

# CIC-14 REPORT COLLECTION REPRODUCTION COPY



by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

WERE Copture Cross Sections of the market Solopes 182 W, 183 W, 184 W, and 186 W



LOS Alamos National Laboratory Los Alamos, New Mexico 87545

Attendance Verson Found ( proprint le prop

Printed by Diane D. Norton

#### BDIS GLEATIMES

emis report was prepared as an account of work sponsored by an agency of the United States Government.

Scither the United States Government nor any agency thereof, nor any of their employees, makes any

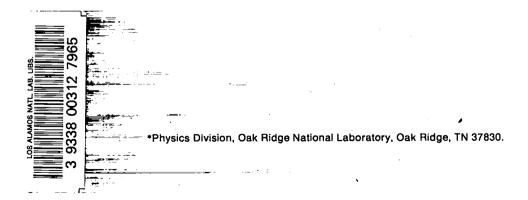
complete the United States Government nor any agency thereof, nor any of their employees, makes any

complete the United States Governments any legal liability or responsibility for the accuracy, completeness,

indicated the provided of the section of the section of the accuracy, completeness,

indicated the provided of the section of the s

LA-9200-MS


UC-34c

Issued: April 1982

# Neutron-Capture Cross Sections of the Tungsten Isotopes <sup>182</sup>W, <sup>183</sup>W, <sup>184</sup>W, and <sup>186</sup>W from 2.6 to 2000 keV

R. L. Macklin\* D. M. Drake E. D. Arthur





Los Alamos National Laboratory Los Alamos, New Mexico 87545

# NEUTRON-CAPTURE CROSS SECTIONS OF THE TUNGSTEN ISOTOPES <sup>182</sup>W, <sup>183</sup>W, <sup>184</sup>W, AND <sup>186</sup>W FROM 2.6 TO 2000 keV

by

# R. L. Macklin, D. M. Drake, and E. D. Arthur

### **ABSTRACT**

Neutron-capture cross sections of four stable tungsten isotopes were measured as a function of energy by time of flight at the Oak Ridge Electron Linear Accelerator. The resolution achieved,  $\triangle E/E$  about 1/750 FWHM, has allowed the analysis of several hundred resonance peaks at energies a few kiloelectron volts above the neutron-binding energy. Strength functions were fitted to the average cross sections up to about 100 keV, and average cross sections were extended with less precision from 100 to 2000 keV. The capture cross section of natural tungsten was calculated from measurements for individual isotopes. Compound nucleus calculations have been made with deformed optical model parameters for comparison with experimental cross sections.

### I. INTRODUCTION

A previous transmission study of the tungsten isotopes' neutron resonances¹ emphasized the agreement of their statistical behavior with orthogonal ensemble theory. For the even isotopes in this study, the energy range overlaps that of the present neutron-capture measurements, thereby allowing detailed comparison of the neutron widths for many resonances by these two techniques. The isotopes <sup>182</sup>W, <sup>183</sup>W, and <sup>184</sup>W are on the traditional s-process neutron-capture path of nucleosynthesis in stars. However, much of each of these tungsten isotopes and the <sup>186</sup>W in the solar system are derived from the supernova r-process, in which rates and abundances do not depend on neutron-capture cross sections.

Tungsten, which has been used in fission and fusion technology, is of interest as a constituent of a fast

breeder for control and burnup, for critical assemblies of fissionable material, and for production of 74-day <sup>185</sup>W and 24-hour <sup>187</sup>W. These two tungsten isotopes may be used as radioactive activation detectors; tungsten also is considered a potential constituent of fusion reactor containment vessels.

### II. EXPERIMENT

Neutron-capture data were recorded at the Oak Ridge Electron Linear Accelerator (ORELA) for 1 month. The accelerator ran at 780 pps with a 7-ns pulse width. Beam time of 436 hours was used under two conditions. First, a smooth flux up to several hundred kiloelectron volts, achieved with a 0.48-g/cm<sup>2</sup> <sup>10</sup>B filter 5 m from the neutron source, was used to measure resonance peaks and average cross sections. This neutron flux closely

matches a power law energy dependence with only a small dip near 7 keV resulting from a minimum in the total cross section of the copper used for collimators and the shadow bar.<sup>2</sup> Second, a 6.25-mm <sup>238</sup>U filter was added to reduce detector response to the scattered ORELA gamma flash. This filter allowed electronic recovery before the 2  $\mu$ s required for 2-MeV neutrons to traverse the 40.12-m flight path, but it introduced severe flux dips below about 30 keV that were caused by the <sup>238</sup>U + n resonance structure.

Prompt neutron-capture gamma rays were detected by a pair of  $C_6F_6$  liquid scintillators flanking the sample. The neutron beam passed through a 0.5-mm  $^6Li$  glass scintillation flux monitor between the final collimator and the capture sample. The relative efficiency of the detectors and flux monitor was determined by the saturated  $^{197}$ Au resonance method by using a 50- $\mu$ m gold foil rectangle in the fully illuminated central region of the collimated neutron beam.

The samples were small, thin rectangles of sintered tungsten metal foil. The dimensions, weights, and reported isotopic composition are shown in Table I. The fully illuminated 27.1-mm-wide core of the collimated neutron beam at the 40.12-m experimental station<sup>2</sup> is not as wide as these samples. The full beam, including the penumbra or partially illuminated fringe, is 31.9 mm wide with a trapezoidal flux distribution across the beam. Thus, the overlap of the beam flux with each sample had to be calculated (the unirradiated fraction of each sample is listed as a percentage width correction in the fourth column of Table I). Because of the detector arrangement symmetry,<sup>2</sup> positioning of the sample (checked by gamma-flash shadowgraph) was not as critical as these figures might indicate. The samples showed some outline irregularities caused by fissures and cracks. These irregularities and slight deviations from the assumed trapezoidal beam profile are estimated to cause a 4% uncertainty in the width correction or a 0.3% uncertainty in the cross section for the worst case. The <sup>186</sup>W-enriched sample was badly cracked and had to be held together by 29 mg of 60-µm plastic tape, which was placed on the downstream face so neutrons would not pass through the sample after scattering by hydrogen in the plastic. Other elements in the plastic, primarily carbon, should have scattered less than 0.04% of the neutron beam back through the sample. Calculations show that the 0.012-mm mylar loop that suspends each sample in the neutron beam increases the average capture yield about 0.2% below 20 keV, primarily as a result of neutron scattering by hydrogen. At higher energies, this enhancement should decrease gradually to about 0.4% at 2 MeV.

Time-of-flight data in four pulse height ranges were collected separately<sup>2</sup> because the data-acquisition computer could increment a storage disc channel only by a number less than 64. This allowed supplementary data processing at a 1546-keV bias, which is high enough to exclude gamma rays from inelastic neutron scattering up to nearly 2 MeV, as reported recently<sup>5</sup> for gold. The energy-weighted spectrum fractions were determined in the 100- to 150-keV neutron energy range and were assumed constant for neutrons up to 2 MeV. The values found, 62.8% for <sup>182</sup>W, 68.0% for <sup>183</sup>W, 59.1% for <sup>184</sup>W, and 58.3% for <sup>186</sup>W, are significantly lower than the 79.2% found<sup>5</sup> for <sup>197</sup>Au; this finding indicates softer and more typical neutron-capture gamma-ray spectra.

Corrections applied in primary data processing include electronic deadtime loss and amplifier gain standardization, ambient- and accelerator-induced backgrounds, gamma-ray-energy attenuation in the sample, average sample scattered beam background, and the neutron-binding energy for each isotope. The enriched sample neutron-capture yields were further processed in

|     | Wt.ª | Dimensions     | Width<br>Correction |                  | Isoto            | pic Fracti       | ons              |                  |
|-----|------|----------------|---------------------|------------------|------------------|------------------|------------------|------------------|
|     | (g)  | (mm)           | (%)                 | <sup>180</sup> W | <sup>182</sup> W | <sup>183</sup> W | <sup>184</sup> W | <sup>186</sup> W |
| 182 | 9.18 | 42.4*30.5*0.70 | 3.9                 | < 0.001          | 0.907            | 0.0471           | 0.0367           | 0.0092           |
| 183 | 8.59 | 42.7*30.3*0.70 | 3.6                 | < 0.001          | 0.0346           | 0.898            | 0.0563           | 0.0113           |
| 184 | 9.23 | 44.8*32.0*0.70 | 7.8                 | < 0.0005         | 0.0191           | 0.0187           | 0.943            | 0.0191           |
| 186 | 7.71 | 39.8+28.6+0.60 | 0.8                 | < 0.0003         | 0.0038           | 0.0031           | 0.0205           | 0.9723           |

<sup>&</sup>lt;sup>a</sup>A trace of silicon was reported ranging from 0.01 to 0.10%.

two ways. Below 10 keV, individual resonances were parametrized<sup>6</sup> after correcting for experimental resolution, resonance-scattered neutron sensitivity of the detectors, and minor isotope peaks. Average capture cross sections were derived after isotope unscrambling<sup>7</sup> by

correcting for average resonance self-protection and multiple elastic and inelastic scattering in each sample.<sup>8</sup> Cross-section samples in the resonance region for each isotope are shown in Figs. 1 through 4, and resonance parameters are shown in Tables II through V.

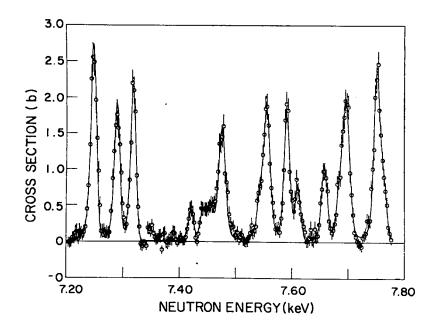



Fig. 1. A typical example of cross sections in the upper part of the resonance region for <sup>182</sup>W.

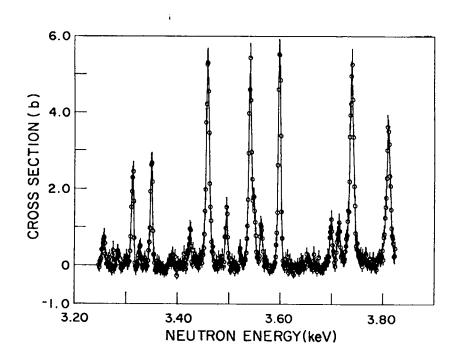



Fig. 2. A typical example of cross sections in the resonance region for <sup>184</sup>W.

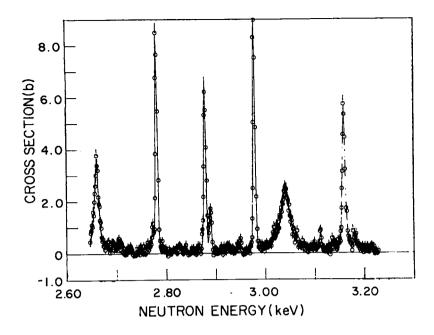



Fig. 3. A typical example of cross sections in the lower part of the resonance region for <sup>186</sup>W.

