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Sections 2

sible fluids of

ABSTRACT

- 6 of this report deal with the case of two incompres-

equal densities. Dimensional arguments

Sections 2

stability.

and 3 regarding the early and late stages of

The second of these arguments is in support

that the amplitude eventually grows at a constant rate,

are given in

?felholtz in-

of a conjecture

of the order of

the velocity discontinuity 2v. This conjecture is in agreement with

numerical calculations of Rosenhead and Carter, which indicate that the

steady-state rate of growth is about 0.3kU. It is pointed out in Section

4 that such a steady-state will give rise to a “wiping coefficient”, as

defined by Ingraham and Wheeler, of about 0.17. The character of the mix-

ing in the late stages is discussed in Section 5, where it is concluded

that the mixing will be quite fine and complete. The wavelength for maxi-

mum growth is derived in Section 6, by considering the transition from ex-

ponential to steady-state growth. Using a result of Carter’s version of

the Rosenhead calculation, this wavelength is found to be about 5.2Tf

times the initial.amplitude. In the last section, the initial rate of

growth is found for the case of compressible fluids. It is concluded

that compressibilitywill increase the instability, and will not determine

a wavelength of maximum growth.



1. Introduction

Helmholtz was the first to remark
(1)

that a perturbation on an in-

terface separating two portions of fluid having velocities relative to

each other is unstable. A clear discussion, including the effects of

a gravitational acceleration and surface tension, is given by Lamb,
(1)

while the effects of viscosity have”been considered by Rayleigh.
(2)

Rosenhead(3) has performed a numerical calculation of the growth of

the instability into the region where the non-linear inertia terms

become important and has given analytical results to the third order.

It is the purpose of this report

of the instability and the effects of

for early stages.

to consider the general.nature

compressibility on the growth

(1)
Lamb, Hydrodynamics, 6th Ed., Dover, N.Y., 1945.

(2)
Rayleigh, Theory of Sound, 2nd Ed., Dover, N.Y., 1944.

(3)Rosenhead, Proc: Roy. Sot. A170, 1931.
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2. The Small-amplitude Theory

Within the realm of the small-amplitude approximation we consider

a sinusoidal perturbation on an interface separating two streams of

velocity U and - U, density P, as in Fig. 1,

Fig. 1

and inquire as to the mechanism causing growth.

In the free stream, at a distance of the order of x(= A/27r)

away from the interface, the momentum per unit volume is of order flU.

If one considers a cylinder with an axis in the direction of the flow-

ing stream, of unit cross sectional area, and of height U&, the mo-

mentum in this volume is flU2~t and the momentum transferred across

unit area per second is ~uU2. This, then, is just the free stream

pressure. A pressure gradient must therefore exist across the inter-

face whose magnitude is of order ~U2/~ and a pressure at the inter-

face of order ~U2a/K. The resulting force on the interface is then

of order #U2a and the mass which must be accelerated is 42p .
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The

and thus

second law then leads to

oii-U2/~2 a

the expected exponential growth. It is immediately clear from

the above discussion that the instability is governed entirely by pres-

sure forces.

3. A Conjecture Concerning the Steady State

Rosenhead~s(3) calculation of the later stages of the development

of the instabilityshowsthe interface to have the form pictured in

Fig. 2.

~v
--—-— — --—-- ----- —

—— .—

-— —— — — — ——

Fig. 2

It is natural to think that the only steady motion that can occur is

one of constant velocity in the neighborhood of a-a’ in the vertical

direction. The only parameters available to determine a steady state>

for a fluid which is infinite in extent in all directions, are U and ~.
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Therefore, if a steady state exists, the only value that the velocity

can attain in the vertical direction is of the order of magnitude of U.

A physical argument which supports this contention can be given.

Consider the region a-a of Fig. 2.

v

Suppose
?

first order of

is the radius of curvature and 4 is an angle of the

small quantities. If we further suppose that the

velocity component beneath the line aba , and parallel to it, is small,

then the pressure drop across the mass of fluid aa’ba is of order >U2

by the argument given previously. The area this works on is 2@- (a-a’).7

The mass transferred into the volume across the face aba’, in a time

At, is of order flv&(2&?). Therefore the momentum transfer per unit

time is -4v22& ~. Application of the second law leads to v*U.

This argument is supported by the results of Rosenhead’s calcula-

tions as given in Table II of his paper. There one can see that the

velocity of the area considered does become approximately constant.

A test of this point has been made in a numerical calculation by

D. Carter. In the Rosenhead paper, the vortex layer on the interface

was approximated by 12 vortices distributed over a wavelength, while

6
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in the recalculation this number has been increased to 24 in addition

to the use of a more accurate integration scheme. The results again

indicate the existence of the steady state, but an even more accurate

scheme must be used to carry the integration further.

4. The “Wiping” Coefficient

In LA Re-port1593, R. Ingraham and J. Wheeler have introduced a

quantitative measure, characteristic of the instability, known as the

wiping coefficient. This number is defined as the ratio of the depth

of mixing to the relative displacement or “slide” along the interface.

The slipstream occurring behind a plane shock incident on a wedge pro-

vides an excellent experimental source of Helmholtz instability. The

values found for the wiping coefficient from this source range from ZO

to 0.3.

The existence of the steady state, postulated above, leads to the

conclusion that there does e,xislia theoretical value for the wiping

coefficient. Following Ingraham and Wheeler, we define a(x) to be the

maximum displacement measured from the interface in a direction normal

to it, and A(x) to be the relative displacement of the two fluids for

a particle which has moved a distance x in the lower fluid (see Fig. 3).
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1.

