
LA=8902-MS

C3b

>
.—
u)

9 g

.—

ClC-l 4 REPORT COLLECTION

REPRODUCTION
COPY

VAXNMS Benchmarking

1-’

mi!!lxLOS ALAMOS SCIENTIFIC LABORATORY
Post Office Box 1663 Los Alamos. New Mexico 87545

—

wAifiimative Action/Equal Opportunity Employer

b

.

l)lS(”L,\l\ll K

“Thisreport wm prcpmd J, an xcttunt ,,1”wurk ,pmwrd by an dgmcy d the tlnitwl SIdtcs (kvcm.
mm:. Ncit her t hc llniml SIJIL.. (Lwcrnmcm nor any .gcncy tlhmd. nor my 08”Ihcif cmployccs.
makci my wur,nly. mprcss w mphd. or JwImL.s m> lcg.d Iululity ur rcspmuhdily ltw Ilw w.cur-

acy. .vmplctcncs. w uscftthtc>. ttt”any ml’ormdt ml. dpprdl us. prudu.i. w proccw didowd. or rep.
resent%Ihd IIS us wuukl not mfrm$e priwtcly mvnd rqdtts. Itcl”crmcti herein 10 my sp.xi!l tom.
mrcial ptotlucr. prtxcm. or S.rvskc hy tdc mmw. Irdcnmrl.. nmu(a.lurm. or dwrwi~.. does nut
mmwsuily mnstitutc or reply its mdursmwnt. rccummcnddton. or favorin: by the llniwd States
(“mvcmment ormy qxncy thctcd. rhc V!C$VSmd opinmm d .mthor% qmxd herein do nut net’.
UMrily r;~lt or died lhow. ol”the llnttcd SIJIL.S(;ovwnnwnt or my ugcncy lhure of.

UNITED STATES
..

DEPARTMENT OF ENERGY

CONTRACT W-7405 -ENG. 36

G-

.

.

.

.

VAX/VMS Benchmarking

Larry Creel

—.
I

*._–: -

. . .._- -- ----- ,. .-

.-
,..

., ..,..: , ..

. - .-, ..:. ..

..,

.-.

LA-8902-MS

UC-32
Issued: July 1981

. . . .:

ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the
original report at a 300 dpi resolution. Original
color illustrations appear as black and white images.

For additional information or comments, contact:
Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

VAX/VMS BENCHMARKING

by

Larry Creel

ABSTRACT

Primary emphasis in this report is on the perform-
ance of three Digital Equipment Corporation
VAX-11/780 computers at the Los Alamos National
Laboratory. Programs used in the study are part
of the Laboratory’s set of benchmark programs.
The VAX-11/780 computers each had slightly dif-
ferent configurations that affected the performance
of several of the benchmarks. Execution
times of these programs on the VAX-11/780s are also
compared to those on the Control Data Corporation
(CDC) 6600 and Cyber 73 computers.

INTRODUCTION

This report gives the results of benchmark studies made on three
Digital Equipment Corporation (DEC) VAX 11/780 computers at the Los
Alamos National Laboratory. The benchmark programs used in the
study are part of the Laboratory benchmark set, and are charac-
teristic of the type of applications run on the Laboratory comput-
ers [1]. They are described in Appendix A. Execution times of
these programs on the VAX computers are compared to those on the
Control Data Corporation (CDC) 6600 and Cyber 73 computers. Histo-
grams comparing these performances are given in Appendix B.

VAX 11/780 COMPUTERS USED IN THE STUDY

We refer to the three VAX computers used in the benchmark study as
VAXI, VAX2, and VAX3. VAX1 and VAX3 have floating point accelera-
tors (FPAs), which are optional features that can provide substan-
tial performance increase. VAX1 uses Version 1.6 of the VAX/VMS
(Virtual Address Extension/Virtual Memory System) operating system;
VAX2 and VAX3 use Version 2.0.

