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SOME ASPECTS OF EQUATIONS OF STATE

by

H. L. Frisch

ABSTRACT

We develop briefly scme elementary
properties of the equation of state of
molecules repulsing each other as point
centers of force. An inequality for the
Lennard-Jones gas is presented. We also
briefly review the scaled particle theory
equation of state of hard spheres. We
suggest means of possibly applying these
concepts to represent thermodynamic data
on model detonating gases.

I. INTRODUCTION

During my recent visit to the Los Alamos Scientific Laboratory (LASL),

John Bdzil asked me to make some remarks about some elementary approaches to

equations of state of detonating gases. This report is a summary of some sim-

ple ideas drawn from elementary statistical mechanics. For our purposes, the

gases we shall be concerned about are single fluids (or certain simple mix-

tures of “

effective

TWO d.

peratures

(1) point

luids) at sufficiently high temperature and pressure so that the

intermolecular potential is purely repulsive.

rections for doing this are to assume that at sufficiently high tem-

the real gas intermolecular potential can be replaced by either

centers that repulse each other with the. (n+l)st power of the

distance between them, r, viz.,

A= A/rn , (1.1)
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A = b(r) being the effective intermolecular potential; or (2) the molecules act

as hard spheres with a diameter u. The latter can be made to depend weakly on

the temperature T.

The first approach is simple because it enables one to deduce certain

aspects of the mathematical form of the equation of state, even though the

precise functional form is not determined by elementary considerations. Spe-

civically, one can use thermodynamic scaling to obtain a relation between the

pressure

extended

to a gas

pairwise

p, volume v,and internal energy U of such a gas. This result can be

to mixtures of point centers of such form, e.g.,for a binary mixture

composed of Nl, molecules of type 1 and N2 molecules of type 2, whose

additive effective potentials are

‘11 =A1l/rn , hlz =A12/rn , 422 = A22/rn .

This p,v,U relation can be used to obtain a possibly effective approximate way

of extending empirical information at a reference temperature T = Tr if pr

=.H(vr) is found experimentally and one is morally certain that in the vicin-

ity of T =Tr the real gas satisfies Eq. (1.1). The success of this approxi-

mate procedure must of course be checked experimentally. In conjunction with

this procedure, or alternatively, one can develop the thermodynamics of the gas

on the basis of the given p,v,U relation. In this fashion one can generate

some relationships which,while clearly exact for the presumed model, can be

used to check the behavior of the real gas. We shall, in this report,carry out

a portion of this program for a single-fluid gas. The thermodynamics of such

a mixture we leave as an exercise for our readers.

In the second approach, where one models the gas molecules by hard spheres,

one is using well-known results on hard-sphere equations of state generated

from the scaled particle theory or solutions of the Percus-Yevick integral

equation and certain empirical extensions. Much of modern, high-temperature

statistical mechanical perturbation theory begins with this reference state!

We shall propose a much more empirical set of approximations.

II. THE FLUID OF REPULSIVE POINT CENTERS ($= A/rn)

We prefer to deduce the basic P,v,U relation from the canonical ensemble
1

.

v’

viria’

2

equation of state and internal energy representation.’



(2.1)

m

pv = NkT
!

. # !ikt# g(r)rsdr,

o

co

U=$kT+~
I

$(r)g(r)rzdr (2.2)

o

with N the number of molecules; k,Boltzmann’s constant; $(r),the intermolecular

potential: and g(r) = g(r, N/v, T) the radial distribution function. For Eq.

(1.1)

and thus Eq. (2.1) and Eq. (2.2) become

(pv-NkT)=(:)[%/;g(r)r2d9

(U - $kT)
=[*/$g@)r2dr] ●

(2.3)

(2.4)

Elimination of the joint factor in square brackets on the right-hand side of

Eq. (2.14) yields the desired p,v,U relation

PV - (1 - ;)NkT=(!j-)U (2.5)

4
or

i pv - (1 -&)NkT = hU , (2.6)

where the constant number h = n/3. We have written Eq. (2.6) to show the sim-

ilarity to the often-used equation of state of solids2
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pv - R(v,T) = hU ,

but for solids,R is a weak function of T whereas

Equation (2.5) also holds for the mixture of

(2.7)

our R is independent of v.

such point centers satisfying

Eq. (1.2). For a binary mixture, Eq. (2.1) and Eq. (2.2) become

[/

m

d~ll
Pv = (Nl + N2)kT - ~ N; ~ 911(r)r3dr +

o

!

m
- d$~~

I

d$zz
2N1N2 —dr ’12 (r)r3dr + N2

2

1

~922(r)r3dr ,
0 0

[/

m

U =#(Nl + N2)kT + $ N: $ll(r)gll(r)r2dr

o

m

/

m

+2N1N2 $12(r)912(r)r2dr + N:
\ 1$22(r)g22(r)r2dr .

