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LEGAL NOTICE

This report was prepared as an account of Govern-
ment sponsored work. Neither the United States, nor the
Commission, nor any person acting on behalf of the Com-
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A. Makes any warranty or representation, expressed
or implied, with respect to the accuracy, completeness, or
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that the use of any information, apparatus, method, or pro-
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B. Assumes any liabilities with respect to the use
of, or for damages resulting from the use of any informa-
tion, apparatus, method, or process dtsclosed in this re-
port.

As used in the above, “person acting on behalf of the
Commission” includes any employee or contractor of the
Commission, or employee of such contractor, to the extent
that such employee or contractor of the Commission, or
employee of such contractor prepares, disseminates, or
provides access to, any information pursuant to his em-
ployment or contract with the Commission, or his employ-
ment with such contractor.
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It is shown that a considerable saving in computing time can be

obtained by the use of unconditionally stable, or implicit, finite

difference approximations to the radiation diffusion equation. The

effectiveness of implicit difference equations depends on the @stence

of rapidly convergent iteration procedures for solving the non linear

system of equations which determines the temperature distribution at each

time step. We show by application to some typical situations that

Newton’s method provides such a procedure. Although Newton’s method can

be difficult to apply when the functions appearing in the equations are

tabulated, this is not the case for radiation diffusion with tabular

opacity and energy; for, the flux is defined as an integral whose deriv-

ative involves only values of the opacity, and the tabulated energy can

be replaced by a continuously differentiable function of temperature by

the use of the spline fit. The same holds true with interfaces and var-

ious boundary conditions.

w
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Chapter I

.

The distribution of temperature, T, in a diffusing slab can be

described by a differential equation of the form

(1)

where

E = E(x,t,T)

F
&

=F(x,t,T, ~)

H =H(x,t,T) ●

For our purposes we may take H = O. For the moment we do not specify

and F.

We suppose the slab to

lengths AJ. We s@ E(xj) ‘

F(t) we write ~= f(t), f =

A one parameter family

be divided into

Ej) F(xj+l/2)

f(t +At).

of difference

cells with centers x< and

FJ+l/2. For

approximateions

where O S a S 1. WithcY = O we have the ordimry

d

any function

to (1) is

‘Fj+l/2 - ‘j-l/2) =

equation which has a stability condition of the form

-3-

explicit difference
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for some

‘~ ~ r(T ) for au j
A2

JJ

function r(T) which can be determined for E and F.

Although the explicit method is satisfactory for most problems, the

foUowing situation can occur. Suppose a wave is penetrating the slab

with velocity vo Then there wiUbe a number s such that ifAt/A@ < s,

then v?M <Ax, so that one would like to take At not much less than sAx?.

However, there may be a region far from the head of the wave in which

r(t) is much smsller than s, forcing a time interval much smaller than

needed for accuracy. It is here that an unconditionally stable methti

is called for.

It canbe shoun, at least if E andF are linear, that

ditionally stable if ~ .S ~ s 1 [11. III this case the new

T3 appear in a complicatedway and can onlybe obtained by

such as Newton:s method, which has the folLuwing form: to

system

D(T, ..oTN)=
jl

use the following algorithm.

a) Guess a first value

o,

for T.
J

b) Define~j as the solution

~Gjk ATk = - Dj

j=3-,2, eea, N

of the linear system

(2) is uncon-

temperatures

an iteration

solve the

-4-



where

and all coefficients are evaluated at the previous iterate T .
d

(c) Replace Tj W TJ +ATj and repeat (b) until convergence occurs.

Since, as we shaU_ see, the fluxes Fj+@ depend only on Tj and

Tjl-1$(3) has the form

where

aD

d
.-~

?3F
A. =

*
-12

J j-1 ‘j d-l

aDj aE
(5) d + = * ‘Fj+l/z?‘j=~=~ Aj - ‘j-l/2]

aDj
=+ C&At

&
aFji-12 .

%== q j-i-l

The line= system (4) is solved by the following well-known device:

put

(6) AT
j = ‘&j-l+ ‘j “

-3-
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Substituting this into (4) we find

(7) Mj=- , ‘Dj ‘jNj+l

YJ 1
‘j= Bj+c M ●

J + j j+l

The M‘s and N‘s are determined by (7) and the boundary condition at

%+1/2 “ For example, if FN+l/2 = 0

-%
-DN

%=% ‘ ‘N=% >

and then (7) is used recursively. A boundary condition at the other end,

say AT.