1

Paging Subsystem

Although the VAX 11/780s are not large computers, their virtual
memory system enables them to run very large codes. It does this
through a paging subsystem that requires all the executing code to
reside in virtual memory (main memory and auxiliary) while only a
subset of the code’s pages resides in physical memory (a page is
512 8-bit bytes). This subset is called the working set. Working-
set sizes vary with the operating system and are controlled by the
system manager. VAX1 had a maximum size of 2000 pages; VAX2 and
VAX3 each had a maximum size of 256 pages.

The paging subsystem is very complex (see Appendix C) and can radi-
cally affect performance. For example, the results of the program
that computes megaflop rates suggested that the VAX1 should be
somewhat faster than a CDC Cyber 73. Execution times of most of
the benchmark codes corroborated this assumption; however, LABMK14
ran five times longer on VAX1 than it did on a Cyber 73. The prob-
lem was that LABMK14 had incurred over 5 million page faults.
Further investigation revealed that LABMK4 and LABMK8 were also ex-
periencing heavy page-fault activity.

Page Faulting

Page faulting occurs on VAX/VMS when a page is referenced that is
not in the working set. All three of these codes performed vector
operations, including matrix transposes, which meant that several
pages were being referenced frequently. Because the size of the
working set was only 150 pages, it could not hold all the pages
that were referenced. The solution in this instance was to in-
crease the size of the working set. Table I gives the amount of
page faults incurred by the three programs before and after a work-
ing set size adjustment on VAX1. Increasing the working set size
resulted in a remarkable increase ,in performance. Table II gives
the number of page faults incurred by each VAX for each program in
the job mix. Working-set sizes for each system were set as high as
possible to minimize faulting.

A special subroutine was added to each benchmark code that would
determine from the system the number of page faults incurred as
well as the elapsed CPU time (Fig. 1). Page faults come in two
varieties: in-core and disk. Times for disk page faulting varied
greatly, ranging from 1230 to 8470 KS on VAX3. The mean time was
3156 2744 PS. Because of the uncertainty of a disk page-fault
time, no effort was made to obtain statistics for it on VAX1 or
VAX2 . The mean time required for an in-core page fault on VAX1 is
385 ~3 pS. VAX2 has a mean of 356 13 As; VAX3 has a mean of 367 +2
ps . Over a million page faults were generated on each VAX confi~-
uration to come up with these values.

.

●

2

TABLE I

Program
Name

LABMK1
LABMK4
LABMK5
LABMK6
LABMK8
LABMX11
LABMK14
LABMK15
LABMK18
LABMK21
LABMK22
NFP1OO

,

EFFECTS OF INCREASING WORKING-SET SIZE ON PROGRAMS WITH
HEAVY PAGING ACTIVITY ON VAX1 (SINGLE PRECISION)

Program Working-Set
Name Size

LABMK4 150
300

LABMK8 150
300

LABMK14 150
375

Number of
Page Faults

82,282
534

634,342
69

5,327,711
9

CPU Time
(s)

522.1
476.7

1021.5
771.9

2600.0
446.0

TABLE II

NUMBER OF PAGE FAULTS INCURRED BY BENCHMARK PROGRAMS

Single Precision

Number of Page Faults
per System

VAX1 VAX2 VAX3

1,354
534
25
0
69

30,800
9
0
43
3
0
0

3,662,067
82,254

82
1

539
77,200
89,741
60,600

228
5
0
0

3,160
82,253

73
1

303
75,200
97,929
36,300

238
5
0
0

Double Precision

Number of Page Faults
per System

VAX1 VAX2 VAX3

1,381
1,054
, 55

0
83

94,400
7
0
83
0
0
0

Maximum working set size for VAX1 is 2000 pages.

3,046 203,978
21,150 165,004

25 3
1 1

1,653,076 1,653,011
57,200 57,200
853,591 843,906

300 300
1,088,593 1,088,852

3 3
0 0
0 0

Maximum working set size for VAX2 is 256 pages.
. Maximum working set size for VAX3 is 256 pages.

3

SUBROUTINE TIMER(CPUTIM,IFAULT)
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

THIS ROUTINE RETURNS THE CPU TIME IN THE VARIABLE CPUTIM AND
THE NUMBER OF PAGE FAULTS IN IFAULT. THE RESOLUTION OF CPUTIM
IS NO BETTER THAN 10 MILLISECONDS.

