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MULTIPHASE INTERPENETRATIONOF SHOCKED MATERIALS

by

Thomas L. Cook, Ruth B. Demuth, and Francis H. Harlow

ABSTRACT

The Particle-in-Cell method for the numerical solution
of problems in fluid dynamics has been extended to the study
of shock and rarefaction flows in a multiphase mixture. To
test the numerical procedure, we have examined the propaga-
tion of sound signals through a mixture in which the theo-
retical speed is appreciably less than that of either material
separately, with results that validate the calculational tech-
nique. We also have studied the stability of an interface
between a gas and a fragmented metal impacted by a shock or
rarefaction. The resulting calculations give an accurate
differentiation between the stable case, for which the inter-
face should stay sharp, and the unstable case, for which
there should be interpenetration. We present information on
both the details of interpenetration and its effects on the
overall dynamics.

I. INTRODUCTION

Under several possible circumstances the passage of a shock across a density

discontinuity can result in an instability of the interface followed by an inter-

penetration between the phases. One class of problems occurs when both materials

are in a liquid or a vapor phase and the interface between them has had some

perturbation impressed upon it. Another class occurs when one material is a liq-

uid or a gas, and the other is a fragmented solid. In either case, instability

and penetration take place only when the shock moves from the less dense to the

more dense material. When both materials are in a liquid or vapor state, the

process is closely related to the classical Rayleigh-Taylor instability of in-

compressible fluids.

When a shock passes through a liquid or a gas and impinges on a fragmented

solid, the detailed dynamics are more complicated. The response of the solid



depends on the extent of interpenetrationby the driving gas at the contact sur-

face. The interpenetrationcan be understood qualitatively in terms of the rela-

tive acceleration of material elements near the material interface as the shock

first passes over. We illustrate this concept in Fig. 1. In Fig. la the shock

is incident

Fig. lb the

shock. The

erated more

on the material interface from the low-density gas on the right. In

acceleration of the fluid elements is shown after the passage of the

lighter fluid elements have less inertia and consequently are accel-

easily by the impulse. Under certain conditions, which we discuss

quantitativelybelow, interpenetrationresults. The reverse situation is pre-

sented in Figs. lC and d. The shock is incident from the left through the high-

density material and the accelerations are in the opposite direction from those

in Fig. lb. The lighter fluid elements accelerate away from the heavier elements,

no interpenetrationoccurs, and the contact surface remains sharply defined.
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Fig. 1. Relative acceleration of mate-
rial elements as a shock first
passes over.

We examine the effects of shock

passage across both forward and trail-

ing edges of a fragmented metallic

plate bounded on both sides by a gas of

lighter density. This study has re-

quired the development of a numerical

technique to solve the compressible

flow dynamics of two interpenetrating

material phases. The first stage of

this development used an explicit ex-

tension to high speed flows of Eulerian

procedures, described in previous pub-

lications.l The numerical diffusion

introduced by the purely Eulerian pro-

cedures obscures the finer details of

the interface dynamics, especially at

the interface where the shock emerges

from the fragmented metal and moves

into the gas. To improve the accuracy

of our solutions (See Appendix A) we

have formulated a more elaborate



numerical scheme, based on the Particle-in-Cell (PIC) method.
2

This methodology

is implemented in a computer code called PICM.

We describe the newly developed numerical methodology in detail, show its

validity in circumstances that admit to analytical solution, address problems

that can only be solved numerically, and propose experiments to test these re-

sults. Analytical solutions for material mixtures in which the sound speed is

less than that in either material are compared to numerical solutions for a two-

phase system. To extend this method to more complicated problems, consider the

sequence of events described in Fig. 2.

In Fig. 2a an infinite-strengthshock

is incident on the metal from the right.

In Fig. 2b the transmitted shock has

passed the right contact surface, a re-

flected shock moves to the right, the

gas penetrates the right contact sur-

face, and the metal begins to undergo

compression. In Fig. 2C the shock is

transmitted into the gas region to the

left of the fragmented metal, a rare-

faction fan is generated at the left

contact surface, and more compaction

and interpenetrationare evident. The

calculation continues until the shock

has impacted with the rigid wall. In

Fig. 2d the metal rebounds from the

rigid wall, gas penetrates the left

contact surface, and the right contact

surface begins to sharpen as gas is

expelled from the mixed region by the

rebound shock moving to the right.

Rigid a. Incident> Particles
Wal I Shock

u.
Mixed” Phases

~ Rarefaction Ezzzz!’!l
1$

Reflected Shack

Hi Fan

c.

1

k ~Recompacting region

Interpenetration of rebounding interface

d.

Fig. 2. Shock interaction with a frag-
mented metul.
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II. ‘lHEDIFFERENTIAL EQUATIONS

The coupled differential equations and the exchange functions that describe

the motion of a fluid composed of many materials, any one of which may be micro-

scopically compressible or incompressible, are discussed in Ref. 3. We summarize

below the one-dimensional, two-material, plane coordinate version of these equa-

tions.

Mass:

(1)

where t is the time; x is the coordinate; pi is the macroscopic density of mate-

rial k, that is, the total mass of L per unit total volume, and UR is the veloci-

ty of k.

Momentum:

(2)

The volume fraction of 2 is 81, the change in momentum of k from the action of

artificial viscous forces is Vk, the drag function resulting from motion relative

to material m is KLm, and the pressure is p. It is postulated that the two mate-

rials are in local equilibrium, so we do not subscript p. We represent Vg by

(3)

where qg is the artificial viscous stress. This stress is calculated by

where v~ is the kinematic viscosity of g. The drag function,4 which controls the

exchange of momentum between the materials, can be written in a simplified form

for the case in which !Lis the dispersed phase (the fragmented metal) and m is

the continuous phase (the gas).

4
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where CD is the drag coefficient and r~ is the radius of a particle of k.