Fig. 3

Then I, the wiping coefficient is .a(X)/43(X).

For calculations of Rosenhead and Carter, we can consider the

vertical displacement to have taken place with constant velocity v

from a virtual time origin to. Then I is V(t - to)/(ul-u2)(t - to)>

and in the reference frame in which both velocities ,areequal and op-

posite this is just V/2U.

Rosenhead’s calculation leads to a value of 0.2 for 1, while the

more accurate Carter calculation results in 0.17, both of which lie in

the range of the experimental values.

5. Character of Mixing Arising from Helmholtz Instability

The implications of a steady state, independent of wave number, go

beyond the existence of a wiping coefficient. If any particular wave-

length, of t-hepossible Fourier components of an original disturbance,

is chosen for consideration, it will

wavelengths growing unstably oh it.

certainly be subject to parasitic
*

Contrary to the case of Taylor in-
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stability, where the velocity of riseof the “bubble” is a function of

the wave number, these parasitic disturbances will not be “washed down-

stream”. Each of them will spend a certain time growing exponentially

(the time is governed by the wavelength) until the amplitude is 0.3~ .

After this time, all wavelengths grow with the same constant velocity.

One is then led to the conclusion that the solitary wave shown in

Fig. 2, with its feature of ever-narrowing but undisturbed swirls or

tongues is not representative of a true interface, but that the region

d - d’ is one of quite fine and complete mixing.

6. Extent of the Linear Phase and Wavelength for Maximum Growth

The Carter calculation, starting as it does from a quite small

amplitude, can be used to

tude approximation breaks

velocity against time one

determine the

down. If one

finds a curve

point at which the small empli-

plots the logarithm of the

such as that shown in Fig. 4.

log v

t

Fig. 4
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By extending both linear portions as indicated it is found that the ex-

ponential phase can be considered to occur until the amplitude is 0.3A,

after which the constant velocity phase takes place. The error intro-

duced by this procedure is quite small.

lf ~o istheo
riginal amplitude of the disturbance, we can define

a time T by

o.3~= ~oeu/~~

After time ~, the amplitude is given by

~ = v(t-~) + 0.3K

and one finds that this expression is maximized

~_?. 0.3 ;-1
-We

s 2.6 To

by

7. The Influence of Compressibility on
the Growth of Helmholtz Instability

We take the equations of hydrodynamics in Eulerian form, where the

symbols are as used by Lamb
(1)
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au Al
3E+”aF+

A CJv >V J
-n ‘u-x -#‘v Ty=- y

We assume an isothermal

P = C2P

equation of state for simplicity

The method of solution is a perturbation

specified by the constant stream velocity (in

Then let

U=u+u
o 1

v= ‘1

P=Po+p~

where the quantities with subscript “(l)” are

(1)

(2)

around the steady state

the x-direction) Uo.

(3)

small. It is a trivial

result that the zero-th order equations are satisfied by ~. = constant.

The only terms remaining in the first order equations are

(

2U1 Jy\ >2 PI
Pom-’-”oxcxcx (4)

,o~+uo~
JC2 71=-
3 (5)

Jfl J?l

()

Jul JVl

-X ‘Uox ‘flo z+ Ty=O
(6)
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By analogy with the

solutions of the form

‘1

‘1

and further assume that

theory for the incompressible case, we assume

. ~(y)ei(cYt-kx)

= V(y)e
i(tit-kx)

‘~(y) ei(~t-b)

the interface is given by

(7)

(8)

(9)

7 =ae
i(o-t-kx)

From (x) we get

while (5) leads to

By means of (.11)this becomes

Putting (I-1)and (13) in (6) we arrive at the differential equation

which determines U(y)

~-[k2?-~)2] u=,

(lo)

(n)

(12)

(13)

(14)
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The solutions are then (we use H and L to denote Heavy and Light, heavy

fluid on top)

44
‘H=% y

$’Ly
‘L = %e

and these lead to

Jd’-csf”
~ 1/2

/
[()]

,2=+- ‘-kuCL
L

%

and

flOH ~
[ 1 4-IY

Y~=—
kcH2 - ‘UOH %e

/L = ~ [6- ‘UOL] ~ !LykcL

These solutions must satisfy the kinematical condition at the

interface for each fluid

(s6)

(18)
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This condition leads to

(19)

The remaining condition to be satisfied is that of

tinuity across the interface. The pressure is given by

pressure con-

(20)

Evaluation of all terms at the interface,

algebraic equation which determines the growth

~oL b)L]2. ~oH[’-kud2
L 2H

y = ~(x,t), leads to the

factor

(21)

In the limit as c~oo, #L = ~ = k, and this then reduces to

the result of the incompressible theory to the same order of accuracy.

flH”H+/’LuL
w. +ik~)(uu)
lnc ‘k flH+/oL H- L

(22)

k= ?-inc

The last equation defines ~inco

14



One can solve (21) in the case where

(U/c)2 are neglected. After much algebra

r

terms of higher order than

one finds

fl#~ [u

[

(Tinc - UOH)2
(Y= k~inc + k - UL)

pH +~L)2 H 2CH2

+ ik
jr
P&-J‘L

(UH -

(

UL) 1 +

(’r - UOL)2
+ inc

2CL2

flL ‘Tim- ‘OH)2 (~inc - UOL)2+ #H
2CH2 2CL2

r
~ (Tinc - UOH)2 ~inc - UOL)2

.-
2

+
2CH2 2CL2

L

This result indicates that the influence of compressibility is to

increase the growth factor & over the incompressible case, a perhaps

not unexpected result. It also shows that compressibility alone does

not determine a wavelength of most rapid growth.
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