INTENDED USE IS THE FOLLOWING.....

CALL TIMER (T1,I1)
....DO OPERATIONS....

CALL ‘CIMER(T2,12)

THEN THE ELAPSED CUP TIME EQUALS (T2-T1) AND THE NUMBER OF
ELAPSED PAGE FAULTS IS (12-11)0

REAL*4 CPUTIM,PTIM
INTEGER*4 ITIM,BUFADR,IFAULT,BUFPFL
INTEGER*2 ITMLST(14)
EqUiValenCe (BUFADR,ITMLST(3)),(BuFpFL,ITMLsT(9))
PARAMETER JPI$ CPUTIM = ‘00000407’l(,JPI$PAGEFLTS = ‘0000(340A’j(
DATA ITMLST/4,~PI$_CPUTIM,4*0,4,JPI$_PAG~FLTS,6*0/
BUFADR=%LOC(ITIM)
BUFPFL=%LOC(IFAULT)
CALL SYS$GETJPI(,,,ITMLST,,,)
CPUTIM=FLOAT(ITIM)/100.0
RETURN
END

Fig. 1, Subroutine to detect page faults and
measure elapsed CPU time.

RUNNING THE BENCHMARK PROGRAMS

The Laboratory benchmark programs are coded in ANSI-standard FOR-
TRAN, which required very few changes to enable them to run on a
VAX system. After the benchmark codes were converted and running
on one system (VAX1), they were written to tape and transferred to
the other two systems. Writing and reading tapes from one VAX to
another was found to be extremely easy.

On each system, the timing routine (the utility that gets the
elapsed CPU time from the operating system) was checked to ensure
that it was running correctly. A timing verification program and a
stopwatch were used for this validation [2].

On the CDC Cyber 73 and 6600 computers, the benchmark programs were
run during dedicated system time (DST); on the VAXS, they were run
during periods of inactivity, Because the benchmark codes are for

*

.

,

4

the most part compute bound, elapsed wall-clock time should be very
close to the elapsed CPU time if the system is inactive. Wall-
clock times were within 1% of the VAX CPU times.

Three of the programs in the mix (LABMK1l, LABMK15, LABMK22) were
not actually run as long as their reported times imply. LABMK11
contains a loop that is executed 400 times. All of the program
calculations are contained in that loop. If left unmodified, the
program would execute for an excessive amount of time. It was
modified, therefore, to execute the loop only 1 time, and its sub-
sequent execution time was multiplied by 400. LABMK15 and LABMK22
are similar in this respect except the loop executed 300 times. If
these programs were run without scaling, their actual run time
would be less than the scaled run times for the following reasons:

1. A certain amount of start-up time before the actual execution
of the loop will have been erroneously multiplied by the scale
factor.

2. The number of page faults incurred by one of these programs
could very easily be the same in both the scaled and unscaled
versions; once a page is faulted into the working set, it could
very easily stay there.

Clearly, small discrepancies may be introduced into the results by
performing this scaling technique; however, we feel it was the best
solution to enable execution of programs LABMK1l, LABMK15, and
LABMK220

Table III gives the execution times of the benchmark programs on
each of the systems.

Effect of Using a Floating-Point Accelerator

To show the effects of the floating-point accelerator on execution
times , we removed it from VAX3. Table IV shows that without the
floating-point accelerator, single-precision jobs ran 1.5 times as
long as before, and double-precision jobs ran more than twice as
long.

VAX3 without a floating-point accelerator is very similar to VAX2.
The only difference between them is the amount of main memory each
system has. No significant change in execution times was observed,
and none was expected because the load on the system was very
light. Although this fact does not allow any statement to be made
regarding the effect of increasing the main memory, it does under-
line the fact that the reason the VAX2 does not perform as well as
VAX1 and VAX3 is its lack of a floating-point accelerator, rather
than some deficiency in the size of main memory.