0 0

Substitution of Eq. (1.2) into the above and elimination of the joint factor

[/

m m

N;Al~ r-ng11(r)r2dr+2NlN2A12I r-ng12(r)r2dr
o 0

m

+ N:A22
\

1

r-ng22(r)r2dr

o

yields Eq. (2.5) with N = NI + N2. Of course the thermodynamics of such a mul-

ticomponent mixture are somewhat different from the pure fluid; nonetheless,

many of our subsequent thermodynamic derivations can be extended to such a

mixture with some modification. In the remainder of this section we focus only

on the single-fluid gas.

.

r
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Our result is a special case of a scaling, i.e.,similarity argument given

in detail in Landau and Lifshitz3. If the potential energy of interaction

between the particles in a body are a homogeneous function of degree n in their

coordinates,then the Helmholtz fr~e energy, F, can be written in the form

F= - 3(1/2 +~)NkT ln(kT) + NkTY(vT-3’n/N) , (2.8)

where Y is an unknown function of the indicated argument. This result is

obtained by considering the effect of the substitutions on the coordinates q

and their conjugate moments p(q + Aq, p ~ An/2P), A is an arbitrary constant,
if we also substitute v+ X3V and T -+XnT in the canonical partition func-

tion. p can be obtained by differentiating Eq. (2.8) or directly from the

virial theorem. In our case,n +-n and Eq. (2.5) results. This argument can

be extended usefully to the grand canonical partition function for

mixtures satisfying Eq. (1.2), but we leave this as an excercise for our read-

ers.

We now return to our single-fluid equation of state Eq. (2.6). Combining

Eq. (2.6) with the thermodynamic relation

(#)T=++)v- P (2.9)

allows us to eliminate either U or p. Let us first do the former. Differen-

tiating Eq. (2.6) with respect to v at constant T,one finds

byvirtureof Eq. (2.9). This can be rearranged to give

,($T - hT(#)v = - (1 + h)p ● (2.10)

The characteristics of this partial differential equation (PDE) satisfy

5



&= dT
v +‘~=- l:hp

whose solutions are the characteristics

Tvh = Cl:z

(2.11)
~v{h+l) = ~

2“

The general solution of Eq. (2.10) can therefore be written [cf. Eq. (2.8)

with n ~ -n]

-(h+l) W(TVh) ,
Pv= (2.12)

where W is an unspecified function of the indicated argument.

Let us now show how this can be used to extend empirical data approximately.

Suppose at the reference temperature T = Tr one obtains experimentally the

empirical relation

Pr = H(vr) . (2.13)

Then if the characteristics are to pass through this curve in the T = Tr

plane, we must have from Eq. (2.11)

Tvh = Zr = TrV;

Pv(h+l)
= prvp+l) = V:h+l) H(vr) ,

or

h+l

-( )~P = (T/Tr) h H V(+#” (2.14)

must be the equation of state in the vicinity of T = Tr.

Perhaps a larger range of validity of such an empirical representation can

be achieved by allowing h to vary slightly with T-Tr and V-vr, viz.,

6
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h = hr + hv(v - vr) +hT(T - Tr) . (2.15)

Clearly, by introducing enough parameters such as hr, hv, hT,one should

be able to fit just about anything in the way of p-v-T data, with consequent

loss of meaning!

For the purposes of doing thermodynamics it might

from Eq. (2.9) using Eq. (2.6). One finds thePDE.

“= T(#)ti h_’V($$T ,

whose general solution is

u= V-hf(z) , z = Tvh ,

(2.16)

be useful to eliminate p

(2.17)

and f is undetermined. The functions f and W are of course related as is

verified easily by substituting Eq. (2.17) and Eq. (2.12) into Eq. (2.6),which

allows one to conclude that

w(z) = hf(z) + (1 -~)Nkz , Z = Tvh . (2.18)

The physical significance of the function f(z) follows immediately from differ-

entiation of U with respect to T at constant v,

()c“(z) = * = f’(z) ,
v

(2.19) “

i.e.,f’(z) is the specific heat at constant volume. f(z) also can be related

easily to w of Eq. (2.8) by differentiating the latter.