To

= O, together with (6) then determines the AT j.

apply the above ideas to the diffusion equation, let

E(T) = Em(T) + : T*

where

Em = specific material energy

a = Stefan-Boltzman.nradiation constant

P = density

K= K(T,x) = opacity

c = speed of light

Note that x is the mass variable.

-6-



‘e ‘Screte ‘l-m Fj+l/2is defined as a mean value by the foll.ow-

ing relation,

(8)

We nm make two assumptions:

a) K is a function of T only in the intervals [xj, x 1j+l/2 ‘

[x3+l/2$XJ+lJJ ‘owe wite

I
%(T) x~ ‘xsxj+l/2

K(T,x) = I ●

%(T) xj+l/2Sx Sx~+l

b) T(x) is monotonic in the interval (x., Xj+l).
J

With these assumptions the right side of (8) can be written as

Tj+@

J
‘j-l-l

Q = PL(T)dT +
J

PR(T)dT

‘J ‘j+l/2

where we have introduced the function of the opacity

(9) p(p,T) =* P
3KW”

Then
.

%
al

) ~+ PR(Tj+l) -PR(T~+l,2);* ●ti~ = ‘L(Tj+l/2
j-t-l

-7-
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The temperature T
jl-1/2can be determined from a continuity condition

on the flux; namely

Tj+l/2 T

f

j+l

g(Tj+l/2) ‘A+ 2
p#T -A—

J
pRdT = O .

j+l

Tj+@
tJJ

T.
J

The function g is monotonic

can readily be found by Newtonts

and has a root between T and

method or it can be found in

defined

We

by equations (4), (6), and (7).

now have

%= %(T j+#Aj+l

dTj+l pL(Tj+l/2JiAj + ~(Tj+l/a~/Aj+l

so that

aF+2
(10) -a&-

-2 h
J+l ‘A3+A

j+l ~

-2~(T .+1)pL(Tj+l/2)

= ‘jpR(Tj+l/2~ + ‘j+lpL(Tj+l/2J ●

similarly

(u)
al?

-#-
l-l 2 2 PL(’ll ) ~(Tj+l/2)

Cl ‘Aj~(Tj+l/2 ) + ‘j+-lpL(Tj+l/2)

Tj+l which

the sweep

:

-8-



a$and we see that (10) and (lI.)are independent of .

~Em
Let us now consider

w’
For many problems Em = CVT, Cv constant,

aEm
= C . AU our test problems are of this form. In running these

‘or v

problems we noticed that small errors in ~slowed down the convergence

of the iteration. This leads us to believe that if Em(T) is a tabular

function it is important to use an interpolation process which produces

good derivatives. Such an interpolation is provided by the spline fit

[2],which involves replacing Em(T) by a piecewise cubic function which

has continuous first and second derivatives. This is done as follows:

let the tabulated values be
%=

J?k= Tk - Tk ~. If we let

Em(Tk) k = 0, 1, . . . , I, and let

be the second

wise cubic is

derivatives, which

~ ~(Tk-T)3
Em(T) = - ~ +

6k

are to be determined, then the piece-

I$$T-Tk-1)3 +

64k

(%+1 %M~k

)+ ~-~ ‘Tk-T) ‘fOr Tk-l STSTk “

If we equate left and right values of first derivatives we get the

-9-



relation

#k Jk + jk+l

(J=’) ~k+l%+l . %+1-% %-%-1
T%-l+ 3 %+~ ~-~ “

the end points TO and T1 such as

derivatives, then (12) determines ~,

If we specify a condition at

MO= ~ = O, or speeim the first
~E

from which Em(T) and & can be computedo Thus, in addition to the

table [~1

example of

we need to compute (once) and store the table ~1 ● An

the spline fit for a typical Em(T) is given in Chapter III.

.
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Chapter II

,

.

-.

We have applied the method to the

tration of radiation through a uniform

problem of solving for the pene-

slab with a constant driving

temperature at one boundary of T = 1.5. The material has unit density

with an opacity given by 10Q T-4. Equal ’masszones of unit thickness

were chosen. The differential equation to be solved is

(13) & (oIT + ●0137T4) =+ ●00685~

with the boundary condition that at x = O, T = 1.5 and T = O for x > 0

att=O.

