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TWO-DIMENSIONAL RADIATION-HYDRODYNAMIC CALCULATIONS
FOR A NOMINAL l-Mt NUCLEAR EXPLOSION NEAR THE GROUND

by

Henry G. Horak, Enc M. Jones, Maxwell T. Sandford II, Rodney W. Whitaker,
Richard C. Anderson, and John W. Kodis

ABSTRACT

The two-dimensional radiation-hydrodynamic code SN-YAQUI was used to calcu-
late the evolution of a hypothetical nuclear fireball of l-Mt yield at a burst altitude of
500 m. The ground-reflected shock wave interacts strongly with the fueball and induces
the early formation of a rapidly rotating ring-shaped vortex. The hydrodynamic and
radiation phenomena are discussed.

.—— ——. _——. ——— ——— ———

1. INTRODUCTION

In Ref. 1, J. Zinn describes the one-dimensional
radiation-hydrodynamic code RADFLO and presents an
application of his method of calculating the evolution of
a hypothetical 1-Mt yield nuclear fweball. Because
two-dimensional effects become important when the
fireball is close to the ground, we have extended his
calculations into two dimensions by treating a 1-Mt burst
at an altitude of 500 m. We applied the computer
program SN-YAQUI, a variant of YOKIFER (described
in Refs. 2, 3, and 4). SN-YAQUI was especially designed
to be consistent with RADFLO, and the same 40
frequency groups, opacity, and equation of state tables
for air used by Zinn are incorporated into this code.

SN-YAQUI is written in r-z cylindrical geometry and
performs, in alternate steps, two main functions: (1)
hydrodynamic evolution is followed in Lagrangian fash-
ion with the code YAQUI (Ref. 5), and (2) radiative
evolution is followed with a simplified version of the code
TWOTRAN (Ref. 6), which is based on the method of
discrete ordinates (or SN). Whenever necessary, an
automatic particle-in-cell rezoning procedure 7 is carried
out to prevent cell boundaries from becoming concave;
temporary rezones also are performed regularly for the

SN, which requires cells of rectangular cross section.
Provision is made for the reflection of light from the
ground surface in accordance with Lambert’s law of
diffuse reflection with a given rdbedo, to which a value of
unity was assigned for the calculations reported here.

The initial conditions are obtained at an appropriate
evolution time by adopting values of the physical param-
eters derived from RADFLO; the time chosen (O.1 s) is
just before the shock strikes the ground. The initial
physical quantities are specific internaf energy (or tem-
perature), density, and the radial and axial components
of velocity (Figs. 1, 2, and 3). The vafues are interpolated
from the RADFLO mesh containing -100 spherical
zones onto about half of the total 7000 (70 X 100) cells
of the SN-YAQUI mesh. For the problem at hand, the
length of a cell side averages -10 m. In addition, a
uniform distribution of some 250 massless marker
particles is established within the fireball portion of the
mesh (Fig. 4); these are moved with the instantaneous
fluid velocities and serve as tracers for the debris
material within the fireball The values of the physical
variables in ambient cells are set in accordance with a
realistic model atmosphere consisting of the altitude
profiles of pressure, temperature, density, and water
vapor.
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At certain preselected times, computerderived graphs

of the fireball are generated, showing the physical
variables, isophotes, etc. In the following sections, we
will discuss the shock wave, Mach stem, reflect-
ed-shock/fireball interaction, rise and growth of the
fireball, and radiation field.

H. THE SHOCK WAVE AND MACH STEM

The primary shock wave originating from the detona-
tion strikes the ground shortly after 0.1 s, reflects, and
returns through the fireball (see Fig. 5). Compressive
heating raises the sound speed behind the shock and the
propagation speed of the reflected shock. Consequently,
the Mach stem, the intersection surface of the two
shocks, forms at the ground and with time increases
vertically. Normally, the propagation of the Mach stem
is complicated by the character of the terrain, by the
ground shock, and sometimes by the presence of a
near-surface layer of heated air, which can cause a
precursor shock to form. These effects are not included
in this calculation, which considers an ideal ground
surface. The reflected shock passes through the burst
point at 0.24 s and merges completely with the primary
shock at 1.0 s (Fig. 6). The calculated vertical distances
of the primary and reflected shocks and the horizontal
distance of the Mach stem from the subdetonation point
are given as a function of time in Fig. 7a. The altitude of
the triple point vs time is shown in Fig. 7b. Figure 8 gives
the relative peak overpressure, (p - pO)/pO,where p is the
peak pressure in the Mach stem and pOis the ambient
pressurq and the relative peak dynamic pressurq

q/pO = 0.5 pV2/Po, Where P is density and v is velocity. A
pressure cross section Of the Mach stem at 0.63 s is
shown in Fig. 9. The calculated Mach stem doesn’t
display the sharpness or high peak pressure that could be
produced by finer zoning in the Mach stem region.

