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In the

of the ssme

ABSTRACT

slip stream behind a Mach shock one has two layers of gas

material set into sliding motion with respect to each other

under conditions where all initial turbulence can be eliminated. Photo-

graphs of such shocks reveal that an intermingling of the two layers

takes place, which in the first approximation grows linearly with the

samunt of the displacement of the one layer with respect to the other.

The present report attempts to determine a “wiping coefficient” which

represents the ratio of the depth of the layer of mixing to the latersl

displacement of the two layers with respect to each other. Contrary

to expectation, no universal value for this “wiping coefficient” was

found in the four cases for which data were available:

Shock Wiping
Gas Strength Coefficient

CC14 3*73 0.20

CCIJ 8.21 0.36

C02 1.68 -0

Air 4.06 0.11

For this reason

analyzed before

processes. The

it is concluded that many more such events must be

one can form a satisfactory picture of the mixing

methods of calculation applicable for this purpose are

also contained in the text.
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I. INTRODUCTION.

When two fluids slide over each other, their interface becomes the

seat of an instability analyzed by Helmholtz.
1

Any periodic very small

departure of the interface from planarity, of the form

c$y= a(t) sin kx,

wilJ.grow exponentially,
.

d%=
dt2

cL2a(t),

with a growth

where AU is

constant, < , which is proportional to the wave number:

the difference in velocity of the two fluids. The reason

for this instability is illustrated in Figure 1. After the disturbance ,

reaches an amplitude equal to some small fraction of the wave length the

interface commences to change its form and the process takes on a quiet

non-linear character. Some attempt has been made by L. Rosenhead (Proc.

Roy. Sot. ~, 170, 1931) to study mathematically the initial phases of

this non-linear growth process with the results here duplicated from his

Figure k.

1
See Horace Lamb, Hydrodynamics, 6th cd., pp. 22 and 373, Cambridge Uni-
versity Press, 1932 (Dover reprint, New York, 1945).
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Figure 1. Mechaniaxnof growth of a small irregularity in the interface
between two fluids in lateral motion with respect to each
other. At point A the cross section available for the
motion of the upper fluid is leaa than normal. Consequently,
the fluid moves with a greater than normal motion as indicated
by the slightly longer arrow. By Bernoulli’s principle, the
pressure in this region is, therefore, less than normal. For
this reason the lower fluid is sucked up still further in the
direction of region A. Consequently, the disturbance grows
with time.
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Rosenhead’s Figure 4.
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The further growth of the instability is so complicated that it

appears desirable--in default of theoretical understanding of the fur-

ther stages of the mixing--to secure what empirical evidence one can

2
on the process. For this purpose the slip stream of a Mach reflec-

tion, Figure 2, offers an ideal means to set two layers of gas into

motion relative to each other without initial turbulence.

of gas on either side of the slip stream have been raised

pressure, one by a single shock, the other by two shocks.

pression in the latter case is the more nearly adiabatic.

the entropy change for the singly shocked gas is greater.

ture higher and the pressures being equal, the density is

difference in depsity and difference in relative velocity

The layers

to the same

The com-

Consequently,

The tempera-

lower. The

of the two

layers of gas on either side of

shocks to the cube of the shock

for strong shocks.

the slip stream is proportional for weak

strength, but can become quite sizable

2
See, however, the thesis, “Turbulent Mixing in Two-Dimensional Flows,”
by Albert I.Bellin, Department of S!hgineeringSciences and Applied
Physics, Harvard University, September 1947; also, Tollmien, “Be-
rechnung turbulenter Ausbreitungsvorgange,!IZAMM, ~, p. 468, 1926.

Note added later: We are kindly informed by Dr. E. Frieman, who has
analyzed the theoretical curves of Rosenhead, which are shown in his
Figure 4, that the ratio

depth of “mixing”
distance of lateral motion

= wiping coefficient,

that is found from these curves, is approximately 0.2, to be compared
with the four empirical values of the wiping coefficient which are
listed in the Abstract. For a fuller discussion of the physics of
this mixing, see a report of E. Frieman now in course of preparation.
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Shocked
gas

Moving plane
shock front

Incident shock

~ once-shockedg.s
-’///

4 —
~Reflected shock

“Mach shock”
Twice shocked gas

//

‘Y

same pressure

~ Slip stream

s \ Singly shocked gas at

Figure 2. Early (above) and leter (below) stages in shock
phenomens initiated by plane shock incident obliquely
on a rigid reflecting wall. Wavy line drawn for the
slip stream is meant to symbolize the turbulence shown
at this layer on most actual photographs.
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Photographs show that the debarkation between the two gas layers

is not ordinarily sharply defined but manifests a wavy irregular ap-

pearance such as corresponds to the presence of turbulence. Moreover,

the width of this zone of mixing is generally seen to grow approxi-

mately linearly, at least at first, with distance from the triple

point of the shock. Later there are other perturbations and the

linear growth law may fail to hold or the slip

curled up. These complications are presumably

to wall effects and are left out of account in

stream may get quite

due at least in part

the present analysis.3

3We are greatly indebted to Dr. R. E. Duff of the Los Alamos Scientific
Laboratory for supplying us with the three photographs, made while he
was at the University of Michigan, of two slip streams in carbon tetra-
chloride and one slip stream in carbon dioxide; and to Professor Walter
Bleakney of Princeton University for supplying us with a beautiful
photograph of the slip stream in air, used in working out the data
for the fourth case listed in the Abstract.
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II.

the

THE WIPING FUNCTION.