5

TABLE III

ELAPSED WALL-CLOCK AND CPU RUN TIMES FOR LOS ALAMOS BENCHMARK CODES
(Time in s)

Program
Name

LABMK1
LABNK4
LABtlK5
LABMK6
LABMK8
LABMKI1
LABMK14
LABMK15
LABMK18
LABMK21
LABMK22

Program
Name

LABMK1
LABMK4
LABMK5
LABMK6
LABMK8
LABMK11
LABMK14
LABMK15
LABMK18
LABMK21
LABMK22

Cyber 73 Cyber 73
(opt = l)a (opt = 2)a

UC CPU UC CPU
Time

776.0
904.0
771.0

2400.0
1330.0
6800.0

479.0
2100.0

810.0
N/A
N/A

Time Time Time—— —

747.7 478.0 457.0
867.7 783.0 752.2
740.9 761.0 731.4

2326.2 1800.0 1656.6
1268.5 1190.0 1131.7
664o.o 6400.0 6156.0

46o.O 431.o 414.o
1854.6 1800.0 1633.5

777.1 750.0 714.8
111.9 N/A 95.0
N/A N/A N/A

VAX1
(DP)

UC CPU
Time Time—.

1038.0 1037.8
731.6 724.4
810.0 810.0

2364.0 2319.3
1305.5 1304.9
7915.6 7888.0

637.2 637.0
2219.0 2142.0

802.3 798.4
106.1 106.0

1731.9 1650.0

CDC 6600
(opt = 1)

UC CPU
Time Time——

290.0 287.3
268.0 264.1
251.0 248.6
600.0 583.2
350.0 340.9

2400.0 2156.0
135.0 1134.0
600.0 1547.2
190.0 188.9
N/A 42.7
N/A N/A

VAX2 VAX2
(SP) (DP)

UC CPU we CPU

CDC 6600
(opt = 2)

we CPU
Time Time——

204.0 201.8
233.0 230.3
251.0 247.5
600.0 495.9
240.’0 238.0

2000.0 1940.0
121.0 119.5
600.0 481.5
140.0 134.8
N/A 37.7
N/A N/A

VAX1
(SP)

we CPU
Time Time——

1044.1 1041.7
4?6.8 476.7
511.3 509.0

1718.3 1683.2
772.2 772.0

5064.0 5044.0
446.0 446.0

1576.0 1515.0
453.8 452.2

73.2 73.2
1026.0 939.0

Time lime TimeTime _ _

1332.8 1332.4 1332.2 1321.8
825.1 779.6 2378.1 1949.1
793.7 793.2 2692.3 2691.7

3181.7 3133.4 6205.7 6149.9
1223.9 1223.6 3674.8 3674.1
6608.0 6586.0 17172.0 17128.0

896.0 896.0 1794.5 1794.0
3252.0 3075.0 6273.0 6006.0

766.5 766.1 2427.9 2426.3
105.4 105.2 257.3 257.1

1656.3 1578.2 4575.0 4484.7

VAX3 VAX3
(SP) (DP)

we CPU we CPU
Time Time Time Time

1036.4 1036.2 1026.0 1026.0
584.4 559.9 909.9 861.6
494.6 492.8 803.9 803.8

1671.9 1638.3 2347.2 2305.6
772.9 772.7 1862.3 1862.0

4809.2 4788.0 7692.0 7672.0
497.2 497.0 937.7 935.0

1557.0 1491.1 2172.0 2093.9
452.0 451.9 12116.4 1211.2

73.7 73.6 104.8 104.8
1014.0 951.0 1626.0 1551.3

‘OPT = 1 and OPT = 2 refer to the degree of optimization performed
by the Fortran compiler; valid only for CDC 6600 and CYBER 73.

CPU =
DP =
SP =
OPT =
we =

Central Processing Time
Double Precision
Single Precision
Optimization
Wall Clock

.