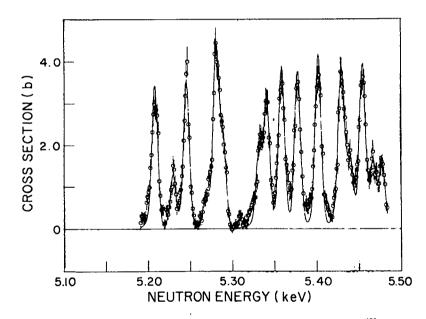



Fig. 4. A typical example of cross sections in the resonance region for <sup>183</sup>W.

| <b>TABLE</b> | II. | 182W(n,v) | Resonances |
|--------------|-----|-----------|------------|
|--------------|-----|-----------|------------|

|                          | g<br>(m                         | rΓ <sub>n</sub><br>neV)        |               |                |                                           |
|--------------------------|---------------------------------|--------------------------------|---------------|----------------|-------------------------------------------|
| E <sub>res</sub><br>(eV) | Present (n,γ) Fit 5 cycles L.S. | Camarda<br>Transmission<br>Fit | J*<br>Assumed | Γ<br>(meV)     | $g\Gamma_{\gamma}\Gamma_{n}/\Gamma$ (meV) |
| 2709                     |                                 |                                |               |                | 4.1 ± 0.4                                 |
| 2724                     |                                 |                                |               |                | $10.4 \pm 0.6$                            |
| 2737                     |                                 |                                |               |                | $3.2 \pm 0.4$                             |
| 2751                     |                                 |                                |               |                | $1.4 \pm 0.3$                             |
| 2794                     | $2920 \pm 120$                  | $2850 \pm 250$                 | 1/2+          | $62.9 \pm 2.5$ | 7.4 ± 0.5                                 |
| 2866                     |                                 |                                | -, -          | 0217 1 215     | $3.7 \pm 0.5$                             |
| 2873                     |                                 | 253                            | 1/2+          | 56.8 ± 1.6     | 017 I 015                                 |
| 2904                     |                                 |                                | -, -          | 200 1 10       | $2.1 \pm 0.4$                             |
| 2944                     |                                 | 295                            | 1/2+          | $52.0 \pm 1.5$ |                                           |
| 2990                     |                                 |                                | -•-           |                | $13.1 \pm 0.7$                            |
| 3050                     | $1450 \pm 60$                   | $1460 \pm 150$                 | 1/2+          | $65.9 \pm 2.8$ |                                           |
| 3085                     |                                 |                                | ·             | <del></del>    | $0.7 \pm 0.4$                             |
| 3123                     |                                 | 165                            | 1/2+          | $56.6 \pm 1.9$ |                                           |
| 3133                     |                                 |                                | ·             |                | $4.9 \pm 0.5$                             |
| 3156                     |                                 |                                |               |                | $6.2 \pm 0.5$                             |
| 3205                     |                                 | 290                            | 1/2+          | $52.5 \pm 1.6$ |                                           |
| 3220                     |                                 |                                | ·             | -              | $5.4 \pm 0.5$                             |
| 3236                     | •                               |                                |               |                | $3.6 \pm 0.5$                             |
| 3260                     |                                 | 600                            | 1/2+          | $53.2 \pm 1.4$ |                                           |
| 3294                     |                                 |                                |               |                | $9.5 \pm 0.6$                             |
| 3309                     | $1550 \pm 70$                   | $1565 \pm 150$                 | 1/2+          | $59.2 \pm 2.3$ |                                           |
| 3330                     |                                 |                                |               |                | $2.6 \pm 0.4$                             |
| 3346                     |                                 | 170                            | 1/2+          | $47.4 \pm 1.7$ |                                           |
| 3416                     | $2620 \pm 130$                  | $2620 \pm 300$                 | 1/2+          | $52.2 \pm 2.4$ |                                           |
| 3433                     |                                 |                                |               |                | $11.5 \pm 0.6$                            |
| 3495                     | $1700 \pm 90$                   | $1710 \pm 150$                 | 1/2+          | $50.2 \pm 2.8$ |                                           |
| 3526                     |                                 | 510                            | 1/2+          | $55.3 \pm 1.6$ |                                           |
| 3565                     |                                 | 430                            | 1/2+          | $52.5 \pm 1.6$ |                                           |
| 3605                     | $1240 \pm 50$                   | $1250 \pm 150$                 | 1/2+          | $64.9 \pm 2.5$ |                                           |
| 3678                     |                                 |                                |               |                | $1.3 \pm 0.4$                             |
| 3720                     |                                 |                                |               |                | $24.7 \pm 0.8$                            |
| 3756                     |                                 |                                |               |                | $6.1 \pm 0.5$                             |
| 3790                     |                                 | 95                             | 1/2+          | $75.2 \pm 3.1$ |                                           |
| 3806                     |                                 |                                |               |                | $8.0 \pm 0.5$                             |
| 3836                     | 1600                            | 4600 600                       | 4 45 1        |                | $6.4 \pm 0.6$                             |
| 3849                     | $4620 \pm 190$                  | $4600 \pm 600$                 | 1/2+          | $72.9 \pm 3.2$ |                                           |
| 3859                     | 1040 . 50                       | 1050 . 050                     | 1 /o ±        |                | $2.2 \pm 0.7$                             |
| 3883                     | $1940 \pm 70$                   | $1950 \pm 250$                 | 1/2+          | $72.7 \pm 2.4$ |                                           |
| 3895                     |                                 |                                |               |                | $2.7 \pm 0.6$                             |
| 3927                     |                                 |                                |               |                | 5.9 ± 0.5                                 |
| 3941                     |                                 |                                |               |                | $7.9 \pm 0.5$                             |
| 3959                     | 1660 + 70                       | 1675 - 200                     | 1/0+          | (0.0 . 0.0     | $2.0 \pm 0.6$                             |
| 3977                     | 1660 ± 70                       | $1675 \pm 200$                 | 1/2+          | $60.8 \pm 2.0$ |                                           |
| 3998<br>4046             |                                 | 290                            | 1/2+          | $52.2 \pm 1.5$ | 47 . 06                                   |
| 4040                     |                                 |                                |               |                | 4.7 ± 0.5                                 |

|                          | <del></del>                | n,γ) Resonances       | <del></del>               |                       |                                            |
|--------------------------|----------------------------|-----------------------|---------------------------|-----------------------|--------------------------------------------|
|                          | (m                         | Γ <sub>n</sub><br>eV) |                           |                       |                                            |
| _                        | Present                    | Camarda               | _                         |                       |                                            |
| E <sub>res</sub><br>(eV) | (n,γ) Fit<br>5 cycles L.S. | Transmission<br>Fit   | J <sup>#</sup><br>Assumed | $\Gamma_{y} \pmod{v}$ | gΓ <sub>γ</sub> Γ <sub>n</sub> /Γ<br>(meV) |
| 4066                     | 1140 ± 60                  | 1140 ± 125            | 1/2+                      | 52.6 ± 2.4            | 32.0 ± 0.9                                 |
| 4132                     |                            |                       |                           |                       |                                            |
| 4201                     |                            |                       |                           |                       | $3.2 \pm 0.6$                              |
| 4216                     |                            | 290                   | 1/2+                      | $67.7 \pm 2.1$        |                                            |
| 4253                     |                            |                       |                           |                       | $5.1 \pm 0.6$                              |
| 4270                     |                            | 210                   | 1/2+                      | $62.9 \pm 2.0$        |                                            |
| 4316                     | $1990 \pm 90$              | $2000 \pm 200$        | 1/2+                      | $65.6 \pm 2.3$        |                                            |
| 4328                     |                            |                       |                           |                       | $33.8 \pm 1.1$                             |
| 4340                     |                            |                       |                           |                       | $6.3 \pm 0.7$                              |
| 4371                     |                            | 85                    | 1/2+                      | $73.0 \pm 3.9$        |                                            |
| 4424                     |                            |                       |                           |                       | $2.6 \pm 1.0$                              |
| 4434                     | $2920 \pm 130$             | $2916 \pm 250$        | 1/2+                      | $74.6 \pm 2.7$        |                                            |
| 4496                     |                            | 440                   | 1/2+                      | $58.2 \pm 1.5$        |                                            |
| 4525                     |                            |                       |                           | · · · <b>-</b> · · ·  | $3.3 \pm 0.4$                              |
| 4554                     |                            |                       |                           |                       | $9.2 \pm 0.6$                              |
| 4608                     |                            |                       |                           |                       | $34.9 \pm 1.0$                             |
| 4633                     |                            |                       |                           |                       | $5.1 \pm 0.5$                              |
| 4642                     |                            |                       |                           |                       | 8.9 ± 0.6                                  |
| 4719                     |                            | 950                   | 1/2+                      | $80.7 \pm 2.0$        | 0.5 1 0.0                                  |
| 4744                     |                            | ,,,,                  | -, -                      | 0011 1 210            | $33.6 \pm 1.0$                             |
| 4835                     | $3000 \pm 150$             | $3000 \pm 350$        | 1/2+                      | $48.0 \pm 2.3$        | 33.0 ± 1.0                                 |
| 4849                     | 2000 7 100                 | 153                   | 1/2+                      | $55.7 \pm 2.1$        |                                            |
| 4905                     |                            | 100                   | 1,2                       | 55.7 £ 2.1            | 7.3 ± 0.9                                  |
| 4916                     | $1370 \pm 70$              | $1360 \pm 200$        | 1/2+                      | $57.3 \pm 2.6$        | 7.5 ± 0.9                                  |
| 4950                     | 1510 1 10                  | 1500 ± 200            | 1/2                       | 31.3 ± 2.0            | 00 100                                     |
| 4964                     |                            | 380                   | 1/2+                      | 590   17              | $9.0 \pm 0.8$                              |
| 4984                     |                            | 300                   | 1/2                       | $58.0 \pm 1.7$        | 54.06                                      |
| 5033                     |                            |                       |                           |                       | 5.4 ± 0.6                                  |
| 5097                     |                            |                       |                           |                       | 5.7 ± 0.6                                  |
| 5142                     |                            | 1113                  | 1/2+                      | 40.0 + 1.4            | $17.8 \pm 0.7$                             |
| 5161                     |                            | 1113                  | 1/2                       | $49.0 \pm 1.4$        | 171 . 00                                   |
| 5202                     | 5250 + 100                 | 5220 + 400            | 1/2+                      | 706 . 20              | $17.1 \pm 0.8$                             |
| 5218                     | $5250 \pm 190$             | $5220 \pm 400$        | 1/2+                      | $70.5 \pm 3.0$        | 46.05                                      |
|                          |                            |                       |                           |                       | $4.6 \pm 0.7$                              |
| 5294                     |                            |                       |                           |                       | $6.0 \pm 0.6$                              |
| 5345                     |                            |                       |                           |                       | 26.8 ± 0.9                                 |
| 5360                     |                            |                       |                           |                       | $3.7 \pm 0.6$                              |
| 5406                     | (220 - 180                 | 6200 600              | . (0.1                    |                       | $4.2 \pm 0.6$                              |
| 5436                     | $6230 \pm 170$             | $6300 \pm 600$        | 1/2+                      |                       | $134.0 \pm 3.8$                            |
| 5463                     |                            |                       |                           |                       | $5.0 \pm 0.6$                              |
| 5521                     |                            | 636                   | • /a.l                    |                       | $5.5 \pm 0.7$                              |
| 5542                     |                            | 575                   | 1/2+                      | $53.2 \pm 1.5$        |                                            |
| 5568                     |                            | 700                   | 1/2+                      | $57.6 \pm 1.6$        | <u>.</u>                                   |
| 5581                     |                            |                       |                           |                       | $9.4 \pm 0.8$                              |
| 5626                     | 13 500 - 515               |                       | . (5.)                    |                       | $10.8 \pm 0.8$                             |
| 5660                     | $13\ 700\ \pm\ 710$        | $14\ 000\ \pm\ 2000$  | 1/2+                      | $72.2 \pm 6.8$        |                                            |