For the case a = O in equation (2) we have the explicit equations

which are stable for

0.0685 (&17At) <$

or AT C .053.

We have solved the difference equation for a =1/2andu=l for

At = .(%25, .25, 1, and 10. In some cases we have dropped the radi-

ation energy term, .0137 T4, so that we can compare with the similarity

solution [3]. The solution compares very well for At S 1 as can be seen

-11-
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by the comparison at t = 100 in figure 1. There was very little differ-

ence in the centered implicit (a = 1/2) and full implicit (CX= 1) solu-

tion everywhere except at the head of the wave where the full implicit

temperatures are slightly higher.

Even for At = 10 the solution is in good agreement with the true

solution although the centered implicit is seen to have an oscillation

in the first mass point. This oscillation is removed by going to the

full implicit equation. A comparison at t = 30 is tab-ted in Table I

and shown in figure 2. The total number of iterations to go to t = 30

for various At*s is:

At .0625 .25 1 10

Iterations %0 270 104 46

The amount of calculation per iteration is roughly 2 times the

calculation per time cycle in an explicit calculation. Since the number

of time cycles in t = 30 is 600 it appears that the implicit method is

faster for At as low as .25 and is quite accurate for At = 1. For

At = 10 we gain only a factor of two in speed over At = lwhich doesnst

appear worth while considering the inaccuracies introduced. On the other

hand the results are not unreasonable for At = 10 so

too much if for some reason the At is too large in a

problem being considered.

one need not worry

region of some

&

-12-



The

having a

constant

second problem consists of a slab of two materials, the first

T* dependence in the mean free path and the second having a

mean free path. The initial and boundary condition and the

zoning are the same as before.

The differential.equations in the two regions sre:

(14) &(.lT+ .0137T4) =+ .00685d~, O<x <lo;

~(.lT+ .0137T4) =+3.425 ~ ,1O<X<2O.

Again we have

figure 3 and table

varied a

II for t

is well behaved for large At

solution to compare with fo~

treatment is probably bettez

;

.

.

u

mdAt, and the results are compared in

= 60. We see that the fti explicit solution

as before. Althoughwe have no similarity

this problemwe feel that the fuU implicit

since it appears to have the same solution

. At=l and it doesn:t have disturbing oscil-

coefficientsA, B, C that are only

sign!) to solve for D in equation (4).

as the centered implicit for

lations for large At. We have used

half the right value (but the right

We converge to the right solution but it takes about 10 times as many

iterations so we conclude that it is important that the exact derivatives

be used in equation (4).

-13-
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Thus far we have

Chapter III

considered the equation using only simple functions

of the temperature. In practice this is rarely the case,

indicate a methti of attack that uses tabulated values of

opacity. The known properties of these functions will be

provide accurate values of the energy and its derivative,

and its integral. We first treat the energy.

so we wish to

the energy and

exploited to

and the opacity

In a wide variety of problems where radiation flw is important the

material energy is only weakly dependent upon the density so that a

linear logarithmic interpolation of the density variation will yield

satisfactory values of the energy at intermediate points. The tempera-

ture interpolationwill

We shald fit the spline

logarithm is used since

ative of E with respect

be done by the spline fit mentioned in Chapter I.

fit to tabulated values of log Em(Tk). The

we treat Em over five decades in T. The deriv-

to T is

We show the spline fit for a typical material in figures 4 and 5.

For most materials a table of about 150 points is sufficient to

-14-



cover the full range of temperatures and densities encountered in most

problems. This means, of course, that 150 values of the logarithm of

the energy and 150 values of the second derivative must be tabulated.

Opacity

The opacity could

opacity or its related

also be treated in the same manner. However, the

function, p, defined in equation (9), is used in

an integral over a fairly small rsmge of the temperature, so that the

logarithm of p can be fitted quite well by linear interpolation and p

integrated analytically. Furthermore, the density variation of the

opacity is usually small so that again a

satisfactory results.

Since the density dependence of the

varying as the one quarter power) we can

adjacent zones of the same material. In

logarithmic interpolation

opacity is small (usually

yields

simplify equation (11) for two

that case ~ = ~ so that

(16) w= W ‘(TJ
dT

AJ+A

d
j+l

and equation (8) for the flux

>

becomes

-2

J

‘jI-l

‘j+l/2 ‘AJ+A p(T)dT ,
j+l

T.
J

where we

accurate

use the average density of cells j and j+l. This is generally

except for interfaces between materials where the density and

-15-



material properties are discontinuous and equations (8), (10), and (11)

must be used.

