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Generalized Equations for Emittance and Field Energy
of High-Current Beams in Periodic Focusing

by

Ingo Hofmann

ABSTRACT

We derive a set of ordinary differential equations re-
lating the rms emittance of a beam with its nonlinear field
energy. The equations are valid in constant or periodic
focusing and 1-D, 2-D, or 3-D and thus provide a general
framework to study emittance growth. They allow us to esti-
mate the expected total emittance growth, if the change of
nonlinear field energy can be predicted from general princi-
ples, like the homogenization of charge density in beams
that are space-charge dominated. Structure resonances in
periodic focusing can be identified as a resonance between
the envelope modulation and the oscillating nonlinear field-
energy term. The equations lead to estimates for the maximum
longitudinal-transverse emittance transfer in situations
where equipartitioning occurs. A comparison with results
from computer simulation will be the subject of another
paper in preparation.

I. INTRODUCTION

Recently, an equation has been presented by Wangler et at.?! relating the
rms emittance growth of a beam to its electric field energy in the case of an
azimuthally symmetric charge distribution and a continuous focusing force. (A
similar equation has been derived previously by Laposto\le.z) The equation by
Wangler has been found useful for interpreting the change of rms emittance in
numerical simulation under extreme space-charge conditions. In this limiting
case, it has been possible to predict final emittance growth from the field
energy stored in an initially nonuniform charge distribution.? Wangler et al.
also confirm the approximate formula for emittance growth, which was previously
derived heuristically by Struckmeier, Klabunde, and Reiser® assuming a balance
between field energy and (transverse) kinetic energy.



Real beams are considered in periodic quadrupole channels and thus deviate
from azimuthal symmetry. Moreover, they can be bunched longitudinally and allow
for transfer of emittance between the transverse and longitudinal directions,
as was shown previously by Jameson® and by Hofmann and Bozsik® using computer
simulation. The question has been raised whether it is possible to generalize
Wangler's equation to a realistic multidimensional case with periodic focusing
and thus obtain relatively simple equations for emittance growth that can be
useful for practical design and to enhance our general understanding of emit-
tance growth. Here we show that it is indeed possible to derive such equations
by forming moments of Vlasov's equation (Sec. II). In Sec. III, we specify the
general equation to beams in one, two, or three dimensions; in Sec. IV, we
present a minimum energy principle; in Sec. V, we derive Debye shielding; and
in Sec. VI, we discuss some practical applications.

IT. DERIVATION OF BASIC EQUATION

We assume equations of motion in x, y, z with Tinear, time-dependent ex-
ternal focusing forces and arbitrary space-charge forces, where time is re-
placed by the distance s (= v « t) and q is the charge of the particles:

" -
X" + kx(s)x - __%_5 Ex<x,y,z,s) =0
my~v
" _ __J__ =
y"' o+ ky(s)y 37 Ey(x,y,z,s) =0 (n
my~v
n p—
2"+ kz(s)z - —_%_f Ez(x,y,z,s) =0
my~v
E follows from Poisson's equation
vyef=-L n(x,y,z,s) , (2)

- = €0

where n is the density, which is determined by projecting a distribution in
6-D phase space into real space:

n=[[] fix,y,z,x',y"',z"',s) dx'dy'dz'

with f satisfying Vliasov's equation (v = dx/ds)




3—f+<z'-z>f—(5-

i E) T f=0 (3)

o
my3v2 -

We define second-order moments (with N the total number of particles)

ol

x> = NUfoof x%F dx...dz' |

XX' = N']f...f xx'f dx...dz' , etc.,

and derive from Eq. (3) by computing the respective moments:

%g X2 - xxT =0 |

d — .2 2 _q = B

gs X' - X + kX X - 35 XE, = o , (4)
my~v

i 3

. prva 20
X'T o+ 2kxxx - —33 X Ex =0 ,
my~v

a
wn

and analogous in y, z.
We define the rms envelope

- <;§>1/2

and rms emittance

(22 ;;72)1/2 . (5)

x

We follow the procedure by Sacherer® and obtain the rms envelope equations

2 . . sk XE,
T X+ kx(s) X = ——3 - g 5 = =0 (similar in y,2) (6)

ds 16x my~v- X




by eliminating x'2 and xx' and ignoring the third part of Eq. (4) in favor
of Eq. (5). We observe that neither Eq. (4) nor Eq. (6) is a closed set of
equations because, in general, higher-order moments of Vlasov's equation are
contained in Yf;, YTE;, and we obtain an infinite set of coupled moment equa-
tions. Hence, Eq. (6) contains ei(s) as an unknown function, whose derivative
can be readily derived from Eq. (5) (similar in y, 2):

d 2 32 (2 \
— &, = X~ X'E. -~ xx' xE ’
ds “x mY3V2 < X x}
— \
d 2 32q / 2 — ;
o = E - E
0 Sy my3v2\y y'E -y y) : N
and
d 2 32¢q 2 —_—
— &g_ = z- 2'E zz' zE
ds 2z mY3V2 z>