As a quantitative measure of

amplitude of the Helmholtz in-

stability at a point relative to

the slide of the fluid on one side

of the

on the

define

is the

T, the

(2.1)

slip stream over the fluid

other side at that point, we

the function I(x), where x

distance on S measured from

triple point.

a(x)
*(X) = m

I

Figure 3.

where a(x) is the width of the

A(x) is the difference of the

along S in the u~er fluid (in

instability at x (see Figure 3), and

distances traveled by fluid particles

the region RTS) and lower fluid (region

MI’S)respectively in the time taken for the

travel from T to the point of coordinate x.

a(x) can be measured from photographs.

calculated from the initial data (angle and

lower fluid particle to

~(x), however, must be

strength of the incident

Shock) via some theory of plane shock reflections. For.this purpose we

use the simple theory [I.]in which the various physical variables are

assumed to vary discontinuously across the shocks and be constant in the

various angular regions shown in Figure 3. In this theory the problem

in analysis is replaced by the algebraic one of satisfying the Rankine-

9



Hugoniot equations across the various shocks.

In the notation of [1] , where unprimed, primed, double primed

and subscript 1 denote the physical variables in the angular regions

ITM, ITR, RTS, and Ml%,respectively, we get the following equations

for the determination of A(x):

d1=X = Z,t,, d“ = Z“t,> A(x) = d“-dl
A. .L.L L

where, since the flow in some neighborhood

are concerned with the magnitudes Zl,z” of

gions MTS and RTS

fluid particle to

(2.2)

hence

(2.3)

From qualitative

nearly constant,

A

of T is parallel to S, we

the flow velocities in re-
-1.

respectively, and tl is the time taken by the lower

go from T to x. Eliminating tl,

A(x) = (R-l)x, R ~ z“/zl

considerations [2] R>l. If~ is s-l ~

as is usually the case, *Z
x P

, where $J is the

“instability” angle in radian

mation, I becomes the number

(2.3)’ 1

l=ici” v

measure (see Figure 3). To this approxi-

.
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III. CALCULATION OF R.

In Figure 4 is represented the flow of the fluid (stresml.inesin-

dicated by dotted lines) as it comes in at

is “refracted” by the shock configuration,

the direction=. The

nuity) is indicated by

realsto the shocks and

?, r+J, etc.

The flux of fluid

shock configuration

heavy solid lines.

the various lines

incident upon the

the line ~ and the upper dotted line, at

the left in the direction z,

and goes off to the right in

(lines of physical disconti-

The angles between the nor-

of flow are indicated by

shock configuration between

distance s = 1 from~, must

be equal by mass conservation to khe flux of fluid away from the shock

configuration between the line = and the upper dotted line, at distance

say s“ fromi%. A similar equation holds between the incident flux be-

low~and the outgoing flux below ~. Hence the outgoing fluxes between

+
TS and the upper and lower

sl}respectively,are equal.

p“s”z” =

hence

(3.1) R s 2“/21

dotted lines, at distances from it s“ and

Expressing these equations:

Zlslzl

/. &
-L L

=-ii ”--r/s
Now where yzp’~, ~’ z /r7’’/p’,

tion of [1],

71= fl~/..in the nota-

(3.2) ‘

u.
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Mwrs 4. Shock configuration showing the streanilinesand angles role.
vant to the calculation of R.

12



As to the other factor, we have

JcosT=s=~
J=L’

J’ cos(T’+&’) =s” Cos ?“ cos(r+J)

the last equation by the law of sines in the triangle of sides J,J’

and the segment of the streamline between TI and TR (cf. Figure 4).