Energy:

‘1

(5)

+ P“m

(6)

where I~ is the specific internal energy and CR is the

equation of state of the materials completes the set.

stiffened gas formulation,

thermal conductivity. The

For this study we use the

p = a~(pk- Peg) + (Yfl - l)PRIR .

The microscopic density, PR, is the mass of R per unit

that pi = Ogpk. The parameters a~9 Po~> and yg characterize the material.

(7)

volume occupied by 2, so

can be qualitatively described in

III. NUMERICAL METHODOLOGY

The basic procedure used in the PIC method

the following way. The spatial domain of interest is subdivided into a set of

Eulerian computational cells. With each cell we associate such field variables

as pressure, specific internal energy, and fluid velocity. In addition, we

superimpose a Lagrangian set of marker particles. Each particle represents an

element of fluid that moves through the Eulerian mesh and interacts with other

elements of fluid in a procedure that couples the two materials together. The

passage of time is divided into a sequence of computational cycles, each with

duration 6t. After specification of initial and boundary conditions the evolu-

tion of the configuration through time is accomplished by a prescribed set of

calculational phases in each cycle. These phases can be summarized as follows.

5



Phase 1.

Phase 2.

Phase 3.

An advancement of the field variables for each Eulerian cell is

calculated as if both the particles and the cells follow the fluid

motion. In this phase, therefore, no convective terms in the equa-

tions are calculated.

With the Eulerian cells returned to their original positions, the

new particle coordinates are calculated and any resulting transport

of a particle from one Eulerian cell to another is accompanied by

calculations of the corresponding convection of mass, momentum, and

energy.

The diffusion of heat is calculated.

The Eulerian calculational mesh and indexing scheme for a typical problem

are shown in Fig. 3. Eulerian cell centers are identified by integers, inter-

faces by half-integers. The index ~ is the total number of interior cells. The

indices jl and j2 define regional interfaces. The three interior regions are

initialized to contain either of two materials or mixtures thereof. The left

boundary is a rigid wall. At the

into the system from the exterior

tions.

The Lagrangian particles are

right boundary we allow particles to be fluxed

boundary cell according to prescribed condi-

superimposed on this Eulerian mesh, their co-

ordinates being denoted by the variable Xlk. The first subscript denotes the ma-

terial; for this particular study, R is either 1 or 2. The second subscript

identifies the particle. The initial number of particles of 1+in a cell is Nk.

The total number of particles of !?that are interior to the mesh is NL1, whereas

the total number of particles of k, including the particles held in reserve in

the exterior boundary region, is N2T.

As the system evolves through time, the Lagrangian particle distribution

changes within the cells throughout the Eulerian mesh, determining the

Region A Region B Region C

\ <
A

<1
1

j2 J J+i ;j+z

t I

Fig. 3. l% Eulerian ealcuzation mesh for a i@ical problem.
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correspondingvariations in the macroscopic fluid properties. The centering of

the field variables is illustrated in Fig. 4. A complete set of variables must

be specified for each material present. The first subscript identifies the mate-

rial; the second subscript indicates the centering of the variable. For two

variables this categorization scheme is simplified. Since we assume pressure

equilibrium between the materials, we drop the leading subscript for this varia-

ble and indicate only its location in the calculational mesh. The coupling

coefficient K for a two-material system is likewise completely specified by indi-

cating location. Pressure (pj), volume fraction (fl.),k] specific internal energy

(Ilj), macroscopic and microscopic densities (p-. and p ., where P-
~J !tJ !Lj= ‘fljP~j)>

‘Otal ‘ass ‘“kj)’
total internal energy (ELj), cell volume (Vkj), and artificial

viscous pressure (qRj) are cell-centered quantities. Fluid velocity (u ),
~j +%

coupling coefficient between the fields (Kj+~, edge mass (~~j+%), and momentum

“~j +-~
) are interface variables. Such cell-wise total quantities as mass M and

volume V, are actually per unit cross-sectional area of the one-dimensional sys-

tem. Previous calculations with the PIC method have treated the components of

fluid velocity as cell-centered quantities. In anticipation of the development

of an implicit version (see Appendix B) we have used cell-edge velocities in the

present code.

In specifying initial conditions

we choose the macroscopic fluid varia-

bles so that they represent the prob-

lem of interest. Consider the case in

which region A is a pure gas, region B

is fragmented metal, and region C is

the same gas as region A. The right

I I
wall serves as an inlet boundary for an

j:~
—j — j+~ .—, infinite-strength shock. We choose the

m

I I
I I

i

Fig. 4. Centeting of the fieZd vari-
ablee.

.

initial densities of the fragmented

metal disc and of the gas, which to-

gether with the Eulerian zone size, de-

termine the total mass initially in

every cell. We also set the pressures

and the specific internal energies to

their prescribed values everywhere in

the interior. To initiate a problem,

7



‘e ‘elect a ‘ate ‘2R
at which the particles are to be fluxed in through the right

boundary. The pressure, density, and specific internal energy in the right

boundary cell are then determined by the Rankine-Hugoniot equations.s

In addition to initializing the field variables, we must arrange the initial

particle distribution in a manner consistent with the prescribed fluid proper-

ties. The mass mk of every particle of a given material, wherever it appears in

the system, is the same as the mass of every other particle of that same material.

This mass is given by

‘R
= P; (Sx/NR , (8)

where p; is the initial density in a region with particle density Ng, and 6X is

the Eulerian cell dimension. We define an initial particle spacing for each re-

gion shown in Fig. 3 by dividing the Eulerian cell dimension by the initial

particle density of the appropriate material. The particle coordinates are ini-

tialized as follows.