We will not pursue the systematic thermodynamics of this gas but list only

three parameters that might be of interest in detonation physics.

(v =~+(@h)~;f’(z)=C; z ‘Tvh)
v

()=lav s

aP v aT
P

(2.20)
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NkT - hTf’(z) ‘

‘T=Kil=- ()
“~ .

Kh+’)u + (+-& - ‘T’’(z’l s

r = Griineisen ratio = &

‘hE+(+-O*r~

(2.21)

(2.22)

Some final remarks about this excercise are

(1) One can redo easily everything if the gas has separable, internal degrees

of freedom by noting that one only has to add a temperature-dependent contribu-

tion to U and proceed to redo the theory including that term.

(2) Clearly this gas reminds one of an ideal quantum gas in its thermodynamic

properties. Specifically if h = 2/3 (hypothetical n = 2),then the thermody-

namics becomes isomorphous with a fermion gas.

(3) One can also ask what happens to the p-v-U equation of state if the poten-

tial is no longer in the form of Eq. (1.1) but is,say,of the Lennard-Jones form

A(r) = Anr-n - ~r-m , (2.23)

where n >m > 0.

Remembering that 4mzg(r)dr is the marginal probability distribution of

pairs of molecules in a canonical ensemble and providing

m

<rk) =
I

rkg(r) 4m2dr < m , (2.24)

o

k = n,m, we can show that Eq. (2.6) is now replaced by an inequality. Let

(Pv/NkT) - 1
N‘P= —

s

6vkT
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and (2.25)

(U/NkT) - 3/2
‘U = N .

2vkT

Then by virtue of Eq. (.2.23)in Eq. (2.1) and Eq. (2.2) we have

‘P
= nAn <r-n> - mAm <r-m> ‘

u
u = An <r-n>- Am<r-m> .

Solving for <r-n> and<r-m>,one has

(2.26)

(2.27),

Treating l/r as a random variable one has, using standard inequalities on ex-

pectation values of convex functions of random variables?

[<Fn>]l’n~[<p>]”rn

or (2.28)

III. THE HARD-SPHERE FLUID

The principal characteristic of a fluid of elastic bodies, such as a hard-

sphere fluid, is that the total pressure consists of the thermal pressure

P = T(%)
v’

(3.1)



i.e.,(aU/av)T = 00

For such a fluid

–=, + $..3(;) (3(.($’3),
:IT

N13
where a is the diameter of the sphere and g(a(v) ‘ ) is the radial

distribution function at contact. It can be shown that

()“* .* ,
‘T=-

Tp

(3.2)

(3.3)

aP =
V- l(av/aT)p. The Gruneisen ratio of such a fluid is given by

r = Pv/TCv . (3.4)

All of these are possible diagnostics for testing whether a real fluid behaves

like a hard-sphere fluid.

The scaled particle theory (SPT) of fluids or the Percus-Yevick (PY) com-

pressibility equation of state provides an approximate equation of state

f!!&= l+q+~z

(1 - Tl)s ‘

with n= mU3/6, C)= N/v. The quantities ap and B~l = KT are given

in this theory by

13
aP = T(l-+n2n)~

K=~
w.T 6kTnl+2n

Of course, Gruneisen’s ratio satisfies Eq. (3.4).

10
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I recommend that in using these relations the following procedure be followed

for liquids.

(1) Use the empirical real fluid P, Pexp*.

(2) Find an appropriate CJ= a(T) by using Eq. (3.7) to fit empirical data,

i.e.,solve for u(T) from Eq. (3.7) expressed as

K:xl’=& * ●

ITp “a
6

1 + z~pe:p”u’

(3) Use this oto find n for use in Eq. (3.5) and Eq. (3.6) and other

dynamic relations that can be computed from these. (There is really

to believe that the

with any accuracy. )

gases. We have not

For hard-sphere

Lennard-Jones o parameters ought to apply in this

One could also construct a procedure for detonat’

done so in this report.

mixtures, one has the SPT result

thermo-

no reason

theory

ng

m
__J&= l+~+~z

(1 - E.)3 -+ z
XiXj(”ii - u jj)2[2u” - ‘UiiujjxllJ

i<j=l

(3.8)

with CJiithe diameter of species i

‘ij ‘~(”ii ‘Ujj) ‘

x. = Ni/N .
1

I



For a binary mixture of large and very, very small hard spheres, one has the

exact limiting relationl (all +0)

-L=3_
1 -c ()‘x2Tf&2

if the exact expression for (pv/NkT)2 by itself is used.
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