Similarly

l@sTl=s=l J1 Cos (Tl+$l) = sl.9

Eliminating ~, ~’ and ~ from these equations, we get

(3.3)

Therefore

(3.4)

say

‘1—=
s“

Cos ?-Cos T’ COS(T1+CJ1)

cos(T+&)cos(T’ +4)cosT,
L

Cos T Cos ‘r’ COS(T1+JJ

cos~+~)cos(T’+# )COS~l

Given the angle T

Y z P‘/P, R can be computed from the theory [1] . Some of the

and some measure of the incident shock strength,
-..

laborious calculations can be avoided, however, by determining some of

the relevant quantities directly by measurements of angles from the

photographs. Let us assume that for a given fluid of specific heat ratio

~ we are given S( = P/P’) and ~SO that we can determine - ~, the

vector of triple point motion, from the photograph. Then we can deter-

mine from angle measurements on the photographs

13



between the incident shock and - z

between~ and the reflected shock.

between -~and the normal to the Mach shock.

between~ (slip stream) and’%!.

are positive in the counterclockwise sense. Here the

notation of L. Smith [3] is used; the relation between these angles

and those shown in Figure 4 is easily determined by inspection or by

referring to his Figure 14. [He also gives tables exhibiting the

empirical correlation for air between d and d’, the angles made by

I and R,respectively,with the reflecting plate, and w and UJ’for

shocks of various strengths. This permits the determination of @ and

U’ in the case that the motion of the triple point is not determinable

from the photograph.]

mining R is

.
(3.5} a.

b. x=

c. tan

d.

e.

f.

Then a suggested computational program for deter-

HY

cot a

e s tan(u+w’)

tan 0 +qx
x’=-

l-qx t~e

#=MzQE
++(X’ )2

n’ = (7i-l)B2
I

(T-1)(B2-1)+ (lf+l)~

34



from

slip

13.

h.

i.

J.

~1 = (Y+l) 2(Bd-1) + W+l - (r-l)q

1
2(F-1)(B2-1) + (?f+l)&+l - (x-l)~j

The wiping coefficient I, eq. (2.3)’, was computed in this way

four shock tube photographs showing Helmholtz instability of the

stream. The results are tabulated below.

Photo. # I Gas,g I Y I To
1215 I CCLh,l.13 I 3.73 32

1216 CCL4,1.13 8.21 39.5
1

1209 C02,10304 1.68 31.3

3411 I Air, 1.400 4.06 44

the

was

i.25 I .05

1.953 .105

I

.198

.360

. I.lo

The first three pictures were taken by Russell Duff at Michigan;

Note that for #1209, no instabilitylast, by Bleakney at

perceptible (~~0),

Princeton.

whence I = o.
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Iv. THEORETICAL WIPING COEFFICIENT.

As a point of interest, we show in this

of a wiping coefficient (I independent of x)

basis of the linear theory.1 That is, it is

asymptotic behavior.

The solution of the linearized theory

velocities U’ and U in the upper and lower

initial interface

?1t=o = a cos k
5

with initial velocityR at the nodes:4

ilt=()= H sin k ~

section that the existence

cannot be understood on the

presumably a feature of the

corresponding to stream

fluids respectively, and an

is

7
= a cos k(Vt- f)

()
coshcCt + ~ sin k(Vt- Qsinlld t

, 1/2

V=pe. , ~&e_& AUk, Aus Iu-u’I
p +/’ /+/

The solution (4.1) describes a train of running waves moving in

positive
5

direction with constant velocity V whose amplitudes grow

potentially at a rate governed by the magnitude of 0(. In defining

I at any fixed point
5

= x, consider the trajectory of the point

(4.1)

the

ex-

(~,~) which is (O,a) at t=O, (see Figure 5). This latter point is

4
We include the case >+ O for complete generality; the condition

P = O, or the interface is initialll.yat rest, is usual.
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the crest of an initial wave. In time T = x/V this crest will have

reached the point directly over
5

= x. Twice the excess of the ampli-

tude of the wave at this point over the initial smplitude a divided by

the “slide” A(x) of the upper fluid over

~ s x/U taken by a lower fluid particle to

gives us I(x) by definition. In symbols

[
2 ~(~=x,t=T) -

I(x) =
7 (\ =O,t=o)]

u“T

the lower in the time

go from
5
=Oto 5=X

(4.2)

Substituting for T and~ and using the definition of R, equation (2.2),

this gives

(4.3)

Fomnula (4.3) shows immediately that no wiping coefficient exists,

for the series expansion of I(x) has no constant term:

2

l(X) ‘~~R~l) “ ‘+ ● “”-
(4.4)

Ifwe write I(x) = l/R-l ~(x) as in equation (2.3’) , then for small

X$ ~(x) is linear in x. Thus an instability angle proportional to x

and thus vanishing at x = O would be predicted by the linear theory.

The instability region would have flaring rather than straight line

sides, terminating in a cusp at x = O (see Figure 6). Since the photo-

graphs seem to indicate straight line sides and a non-zero angle at the

17



I

(o,a) ----------
----

g=o
Figure 5.

Evolution of an interracial running wave according

II to the linear theory of Helmholtz instability.

I
I
I
I

Figure 6.
The instability region as it would appeax for

I(x)~x.
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triple point, we conclude that in the observed phenomenon, the motion

has got beyond the linear phase of Helmholtz mixing.5
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