‘2i
=(i- %)6X2A

‘2i = (j2 - j~)dx+ (i ‘%)dx2A

P;c

‘2i
=~6x+(i-N21-%)~

‘2R 8X2A

‘lk
= (jl - l)dx + (k - %)6X1B

where

6X2A = dx/N2 = 6X2C ,

8X1B = 6x/N1 ,

’11
= (j2

- jl)N1 ,

’21 = (~ +jl - j2)N2 ,

‘2T ‘N21+NR ‘

i=l, ... (j
1 - 1)N2 ,

i= (jl - 1)N2 + 1,N21 ,

‘= N21+1’ ““”N2T ‘

k=l, ...N1l ,

IU2RI ‘f ‘jRN2
NR =

6X ~
.



The subscripts i and k are the particle indices; 6X2A, 6X1B, and 6X2C are the re-

gional particle separations; NR is the number of particles held in reserve for

the mesh at the right boundary; Tf is the total projected time over which the

particles are to be injected, and P~R/P~c is the ratio of densities behind and in

front of the input shock.

The initial conditions are not limited to the circumstances described by the

above example; any other set of pure or mixed regions can be created, with what-

ever degree of inhomogeneity desired.

In phase 1 of the calculations we advance the field variables as if both the

particles and the cells follow the fluid motion. Left superscripts count the

time cycle.
‘e ‘ew call ‘O1mes ‘!Lj

are calculated from the old volume 6X by

i (=6x-nu n
lj lj-~ - ‘lj+~

)
tit

and

i (=6X- ‘u n
2j zj-~ - ‘zj+~

)

6t .

The artificial viscous pressure is

‘M

(
‘1 ij nu n

‘lj = - ~6x)2 lj+~ - ‘lj-~ )

and \

V2 %4 (2j n n
‘2j = - ~6x12 )‘zj+* - ‘jZ-* “

(lo)

(11)

If any qlj is calculated less than zero we set it equal to zero. To obtain new

velocities at this stage, we solve the two equations of momentum simultaneously.

To simplify the mathematical expressions, we de_fine“bar” velocities by writing



niilj+~ = ‘lj+~ +

n
‘zj+* = ‘zj+* +

If %. = O, then we
J+%

ing to

(‘elj
+ ‘e

lj+l )(&t
2% ‘pj-npj+J+n~t ~nqlj-nqlj+l)s

Ij+& lj+~

(

‘e
2j + ‘e

)(2j+l ‘t

2% 2j+~
‘pj-’nPj+~)+nJt (nq*j-nq2j+l)-

2j+*

(12)

set uLj+% = O. We now calculate the drag function accord-

3CD %
K.

2j+~

J+% = 16 ~- ~X
(

‘e lj + ‘e
)

lj+l ‘nu~j+~- ‘“zj+~l + 10-7 . (13)

The small artificial addition 10-7 “tothe expression for K is present to prevent

the occurrence of indefinite in the solution for the velocities

mass % 2j+~ is zero.

We now introduce “tilde” velocities (~~zj+%), which must be

next phase of the calculational cycle to take particle transport

when the edge

modified in the

into account.
They are therefore not the final updated velocities. These “tilde” velocities

are given by the simultaneous solution of the two momentum equations,

10



The solution of these equations is

and

% ‘R
lj+~ Zj++tizj++

+ K. 6x(st
(
‘%

J+% lj+~filj+~
+ ‘R

zj+~tizj+~

ii
)“

zj+~ =

(

(14)
‘m ‘m %

)

.
6x6t

lj+~ zj+~ + ‘j+% lj+~
+ ‘F1

zj+~

We perform an iteration to obtain the new locally equilibrated pressures.

Using volume conservation and the equations of state, we solve the following

three equations to obtain a first guess for equilibrium pressure and volume frac-

tions. With a2 = O (no “stiffening” in the gas) we have

P~j ~

‘j =(Y2-u7j-- o ,
2j 2’

and

‘lj ‘e2j=1 “

.

i
lj

is an approximation to the new specific internal energy that is subsequently

~odified to take into account dissipation and conduction. The solution of these

equations represents a first guess because the internal energies do not include

the compressional work that is associated with the changes in volume calculated

in this phase. Substituting M ./~
kJ !Lj

for p~j we write

n+l !3 -cx- ‘5 +~(~ - a -y5)’ + 46’5

‘2j = 2$ 9 (15)



where

‘M .
a=+

[

2
al + (Y1 - I)llj

1
‘1j

6 = a12 PO1 ,

(Y2 - 1) ‘M2j ~
Y~ =

t 2j “
2j

n+1
If 0

2j
is less than zero we set it equal to zero and obtain the following so-

lution.

n+l
e
lj=l

and

*+1
=cx-‘j $.

If
*+1

‘2j
is greater than zero we write instead

*+1 n+l
‘lj = 1 - ‘2j

and

n+l Y~ “

‘j = *+1 “

‘2j

(16)

(17)

(18)

(19)

The new values of i “
lj and 12j

are then calculated from the new pressures and vol-

ume fractions

12



and

, n, (+lP,+::::,)(~2jn+1~*j-&xne*j)o

2j=2j - ‘M2j

(20)

If ‘M ‘M
lj ‘ra 2j

is zero we set the corresponding I equal to zero. With these

values of I we repeat the whole equilibration. By examining a set of trial cal-

culations, we have found that five repetitions produce satisfactory accuracy.

The final calculation in phase 1 is the inclusion of the drag-function dis-

sipation in the specific internal energies. To derive an expression for the

dissipation, we rewrite the momentum equations in the form

and

Multiplying the first equation by
1
~ (G~j+~ + ‘lj++

), the second by

~ (:2j+~ +6 2,+%), and adding, we obtain
..

(21)

(22)

The left side of the above expression is the change in kinetic energy that re-

sults from a coupling of the two fields.



(23)

We write the “bar” velocities in Eq. (22) as “tilde” velocities plus terms of

order 6t. In expanding and rearranging the expression we neglect terms of order

(6t)2. The result is

( )dKE12 = -K. thdt ii2j+%- iilj+%2 .
J++

(24)

The change in specific internal energy dIj+% that results from this dissipation

of

We

kinetic energy is

K.
(- )

2
‘x6t ‘zj+~ -ii

61.
-j++ lj+~

]+% = n~
.

lj+~ + ‘F’lzj+~

modify the “tilde” specific internal energies as follows.