6

Program
Name

LABMK1
LABMK4
LABMK5
LABMK6
LABMK8
LABMK11
LABMK14
LABMK15
LABMK18
LABMK21
LABMK22

TABLE IV

EXECUTION TIMES WITH AND WITHOUT A
FLOATING POINT ACCELERATOR ON THE VAX3

(Time in CPU s)

Single Precision Double Precision

Runtime Runtime Runtime Runtime
w/o FPA with FPA Ratio w/o FPA with FPA Ratiob

T1 T2 T1/T2a T3 T4 T3/T4

1,328.10 1,036.20 1.28 1,332.70 1,026.00 1.30
786.70 559.90 1.41 1,925.00 861.60 2.23
792.80 492.80 1.61 2,699.00 803.80 3.36

3,130.60 1,638.30 1.91 6,140.10 2,305.60 2.66 ‘“
1,222.80 772.70 1.58 3,808.60 1,862.00 2.05
6,600.00 4,788.00 1.38 1,7164.00 7,672.00 2.24
905.00 497.00 1.82 1,820.00 935.00 1.95

3,035.70 1,491.10 2.04 5.984.70 2,093.90 2.86
765.78 451.90 1.69 2,434.80 1,211.20 2.01
105.40 73.60 1.43 257.10 104.80 2.45

1,545.10 951.00 1.62 4,481.70 1,551.30 2.89

aT1/T2 is the ratio of elapsed CPU time (single precision) without
an FPA to the ratio of elapsed CPU time with an FPA.

b
T3/T4 is the ratio of elapsed CPU time (double precision) without
an FPA to the ratio of elapsed CPU time with an FPA.

Integer vs Real-Number Arithmetic

The VAXS did not do as well on integer arithmetic as they did on
real-number arithmetic. From Table III it is seen that the execu-
tion time of a benchmark program was usually better on a VAX with a
floating-point accelerator (VAX1, VAK3) than it was on a Cyber 73.
However, on VAX1 and VAX3, the integer arithmetic code LABMK1 ran
twice as long as the Cyberts best time and 1.3 times as long as its
worst time. There was no significant difference between single-
and double-precision run times for LABMK1 because the Fortran
statement declaring double precision applied only to real vari-
ables.

The differences in execution rates between VAX1 and VAX3 are the
results of page faulting. Page faulting is almost nonexistent on
VAX1 . The poor performance of VAX2 in comparison
to the other machines is due to its lack of floating-point
accelerator and its upper bound of 256 pages for working–set size.
The fact that VAX2 has less main memory than VAX1 or VAX3 is of no
consequence because there was no load on the system other than the
running benchmark code itself. In fact, the available 1.5 mega-
bytes were not fully used.

7

Double-Precision Execution Times

The double-precision execution times for the benchmark codes were
considerably longer than the single-precision rates. Table V gives
a breakdown for each VAX system. Again, VAX2 suffers from the lack
of a floating-point accelerator. On a VAX system with a floating-
point accelerator, the run time of a code with double precision is
at least half again as long as with single precision. For example,
a VAX with a floating-point accelerator can perform about 290 000
floating-point operations per second in single precision; 160 000
in double precision. For a VAX without a floating-point accelera-
tor, the numbers are roughly 160 000 and 60 000 floating-point
operations for single and double precision, respectively. Ratios
for VAX3 are higher than VAX1 because VAX3 incurred more page
faults in double precision than VAX1.

Measured Megaflop Rates

The megaflop rates given in Table VI are realistic rates and are
not intended to represent some maximum or minimum rates. The
operations contained in the megaflop program are extracted from
real application codes. On the basis of the rates in this table, a
code on a VAX (with a floating–point accelerator) should run at
about the same speed in double precision as the same code on a
Cyber 73 in single precision with an optimization level of 1.