III. THE RING VORTEX, FLOW FIELD, AND
FIREBALL RISE AND GROWTH

A “free-air” nuclear burst has negligible interaction
between the fireball and reflected shock; however,
buoyancy forces deform the rising fireball and eventually
create a ring vortex (toroid). When the interaction occurs
early, as in the present case, the strong reflected shock
imparts high negative vorticity to the fireball similar to
that produced by buoyancy (the upward velocities near

the z-axis are highest), and the ring vortex forms much
earlier than it would from buoyancy alone. For a l-Mt
free-air burst, the time of toroid formation is -11 s, but
for a burst altitude of 500 m, the calculated time is -1.5
s. The following situation occurs (see Fig. 10): a center of
negative vorticity forms behind the reflected shock and,
at 0.20 s, has risen to an altitude of 70 m. By 0.375 s, it
has mjgrated to 225 m; eventuaUy it becomes the
toroidal vortex. Figure 11a gives the altitudes of the
vortex center and the fireball top and the horizontal
radius of the fireball (1000 K isotherm) during the first
7 s. Figure 11b gives the horizontal and vertical coordi- ,
nates of the vortex center for times to 70 s.

The flow field near the fireball displays a predictable,
though dramatic, behavior. At fiist the velocities are
directed radially outwards behind the primary shock.
The reflected shock passes through mid-fireball at 0.24 s
with an accompanying updratl. The toroid is established
by -1.5 s; meanwhile, the primary shock and Mach stem
continue to press outward, though ever weakening (the
rezoning procedure eventually discards them from the
mesh). The region immediately above the primary vortex
and towards the z-axis displays a strong positive vortici-
ty (Fig. 10) that was originally created by an in-
ward-moving disturbance at -0.13 s and is a man-
ifestation of initial conditions obtained from RADFLO.

As the fireball rises, the updraft along the z-axis
continues and pulls in replacement air from several
kilometers away. This creates the “afterwind” that is
characteristically observed in low-altitude explosions.a
Velocity profiles along the z-axis are shown in Fig. 12.

The marker particles revolve about the internal toroid
axis (Fig. 13) with angular velocity during 1.5 to 9 s
amounting to -2 rad/s and linear speed -240 m/s
relative to the toroid, which in turn rises at N80 m/s. By
20 s, the angular velocity of the toroid has decreased to
- 10YOof its initial value.

IV. RADIATION PHENOMENA

The calculated radiative evolution of the fireball is
carried out with the method of discrete ordinates. At
certain selected times, graphs are computer-generated to
show isophotes and irradiances in several spectral bands
for a given observer’s position. For this purpose, it is
most convenient and accurate to apply the method of
characteristic rays; the emergent radiances of the fireball
in the direction of the observer are obtained by the direct
application of the formal solution to the equation of

.
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transfer. The details are given in Ref. 9.
Figure 14 shows the calculated emitted power of the

fireball as a function of time summed over ail
wavelengths and in the red (M5600 to 6800 ~) and green
(AA4600to 5600 A) bands. These powers were computed
by the SN method and are consistent with irradiances
determined independently by integrating over radiances
obtained from characteristic rays. The integral of radi-
ated energy taken over the power time curve gives a
“thermal fraction” of the total yield amounting to 29?40.

Figure 15 shows calculated isophotes in the red
wavelength band at selected times, as would be observed
from a position located horizontally 500 km from the
fireball. Table I gives the maximum temperature in the
mesh and the maximum brightness temperature obtained
from the isophotes in the visible spectral region for
selected times. By 5 s, the fireball has developed a very
prominent “skirt,” which is the large, hot, but relatively
quiescent, region beneath the rapidly rotating toroid. It
arises as a consequence of the deformation of isotherms
produced by the reflected shock (Fig. 16). Several
calculated continuous spectra are shown in Fig. 1.7.Such
spectra have rather coarse resolution amounting to -500
A at A2600 ~ - 1000A in the visible,–~d -2000A at
-1 ~m.

TABLE I. Maximum Temperatures In Mesh And
Maximum Brightness Temperature

Time T
(s)

MAX T~,MAx(visible)
(K) (K)

0.15
0.20
0.50
0.75
1.00
1.25
1.50
2.00
3.00
6.00
8.00

10.00

39000
30000
18000
15000
12500
9600
8300
7100
5800
4800
4500
4100

---

3800
7000
7800
7850

---

---

6000
4900
3550
3450
3200
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fig. .3. Initial velocity distribution at 0. I s.
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