The function p(P,T) wil.lbe given at a set of points (pi, Tk)o For

my fixed Pi we assume that log p is a polygonal function of log T, that

is

()
a.

(17) p(pi>T) ‘Pik ~ ‘k for Tk
k

‘T STki-l Y

where P:1.= P(P:,T,.)

The

For

.ub J-A

log pti - 10g Pi &~

% = log Tk - log Tk+l “

logarithms of pm are tabulated.

With p(p,T) in this formwe have for Tk S T S Tk+l

J
T

~(Pi,T) - TkPW
P(Pi,T*)dT1 = ●

a. +1lk

‘k

any two temperatures ~, e2 with Ell< (32we find integers j and k

such that

Tk~el<Tk+l<o. .<T. ~e2<T
J j+l “

-16-



Then

‘2

(18)
f

P(Pi,T)dT =

‘1

+

1-

S

z Tr pir - Tr-l pi ~ ~
>

a. +1
l,r-1

r=k+2

e2p(pi,e2) -Tjpij

~++1a.
e

J-d

Free Surface Boundarv Condition

Let I(p) be the intensity of radiation per unit solid angle in the

angle whose cosine is y. In the diffusion approximation

for - 1 S v S 1, except at the surface s, when

I =Oforp<O

Then the flux at the surface is

1 1

-1 0

-17-



On the other hand, at an interior point

ac 1 dT4
F(x) =-7FF .

If we assume lim F(x) = F~, then
X+s

(19) ~T;+~ ()~ dT4
K~x=s=

Note that if the flux is constant

0.

and equal to F, then

●(20) F= ~ T:

In our difference approximation we assume the flux is constant in

the last half zone. Thus, (19) becomes

(21)

Ts

$&T&-
‘1 J

pldT=O .

‘1

Equation (21) can be

Newton’s

The

method or in the

flux derivatives

solved for the surface temperature Ts by

sweep defined by (4) and (6).

are

(22)

SO that Al = 0, .orMl = O and AT = N1.
1

-18-
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TABLE I

t = 30

Centered Implicit Full Implicit

~ At=l/6 At=l At=10 At=l At = 10

l/2 1.5000 1.5000 1.5000 1.5000 1.5000

1 1.4%8 L4E%8 105761 1.4&6 1.4@o

2 1.4576 1.4576 1.4804 1.4572 1.452o

3 1.4239 1.4240 0.4037 1.4232 104131

4 1.3W2 1.3842 103536 1.3831 1.3670

5 1.3359 1.3359 1.3278 1.3343 1.3107

6 1.2741 le2741 1.3021 1.2718 1.2366

7 1.1889 1.1886 102051 1.1844 1.1344

8 1.0510 1.0507 o.95& 100350 0.9545

9 0.1518 0.1527 0.2438 0.1882 0.4630

10 0 0 0 0 0 ●0014

-L?+-



TABLE II

t=60

Centered IMplicit Full Implicit

L — .—,At=l At = 10 At=l At=10

1/2 1.5000 1.5000 1.5000 1.5CQ0

1 1.4903 1.3696 104903 1.48$38

2 1.4694 1.4595 1.4693 1.4680

3 1.4463 1.4635 1.4461 1.Jd+36

4 1.4203 1.4375 1.4200 1.4163

5 1.3906 1.3946 1.3901 1.3849

6 le3557 1.3429 1.3552 l*34a2

7 1.3134 1*3114 103I27 103038

8 1.2589 1.2733 1.25EiI 1.2470

9 1.1806 1.1694 1.1797 1.1663

10 100288 1.0374 1.0278 1.0u8

u 00WK) o●4140 OJK)1O 0.3750

12 0.3843 0.3911. 0.38u o●3540

13 0.3623 0.3623 0.3589 0●331L

14 093370 0.3266 0.3334 0●3057

15 0.3071 0.2835 0.3032 0.2773

16 0.2702 0.2359 0.2656 0.2451

17 0.2204 0.1829 0.2135 0*2093

18 0.0760 001J202 0.1079 0.1700

19 0 0.0353 0.0048 0.X257
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