|                  | g                 | Γ <sub>n</sub><br>eV) |         |                |                                |
|------------------|-------------------|-----------------------|---------|----------------|--------------------------------|
| E <sub>res</sub> | Present (n,y) Fit | Camarda Transmission  | J*      | Γ.             | $g\Gamma_{v}\Gamma_{n}/\Gamma$ |
| (eV)             | 5 cycles L.S.     | Fit                   | Assumed | (meV)          | (meV)                          |
| 5685             |                   |                       |         |                | 34.0 ± 1.1                     |
| 5704             |                   |                       |         |                | $9.1 \pm 0.8$                  |
| 5718             |                   |                       |         |                | $43.2 \pm 1.2$                 |
| 5767             |                   |                       |         |                | $9.6 \pm 0.7$                  |
| 5780             |                   |                       |         |                | $18.7 \pm 1.0$                 |
| 5832             |                   |                       |         |                | $27.2 \pm 1.0$                 |
| 5884             |                   | (385)                 |         |                | $14.2 \pm 0.9$                 |
| 5915             |                   |                       |         |                | $53.6 \pm 1.4$                 |
| 6004             |                   |                       |         |                | $19.8 \pm 1.2$                 |
| 6024             |                   | 240                   | 1/2+    | $50.0 \pm 2.2$ |                                |
| 6079             |                   |                       |         |                | $14.7 \pm 1.1$                 |
| 6107             |                   |                       |         |                | 52.0°± 1.8                     |
| 6163             |                   |                       |         |                | $24.0 \pm 1.3$                 |
| 6191             | $4650 \pm 250$    | $4550 \pm 400$        | 1/2+    | $77.4 \pm 3.5$ |                                |
| 6213             |                   |                       |         |                | $8.8 \pm 1.1$                  |
| 6264             | $2590 \pm 170$    | $2590 \pm 300$        | 1/2+    | $51.2 \pm 2.8$ |                                |
| 6291             | •                 |                       |         |                | $8.6 \pm 1.3$                  |
| 6326             |                   |                       |         |                | 44.9 ± 1.                      |
| 6357             |                   |                       |         |                | $25.7 \pm 1.3$                 |
| 6380             |                   |                       |         |                | $8.0 \pm 1.3$                  |
| 6408             | $3890 \pm 230$    | $3800 \pm 400$        | 1/2+    | $72.5 \pm 33$  |                                |
| 6519             |                   | 910                   | 1/2+    | $60.8 \pm 2.7$ |                                |
| 6543             | $1910 \pm 280$    | $1890 \pm 200$        | 1/2+    | $50.8 \pm 5.6$ |                                |
| 6582             |                   |                       |         |                | $19.0 \pm 1.4$                 |
| 6611             |                   | 380                   | 1/2+    | $56.2 \pm 2.8$ |                                |
| 6675             | $4860 \pm 360$    | $4800 \pm 500$        | 1/2+    | $64.3 \pm 3.7$ |                                |
| 6736             |                   | 465                   | 1/2+    | $56.4 \pm 3.1$ |                                |
| 6750             |                   | 633                   | 1/2+    | $67.1 \pm 3.0$ |                                |
| 6777             |                   |                       |         |                | 4.9 ± 1.3                      |
| 6865             |                   | 1250                  | 1/2+    | $67.8 \pm 2.7$ |                                |
| 6907             |                   |                       |         |                | $19.7 \pm 1.3$                 |
| 6961             | $2860 \pm 170$    | $2800 \pm 300$        | 1/2+    |                | 95.7 ± 4.4                     |
| 6976             |                   |                       |         |                | $23.3 \pm 2.3$                 |
| 7020             |                   | 590                   | 1/2+    | $52.7 \pm 2.5$ |                                |
| 7055             |                   |                       |         |                | $11.3 \pm 1.4$                 |
| 7105             |                   | 485                   | 1/2+    | $83.7 \pm 3.6$ |                                |
| 7161             | $2040 \pm 180$    | $2030 \pm 300$        | 1/2+    | $55.2 \pm 4.2$ |                                |
| 7248             |                   | 1080                  | 1/2+    | $78.9 \pm 2.8$ |                                |
| 7290             |                   | 344                   | 1/2+    | $54.7 \pm 2.4$ |                                |
| 7318             |                   |                       | 3/2-    |                | $49.6 \pm 1.9$                 |
| 7421             |                   |                       |         |                | $9.6 \pm 1.$                   |
| 7442             |                   |                       |         |                | $9.2 \pm 1.$                   |
| 7455             |                   |                       |         |                | $9.9 \pm 1.$                   |
| 7476             | $3980 \pm 250$    | 3900 ± 300            | 1/2+    | $59.0 \pm 3.1$ | $10.4 \pm 2.$                  |

 $<sup>^{</sup>b}$  184W interference in  $\sigma_{T^{*}}$   $^{c}$ Probable multiplet.

| TABLE I | I. (Cont) 182W(1  | n,γ) Resonances                 |                         |                |                                          |
|---------|-------------------|---------------------------------|-------------------------|----------------|------------------------------------------|
|         | g<br>(m           | Γ <sub>n</sub><br>le <b>V</b> ) |                         |                |                                          |
| Eres    | Present (n,γ) Fit | Camarda<br>Transmission         | J* ·                    | Γ,<br>(meV)    | $g\Gamma_{\nu}\Gamma_{\nu}/\Gamma_{\nu}$ |
| (eV)    | 5 cycles L.S.     | Fit                             | Assumed                 | (mev)          | (meV)                                    |
| 7544    |                   |                                 |                         |                |                                          |
| 7556    | $3340 \pm 220$    | $3350 \pm 300$                  | 1/2+                    | $65.9 \pm 3.6$ |                                          |
| 7592    |                   | 540                             | 1/2+                    | $50.8 \pm 2.4$ |                                          |
| 7611    |                   |                                 |                         |                | $18.5 \pm 1.4$                           |
| 7658    |                   |                                 |                         |                | $25.5 \pm 1.5$                           |
| 7685    |                   |                                 |                         |                | $11.8 \pm 2.3$                           |
| 7697    | $3900 \pm 280$    | $3900 \pm 300$                  | 1/2+                    | $76.6 \pm 3.7$ |                                          |
| 7752    |                   | 1235                            | 1/2+                    | $73.5 \pm 3.1$ |                                          |
| 7764    |                   |                                 |                         |                | $18.4 \pm 2.0$                           |
| 7818    | $3050 \pm 300$    | $3000 \pm 250$                  | 1/2+                    | $62.8 \pm 4.6$ |                                          |
| 7840    |                   | 1300                            | 1/2+                    | $68.1 \pm 3.2$ |                                          |
| 7908    |                   |                                 |                         |                | $11.1 \pm 1.8$                           |
| 7935    |                   |                                 | 3/2-                    | $42.0 \pm 2.5$ |                                          |
| 7949    |                   |                                 |                         |                | $21.1 \pm 2.3$                           |
| 7976    |                   |                                 |                         |                | $32.4 \pm 2.1$                           |
| 8016    |                   | 1320                            | 1/2+                    | $64.8 \pm 3.4$ |                                          |
| 8049    |                   |                                 |                         |                | $26.0 \pm 1.9$                           |
| 8072    |                   |                                 |                         |                | $13.6 \pm 1.6$                           |
| 8126    |                   |                                 |                         |                | $27.5 \pm 2.1$                           |
| 8147    |                   |                                 | 3/2-                    | -              | $45.7 \pm 2.4$                           |
| 8163    |                   |                                 | - <b>,</b> .            |                | 18.7 ± 1.9                               |
| 8200    |                   | 1640                            | 1/2+                    | $50.1 \pm 2.9$ |                                          |
| 8252    |                   |                                 | -, -                    |                | $19.2 \pm 1.8$                           |
| 8297    |                   |                                 | 3/2-                    |                | $44.8 \pm 2.6$                           |
| 8322    |                   |                                 | o, <b>-</b>             |                | $8.8 \pm 1.7$                            |
| 8363    |                   |                                 |                         |                | $20.2 \pm 3.4$                           |
| 8374    |                   |                                 | 3/2-                    |                | $23.5 \pm 2.8$                           |
| 8400    |                   | 1820                            | 1/2+                    | $74.4 \pm 4.1$ | 2010 1 210                               |
| 8442    |                   | 1020                            | 3/2-                    | , ,,, ,, ,,,   | 47.4 ± 2.6                               |
| 8509    |                   | 610                             | 1/2+                    | $47.8 \pm 3.4$ | 1711 1 210                               |
| 8542    |                   | 605                             | 1/2+                    | $55.2 \pm 3.5$ |                                          |
| 8563    |                   | 003                             | 1/2                     | JJ.2 ± J.J     | $21.5 \pm 2.3$                           |
| 8593    |                   |                                 |                         |                | $36.7 \pm 2.3$                           |
| 8651    |                   |                                 | 3/2-                    | •              | 41.9 ± 2.6                               |
|         | 4500 + 420        | 4490 + 400                      | 3/2<br>1/2 <sup>+</sup> | $61.3 \pm 4.5$ | 71.7 ± 2.0                               |
| 8731    | $4590 \pm 430$    | 4480 ± 400                      | 1/2+                    | 46.9 ± 3.8     |                                          |
| 8806    |                   | 1880                            | 1/2                     | 40.7 ± 3.8     | 35.9 ± 2.7                               |
| 8821    |                   |                                 |                         |                |                                          |
| 8848    |                   |                                 | 2/2-                    |                | $31.7 \pm 2.5$                           |
| 8897    |                   | 060                             | 3/2-                    | 562 . 46       | $52.5 \pm 2.8$                           |
| 9013    |                   | 860                             | 1/2+                    | $76.3 \pm 4.6$ |                                          |
| 9074    |                   |                                 | 3/2-                    |                | $66.1 \pm 3.2$                           |

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | g<br>(m           | Γ <sub>n</sub><br>eV)   |      |                         |                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|-------------------------|------|-------------------------|---------------------------------------------|
| 6.8 ± 2.7 ± 3.8 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ± 2.7 ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E <sub>res</sub> | Present (n,γ) Fit | Camarda<br>Transmission |      | Γ <sub>γ</sub><br>(meV) | $g\Gamma_{\gamma}\Gamma_{n}/\Gamma$ $(meV)$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         |      | <del></del>             |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         |      |                         |                                             |
| 2802 2841 2873 2884 2925 2100 ± 80 2100 ± 200 1/2+ 50.0 ± 1.4 2925 25.2 ± 2985 330 1/2+ 50.0 ± 1.4 2.5 ± 3185 3185 1000 1/2+ 66.6 ± 2.4 2.5 ± 3185 3185 1000 1/2+ 66.6 ± 2.5 3185 3206 2200 ± 90 2190 ± 200 1/2+ 66.6 ± 2.5 3313 3225 3313 3327 3313 3329 3257 3313 3349 3424 3424 3424 34349 3424 3425 3550 3564 3599 85 1/2+ 56.7 ± 2.4 356.6 ± 2.5 3570 3581 366.6 ± 2.5 366.6 ± 2.5 3700 3714 3740 3210 ± 120 3225 ± 250 1/2+ 66.0 ± 2.8 3811 4100 ± 180 4150 ± 400 1/2+ 49.2 ± 2.9 3838 3942 280 1/2+ 59.7 ± 2.0 4011 390 1/2+ 56.1 ± 1.8 4079 4134 4178 4189 2560 ± 140 2560 ± 250 1/2+ 56.1 ± 1.8 4079 4134 4178 4189 2560 ± 140 2560 ± 250 1/2+ 50.5 ± 3.6 4.4 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ± 4.8 ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                   |                         |      |                         |                                             |
| 2841 2873 2884 2925 2100 ± 80 2100 ± 200 1/2+ 50.0 ± 1.4 4.9 ± 2985 303 1/2+ 50.0 ± 1.6 3032 3097 3135 3185 1000 1/2+ 66.6 ± 2.5 2.5 ± 3235 3235 3235 3237 3237 3237 3313 3227 3237 3313 3227 33133 3227 3313 3329 3424 3434 34349 3424 34359 2260 ± 90 2280 ± 200 1/2+ 53.6 ± 2.2 3496 3550 3564 3570 3700 3714 3710 3714 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3716 3717 3717 3718 3719 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3714 3710 3710 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3710 3714 3714 3714 3714 3714 3714 3714 3714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                   |                         |      |                         |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | •                 |                         |      |                         |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         |      |                         |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         |      |                         |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 2100   90         | 2100 + 200              | 1/2+ | 60.6 ± 2.4              | 4.7 ± 0                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 2100 ± 60         | -                       |      |                         |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   | 630                     | 1/2  | JU.U I 1.4              | 42 + 0                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         |      |                         |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   | 450                     | 1/2+ | 562 ± 16                | 2.5 1 0                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         |      |                         |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 2200 - 00         |                         |      |                         |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 2200 ± 90         |                         |      | _                       |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   | 330                     | 1/2  | 33.7 I 1.0              | 37 + 0                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         |      |                         |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         |      |                         |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         |      |                         |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         |      |                         |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 2260 ± 90         | 2280 4 200              | 1/2+ | $53.6 \pm 2.2$          | 1.5 1 0                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 2200 ± 30         | 2200 1 200              | 1,2  | 2010 1 212              | 6.7 + 0                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 1300 + 60         | $1310 \pm 150$          | 1/2+ | 44.2 + 2.1              | • • • • • • • • • • • • • • • • • • • •     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 1300 £ 00         | 1310 1 130              | -/   | 1                       | $8.0 \pm 0$                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         |      |                         | 5.6 ± 0                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   | 85                      | 1/2+ | 56.7 ± 2.4              |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   | ••                      | -, - |                         | $6.6 \pm 0$                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         |      |                         | $6.2 \pm 0$                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 3210 + 120        | $3225 \pm 250$          | 1/2+ | $66.0 \pm 2.8$          |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         | 1/2+ | $49.2 \pm 2.9$          |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   |                         | •    |                         | $5.0 \pm 0$                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                   | 280                     | 1/2+ | $59.7 \pm 2.0$          |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4011             |                   | 390                     | 1/2+ | $56.1 \pm 1.8$          |                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4079             |                   |                         | ·    |                         | $13.7 \pm 0$                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4134             |                   |                         |      |                         | $13.5 \pm 0$                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4178             |                   |                         |      |                         | $10.2 \pm 0$                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4189             | $2560 \pm 140$    | $2560 \pm 250$          | 1/2+ | $58.1 \pm 2.7$          |                                             |
| 4269       4.4 ±         4283       4.8 ±         4300       28.2 ±         4325       6.4 ±         4426       18.4 ±         4443       42.4 ±         4469       22.5 ±         4503       13.0 ±         4550       590       1/2+       63.5 ± 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4227             |                   |                         |      |                         | $3.5 \pm 0$                                 |
| 4269<br>4283<br>4300<br>4325<br>4426<br>4443<br>4443<br>4469<br>4503<br>4550<br>450<br>450<br>450<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47.4<br>47. | 4252             | $1070 \pm 90$     | $1060 \pm 150$          | 1/2+ | $50.5 \pm 3.6$          |                                             |
| 4300 4325 4426 4443 4449 4469 4503 4550 590 1/2+ 63.5 ± 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4269             |                   |                         |      |                         | 4.4 ± (                                     |
| 4325<br>4426<br>4443<br>4449<br>4469<br>4503<br>4550<br>450<br>450<br>450<br>450<br>450<br>450<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4283             |                   |                         |      |                         | $4.8 \pm 0$                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4300             |                   |                         |      |                         | 28.2 ± 1                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4325             |                   |                         |      |                         | 6.4 ± (                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4426             |                   |                         |      |                         | $18.4 \pm 0$                                |
| 4503 13.0 ± 4550 590 1/2+ 63.5 ± 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4443             |                   |                         |      |                         | 42.4 ±                                      |
| 4550 590 $1/2^+$ 63.5 $\pm$ 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4469             |                   |                         |      |                         | $22.5 \pm 0$                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4503             |                   |                         |      | _                       | $13.0 \pm 0$                                |
| 4581 5.7 ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4550             |                   | 590                     | 1/2+ | $63.5 \pm 1.8$          | 5.7 ± (                                     |