TABLE V

COMPARISON OF DOUBLE-PRECISIONEXECUTION TIMES
TO SINGLE-PRECISIONEXECUTION TIMES

Program
Name

LABMK4
LABMK5
LABMK6
LABMK8
LABMK11
LABMK14
LABMK15
LABMK18
LABMK21
LABMX22

Mean

VAX1 VAX2
T1/T2a T1/T2

1.52
1.59
1.38
1.69
1.56
1.43
1.41
1.77
1.45
1.76

2.50
3.39
1.96
3.00
2.60
2.00
1.95
3.17
2.44
2.84

1.56+0.0021 2.59:0.0266—

VAX3
T1/T2

1.54
1.63
1.41
2.41
1.60
1.88
1.40
2.68
1.42
1.63

1.76+0.0195—

aT1/T2 is the ratio of elapsed CPU time in double
precision (Tl) to the elapsed CPU time in single
precision (T2).I

8

LOS

Computer
Name

CYBER 73
CYBER 73

CDC 6600
CDC 6600

VAX1
VAX1

VAX2
VAX2

VAX3
VAX3

TABLE VI

MEGAFLOP RATES AS GIVEN BY
ALAMOS MEGAFLOP PROGRAM NFP1OO

Optimi-
zation Precision
Level Type

1 Single
2 Single

1 Single
2 Single

N/A Single
N/A Double

N/A Single
N/A Double

N/A Single
N/A Double

Megaflopa
Rate/s

*—

0.17
0.18

0.60
0.74

0.29
0.16

0.16
0.06

0.29
0.16

.

aMillions of floating-point operations.

A CDC 6600 (also with an optimization level of 1) should run twice
as fast as the same VAX in single precision. Plots in Appendix B
show that this approximation is a good one in most cases. Notable
exceptions are LABMK1 and LABMK14. ‘

s UMMARY

The VAX 11/780 with the VAX/VMS operating system lends itself well
to scientific applications. The execution rates of the benchmark
codes on the VAX system with a floating-point accelerator were usu-
ally faster than those of a CDC Cyber 73 but not as fast as a CDC
6600. Performance of the VAX/VMS system is greatly affected by (1)
the presence of a floating-point accelerator, (2) whether the code
is single or double precision, and (3) the amount of page faulting
incurred,

REFERENCES

1. Ann H. Hayes and Ingrid Y. Bucher, “LASL Computer Benchmark Per-
formance 1979,” Los Alamos National Laboratory report LA-8689-MS
(February 1981).

2. Larry Creel, “Verification of Timing Routines,” to be published
in Proc. Computer Performance Evaluation Users Group , Orlando,
Florida (October 1980).

9

APPENDIX A

PROGRAM DESCRIPTIONS

Program No. 1 - Monte Carlo.
-347 source lines.
-No 1/0.
-Code is compute bound and uses integer arithmetic. Computers
using 24-bit integer arithmetic will produce incorrect
answers.
-Output consists of the self-contained “input” values and
several statistical computed values, plus execute time.

-Field length required to execute: 104OOOB.
Program No. 4 - Fast Fourier Transform code.

-230 source lines.
-Not vectorizable.
-No 1/0.
-Output consists of the solution array for a subset of the
steps computed, plus execution time.

-Field length required to execute: 215000B.
. Program No. 5 - Equation-of-state kernel.

-720 source lines.
-Not significantly vectorizable.
-No 1/0.
-Code has built-in test for error checking and accuracy simi-
lar to tests in Program 2. Execute time is a linear function
of an internal variable.
-output consists of setup data, relative errors of selected
output variables, and total execution time.
-Field length required to execute: 50000B,

Program No. 6 - Linear system sol,ver - solves systems of the
order of 100.

-320 source lines.
-Not vectorizable.
-No 1/0.
-output consists of the first three elements of the solution
vector , the Central Processor Unit (CPU) time in each subrou-
tine for one case, and the total time for execution.

-Field length required to execute: 34000B .
Program No. 8 - Vector calculations.

-189 source lines.
-Code calls five separate routines to perform a variety of
vector operations. Vector lengths range from 20 to 5000.
-Three of the routines are vectorizable, two are not.
-No ,1/0.
-Output consists of total CPU time in each subroutine for each
vector length, the average time/element for each routine, and
the total time to execute the code.

-Field length required to execute: 105OOOB.

10

Program No. 11 - Particle pusher kernel widely used in particle-
in-cell calculations.

-740 source lines.
-Depending on compiler used, code is vectorizable. XFC, both
vectorized and nonvectorized, performed significantly better
than CFT on this code.