(25)

T =i
lj lj

+ 61.
j+% ‘

i i
2j = 2j

+61. ,
J+< ‘

Y i
Ij+l = lj+l +61. ~

]+% ‘

and

i YZj+l = Zj+l +61.
]+% “

(26)

In phase 2 we calculate the convective contributions to the equations. We

begin by calculating the total momentum in the edge zones and the total internal

energy in the cell-centered zones.

‘Ylj+~ = ‘mlj+~ ‘ilj+~ ‘

‘Y = n-
2j+~ ‘2j+~ ii2j+~ ‘

‘E
lj

i
= ‘lj lj ‘

14



and

‘E
2j

i
= ‘2j 2j “

(27)

To move the particles we first must locate them in the Eulerian mesh. We define

an index ‘j= that corresponds to the cell in which the particle is located at the

end of the previous computational cycle. For material 2 we have

()
n
‘2i

‘j~ = 2 + Integer ~

We now determine the location

‘jR = (njc- l)~x

and

.

of its Eulerian interfaces.

-6X,‘j L = ‘jR

where the right interface of “jc “ and the left
1s ‘jR

ly, we define an integer number that identifies each

terface.

n

()

‘2i
‘je = Integer ~ + ~ .

(28)

(29)

interface is x. . Similar-
]L

zone centered on a cell in-

(30)

Using a linear interpolation for the particle velocity we calculate a new

location for the particle. To simplify the notation we replace ‘jc with.c and

‘je with e.

n+l n (St

[(

n
) (

n
‘2i = ‘2i + % ‘jR - ‘2i ‘2c-% + ‘2i - ‘jLM‘2C+4“

The quantity ‘+1X2i is’the new particle location

cycle.
n+l. n+l .

We must now calculate JC and je to

have been traversed.

(31)

for the current computational .

determine if any cell boundaries

15



n+l.
J= = 2 + Integer

and

(
n+1

n+l. ‘2i * ~
Je = Integer ax z .

To simplify the notation, we replace
n+1 n+1

j= with d and je with f.

does not equal ‘jc, the particle has crossed from one cell-centered

other. Appropriate adjustments must be made in the internal energy

the associated zones. The change in internal energy 6E is

‘E
*E = ‘2 2C

‘Mzc “

The new internal energies are

n+l
‘2C =

‘Ezc - 6E

and

n+1
‘2d

= ‘Ezd + 6E .

The new mass in each cell is

n+1
‘2C

= %2C - mz

or

n+1
=%zd+mz .

‘2d

(32)

n+1
If jc

zone to an-

and mass of

(33)

(34)

(35)

If
n+1 n+l

‘2C
is less than some small fraction of mz, we set

‘2C equal to

zero.

16



If
n+l.

Je does not equal ‘j~ the particle has crossed an edge zone, so we

adjust the momenta and edge masses. In addition, we modify the internal energy

of the appropriate cell-centered zones to allow for the resulting dissipation.

To treat the change in internal energy correctly we must relate the edge boundary

crossed by the particle to the cell-centered zone containing that boundary. We

define an index jn that contains this information. If n+l .
Je eqUalS ‘je + 1, set

jn = ‘jc + 3/2. If ‘+lje equals ‘je -l, setj= ‘jc - %. We calculate then
change in momentum

6Y2 = m2 ii2e

The total momentum

n+l
‘2e

= nY2e

and

n+1
‘2f = %2f

To derive the

--
CSY2using

. (36)

in the edge cells becomes

- 6Y2

+ 6Y2 . [37]

dissipation for this process, we refer to the cells in Fig. 5.

Consider a particle of material 2 moving to the right from the (j + %) edge cell

to the (j + 3/2) edge cell. The total kinetic energy KEb of the particle and the

(j + 3/2) cell before the particle enters is

KEb.~m fi2 1- -2
2 2 2j+* + Z“2j+3/2 ‘2j+3/2 “ (38)

I I

i I
*

[

j-1 j j+l j+2

j-+ j++ j +S
Fig. 5. Pa.rtieZemotion through an Euk%an cell.

17



The total kinetic energy ma of the cell after the particle has entered is

(KE ~m2+nFl
)

n+l 2=—
a 2j+3/2 ‘2j+3/2 ‘ (39)

where
n+l

‘2j+3/2 ‘s
servation of linear

Eq. (SO).]

the new velocity of the (j + 3/2) edge cell. From the con-
n+l

momentum we obtain the expression for [See‘j+3/2”

n+1
mti2 2j+* + % 2j+3/2 ‘i2j+3/2

‘2j+3/2 = .
m2 + ‘2j+3/2

From Eqs. (40) and (39), the new kinetic energy is

(m + ‘%
)

2

KEa = ;
2 ‘i2j+~ 2j+3/2 ‘i2j+3/2— .

‘2
+ % 2j+3/2

(40)

(41)

The kinetic energy difference

6KE =KE-KEba
(42)

is that amount of energy that must be added as a dissipation term in the internal

energy equation. Substituting Eqs. (38) and (41) into Eq. (42); simplifying and

rearranging, we obtain

‘m

6KE=-;m2
2j+3/2 ~

( )
2

2j+3/2 -ii2j+~ “
‘2 + ‘2j+3/2

(43)

The above expression is negative definite as it must be. We identify j + 3/2
n+l.

with Je and j + % with ‘je and accordingly write the dissipation term



(44)

We

mass in

L (2L

distribute this energy according to the following prescription. If the

the neighboring cell is zero we write

‘2C = ‘2C +

If, however, the

the two adjacent

‘2C = ‘2C +

and

‘Zg ‘ ‘Zg +

6Ed . (45)

neighboring cell contains mass, we distribute the energy between

cell-centered zones. We replace the subscript jn with g.