| ABLE I                   |                                        | $\Gamma_n$ Resonances          |                           | <del></del>             |                                             |
|--------------------------|----------------------------------------|--------------------------------|---------------------------|-------------------------|---------------------------------------------|
|                          | (m                                     | eV)                            |                           |                         |                                             |
| E <sub>res</sub><br>(eV) | Present $(n,\gamma)$ Fit 5 cycles L.S. | Camarda<br>Transmission<br>Fit | J <sup>π</sup><br>Assumed | Γ <sub>,</sub><br>(meV) | $g\Gamma_{\gamma}\Gamma_{n}/\Gamma$ $(meV)$ |
| 4619                     |                                        | 330                            | 1/2+                      | 44.3 ± 1.5              |                                             |
| 4673                     |                                        |                                |                           |                         | $8.4 \pm 0.7$                               |
| 4729                     |                                        |                                |                           |                         | $10.1 \pm 0.7$                              |
| 4751                     |                                        |                                |                           |                         | $6.7 \pm 0.7$                               |
| 4782                     |                                        |                                |                           |                         | $25.9 \pm 1.0$                              |
| 4806                     | $1820 \pm 90$                          | $1850 \pm 200$                 | 1/2+                      | $62.9 \pm 2.7$          |                                             |
| 4851                     |                                        |                                |                           |                         | $21.1 \pm 0.9$                              |
| 4920                     |                                        |                                |                           |                         | $26.8 \pm 1.1$                              |
| 4932                     | $1700\pm100$                           | $1700 \pm 250$                 | 1/2+                      | $48.2 \pm 2.4$          |                                             |
| 5058                     |                                        | 475                            | 1/2+                      | $72.3 \pm 2.3$          |                                             |
| 5093                     | $2810 \pm 160$                         | $2800 \pm 300$                 | 1/2+                      | $62.4 \pm 3.0$          |                                             |
| 5139                     |                                        |                                | ·                         |                         | $7.9 \pm 0.8$                               |
| 5193                     | $1600 \pm 100$                         | $1620~\pm~200$                 | 1/2+                      | $58.9 \pm 3.2$          |                                             |
| 5233                     | 2000 12 000                            |                                | -• -                      |                         | $5.4 \pm 0.8$                               |
| 5310                     |                                        |                                |                           |                         | $8.6 \pm 0.8$                               |
| 5342                     |                                        |                                |                           |                         | $14.1 \pm 0.9$                              |
| 5414                     |                                        |                                |                           |                         | $6.7 \pm 0.9$                               |
| 5432                     |                                        |                                |                           |                         | $36.9 \pm 1.4$                              |
| 5513                     |                                        |                                |                           |                         | $32.5 \pm 1.3$                              |
| 5540                     |                                        |                                |                           |                         | $7.0 \pm 0.9$                               |
| 5555                     |                                        |                                |                           |                         | $8.9 \pm 1.0$                               |
| 5580                     |                                        |                                |                           |                         | $36.9 \pm 1.5$                              |
| 5600                     |                                        |                                |                           |                         | 24.9 ± 1.2                                  |
| 5730                     |                                        |                                |                           |                         | $35.0 \pm 1.3$                              |
| 5753                     |                                        |                                |                           |                         | $11.0 \pm 0.8$                              |
| 5809                     |                                        | 450                            | 1/2+                      | $79.6 \pm 2.3$          | _                                           |
| 5823                     |                                        | 100                            | -, -                      | 1,10 1 10               | $19.5 \pm 1.3$                              |
| 5863                     |                                        |                                |                           |                         | 9.7 ± 1.4                                   |
| 5887                     | $5140 \pm 280$                         | $5140 \pm 700$                 | 1/2+                      | $75.2 \pm 3.8$          |                                             |
| 5901                     | 3140 ± 200                             | 3140 1 700                     | 1, 2                      | 1512 1 516              | $24.4 \pm 1.5$                              |
| 5929                     |                                        |                                |                           |                         | 19.1 ± 1.                                   |
| 5943                     |                                        |                                |                           |                         | 2.2 ± 1.0                                   |
| 6004                     |                                        |                                |                           |                         | 17.0 ± 1.4                                  |
| 6071                     |                                        | 395                            | 1/2+                      | $56.9 \pm 2.8$          | 1.10 1 1                                    |
| 6092                     |                                        | 373                            | 1,2                       | 50.7 <u>1</u> 2.0       | $6.3 \pm 1.3$                               |
| 6116                     |                                        |                                |                           |                         | 59.8 ± 2.8                                  |
| 6130                     | 11 600 ± 1100                          | 11 400 ± 2500                  | 1/2+                      | $66.9 \pm 7.0$          | 2310 1 210                                  |
| 6234                     | 11 000 ± 1100                          | 960                            | 3/2-                      | 44.9 ± 1.5              |                                             |
| 6295                     |                                        | 700                            | 3, 2                      | 14.5 1 1.0              | $17.5 \pm 1.4$                              |
| 6338                     |                                        |                                |                           |                         | $15.1 \pm 1.1$                              |
| 6416                     |                                        | 220                            | 1/2+                      | $52.9 \pm 3.0$          |                                             |
| 6451                     |                                        | 220                            | ±, 4-                     | 0217 ± 010              | $12.4 \pm 1.$                               |
| 6479                     |                                        | 750                            | 1/2+                      | $62.6 \pm 2.9$          |                                             |
|                          |                                        | , 130                          | 1/2                       | UMU T LIJ               | $3.3 \pm 1.$                                |
| 6518                     |                                        | 490                            | 1/2+                      | 550 ± 25                | J.J I I.                                    |
| 6553                     |                                        | 680                            | 1/2                       | $55.9 \pm 2.5$          | 9.7 ± 1.                                    |
| 6595                     |                                        |                                |                           |                         | 22.0 ± 1.                                   |
| 6608                     |                                        |                                |                           |                         | 22.U ± 1.                                   |

| TABLE IV. | <sup>186</sup> W(n,γ) | Resonances               |
|-----------|-----------------------|--------------------------|
|           |                       | gΓ <sub>n</sub><br>(meV) |
|           | Decome                | C                        |

| ${\bf g}\Gamma_n$ (meV) |                     |                     |                |                   |                                                            |
|-------------------------|---------------------|---------------------|----------------|-------------------|------------------------------------------------------------|
|                         | Present             | Camarda             |                |                   |                                                            |
| E <sub>res</sub>        | (n,γ) Fit           | Transmission<br>Fit | J <sup>π</sup> | $\Gamma_{meV}$    | $g\Gamma_{\gamma}\Gamma_{\eta}/\Gamma$                     |
| (eV)                    | 5 cycles L.S.       | _ <del> </del>      | Assumed        | <del></del>       | (meV)                                                      |
| 2659<br>2772            | $5000 \pm 290$      | $4850 \pm 300$      | 1/2+           | $40.3 \pm 4.1$    | 20 : 04                                                    |
| 2772                    |                     | 430                 | 1/2+           | $42.8 \pm 1.2$    | $3.0 \pm 0.4$                                              |
| 2879                    |                     | 450                 | 1, ~           | 42.0 <u>1</u> 1.2 | $26.6~\pm~0.8$                                             |
| 2889                    |                     |                     |                |                   | $7.1 \pm 0.5$                                              |
| 2979                    |                     | 114                 | 1/2+           | $58.1 \pm 2.4$    |                                                            |
| 3016                    | 11 500 + 750        | 11 150 : 1200       | 1/2+           | £10 + 00          | $2.0 \pm 0.5$                                              |
| 3040<br>3112            | $11\ 500\ \pm\ 750$ | $11\ 150 \pm 1200$  | 1/2+           | $51.0 \pm 8.8$    | $3.1 \pm 0.4$                                              |
| 3161                    | $2380\pm120$        | $2400 \pm 200$      | 1/2+           | $52.3 \pm 2.6$    | J.1 _ U.4                                                  |
| 3182                    |                     |                     | - <b>,</b> -   |                   | $3.2 \pm 0.5$                                              |
| 3313                    |                     | 850                 | 1/2+           | $41.7 \pm 1.2$    |                                                            |
| 3325                    |                     |                     |                |                   | $9.5 \pm 0.5$                                              |
| 3368<br>3425            | $3610 \pm 150$      | $3200 \pm 300$      | 1/2+           | 46.4 ± 2.8        | $5.0 \pm 0.4$                                              |
| 3500                    | 3010 ± 130          | 3200 ± 300          | 1/2            | 40.4 I 2.0        | $3.7 \pm 0.4$                                              |
| 3545                    |                     | 500                 | 1/2+           | $41.8 \pm 1.2$    | 0 <u>1</u> 0                                               |
| 3578                    |                     |                     |                |                   | $19.8 \pm 0.7$                                             |
| 3627                    |                     |                     |                |                   | $3.7 \pm 0.4$                                              |
| 3651<br>3714            |                     | 165                 | 1/2+           | 601 : 10          | $6.9 \pm 0.5$                                              |
| 3714                    |                     | 103                 | 1/2+           | $60.1 \pm 1.9$    | $3.8 \pm 0.4$                                              |
| 3758                    |                     |                     |                |                   | $3.6 \pm 0.5$                                              |
| 3771                    | $1550 \pm 80$       | $1560 \pm 150$      | 1/2+           | $46.4 \pm 2.1$    | _                                                          |
| 3873                    | $3290 \pm 160$      | $3250 \pm 300$      | 1/2+           | $44.9 \pm 2.6$    |                                                            |
| 3967                    |                     | 700                 | 1/2+           | $32.4 \pm 1.1$    | 22 . 05                                                    |
| 4030<br>4056            |                     |                     |                |                   | 3.3 ± 0.5<br>9.4 ± 0.6                                     |
| 4123                    |                     |                     |                |                   | $5.3 \pm 0.5$                                              |
| 4169                    | $1520 \pm 70$       | $1530 \pm 150$      | 1/2+           | $43.1 \pm 2.0$    |                                                            |
| 4205                    | 0.000 . 100         | 0.50                | . 10+          |                   | $7.1 \pm 0.6$                                              |
| 4225<br>4265            | $2790 \pm 130$      | $2760 \pm 250$      | 1/2+           | $51.4 \pm 2.4$    | 26 1 05                                                    |
| 4373                    |                     |                     |                |                   | $2.6 \pm 0.5 \\ 3.9 \pm 0.5$                               |
| 4399                    | $1910 \pm 100$      | $1900 \pm 200$      | 1/2+           | $38.2 \pm 2.0$    | 3.7 1 0.3                                                  |
| 4457                    |                     | _                   | •              |                   | $29.5 \pm 0.9$                                             |
| 4490                    | 2262 122            |                     | 4 (2.)         |                   | $4.9 \pm 0.6$                                              |
| 4544                    | $2260 \pm 120$      | $2240 \pm 200$      | 1/2+           | $44.3 \pm 2.2$    | 126 + 07                                                   |
| 4571<br>4588            |                     |                     |                |                   | $13.6 \pm 0.7$ $10.9 \pm 0.6$                              |
| 4704                    |                     |                     |                |                   | $5.3 \pm 0.5$                                              |
| 4752                    |                     |                     |                |                   | $6.7 \pm 0.6$                                              |
| 4807                    | $6040 \pm 400$      | $6050 \pm 300$      | 1/2+           | $37.6 \pm 3.9$    |                                                            |
| 4817                    |                     |                     |                |                   | $1.4 \pm 0.9$                                              |
| 4895<br>4962            |                     |                     |                |                   | $\begin{array}{c} 23.5 \pm 0.9 \\ 4.2 \pm 0.5 \end{array}$ |
| 4980                    |                     | 450                 | 1/2+           | 44.9 ± 1.6        | 412 I 013                                                  |
| 5162                    | $2740 \pm 150$      | $2700 \pm 250$      | 1/2+           | $40.0 \pm 2.3$    |                                                            |
| 5188                    |                     |                     |                |                   | $19.5 \pm 0.9$                                             |
| 5288                    |                     | 415                 | 1/2+           | $58.1 \pm 2.0$    | 50 . 04                                                    |
| 5327<br>5388            |                     | 1060                | 1/2+           | $31.9 \pm 1.4$    | $5.9 \pm 0.6$                                              |
| 5407                    |                     | 540                 | 1/2+           | $37.3 \pm 1.4$    |                                                            |
| =====                   |                     | <del></del>         | , <u>-</u>     |                   |                                                            |

