous p and q the u's seem to increase with decreasing Ax.

It is clear from the table that the upper bounds u are more
accurate than the p; however, this comparison is not completely fair
since the matrices determining 1 have seven non-zero diagonals, while
those determining p have five, The variational method should be
compared with a seven point form of the continuity method, but we have

not been able to work this form out in the general case.

21



V. We should like to conclude with a proof that A in (3) is
positive definite,

For any vector w = (y.1 s o0 ) we have to show that (Aw,w) > O

2 yN“‘l
if w ¥ 0, where

N-1

(v,w) =Z \AA

i=1

Define the following operators

(Eu)i = Y441/2
(gu)i =(E-EMus= Y12 T M1/

The operator E is unitary on the set of u's which vanish outside
some interval, which we may represent by W = 0if k<O or k >N, The
unitarity means

Ex¥ = E71 , vhere E* = adjoint of E

Therefore

(gu,v) = —(u,gv)

22



Let

1

h =t
itif2 Bir1/2

An examination of (2a) shows that

A AN AN

Aw = (/hAPAKA)W

A A

Putting R = AhA
we have
R¥ = R
Therefore
(Aw,w) = (RpRw,w) = (pPRw,Rw)

~

Equality can occur only if Rw = O, which means hAw is constant; however,

since wo = W

N = 0, this implies w = O,

23
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