The edge masses are treated in the same manner as the cell-centered masses.

That is,

n+l-
‘2e

= WIZe - *2

and

*+lR
2f

= ‘fi2f+ m2 .

(46)

(47)

If
*+1- n+l-

‘2e
is less than some small fraction of a particle mass m , we set2

M
2e

equal to zero.

The particles of material 1 are moved in analogous fashion, with similar

transport of mass, momentum, and energy.

We calculate the new location of each reserve particle by

*+1 n
‘2i = ‘2i + ‘2R

&t . (48)



If the particle has crossed the mesh boundary, we make the following modifica-

tions.

‘2i ‘N21+1 ‘

E2j+l = E2j+l + ‘212R

n+1
M

n+l
2;+1 = M27+1 +

*

‘2 ‘

and

n+l-
M.

n+l-
2]+3/2 = ‘2~+3/2 + ‘2 o (49)

In the final stage of the phase 2 calculation, we use our newly determined

momenta, internal energies, cell-centered masses, and edge masses to obtain up-

dated velocities and specific internal energies. If the edge mass of g is non-

zero for a particular zone, we calculate the velocity by

Yn+1 Rj ++
‘,Qj++ = n+l- .

Mgj++

(50)

If one material is absent from an edge zone, we set the velocity of that material

equal to the velocity of the other material.

To obtain the specific internal energies we divide the total internal energy

of a cell-centered zone by its total mass.

(51)

If no mass of !Lis present in a zone, we set the specific internal energy of that

material to zero. At this point the specific internal energies are not final for

this computational cycle, so we continue to designate them as “tilde” quantities.

In phase 3 we calculate the contribution of the heat diffusion term to the

specific internal energies. We begin by setting the boundary conditions at the

rigid wall so that we have no diffusive losses through that boundary.

(52)
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The difference form of the second-order partial derivative in the heat diffusion

term uses the lesser of the two cell-centered masses adjacent to the interface

under consideration, thus avoiding excessive flux to or from a cell with small

mass. We refer to these masses as MLR and M2L. The new specific internal ener-

gies are given by

If
n+l n+1

‘!4j
equals zero we set

li?.j
equal to zero. With the three phases of the

computational cycle complete, we recalculate pressures and volume fractions based

on the new specific internal energies.

IV. SOUND SPEED IN A MIXTURE

We have performed two series of studies using the technique introduced a-

bove. The first study proof-tests the methodology in circumstances chosen to ex-

hibit the way low sound speed can characterize a two-material mixture. According

to the classical theory given by Wood,6 a low-amplitude signal propagates through

a mixture of strongly coupled materials with a speed given by the following equa-

tion.

C;C;P1P2
C2 =

U31C;P2 + e2c:P11[e1P1 + e2P21

in which Cl and C2 are the pure-material

the mixture. We consider first the case

(54)

sound speeds for the two components of

in which the ratio of the microscopic

densities between the two materials is 11 to 1, with a set of material properties

and initial conditions as given in Tables I and II, for which Cl = 1.03 and C2 =

1.29. The mixture sound speed computed by the above equation is C = 0.74. To

directly proof-test the numerical method for this type of example requires com-

puter calculations for the propagation of a very weak disturbance through the

mixture. It has been demonstrated previously however that PIC calculations can

develop severe fluctuations when the Mach number of the flow is much smaller than

1. To test the numerical methodology we have performed a series of calculations,
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.

each with a weaker disturbance impressed onto the fluid mixture, and have extrap-

olated the results for comparison with the low-amplitude limit.

The configuration for the calculations is summarized in Tables II and III

and consists of regions A and B, of which A contains the mixture and B the pure

gas. In the pure gas we initiate a shock for each calculation, the strength of

which is characterized by the Mach number, M, defined as the ratio of the shock

speed to the sound speed in the undisturbed gas of region B. In Table IV we in-

dicate the boundary conditions supplied to the right side of the system.

P~j
!@@!_

A 8.25

B 0.0

Mach No. DX

2.0

1.5

1.1

Mach No.

2.0

1.5

1.1

22

1.0

1.0

0.33

P;j+2

0.0

0.O

0.0

J?.—
1

2

‘ij

0.25

1.0

DT

TABLE I

MATERIAL PROPERTIES

Pol YE at CD ‘1—. _

10.0 5/3 1.0 1.0 0.0001

0.0 5/3 0.0 - -

TABLE II

INITIAL CONDITIONS

e
~ 2j

I
lj

0.75 0.25 0.0

0.0 1.0 0.0

TABLE III

CALCULATIONAL MESH
7

jl J ‘1 ‘2— —— __

0.1 16 30 16 8

0.1 16 30 16 8

0.033 46 90 64 32

P;j+2

2.286

1.174

1.150

TABLE IV

BOUNDARY CONDITIONS

Ilj+2 127+2

0.0 3.117

0.0 2.242

0.0 1.647

I
2j ~

1.5 1.0

1.5 1.0

‘1 ‘2—.

0.2 0.2

0.2 0.2

0.06 0.06

0.0 0.0
0.0 0.0

<1 E2
——
0.2 0.2

0.2 0.2

0.06 0.06

P.
J+2 ‘1:+3/2 ‘2j+3/2

4.750 0.0 -1.452

2.562 0.0 -0.807

1.263 0.0 -0.185



In each case we measure the transit time of the signal across A. With

M= 2.0, a relatively coarse computational mesh, with 15 cells across the mixture

region and with particle densities of 16 and 8 for materials 1 and 2, respective-

ly, produces sufficient resolution of the transmitted signal. We find that the

calculation with M = 1.1 requires a finer mesh and higher particle densities to

reduce the computational fluctuations associated with the “perturbed stagnation”

of the materials, a difficulty that has always required special treatment in PIC

based methodologies. This calculation requires 45 cells across the mixture re-

gion and particle densities of 64 and 32 per cell for materials 1 and 2, respec-

tively. The calculation with M = 1.5 also has computational fluctuations, albeit

to a lesser degree. A plot of the three signal speeds is shown as a function of

M in Fig. 6 together with the theoretical result for a weak signal (M = O). The

extrapolated result agrees closely with theory.