| TABLE I                | V. (cont) 186W(1           | n,γ) Resonances     |                           |                                   |                                                               |
|------------------------|----------------------------|---------------------|---------------------------|-----------------------------------|---------------------------------------------------------------|
|                        | g<br>(m                    | $\Gamma_n$          |                           |                                   |                                                               |
|                        | Present                    | Camarda             |                           |                                   |                                                               |
| $\frac{E_{res}}{(eV)}$ | (n,γ) Fit<br>5 cycles L.S. | Transmission<br>Fit | J <sup>n</sup><br>Assumed | $\Gamma_{_{_{f Y}}} \ ({ m meV})$ | ${f g}\Gamma_{_{f \gamma}}\Gamma_{_{f n}}/\Gamma \ ({f meV})$ |
| 5439                   |                            |                     |                           |                                   | 2.2 ± 0.6                                                     |
| 5456                   |                            |                     |                           |                                   | $8.4 \pm 0.7$                                                 |
| 5522                   |                            |                     |                           |                                   | $27.3 \pm 1.1$                                                |
| 5673                   | $5380 \pm 300$             | 5300 ± 400          | 1/2+                      | $42.2 \pm 3.3$                    |                                                               |
| 5783                   | $5340 \pm 290$             | $5200 \pm 400$      | 1/2+                      | $47.6 \pm 3.2$                    | 74 . 00                                                       |
| 5819                   |                            |                     |                           |                                   | $7.4 \pm 0.8$ $6.0 \pm 0.9$                                   |
| 5894<br>5062           |                            |                     |                           |                                   | 27.3 ± 1.3                                                    |
| 5962<br>6042           |                            |                     |                           |                                   | $12.5 \pm 1.2$                                                |
| 6059                   |                            |                     |                           |                                   | $25.9 \pm 1.5$                                                |
| 6126                   |                            |                     |                           |                                   | 28.4 ± 1.7                                                    |
| 6136                   |                            |                     |                           |                                   | $13.9 \pm 1.6$                                                |
| 6186                   |                            |                     |                           |                                   | $7.0 \pm 1.0$                                                 |
| 6241                   |                            |                     |                           |                                   | $24.4 \pm 1.5$                                                |
| 6263                   |                            |                     |                           |                                   | $5.4 \pm 1.2$                                                 |
| 6298                   |                            | 1350                | 1/2+                      | $34.9 \pm 1.9$                    |                                                               |
| 6391                   |                            | 1750                | 1/2+                      | $40.3 \pm 2.2$                    |                                                               |
| 6410                   |                            |                     | ·                         | _                                 | $10.5 \pm 1.0$                                                |
| 6492                   | $5150 \pm 480$             | $5075 \pm 400$      | 1/2+                      | $37.3 \pm 3.5$                    |                                                               |
| 6515                   |                            |                     | ř                         |                                   | $5.1 \pm 1.1$                                                 |
| 6553                   |                            |                     |                           |                                   | $3.2 \pm 1.2$                                                 |
| 6666                   |                            |                     |                           |                                   | $20.6 \pm 1.4$                                                |
| 6703                   |                            | 245                 | 1/2+                      | $39.3 \pm 2.4$                    |                                                               |
| 6762                   | $4200 \pm 300$             | $4100 \pm 350$      | 1/2+                      | $59.0 \pm 3.5$                    |                                                               |
| 6806                   |                            |                     |                           |                                   | $17.6 \pm 1.4$                                                |
| 6845                   |                            |                     |                           |                                   | $16.1 \pm 1.3$                                                |
| 6951                   |                            | 1100                | 1/2+                      | $45.3 \pm 2.5$                    |                                                               |
| 6973                   |                            | 1780                | 1/2+                      | $54.4 \pm 2.9$                    |                                                               |
| 7095                   |                            |                     |                           |                                   | $8.4 \pm 2.2$                                                 |
| 7120                   |                            | 580                 | 1/2+                      | $47.6 \pm 2.7$                    |                                                               |
| 7180                   |                            | 1400                | 1/2+                      | $70.3 \pm 3.4$                    |                                                               |
| 7242                   |                            |                     |                           |                                   | $12.8 \pm 1.5$                                                |
| 7281                   |                            |                     | 4 /O.±                    | <b>730</b> . <b>30</b>            | $4.7 \pm 1.3$                                                 |
| 7329                   |                            | 680                 | 1/2+                      | $53.9 \pm 2.8$                    | 100 . 14                                                      |
| 7354                   |                            |                     |                           |                                   | $10.0 \pm 1.4$                                                |
| 7420                   | £450 · 440                 | ££00 . £00          | 1/2+                      | 642 + 42                          | $26.4 \pm 1.6$                                                |
| 7477                   | $5470 \pm 440$             | $5500 \pm 500$      | 1/2+                      | $64.3 \pm 4.3$                    | 116 : 17                                                      |
| 7498                   |                            |                     |                           |                                   | $11.6 \pm 1.7$<br>$37.2 \pm 2.0$                              |
| 7555<br>7639           |                            | 1740                | 1/2+                      | 52.5 ± 2.7                        | 31.2 I 2.0                                                    |
| 7039<br>7714           |                            | 2360                | 1/2+                      | $51.2 \pm 2.6$                    |                                                               |
| 7849                   |                            | 1000                | 1/2+                      | $42.0 \pm 2.7$                    |                                                               |
| 7884                   |                            | 1000                | 1/2                       | 42.0 ± 2.11                       | $11.6 \pm 1.4$                                                |
| 7925                   |                            |                     |                           |                                   | $25.4 \pm 1.7$                                                |
| 7984                   |                            | 1050                | 1/2+                      | $33.9 \pm 2.2$                    |                                                               |
| 8020                   |                            |                     | -, -                      |                                   | $17.8 \pm 1.6$                                                |
| 8040                   |                            |                     |                           |                                   | $48.6 \pm 2.4$                                                |
| 8088                   |                            |                     |                           |                                   | $29.0 \pm 1.8$                                                |
| 8138                   |                            | 780                 | 1/2+                      | $44.2 \pm 2.4$                    |                                                               |
| 8233                   |                            | . = -               |                           | -                                 | $15.5 \pm 1.6$                                                |
| 8299                   |                            | 2600                | 1/2+                      | $43.4 \pm 2.8$                    |                                                               |
| 8354                   |                            | 880                 | 1/2+                      | 48.5 ±                            |                                                               |
| 8427                   |                            |                     | •                         |                                   | $11.4 \pm 1.5$                                                |