-No 1/0.
-Output consists of time/particle in each subroutine called.
-Field length required to execute: 70000B .

Program No. 14 - Matrix calculations including multiplication and
transpose.

-343 source lines.
-Code goes through eight cases of 100 x 100 matrix, with vari-
ations of multiplication.

-Code uses LINPACK routines and is highly vectorizable.
-No 1/0.
-Output consists of the matrix diagonal and the total execu-
tion time for all eight cases.

-Field length required to execute: 111OOOB.
Program No. 15 - Linear system solver for systems of the order
100.

-399 source lines.
-Vectorizable on all compilers.
-No 1/0.
-Output consists of the first three elements of the solution
vector, the CPU time in each subroutine, and total execution
time.

-Field length required to execute: 34000B .
Program No. 18 - Vector calculations (a variation of Program 8).

-147 source lines.
-Vectorizable-- consists of the three routines found in Program
8, which vectorize well while eliminating the remaining two,
which do not vectorize. Separate cases use vector lengths
ranging from 20 to 5000.

-No 1/0.
-Output consists of the total CPU time in each subroutine for
each vector length, the average time/element for each rou-
tine, and the total time to execute the code.

-Field length required to execute: 105OOOB.
Program No. 21 - Integer Monte Carlo.

-370 source lines.
-Not vectorizable.
-Moderate 1/0 activity.
-Output consists of selected table values, total execution
time, and times for individual phases of the program.

-Field length required to execute: 30000B .
Program No. 22 - Linear system solver for systems of the order
100 (a variation of Program 15).

-423 source lines.
-Vectorizable on all compilers.
-No 1/0.
-Code has newer algorithms for matrix solving than Program 15,
otherwise is identical to Program 15.

-Output consists of the first three elements of Ehe solutlon
vector, the CPU time in each subroutine and total execution
time.

-Field length required to execute: 34000B .
Program MFLOPS - set of benchmark kernels to measure number of
floating point operations/second.

570 source lines.
-Vectorizable on all compilers.
-Little 1/0.
-Output consists of the megaflop rate for each kernel, plus
average megaflop rate overall.

-Field length required to execute: 21OOOB,

APPENDIX B

HISTOGRAMS COMPARING COMPUTER PERFORMANCES

The histograms in this appendix show the results of running the

standard Los Alamos benchmark programs on a CDC Cyber 73, a CDC
6600, and the three VAX 11/780 computers used in the benchmark
study.

INTEGER ARITHMETIC MONTE CARLO CODE

PROGRAM LABMK1

1500

-
m
- 1000

MX L = Los Alamos CDC Cyber
MX Ii = Los Alamos CDC 6600
OP1 = optimization level 1
0P2 = optimization level 2
SP = single precision
DP = double precision

73

.

.

12

t,

.