As a more stringent test, we have performed a similar set of calculations

using a density ratio of 100 to 1. The data for these calculations are given in

Tables V-VIII. The pure-material sound speeds of the metal and the gas are Cl

and C
2 = 1, respectively. In this case, the mixture sound speed has the theoret-

ical value C = 0.2, which is 1/5 of the sound speed in either material by itself.

Again the extrapolation of the calculated results to M = O, shown in Fig. 7,

agrees closely with theory.
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I.3[ X lleory

I.2

1.1
*
“:1.0

~ 0.9

1-
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Fig. 6. Signul speed as a function of
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Region P~j
—-

A S.03

B 0.0

Mach No. DX

2.0 1.0

1.5 1.0

E—

1

2

P~j

0.05

0.1

DT

0.1

0.1

TABLE V

MATERIAL PROPERTIES

’02 Y~ ak CD—.

10.0 5/3 1.0 1.0

0.0 5/3 0.0 -

TABLE VI

INITIAL CONDITIONS

‘lj 02j ~ 12j

0.5 0.5 0.0 0.9

0.0 1.0 0.0 0.9

TABLE VII

CALCULATIONAL MESH
7

jl J ‘1 ‘2 ‘1—— ——

16 30 64 32 0.2

16 30 64 32 0.2

Mach No. P;j+2p;j+2

2.0 0.0 0.228

1.5 0.0 0.171

v. FRAGMENTED METALLIC DISC

TABLE VIII

BOUNDARY CONDITIONS

‘1

0.0001

Pj

0.06

0.06

‘2

!23
0.0
0.0

0.2 0.2 0.2

0.2 0.2 0.2

11j+2 12j+2
-3? ‘lj+3/2

0.0 1.870 0.285 0.0

0.0 1.345 0.154 0.0

‘Zj++

0.0

0.0

‘2j+3/2

-1.125

-0.625

Having demonstrated the validity of our two-fluid methodology for the exam-

ples described above, we proceed to the second set of calculations. In this set

we examine the dynamics of a fragmented metal disc impacted by a strong shock.

The initial conditions are shown schematically in Fig. 2. As discussed previous-

ly, the initial configuration consists of A, a region of pure gas, B, a region of

fragmented metal, and C, another region of pure gas. The left wall is idealized

as a rigid boundary, whereas the right wall is an inlet boundary through which a

shock is introduced. The material properties of the fluids used in the first

pair of calculations are summarized in Table I. Tables IX-XI present the initial
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conditions, the calculational mesh, and the boundary conditions used in both

calculations. The two calculations differ in only one respect; the coupling

strength between the gas and the metal fragments is less in the second calcula-

tion. The coupling strength is reduced by changing the value of the particle

radius r, (in Table I) from 0.0001 to 0.01.

TABLE IX

INITIAL CONDITIONS

Region

A

B

c

DX

0.1

‘ij

0.0

10.0

0.0

DT

0.005

P~j

0.1

0.O

0.1

jl

201

P;j+2

0.4

e
lj ‘2j

I
lj 12j

0.0 1.0 0.0 0.0

1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0

TABLE X

CALCULATIONAL
Y

jz _ _J ‘1

251 300 20

MESH

‘2 ‘1——
6 0.15

TABLE XI

BOUNDARY CONDITIONS

PJ

0.0

0.0
0.0

‘2

0.15

11;+2 12j+2 q+z ‘lj+3/2
— — .

0.0 4.5 1.2 0.0

Figure 8 presents a summary of the sequence of events as a

for the strong-coupling calculation. The world lines are shown

pal shocks and for the interface motion. Note that even before

has moved very far toward the rigid wall, the shock in region C

ulj+~

0.0

0.0

0.0

c1

0.15

‘2j+3/2

-3.0

u2j+*

0.0

0.0

0.0

E2

0.15

function of time

for some princi-

the metal disc

has passed back

and forth several times between the contact surface and the inlet wall. As a

result, the pressure driving the metal disc has been increasing continuously,

giving the acceleration shown by the curved world lines of the two interfaces.

As the leading surface of the metal disc approaches the wall, the shock that

precedes it is reflected back toward the leading edge of the metal and subse-

quently is reflected many times with increasingly higher frequency between that

interface and the wall. The result is a strong deceleration of the metal as the
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Fig. 8. world lines for the strongly coupled calculation.

gas in region A reaches its maximum compression and then begins to re-expand. In

this example with essentially infinite coupling between the two materials, both

the leading and trailing contact surfaces remain sharp.

Several stages of the strong-coupling calculation are shown in Figs. 9 and

10. Table XII identifies the labels used in these figures with the symbols de-

fined in preceding sections. At t = 11 the initial shock has traversed the gas

in region C through several reflections while the shock transmitted through the

metal has reached the gas in region A

TABLE XII and has propagated a small distance in-

SYMBOL IDENTIFICATION to that region. The location of the

P P contact surfaces is discerned most

RP1
pi

clearly in the theta plots of Fig. 10.

RP2 P; By comparing the pressure variation at

U1
‘1

t = 11 to the variation in e
1
and 02,

U2
‘2

we find that the right-hand contact

THl
‘1

surface is located at a distance of

TH2
‘2 17.5, just ahead of the high-pressure

EI1
11 spike in region C, which results from

E12
12 the presence of “areflected shock. The
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macroscopic density p; of the gas adjacent to the metal in region A has increased

significantly, as has the specific internal energy 12. These variables, together

with the velocity plot for the gas, indicate that the shock front is located at a

distance of 12.5, so that it leads the metallic layer by approximately 1.4. By

t = 16, the shock front ahead of the metal is evident in the pressure plots as

well as in the plots of p;, 12, and U2. From the theta plots we observe that the

metal layer is slightly less compacted than it was at t = 11, an effect of the

expanding rarefaction fan that eats back into the metal, as shown in the world

line plots of Fig. 8.