| TABLE V.                     | 183W(n,γ) Resonar                                 | nces 2.65 to 5.           | 79 keV                                       |                           |                                            |
|------------------------------|---------------------------------------------------|---------------------------|----------------------------------------------|---------------------------|--------------------------------------------|
| E <sub>res</sub><br>(lab eV) | $g\Gamma_{_{\gamma}}\Gamma_{_{n}}/\Gamma$ $(meV)$ | E <sub>res</sub> (lab eV) | $g\Gamma_{\gamma}\Gamma_{\eta}/\Gamma$ (meV) | E <sub>res</sub> (lab eV) | gΓ <sub>γ</sub> Γ <sub>γ</sub> /Γ<br>(meV) |
| 2662                         | $33.5 \pm 0.9$                                    | 3648                      | $6.6 \pm 0.6$                                | 4689ª                     | $124.6 \pm 3.6$                            |
| 2682                         | $56.7 \pm 1.3$                                    | 3685                      | $38.1 \pm 1.2$                               | 4710                      | $9.2 \pm 1.7$                              |
| 2688                         | $10.3 \pm 0.8$                                    | 3698                      | $2.7 \pm 0.6$                                | 4716                      | $32.5 \pm 1.7$                             |
| 2696                         | $10.9 \pm 0.6$                                    | 3714                      | $9.5 \pm 0.9$                                | 4731                      | $4.1 \pm 0.9$                              |
| 2722                         | $32.4 \pm 0.9$                                    | 3740                      | $44.3 \pm 1.9$                               | 4748                      | $78.0 \pm 3.4$                             |
| 2741                         | $44.7 \pm 1.2$                                    | 3757                      | $33.7 \pm 1.6$                               | 4767                      | $32.3 \pm 1.4$                             |
| 2773                         | $52.0 \pm 1.3$                                    | 3782                      | $49.1 \pm 2.2$                               | 4780                      | $12.7 \pm 1.0$                             |
| 2787                         | $28.3 \pm 0.9$                                    | 3795                      | $60.0 \pm 2.4$                               | 4801                      | $6.5 \pm 1.0$                              |
| 2796                         | $6.1 \pm 0.5$                                     | 3823                      | $12.7 \pm 1.0$                               | 4814                      | $55.2 \pm 1.9$                             |
| 2802                         | $5.4 \pm 0.5$                                     | 3847                      | $38.2 \pm 1.7$                               | 4827                      | $34.8 \pm 1.6$                             |
| 2811                         | $30.0 \pm 0.9$                                    | 3874                      | $41.2 \pm 1.8$                               | 4841                      | $48.7 \pm 1.7$                             |
| 2823                         | $9.2 \pm 0.6$                                     | 3898                      | $54.0 \pm 2.1$                               | 4855                      | 17.4 ± 1.1                                 |
| 2834                         | $32.2 \pm 1.0$                                    | 3923                      | $65.8 \pm 2.4$                               | 4888                      | $12.0 \pm 2.0$                             |
| 2853                         | $38.2 \pm 1.0$ $38.2 \pm 1.1$                     | 3937                      | 20.2 ± 1.4                                   | 4894                      | $10.8 \pm 1.5$                             |
| 2870                         |                                                   |                           |                                              |                           |                                            |
| 2882                         | $24.7 \pm 0.9$                                    | 3960<br>3967              | 57.1 ± 3.3                                   | 4908<br>4934 <b>"</b>     | 52.1 ± 2.2                                 |
|                              | $29.1 \pm 0.9$                                    |                           | $52.6 \pm 2.6$                               |                           | 97.5 ± 3.7                                 |
| 2910                         | $9.7 \pm 1.2$                                     | 3979                      | $16.3 \pm 1.3$                               | 4955                      | $35.6 \pm 2.2$                             |
| 2916                         | 52.6 ± 1.9                                        | 3992                      | $51.8 \pm 2.1$                               | 4963                      | $45.3 \pm 2.2$                             |
| 2950                         | $46.0 \pm 0.4$                                    | 4001                      | $17.6 \pm 1.3$                               | 4985                      | 44.6 ± 1.9                                 |
| 2969                         | $50.9 \pm 1.8$                                    | 4036                      | $43.5 \pm 2.0$                               | 5005                      | $31.2 \pm 1.6$                             |
| 2993                         | $29.1 \pm 1.4$                                    | 4043                      | $9.0 \pm 1.3$                                | 5024                      | $15.5 \pm 1.3$                             |
| 3006                         | $45.0 \pm 0.4$                                    | 4062                      | $65.5 \pm 2.3$                               | 5042                      | $34.9 \pm 1.7$                             |
| 3021                         | $5.8 \pm 0.8$                                     | 4076                      | $32.3 \pm 1.5$                               | 5067                      | $21.0 \pm 1.6$                             |
| 3029                         | $14.6 \pm 1.0$                                    | 4093ª                     | $94.3 \pm 2.4$                               | 5079                      | $43.0 \pm 1.9$                             |
| 3044                         | $65.7 \pm 2.2$                                    | 4119                      | $44.4 \pm 1.8$                               | 5109ª                     | $137.9 \pm 4.7$                            |
| 3064                         | $35.0 \pm 1.5$                                    | 4142                      | $93.4 \pm 3.2$                               | 5128                      | $22.2 \pm 1.8$                             |
| 3077                         | $20.5 \pm 1.2$                                    | 4158                      | $30.8 \pm 1.5$                               | 5138                      | $37.4 \pm 2.0$                             |
| 3096                         | $28.9 \pm 1.4$                                    | 4173                      | $11.0 \pm 1.0$                               | 5163ª                     | 83.7 ± 4.0                                 |
| 3108                         | $44.8 \pm 0.4$                                    | 4183                      | $12.0 \pm 1.0$                               | 5208                      | $41.3 \pm 1.8$                             |
| 3118                         | $3.4 \pm 0.8$                                     | 4198                      | $28.6 \pm 1.6$                               | 5230                      | 14.4 ± 1.2                                 |
| 3148                         | 41.0 ± 1.6                                        | 4208                      | 44.3 ± 3.9                                   | 5246                      |                                            |
| 3160                         | $15.8 \pm 1.2$                                    | 4208                      | 45.6 ± 3.4                                   |                           | 42.0 ± 1.8                                 |
|                              | $7.3 \pm 1.1$                                     |                           |                                              | 5269                      | 8.9 ± 1.4                                  |
| 3166<br>3183                 |                                                   | 4233                      | 29.3 ± 1.3                                   | 5281                      | 50.8 ± 2.4                                 |
|                              | $50.3 \pm 1.4$                                    | 4250                      | 39.6 ± 1.3                                   | 5289                      | 26.0 ± 2.2                                 |
| 3194                         | $4.0 \pm 0.5$                                     | 4265                      | 44.8 ± 1.4                                   | 5332                      | $20.3 \pm 1.8$                             |
| 3204                         | $14.0 \pm 0.8$                                    | 4273                      | $28.9 \pm 1.3$                               | 5341                      | $38.5 \pm 1.9$                             |
| 3215                         | $38.9 \pm 1.1$                                    | 4293                      | $16.7 \pm 1.0$                               | 5359                      | $47.8 \pm 2.0$                             |
| 3233                         | $48.5 \pm 0.2$                                    | 4304                      | $43.2 \pm 1.3$                               | 5378                      | $46.6 \pm 2.0$                             |
| 3248                         | $21.9 \pm 0.9$                                    | 4322                      | $21.3 \pm 1.5$                               | 5403                      | $52.7 \pm 2.1$                             |
| 3270                         | $34.2 \pm 1.1$                                    | 4330                      | $48.8 \pm 1.7$                               | 5430                      | $56.2 \pm 2.5$                             |
| 3289                         | $18.9 \pm 0.8$                                    | 4340                      | $75.6 \pm 2.4$                               | 5441                      | $19.8 \pm 2.0$                             |
| 3304                         | $43.1 \pm 1.2$                                    | 4351                      | $18.1 \pm 1.1$                               | 5455                      | ′ 49.8 ± 2.2                               |
| 3318                         | $44.7 \pm 1.3$                                    | 4367                      | $15.8 \pm 1.2$                               | 5468                      | $19.5 \pm 1.6$                             |
| 3338                         | $16.1 \pm 0.8$                                    | 4377                      | $39.6 \pm 1.3$                               | 5478                      | $19.5 \pm 1.6$                             |
| 3347                         | $41.0 \pm 1.2$                                    | 4398                      | $42.2 \pm 3.1$                               | 5518                      | $58.2 \pm 2.2$                             |
| 3375                         | $61.6 \pm 1.6$                                    | 4403                      | $38.8 \pm 2.3$                               | 5536                      | $44.3 \pm 1.8$                             |
| 3383                         | $40.9 \pm 1.3$                                    | 4440                      | $81.1 \pm 2.9$                               | 5568                      | $51.2 \pm 4.9$                             |
| 3400                         | $37.3 \pm 1.1$                                    | 4450                      | $39.5 \pm 1.6$                               | 5574                      | 59.7 ± 4.2                                 |
| 3420                         | $40.5 \pm 1.3$                                    | 4462                      | $15.5 \pm 1.0$                               | 5603                      | $54.0 \pm 2.2$                             |
| 3431                         | $4.6 \pm 0.5$                                     | 4472                      | $6.7 \pm 1.7$                                | 5617                      | 56.3 ± 2.2                                 |
| 3446                         | $37.5 \pm 1.2$                                    | 4475                      | $10.5 \pm 1.6$                               | 5648*                     | 106.5 ± 3.3                                |
| 3459                         | $17.9 \pm 0.8$                                    | 4501*                     | $109.2 \pm 3.1$                              | 5667                      | 13.5 ± 1.5                                 |
| 3477                         | 16.6 ± 0.8                                        | 4520                      | $16.9 \pm 1.0$                               | 5683                      | $16.8 \pm 2.1$                             |
| 3493                         | 7.7 ± 0.9                                         | 4520<br>4547              | $21.9 \pm 1.3$                               | 5693                      |                                            |
| 3500                         | $26.2 \pm 1.1$                                    |                           |                                              |                           | 45.7 ± 2.3                                 |
|                              |                                                   | 4556<br>4563              | $32.6 \pm 1.5$                               | 5703                      | 45.7 ± 2.4                                 |
| 3513                         | $50.3 \pm 0.3$                                    | 4562                      | $4.7 \pm 1.3$                                | 5731                      | $33.0 \pm 2.2$                             |
| 2522                         | $52.5 \pm 0.2$                                    | 4584                      | $8.9 \pm 0.8$                                | 5745°                     | 93.7 ± 4.3                                 |
| 3527                         |                                                   | 46117                     | $66.0 \pm 3.3$                               | 5753                      | $42.4 \pm 3.1$                             |
| 3538                         | $17.7 \pm 0.9$                                    | 4603                      |                                              |                           |                                            |
| 3538<br>3570                 | $29.4 \pm 1.1$                                    | 4611                      | $53.3 \pm 2.4$                               | 5781                      | $48.4 \pm 2.1$                             |
| 3538                         |                                                   |                           |                                              |                           |                                            |

<sup>&</sup>lt;sup>a</sup>Probable multiplet.

# A. $^{182}W(n,\gamma)$ Resonance Peak Fitting (2.7 to 9.1 keV)

In 29 cases, neutron widths reported from analysis of the transmission data<sup>1</sup> indicated peaks significantly broader than our capture data resolution.

Five cycles of least squares parameter adjustment did not significantly change these neutron widths. The average ratio of adjusted to literature value, 1.0040 with a sample standard deviation of 1.0124, indicated good agreement. Because our resolution function was determined from narrower resonance peaks, the statistical standard deviations (4 to 10%) should exceed any systematic error in neutron width determination.

Because of the good agreement in the cases that were checked, all the narrower literature values of neutron width were adopted for calculating radiative widths from the capture peak areas. Only two exceptions were noted. At 5436 eV, the very large capture area and the peak shape are interpreted as resulting from two or more close resonances. At 5884 eV, the very small capture area may indicate interference by the 2%  $^{184}\mathrm{W}$  (g $\Gamma_n$  = 5140 meV at the same peak energy) in the enriched transmission sample.

The 66 radiative widths found in this way range from 46 to 84 meV with a peak near 54 meV. Because the four strength function fit to the average capture cross section up to 101 keV gives an average radiative width of  $53 \pm 2$  meV, the much higher values for some individual peaks may indicate unseen overlapping of capture peaks. Some of these resonances may be exceptionally broad p-wave  $J^{\pi} = 3/2^{-}$  resonances, although this seems unlikely. Based on the transmission data, we assumed that a few other resonances above 7.3 keV in the capture data have spin  $J^{\pi} = 3/2^{-}$  because of their large capture areas or their proximity to a  $J^{\pi} = 1/2^{-}$  resonance.

# B. <sup>184</sup>W(n,y) Resonance Peak Fitting (2.67 to 6.61 keV)

In 14 cases, resonance widths significantly exceeded our resolution, and neutron widths as well as radiative widths and peak positions could be determined. The average ratio of neutron widths to the literature values was 0.9981, with a sample standard deviation of 0.0092 indicating, as for  $^{182}W + n$ , no disagreement to within the data's statistical uncertainties. One 6234-eV resonance, riding on the 11.7-eV-wide s-wave resonance centered at 6230 eV, was assigned  $J^{\pi} = 3/2^{-}$ ; all others for which a neutron width was reported were assumed to be s-wave

 $(J^{\pi} = 1/2^{+})$ . The 29 radiative widths derived in this way range from 44 to 78 meV with a slight peak near 58 meV. Because the four strength function fit to the average capture below 113 keV gives  $\Gamma = (57 + 4)$  meV, assuming  $D_{t=0} = 95$  eV, individual  $\Gamma \gamma$  values exceeding about 69 meV may indicate the inclusion of small unseen resonances in the corresponding fitted peaks.

# C. 186W(n,y) Resonance Peak Fitting (2.65 to 8.43 keV)

Seventeen peaks were significantly broader than the experimental and Doppler width. Their fitted neutron widths agreed well with the published results¹ derived from neutron transmission and gave an average ratio of 1.018 with a sample standard deviation of 0.031. Although this last measure of agreement is not as good as that of the ¹82W and ¹84W samples, it is comparable to the reported uncertainties. The mean ratio is significantly different from unity at the 97% probability level for this sample size, if we assume a normal distribution of errors.

The radiative width distribution peaks near 44 meV, which is much lower than for the  $^{182}W + n$  and  $^{184}W + n$  resonances studied. The radiative strength found in fitting the average capture from 2.7 to 113 keV,  $10^4 \Gamma_{\nu}/D_{t=0} = 5.51 + 0.25$ , implies an average radiative width of 50 to 70 meV, depending on the value chosen for the level spacing. Because the fitted widths are predominantly for s-wave,  $J^{\pi} = 1/2^+$  resonances whereas the fitted strength is dominated by p-wave,  $J^{\pi} = 1/2^-$ ,  $3/2^-$  capture, there appears to be a significant parity-dependent difference in average radiative width for the  $^{186}W + n$  resonances.

# D. <sup>183</sup>W(n,γ) Resonance Peak Fitting (2.65 to 5.79 keV)

No peaks broader than the experimental resolution were found or previously reported<sup>9</sup> in this energy range; therefore, only peak positions and areas were fitted to the data. The expected resonances are  $J^{\pi}=0^-$ ,  $1^-$  for s-wave and  $J^{\pi}=0^+$ ,  $1^+$ ,  $2^+$  for p-wave. The radiation strength fitted to the average cross section, combined with the spacing parameter ( $D_{t=0}=12$  ev), indicates an average radiative width  $\Gamma_{\gamma}$  of 55 meV. This average is predominantly for p-wave capture for which the highest statistical weight factor is 1.25 ( $g\Gamma_{\gamma}=69$  meV). With the expected spread of values around the average,  $g\Gamma_{\gamma}$  or  $g\Gamma_{\gamma}\Gamma_{\eta}/\Gamma$  seldom should be greater than about 81 meV. Several peak areas that exceed this amount likely include

more than one resonance. Many more peaks are expected to be multiplets on statistical grounds but cannot be identified individually.

### III. AVERAGE CROSS SECTIONS

The average neutron-capture cross sections for each pure isotope are tabulated on broad energy bins in Table VI. The values were combined in proportion to natural abundance to derive cross sections for elemental tungsten. The cross sections of the 0.13%-abundant  $^{180}W$  were assumed equal to the measured  $^{182}W(n,\gamma)$  cross section. Estimated overall systematic uncertainties are

indicated in the last column of Table VI. Above 700 keV, the statistical counting uncertainty is comparable for the energy intervals chosen and is tabulated for each isotope and the natural element. The data also are shown as histograms in Figs. 5 through 9, which include measurements published after Ref. 9.