300C

2500

2000

1500

1000

500

0

FAST FOURIER TRANSFORM CODE

PROGRAM LABMK4

200C

150C

1000

500

0

EQUATION OF STATE KERNEL

PROGRAM LABMK5

m

2
-1
LLl

LINEAR SYSTEMS SOLVER
SOLVES SYSTEMS OF THE ORDER 100

PROGRAM LABMK6

“oo~
6000

4000

2000

01

VARIETY OF VECTOR OPERATIONS

PROGRAM LABMK8

PARTICLE PUSHER CODE

PROGRAM LABMK1l

‘“”””~

VARIETY OF VECTOR OPERATIONS

PROGRAM LABMK14

‘“””~

15

-
m

u

LINEAR SYSTEM SOLVER FOR MATRICES
OF THE ORDER 100X1OO TO 800X800

PROGRAM LABMK15

VARIETY OF VECTOR OPERATIONS

PROGRAM LABMK18

2500 ,

2000

1500

1000 1

16

—

SCALAR MONTE CARLO CODE TO TRANSPORT
O.001-TO 20.O-MEV GAMMA RAYS IN A CARBON CYLINDER

PROGRAM LABMK21

250

200

150

100

50

0

LINEAR SYSTEMS SOLVER FOR SYSTEMS OF ORDER 100
VARIATION OF LABMK15

PROGRAM LABMK22

5000~

4000-

3000-

2000-

1000-

0 {q> [
~ q\
\ *\

#

17

APPENDIX C

VAX/VMS PAGING SYSTEM

Because the VAX/VMS paging system can have such a pronounced effect
on performance, a closer look is in order. The “VMS” in VAX/VMS is
for “Virtual Memory System.” This feature allows programmers to
think they have almost unlimited memory and can write their pro-
grams accordingly, relying on the system to straighten things out.
The system does this by requiring the executing code to reside
wholly in virtual memory while only a subset of that code’s pages
(a page is 128 8-bit bytes of information) need be in main memory.
This subset is called the “working set,” Two other areas in main
memory interact intimately with the working set. They are the
“free list” and the “modified list.”

The free list is made up of pages that have been discarded by work-
ing sets. It is really a pool of unowned pages. A page enters at
the bottom and goes out the top. If a page is referenced before it
reaches the top, it returns to the working set that wanted it. If
the page reaches the top, it “goes away.” There is always a copy
of an unmodified page in what is known as the “image file” on aux-
iliary storage.

The modified list is different, The pages it contains are unique.
They can never just go away. When a modified page leaves the work-
ing set, it goes to the modified list. The page enters at the bot-
tom and leaves at the top. Pages leave the modified list when the
maximum number of pages the list can contain has been reached or
when the free list falls below a minimum. When one of these things
happens, a number of pages (down to some minimum number remaining)
are removed from the modified list. The pages would like to go to
the free list, but that cannot happen until they have been written
out to auxiliary storage (an area called a “paging file”). So
these pages go both to disk and to the free list.

If a page in the modified list is referenced before it reaches the
top, it simply leaves the modified list and goes to the appropriate
working set that called it, Remember that the whole code is in an
image file on disk. When this process begins, some of these pages
are initially faulted in. They go into a working set. As more and
more pages are brought in, the working set is soon full. Now, what
happens when additional pages come in and there is no room? The
pages with the greatest time since last access leave. They go into
the free list if they have not been modified or into the modified
list if they have.

VAX/VMS capitalizes on program locality, a characteristic of a pro-
gram that indicates how close or far apart the references to loca-
tions in virtual memory are over time. A program with a high de-
gree of locality does not reference many widely scattered virtual
addresses in a short period of time. For example, VAX/VMS brings

18

in more pages than those referenced in anticipation of their use,
because it is much faster to get 10 consecutive pages from disk
than to go out to the disk 10 times for a single page. The size of
this cluster is a system parameter. As another example, suppose a
page is referenced that is not contained in the working set? The
system first checks the free list and the modified list. If the
page is there, the system transfers that page and one more to the
working set, again anticipating possible use. Program locality ap-
pears to be a sound concept and is used successfully by the VAX/VMS
paging system.

.

Domestic
Page Range Price

001.025 s 5.00
026J2S0 6.00
051.075 7.00

076.100 8.00

101-12s 9.00

126.150 10.00

NTIS
Price Code

A02
A03
A04
A05
A06
A07

Printed in the United States of Ameriu
Available from

National Technical Information Service
US Department c.f Cc.mmc.rce

528s Port ROYd Road
Springfield, VA 22161

Microfiche S3.50 (AOI)

Domestic NTIS Domestic NTIs
Page Range Rice Price Code Page Range Rice price Code

1.51-17s sll.oo A08 301-325 S17.00 A14
176-200 12.00 A09 326-3sO 18.00 AM
201-225 13.00 A1O 351-375 19.00 A16
226.250 14.00 All 3764X2 20.00 A17
251-275 15.00 A12 40142S 21.00 A18
276.300 16.00 A13 426450 22.00 A19

Domestic NTIS
Page Range Price Price Code

45147s $23.00 A20
476-SIX 24.oo A21
SO1-525 2s.00 A22
526-5S0 26.oO A23
551-575 27.00 A24
S76600 28.00 A25
601-uP t A99

tAdd S1.00 for each .ddition.l 25-pag. increment or fmrtion thereof from 601 pages up,