At t = 19 we show the state of the system just after the turnaround of the

metal interface. The maximum macroscopic density in the metal disc has more than

quadrupled and the thickness has decreased by more than a factor of 2. Both the

metal and the gas have been heated during interaction with the rigid wall. For

example, the peak value of the specific internal energy of the fragmented metal

has increased by a factor of 33 from its value at t = 16. The velocities in the

disc are all positive, indicating that it is reboundi-ng. At t = 21, we see that

the metal disc is expanding and continuing to rebound to the right.

shock generated by the collision with the rigid wall has now passed

gas of region C, heating it and raising its pressure.

The calculation that is to be compared with the one above uses

coefficient that is reduced by two orders of magnitude. We show that with this

nominal coupling between the two materials, there is both an interpenetration of

the metal fragments by the gas, forming a mix region, and a slight modification

to the mean dynamics of both the metal and the gas. Figure 11 shows time se-

quences of field variables selected for comparison with the strongly coupled re-

sults of Figs. 9 and 10. The difference in the dynamical response of the metal

disc is indicated by the time evolution of the macroscopic densities. Even at

the relatively early time of t = 11, gas interpenetration has lowered the metal

The strong

well into the

a coupling

densities at the right interface and has reduced the sharpness of that contact

surface. There are significant gas densities within the metal itself near the

trailing edge of the disc. The leading, stable edge maintains its sharpness un-

til decelerated by the first shock reflected from the rigid wall, at which time

it becomes the unstable interface. Shortly afterwards, the right metallic sur-

face becomes stable. The mix region of the right surface recompacts and sharpens

as the gas within it is expelled to the right.

I
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Fig. 11. Field variables as functwns of position at
weak coupling between materials.

times 11, 16, 19, 21;
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If we compare the maximum specific internal energy of the metal disc at

times before turnaround, we find that the strongly coupled case is the hotter of

the two; however, after turnaround the weakly coupled system is the hotter. The

macroscopic densities predicted in both cases for the gas of region A are very

similar before turnaround. The gross dynamic response of the metal for the weak-

ly coupled case begins to show significant differences from the strongly coupled

case after the leading metal interface becomes unstable because of interaction

with shocks reflected from the rigid wall. At t = 19 the maximum gas density for

the strongly coupled case is 10.5; for the weakly coupled case it is only 6.8.

The respective maximum densities in the metal disc are 47.5 and 37.5. Both the

compression of the gas in region A and the compaction of the metal disc are

greater in the case of strong coupling.

Figure 12 shows the world lines of the diso interfaces for the weakly-

coupled case. The shaded areas represent the regions of mix. As discussed above,

the left interface is stable until interaction with the shocks reflected from tile

rigid wall. In the figure this contact surface remains sharp, beginning to smear

only after being struck by the first reflected shock. The right interface is un-

stable before turnaround. This region broadens steadily until turnaround, after

which the gas is partially expelled as the now stable interface sharpens. In

Fig. 13 the interface world lines are overlayed on an expanded scale. This fig-

ure shows that the left contact surface is first stable and then unstable and

that the right contact surface is first unstable and then stable.

In Fig. 14 we plot the average microscopic compression of the gas initially

in region A for the two calculations. The maximum average compression is higher

in the case of the strong coupling. The magnitude of the total momentum in the

metal disc is greater for this case, producing higher levels of compression be-

fore turnaround. The resulting rebound is more energetic because of the higher

pressure that has built up between the rigid wall and the disc, as can be seen

from the plot of the total momentum in the metal disc as a function of time in

Fig. 15.

Calculations in which the density ratio of the two materials is large are

potentially difficult to carry out in multiphase flow studies. The reason for

this problem is that a computational cell with a very small amount of mass of the

lighter material adjacent to a computational cell with mass of the heavier mate-

rial can experience very large accelerations. To extend the present calcula-

tions to higher density rati~s, this difficulty has been remedied by a special
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treatment that examines the direction of acceleration in the region of a computa-

tional cell for which this anomalous behavior can be expected. If the accelera-

tion is from the heavy to light material, we expect no interpenetration, and the

lighter material is assigned the same fluid velocity as the heavier material. If

the acceleration is from the light to heavy material, we expect interpenetration

and the code needs no special modification. A test calculation with density

ratio 1000 to 1 shows that this modification eliminates the difficulty, and gives

results that are similar to those obtained from the 100 to 1 density ratio stud-

ies.

VI. CONCLUSIONS

We have performed numerical calculations with a newly modified version of

the PIC method by which the relative dynamics of a fragmented metal and a shocked

gas can be calculated with both accuracy and efficiency. To test the numerical

results, we visualize simple experiments in which a plane shock driven by high

explosive through a low-density fluid interacts with a metal composed of various
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size fragments. Future comparison with experiments will not only proof-test

the methodology, but will also aid in the specification of constitutive relations.

When metal fragments ablate, as they do in some strongly nonequilibrium cir-

cumstances, the phase transitions that occur can be inferred from a comparison

between calculated and experimental results, enabling us to derive considerable

information about the exchange of mass and energy. Such a study would require a

calculational model for the phase transition and possible burning that could take

place in such an interaction. The phase transition models already developed for

the pure Eulerian calculations performed by the KTIF code4 are likely to be ad-

equate. Both the gas composition and the particle size must be functions of

position and time in this modified calculation. If a leap-frog motion of the

ablating metal particles produces a local spectrum of particle sizes, or if there

is initially such a spectrum in the fragmented metal, an additional modification

will be required. This modification can be accomplished with our PIC methodology

in the following way.