For the even isotopes, the average capture cross sections up to 113 keV or the first 2<sup>+</sup> inelastic level were parametrized by least squares adjustment of strength functions. For <sup>183</sup>W, an approximate parametrization <sup>14</sup> of the competition with the 46.5-keV 3/2<sup>-</sup> inelastic cross section was included in the fitting. The results (see Table VII) are shown as smooth solid lines in Figs. 5 through 8.

|                      |                 | Estimated Systematics |                  |                  |                     |                     |  |
|----------------------|-----------------|-----------------------|------------------|------------------|---------------------|---------------------|--|
| E <sub>n</sub> (keV) | 182W 183W       |                       | <sup>184</sup> W | <sup>186</sup> W | Natural<br>Tungsten | Uncertaintie<br>(%) |  |
| 3-4                  | 930.3           | 2036.6                | 723.9            | 639.1            | 941.8               | 2.5                 |  |
| 4-6                  | 666.1           | 1729.5                | 526.3            | 390.1            | 696.3               |                     |  |
| 6-8                  | 564.4           | 1242.9                | 433.3            | 352.4            | 560.5               |                     |  |
| 8-10                 | 449.8           | 1124.7                | 335.0            | 288.4            | 464.9               | 2.5                 |  |
| 10-15                | 404.7           | 816.2                 | 312.2            | 250.4            | 391.0               |                     |  |
| 15-20                | 322.9           | 703.3                 | 261.2            | 207.2            | 325.3               |                     |  |
| 20-30                | 290.4           | 574.9                 | 220.4            | 173.7            | 276.2               |                     |  |
| 30-40                | 256.4           | 486.8                 | 192.7            | 166.8            | 244.2               | 2.5                 |  |
| 40-60                | 222.1           | 391.2                 | 186.8            | 149.4            | 214.7               | 2.6                 |  |
| 60-80                | 213.2           | 306.9                 | 172.5            | 136.4            | 192.1               | 3.0                 |  |
| 80-100               | 204.0           | 264.4                 | 159.1            | 121.5            | 175.2               | 3.4                 |  |
| 100-150              | 129.6           | 205.3                 | 112.5            | 100.2            | 126.8               | 3.7                 |  |
| 150-200              | 102.1           | 174.2                 | 83.4             | 62.6             | 95.4                | 3.8                 |  |
| 200-300              | 94.3            | 129.3                 | 76.4             | 55.9             | 82.8                | 3.9                 |  |
| 300-400              | 85.6            | 96.4                  | 66.8             | 49.4             | 71.0                | 4.0                 |  |
| 400-500              | 82.0            | 81.7                  | 61.2             | 46.7             | 65.5                | 4.1                 |  |
| 500-600              | 80.7            | 79.5                  | 60.4             | 46.7             | 64.6                | 4.2                 |  |
| 600-700              | 85.6            | 72.6                  | 62.7             | 44.2             | 64.9                |                     |  |
| 700-725              | $88.6 \pm 3.5$  | $70.7 \pm 4.2$        | $65.3 \pm 2.9$   | $45.2 \pm 3.0$   | $66.5 \pm 1.7$      | 4.3                 |  |
| 725-750              | $85.6 \pm 3.5$  | 80.9 ± 4.6            | $58.7 \pm 2.9$   | $48.2 \pm 3.2$   | $66.0 \pm 1.7$      |                     |  |
| 750-775              | $81.8 \pm 3.3$  | $71.8 \pm 4.3$        | $62.1 \pm 3.0$   | $46.1 \pm 3.2$   | $64.1 \pm 1.7$      |                     |  |
| 775-800              | $92.0 \pm 3.7$  | $78.0 \pm 4.6$        | $73.8 \pm 3.3$   | $47.0 \pm 3.2$   | $71.6 \pm 1.8$      |                     |  |
| 800-900              | $94.1 \pm 2.0$  | $70.0 \pm 2.4$        | $70.7 \pm 1.8$   | $45.7 \pm 1.8$   | $69.6 \pm 1.0$      |                     |  |
| 900-1000             | $96.3 \pm 2.4$  | $74.0 \pm 2.8$        | $72.3 \pm 2.1$   | $44.0 \pm 2.1$   | $70.8 \pm 1.2$      | 4.4                 |  |
| 000-1100             | $103.5 \pm 2.7$ | $77.1 \pm 3.3$        | $76.4 \pm 2.4$   | $39.2 \pm 2.3$   | $73.0 \pm 1.3$      | •••                 |  |
| 100-1200             | $116.5 \pm 2.8$ | $72.4 \pm 3.1$        | $67.7 \pm 2.2$   | $35.9 \pm 2.1$   | $72.2 \pm 1.3$      |                     |  |
| 200-1300             | $126.3 \pm 3.1$ | $73.4 \pm 3.4$        | $64.5 \pm 2.3$   | $37.0 \pm 2.3$   | $74.2 \pm 1.4$      | 4.5                 |  |
| 300-1400             | $115.3 \pm 3.5$ | $76.0 \pm 4.1$        | $60.0 \pm 2.7$   | $33.6 \pm 2.7$   | 69.4 ± 1.6          | 4.5                 |  |
| 400-1500             | $111.7 \pm 3.7$ | $66.4 \pm 4.0$        | 54.7 ± 2.7       | $32.9 \pm 2.8$   | $65.2 \pm 1.6$      |                     |  |
| 500-1600             | $110.5 \pm 4.2$ | 76.3 ± 4.8            | $58.8 \pm 3.2$   | $30.3 \pm 2.9$   | 66.8 ± 1.8          |                     |  |
| 600-1700             | 103.1 ± 4.3     | $62.5 \pm 5.0$        | 58.3 ± 3.5       | $34.9 \pm 3.6$   | $64.0 \pm 2.0$      | 4.6                 |  |
| 700-1800             | $112.2 \pm 4.7$ | $53.0 \pm 4.6$        | 50.0 ± 3.4       | 29.4 ± 3.5       | $61.0 \pm 2.0$      | 7.0                 |  |
| 800-1900             | $109.5 \pm 5.2$ | $47.9 \pm 5.2$        | 55.2 ± 4.1       | $27.3 \pm 4.2$   | $60.4 \pm 2.3$      |                     |  |
| 900-2000             | 10710 T 012     | $52.7 \pm 5.8$        | 48.6 ± 4.5       | $28.9 \pm 4.8$   | $63.3 \pm 2.7$      | 4.7                 |  |

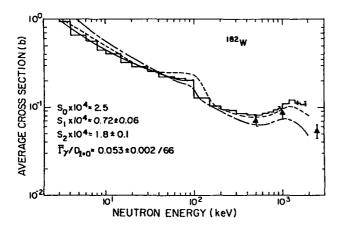



Fig. 5. Average capture cross sections for <sup>182</sup>W. The histogram represents the present data; the smooth line was computed from the strength functions shown in the figure. The short dash-long dash line was taken from Ref. 9. The dash-dash curve is the compound-nucleus calculation described in the text. The solid triangles are from Ref. 10.

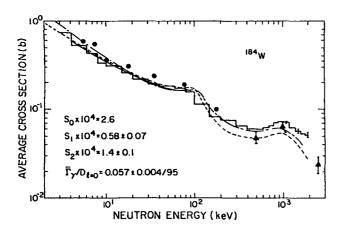



Fig. 6. Average capture cross sections for <sup>184</sup>W. The histogram represents the present data; the smooth line was computed from the strength functions shown in the figure. The short dash-long dash line was taken from Ref. 9. The dash-dash curve is the compound-nucleus calculation described in the text. The solid triangles are from Ref. 10, and the solid circles are from Ref. 11.

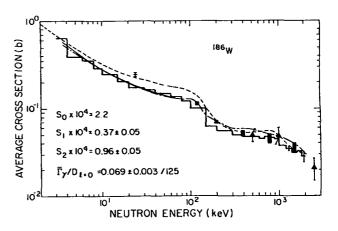



Fig. 7. Average capture cross sections for <sup>186</sup>W. The histogram represents the present data; the smooth line was computed from the strength functions shown in the figure. The short dash-long dash line was taken from Ref. 9. The dash-dash curve is the compound-nucleus calculation described in the text. The solid triangles are from Ref. 10, the solid rectangles are from Ref. 12, and the cross is from Ref. 13. If we average our data in the narrow interval 23.625 to 23.875 keV, we obtain a value for  $\sigma$  (n $\gamma$ ) of 265  $\pm$  12 mb, in good agreement with Ref. 13.

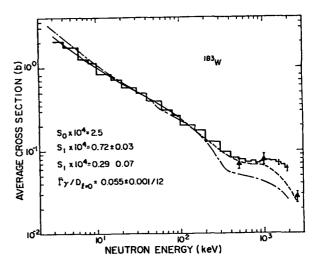



Fig. 8. Average capture cross sections for <sup>183</sup>W. The histogram represents the present data; the smooth line was computed from the strength functions shown in the figure. The short dash-long dash line was taken from Ref. 9. The dash-dash curve is the compound-nucleus calculation described in the text. The solid triangles are from Ref. 10.

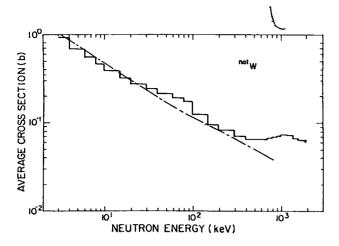



Fig. 9. A construction of average capture cross sections for natural tungsten from the isotopic components. The histogram represents the present data; the dash-dot line is from Ref. 9.

# IV. STATISTICAL MODEL CALCULATIONS

Our determination of theoretical capture cross sections for the tungsten isotopes followed the methods previously reported<sup>15</sup> for the deformed <sup>169</sup>Tm nucleus. That is, we used a deformed optical model to produce neutron transmission coefficients suitable for use in a width-fluctuation-corrected Hauser-Feshbach expression. <sup>16</sup> Such transmission coefficients can be combined to produce compound-nucleus formation cross sections as a function of incident energy. Therefore, we can separate direct reaction contributions, which primarily affect inelastic cross sections, from statistical processes that dominate capture at these energies.

For our coupled-channel deformed optical model calculations, we used the ECIS<sup>17</sup> code and coupled the 0<sup>+</sup>, 2<sup>+</sup>, and 4<sup>+</sup> states for the even tungsten isotopes and the equivalent 1/2<sup>-</sup>, 3/2<sup>-</sup>, 5/2<sup>-</sup>, 7/2<sup>-</sup>, and 9/2<sup>-</sup> states for the odd <sup>183</sup>W. The optical parameters initially used were those reported by Delaroche et al.<sup>18</sup> However, because our capture calculations were part of a larger effort<sup>19</sup> to produce evaluated cross sections for ENDF-B from 0.1 to 20.0 MeV, we found these parameters could not produce acceptable agreement with measured isotopic (n,2n) data.<sup>20</sup> We modified them slightly, primarily by adjusting the geometric parameters. The resulting set (see Table VIII) was used in these capture calculations as well as in determining other reaction cross sections occurring from 0.1 to 20.0 MeV.

We assumed a Brink-Axel<sup>21</sup> giant dipole resonance form for the El gamma-ray transmission coefficients. Two Lorentzian curves were used with the following parameters from photonuclear data;  $E_L = 12.6$  MeV,  $\Gamma_L = 2.3$  MeV,  $E_U = 14.6$  MeV, and  $\Gamma_U = 5.18$  MeV. In addition to these El contributions, we allowed a 10% Ml contribution with a form given by the Weisskopf model.<sup>22</sup> The gamma-ray transmission coefficients were normalized to the ratio of the average radiative width,  $\langle \Gamma_{\gamma} \rangle$ , and spacing,  $\langle D \rangle$ , for s-wave resonances at the neutron-binding energy (see Table IX).

The calculation of total neutron and gamma-ray transmission coefficients involves the sum over transitions to discrete levels in the appropriate residual nucleus as well as an integration over transitions to the continuum. We included approximately 20 to 25 levels for each residual nucleus, and we used the Gilbert-Cameron level density<sup>23</sup> expressions to represent the

|                                                                      | <sup>182</sup> W | <sup>183</sup> W    | $^{184}W$                           | <sup>186</sup> W |
|----------------------------------------------------------------------|------------------|---------------------|-------------------------------------|------------------|
| Energy (keV)                                                         | 2.6 - 101        | 2.6 - 113           | 2.6 - 113                           | 2.6 - 113        |
| 10 <sup>4</sup> S <sup>0</sup> (assumed)                             | 2.5              | 2.5                 | 2.6                                 | 2.2              |
| 10 <sup>4</sup> S <sup>1</sup>                                       | $0.72 \pm 0.06$  | $0.72 \pm 0.03$     | $\textbf{0.58}\ \pm\ \textbf{0.07}$ | $0.37 \pm 0.05$  |
| 10 <sup>4</sup> S <sup>2</sup>                                       | $1.8 \pm 0.1$    | $0.29 \pm 0.07^{b}$ | $1.4 \pm 0.1$                       | $0.96 \pm 0.05$  |
| 10 <sup>4</sup> Γ̄ <sub></sub> /D <sub>4.0</sub>                     | $7.97 \pm 0.37$  | $45.6 \pm 0.8$      | $6.00 \pm 0.36$                     | 5.51 ± 0.25      |
| $10^4 \bar{\Gamma}_{\gamma}/D_{L=0}$ $\bar{\Gamma}_{\gamma}$ meV for | $53 \pm 2$       | 55 ± 1              | 57 ± 4                              | $60 \pm 3$       |
| $\mathbf{D}_{t=0}^{r}$ (assumed)                                     | 66               | 12                  | 95                                  | 109              |

<sup>&</sup>lt;sup>a</sup>The statistical errors indicated do not preclude as good a fit with other sets of parameters because of high correlations. Attempts to achieve convergence while slowly adjusting S<sup>0</sup>, in addition to the other three strengths, were not successful.

were not successful.

bA much larger uncertainty resulting from the unknown inelastic cross section above 47 keV is not included. Various values were assumed in getting to the minimum chi square result indicated.

| TABLE VIII. Optical Param                        | eters for Tungsi | en Isotopesª |
|--------------------------------------------------|------------------|--------------|
|                                                  | r                | 8            |
| <sup>182</sup> W                                 |                  |              |
| $V = 46.8 - 0.4 E^b$                             | 1.26             | 0.61         |
| $W_{\text{vol}} = -1.8 + 0.2 \text{ E}$          | 1.26             | 0.61         |
| $V_{SO} = 7.5$                                   | 1.26             | 0.61         |
| $W_{SD} = 3.68 + 0.76 E$                         | 1.24             | 0.45         |
| Above 4.75 MeV<br>W <sub>SD</sub> = 7.29 - 0.1 E |                  |              |
| $\beta_2 = 0.223, \; \beta_4 = -0.054$           |                  |              |
| <sup>183</sup> W                                 |                  |              |
| V = 46.7 - 0.4 E                                 | 1.26             | 0.61         |
| $W_{voi} = -1.8 + 0.2 E$                         | 1.26             | 0.61         |
| $V_{so} = 7.5$                                   | 1.26             | 0.61         |
| $W_{SD} = 3.54 + 0.76 E$                         | 1.24             | 0.45         |
| Above 4.63 MeV $W_{SD} = 7.055 - 0.1 E$          |                  |              |
| $\beta_2 = 0.22,  \beta_4 = -0.055$              |                  |              |
| <sup>184</sup> W                                 |                  |              |
| V = 46.6 - 0.4 E                                 | 1.26             | 0.61         |
| $W_{voi} = -1.8 + 0.2 E$                         | 1.26             | 0.61         |
| $V_{so} = 7.5$                                   | 1.26             | 0.61         |
| $W_{SD} = 3.4 + 0.76 E$                          | 1.24             | 0.45         |
| Above 4.5 MeV                                    |                  |              |
| $W_{SD} = 6.82 - 0.1 E$                          |                  |              |
| $\beta_2 = 0.209, \ \beta_4 = -0.056$            |                  |              |
| <sup>186</sup> W                                 |                  |              |
| V = 46.6 - 0.4 E                                 | 1.26             | 0.61         |
| $W_{vol} = -1.8 + 0.2 E$                         | 1.26             | 0.61         |
| $V_{so} = 7.5$                                   | 1.26             | 0.61         |
| $W_{SD} = 3.12 + 0.76 E$                         | 1.24             | 0.45         |
| Above 4.25 MeV                                   | ,                |              |
| $W_{SD} = 6.35 - 0.1 E$                          |                  |              |
| $\beta_2 = 0.195, \ \beta_4 = -0.057$            |                  |              |
| p <sub>2</sub> = 0.133, p <sub>4</sub> = -0.037  |                  |              |

continuum. This model consists of a constanttemperature form suitable at lower excitation energies and a Fermi-gas form applicable at higher excitations. To adjust the parameters inherent in the model, we simultaneously fitted cumulative level number information from low-lying levels and the observed s-wave resonance spacing at the neutron-binding energy.

Common to all calculations (and data) for the even isotopes is the significant decrease in the capture cross section that occurs when competition from scattering from the first inelastic state becomes energetically possible (about 100 keV). In contrast, neither the data nor the calculations for <sup>183</sup>W show a similar competition from the first excited state at 0.047 MeV.

At higher energies (0.7 to 1 MeV), the calculated and the present measured cross sections exhibit a "bump" or shoulder, which results from competition from inelastic scattering. However, in a first approximation, this bump depends on the spacing of these higher lying levels as well as spacings between groups of such levels. For example, <sup>182</sup>W and <sup>184</sup>W have levels at excitations around 0.1, 0.3, and 0.7 MeV, followed by a gap until 1 MeV, after which the level spacings decrease rapidly. This gap around 0.7 to 0.9 MeV and the rapidly decreasing compound elastic cross sections provide suitable conditions for a rise in the calculated capture cross section. For <sup>186</sup>W, a similar lower energy structure occurs (levels at 0.12 and 0.4 MeV); but at about 0.75 MeV, more levels are present (relative to 182W and 184W). The competition from inelastic scattering to these levels prevents an increase in the capture cross sections but leads to a shoulder at about 0.8 MeV.

<sup>a</sup>All well depths are in MeV; geometrical parameters are in fm.

TABLE IX. Average Gamma-Ray Widths and Spacings for s-Wave Resonances Used in the Statistical Calculations

| Nucleus          | $\langle \Gamma_{\nu} \rangle$ (ev) | ⟨D⟩<br>(ev) |
|------------------|-------------------------------------|-------------|
| 182W             | 0.053                               | 66          |
| 183W             | 0.05                                | 12          |
| <sup>184</sup> W | 0.045                               | <b>9</b> 5  |
| <sup>186</sup> W | 0.06                                | 125         |

<sup>&</sup>lt;sup>b</sup>E = incident neutron energy.

# **REFERENCES**

- H. S. Camarda, H. I. Liou, G. Hacken, F. Rahn, W. Makofske, M. Slagowitz, and J. Rainwater, "Neutron Resonance Spectroscopy. XII. The Separated Isotopes of W," Phys. Rev. C8, 1813 (1973).
- R. L. Macklin and B. J. Allen, "Fast Neutron Cross-Section Facility," Nucl. Instrum. Methods 91, 565 (1971).
- R. L. Macklin, N. W. Hill, and B. J. Allen, "Thin <sup>6</sup>Li(n,α)T Transmission Flux Monitor," Nucl. Instrum. Methods 96, 509 (1971).
- R. L. Macklin, J. Halperin, and R. R. Winters, "Absolute Neutron-Capture Yield Calibration," Nucl. Instrum. Methods 164, 213 (1979).
- R. L. Macklin, "Gold Neutron-Capture Cross Section from 100 to 2000 keV," Nucl. Sci. Eng. 79, 265 (1981).
- R. L. Macklin, "Neutron-Capture Cross Section of Niobium-93 from 2.6 to 700 keV," Nucl. Sci. Eng. 59, 12 (1976).
- R. L. Macklin, "104,105,106,108,110 Pd (n,γ) Cross Sections Above 2.6 keV," Nucl. Sci. Eng. 71, 182 (1979).
- 8. R. L. Macklin, J. Halperin, and R. R. Winters, "Gold Neutron-Capture Cross Sections from 3 to 550 keV," Phys. Rev. C 11, 1270 (1975).
- 9. S. F. Mughabghab and D. I. Garber, "Neutron Cross Sections," 3rd Ed., Brookhaven National Laboratory report BNL-325 (1973), Vol. 1.
- J. Voigner, S. Joly, and G. Grenier, "Mesure de la section efficace de capture radiative du rubidium, yttrium, niobium, gadolinium, tungsténe, platine et thallium entre 0.5 et 3 MeV," Commissariat A L'Energie Atomique report CEA-R-5089 (1980).
- 11. H. Beer, F. Kappeler, and K. Wisshak, "Fast Neutron Capture on <sup>180</sup>Hf and <sup>184</sup>W and the Solar Hafnium and Tungsten Abundance," accepted for publication in Astron. & Astrophys.

- M. Lindner, R. J. Nagle, and J. H. Landrum, "Neutron Capture Cross Sections from 0.1 to 3 MeV by Activation Measurements," Nucl. Sci. Eng. 59, 381 (1976).
- 13. Thomas Bradley, Z. Parsa, M. L. Stelts, and R. E. Chrien, "Stellar Nucleosynthesis and the 24-keV Neutron Capture Cross Sections of Some Heavy Nuclei," Proc. Int. Conf. Nucl. Cross Sections for Technol., Knoxville, Tennessee, September 1979, p. 344.
- 14. R. L. Macklin and J. Halperin, " $^{232}$ Th(n, $\gamma$ ) Cross Sections from 2.6 to 800 keV," Nucl. Sci. Eng. 64, 849 (1977).
- R. L. Macklin, D. M. Drake, J. J. Malanify, E. D. Arthur, and P. G. Young, "<sup>169</sup>Tm (n,γ) Cross Section from 2.6 keV to 2 MeV," submitted to Nucl. Sci. Eng.
- P. A. Moldauer, "Why the Hauser-Feshbach Formula Works," Phys. Rev. C11, 426 (1975).
- J. Raynal, "Optical Model and Coupled-Channel Calculations in Nuclear Physics," International Atomic Energy Agency report IAEA-SMR-9/8 (1972).
- J. P. Delaroche, G. Haouat, J. Lachkar, Y. Patin, J. Sigaud, and J. Chardine, "Coherent Optical and Statistical Model Analysis of 182,183,184,186W Neutron Cross Sections," in *Proc. Int. Conf. on Nucl. Cross Sections for Technol.*, National Bureau of Standards report NBS-594 (1980), p. 336.
- E. D. Arthur, P. G. Young, A. B. Smith, and C. A. Philis, "New Tungsten Isotope Evaluations for Neutron Energies between 0.1 and 20 MeV," Proc. Am. Nucl. Soc. 39, 793 (1981).
- J. Frehaut, A. Bertin, R. Bois, and J. Jary, "Status of (n,2n) Cross Section Measurements of Bruyeres-le-Chatel," Proc. Symp. Neutron Cross Sections from 10-50 MeV, Brookhaven National Laboratory report BNL-C-51245 (1980), Vol. 1, p. 399.

- 21. P. Axel, "Electric Dipole Ground-State Transition Width Strength Function and 7-MeV Photon Interactions," Phys. Rev. 126, 671 (1962).
- 22. J. M. Blatt and V. F. Weisskopf, *Theoretical Nuclear Physics*, (John Wiley & Sons, Inc., New York, 1952).
- 23. A. Gilbert and A. G. W. Cameron, "A Composite Nuclear-Level Density Formula with Shell Corrections," Can. J. Phys. 43, 1446 (1965).

#### Printed in the United States of America Available from National Technical Information Service US Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Microfiche \$3.50 (A01)

| Page Range | Domestic<br>Price | NTIS<br>Price Code |
|------------|-------------------|--------------------|------------|-------------------|--------------------|------------|-------------------|--------------------|------------|-------------------|--------------------|
| 001-025    | \$ 5.00           | A02                | [51·175    | .00.112           | A08                | 301-325    | \$17.00           | A14                | 451-475    | \$23.00           | A20                |
| 026-050    | 6.00              | A03                | 176-200    | 12.00             | A09                | 326-350    | 18.00             | A15                | 476-500    | 24.00             | A21                |
| 051-075    | 7.00              | A04                | 201-225    | 13.00             | A10                | 351-375    | 19.00             | A16                | 501-525    | 25.00             | A22                |
| 076-100    | 8.00              | A05                | 226-250    | 14.00             | All                | 376-400    | 20.00             | A17                | 526-550    | 26.00             | A 2 3              |
| 101-125    | 9.00              | A06                | 251-275    | 15.00             | A12                | 401-425    | 21.00             | AIB                | 551-575    | 27.00             | A24                |
| 126-150    | 10.00             | A07                | 276-300    | 16.00             | A13                | 426-450    | 22.00             | A19                | 576-600    | 28.00             | A25                |
|            |                   |                    |            |                   |                    |            |                   |                    | 601-up     | +                 | A99                |

†Add \$1.00 for each additional 25-page increment or portion thereof from 601 pages up.

Los Alamos