For every velocity zone we calculate as usual the mean momentum for each ma-

terial, such that the sum of the particulate momenta equals the calculated total

momentum. The individual particles, however, do not have the same velocity for

the calculation of their movement through the mesh, each being ascribed a veloc-

ity that is an appropriate function of the physical particle size associated with

the computational particle. Such a calculation has not yet been performed with

the present code. To implement this modification will require a careful examina-

tion of the expected velocity spectrum to be associated with a spectrum of par-

ticulate sizes. Several models can be visualized, but these must be tested

before we can recommend one.

All calculations reported in this study are performed in plane coordinates.

We expect a straightforward extension to other geometries. Calculations in three

dimensions, however, are as likely for this, as any other technique, to be very

expensive in their use of computer time.
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APPENDIX A

NUMERICAL ACCURACY

Previous calculations of multiphase flow have been carried out in a com-

pletely Eulerian coordinate system. For many purposes this type of representa-

tion is sufficiently accurate. In the present circumstances, however, there is

one particular feature of the multiphase flow for which our preliminary calcula-

tions with a purely Eulerian representation are seriously deficient. Whereas

most multiphase flow studies have emphasized the bulk interaction between already

mixed phases, our present concern has been with the earliest stages of mix be-

tween phases in the vicinity of an interface that is initially sharp. The den-

sity plots of Fig. A-1 show that a purely Eulerian calculation performed with a

code called MUFF suffers from an intolerable level of numerical diffusion, even

with very strong coupling between the two materials. It is easy to show that the

diffusion extends over an effective distance that varies as the square root of

the size of a computational cell. To reduce the diffusion to an acceptable

level, however, would require cells very much smaller than those necessary for

accurate resolution of the rest of the dynamics. The realization of this diffi-

culty, confirmed by the numerical calculation shown in Fig. A-1, led to our de-

veloping the modified PIC code described in this report. Figure A-2 illustrates

that the combined Eulerian and Lagrangian representation of the PIC approach is

indeed capable of maintaining a very sharp interface when the coupling between

the two materials is strong.

Although the accuracy of the calculations is very difficult to demonstrate

in general, we have used two tests to indicate whether the results represent re-

liable solutions of the differential equations. One test is the calculation of

a selected problem with three different degrees of resolution. The results shown

in Fig. A-2 indicate relatively little difference among the three calculations,

although there is increased sharpness of the interfaces with finer resolution.

The second test, discussed in this report, is a study of the propagation of weak

signals through an initially mixed region. The agreement of the results with one

of the rare analytical solutions obtainable for multiphase flow shows the calcu-

lations are reliable.
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APPENDIX B

PICM: AN IMPLICIT VERSION

An alternative implicit version of PICM can be obtained by relating pressure

changes to velocity changes and velocity changes to volume changes through a si-

multaneous time centering of these variables. The resulting equations generally

would require solution by iteration. We write the momentum equations in the form

and

% (n+llj+~ ‘lj+~ - ‘“lj+vlj+dn+lpj‘i+lpj+J”
+‘K.

(
Csxat ‘+lU

n+1
J++ 2j+~ - ‘lj+~

%
(

n+1
2j+& ‘2j+* - ‘“2j+*)<e2j+~ (n+lpj ‘i+l~j+~)*t

(
+ ‘K. 6x6t ‘+lU

n+l
J+% lj+~ - ‘Zj +%

(B-1)

9 (B-2)
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where the superscript to the left of a variable indicates the time level center-

ing and in the solution procedure becomes the iteration level of that variable.

The conservation-of-volumeequations are used in the form .

and

n+l = n+l
- ‘v (n+1 n+1

‘2j - ‘2j ‘Zj-+ - ‘zj+~ )6t=o .
2j -

(B-3)

(B-4)

n+1 n+1 n+1

At this point we have four equations in five unknowns, ‘lj’ ‘2j’ ‘lj+%’
n+1 n+1

‘2j+~’ and The two equations of state, the conservation of volume
‘j “

fraction, and the assumption of local pressure equilibrium provide us with three
n+l “n+l

more equations and only two additional unknowns, e
lj

and ‘2j “

and

n+1 2
=a

‘j 1

‘M
lj 1

n+lv n+lo - ’01
lj lj

‘LM2. ~n-l-l
= (Y2 - 1) #n+le

‘I
‘j 2j ‘

2j 2j

“M . ~

- (Yl - 1) n+ll’ — %
lj ‘

(B-S)
n+l~

‘lj lj

n+1
e

+ n+l

lj
e

2j =
1.

(B-6)

(B-7)

An additional degree of implicitness could be incorporated in this formula-

tion by expressing the equation of state in terms of advanced-time specific in-

ternal energies and by calculating the changes in internal energy by advanced-

time work terms. This additional complication will be useful for enhancing the

stability of the equations, but is not necessary for the calculation of the low-

speed flows for which the above implicitness is proposed.
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Proceeding with the system of seven equations presented above, we solve for

the iteration variables n+1 n+l
‘lj

and We approximate the derivatives of
‘j”

Eqs. (B-3) and (B-4),

n
n+1

D anDlj dp +-nD =— a ‘lj de
lj lj

anpj j ane lj ‘ (B-8)

lj

N+lD anD2j dp +
-nD =— anD2j de . ,

2j 2j
anpj j a% lJ

(B-9)

lj

where dp and dClrepresent the changes in those variables from one iteration to

the next. Setting
n+l n+1

‘lj = ‘2j
= O, we obtain

dpj =

and

anD1j anD
‘D —- 2j
2j ane ‘b —

lj ane
lj lj

( anD
lj

anD .
dO =
lj ‘D —-

2j ~np. ‘D’. ~
lJ anp

J j

anD anD anD anD
lj 2j lj 2j— —.- _ _

anpj a%
lj

a% ~j anpj

/(anD anD #D anD
lj 2j lj 2j— -— _

anpj a%
lj

a%lj anp.
J

(B-1O)

. (B-11]

The partial derivatives can be evaluated either numerically or analytically. The

analytical expressions are complicated and may require the calculation of small

differences.
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