The difficulty now lies with the unknown moments involving E. In the following,
we attempt to replace these by the electric field energy as a quantity that
promises more physical insight. To this end we require that

-1

X'E, = N [...J x'E f dx...dz" = N_]fff Exn_; dx dy dz (8)

with n = Jff x* f dx'dy‘dz', the local averaged velocity of beam particles
(in the moving frame). With the local current given by

j=qnvy , (9
we obtain

XE_ = (Nqw)™' JE 3, dx dy dz (10)
and similar for y, z. By integrating Eq. (3), we derive the continuity
equation




an 1

— +(qv) Vej=0 an
as -

and write (E = - V¢):

[ffE+jdxdydz=J[f6V«jdxdydz=-quffo %E dx dy dz . (12)

The integration is performed over a volume V, which contains the beam in its
interior; hence, we may neglect a surface integral. Using Poisson's equation,
we obtain

j”g-idxdydz=-v-g-s-W—eova¢g-;Endo, (13)
S

where En is the normal component of E on the surface S of our integration
volume and

o 2
W= 5 [ff E° dx dy dz (14>
v

is the field energy within V.

Using Egs. (10) and (13), we can add the three equations, Eq. (7), after

2

dividing them by x2, y~, and 22, respectively. We thus obtain, with the first

equation of Eq. (4):

1d 2, 1d 2 14 2
—ds x " —ds Ty —wds "z~
x2 y2 Z2
3E 2 2 2
32 1 dd %o n 11 dx® —=— 1 dy° — 1 dz° —
=~ = [[6 57— do - 5 — 7— xE_ + — yeE o+ — 2— zE_})j. (15
my3v2 Ng ds Ng s as 2 x2 S X yz ds y 22 ds z

We observe that no approximation has been made so far in deriving Eq. (15),
which relates the coupled change of the three emittances to the change of
field energy. The remaining term on the right-hand side will be shown below
to give, with some approximations, the field energy of a uniform density
beam.



We remark that Eq. (15) immediately yields the respective 2-D equation
for transverse beam dynamics of a long beam (ez, EZ equal to zero); it also
yields the 1-D case describing purely longitudinal dynamics (ex, ey’ Ex’ and
Ey equal to zero). The right-hand side of Eq. (15) has to be evaluated sepa-
rately for each dimension (Sec. III).

It is also useful to derive an energy principle from the third equation,
Eq. (4), for x, y, and z. By adding them and using Egs. (10) and (13), we

obtain

gg-(x'z + y'2 + z'2 >+ ka(s) %E x2 + ky(s) o y2 + kz(s) as 22]
(16)
2 (d d
+ =WRs+e [[oozE do):O
mY3v2N ds 0 as n
For constant focusing, we can write this as total energy conservation law
1
T+ Vex * W = const an
YN
with
mw? T2 2 T2
TE—%—(x' ) (18)
(kinetic energy in beam frame)
v - my? ko s Kyl s k22 (19)
ex - 2 Xt Ky z

(potential energy caused by external focusing forces).

Here we have neglected the boundary integral, which is justified if the
boundary is far away and thus dEn/ds > 0.



III. GENERALIZED EMITTANCE EQUATIONS IN DIFFERENT DIMENSIONS

A. Three-Dimensional Equation
To relate the third term on the right-hand side of Eq. (15) to the field
energy of a uniformly filled ellipsoid, we have to calculate its potential and

field energy. In App. A, we derive the potential of a uniform rotationally
symmetric ellipsoid with semiaxes a (in x, y) and ¢ (in z) and show that the
field energy inside a large sphere of radius R is given by

2.2 2
N {6 gy -2
W, = Towe, [C (1 - f 4 ¥ f) -2l . (20)

where f(c/a) is a geometry factor (= 1/3 for a spherical bunch). By allowing
for a and ¢ to vary with s, we can calculate the time derivative of Nu and
find (App. A)

My alracr L da1-¢ 1
ds 20«so ds a2 ds ac

To show the relation of dwu/ds with the remaining term in Eq. (15), we define

2 2
dy vg ., L dz . (22)

For a uniformly charged ellipsoid, we calculate I from the potential and find
readily

dW

_u
I =- Ng ds (23)

|

For a more general ellipsoid, it can be shown® that the averaged quantities
YE;, }E;, and Ef; depend only weakly on the actual charge distribution if

bunches with identical rms dimensions (rms equivalent bunches) and ellipsoidal
symmetry are compared. The latter requires a particle density of the kind

2 2 2
n(x,y,z,s) =n 55 + XE + Zi , S (24)
a b o




for which one finds®

T TE 3Ng 1-f
xEx =y y = 737 3 x3 (25)
20v/5we 7
and
L 2
7E - —3Na Z £y (26)
r4 1/2 = 3

20/§weozz X

with x3 depending on the profiie in Eq. (24):

1 uniform
25/5 : .
= =« 1.006 arabolic
2147 P
55 .
6/m © .051 Gaussian
25 2 .
573; ~1.018 hollow (r e Gaussian)

(Note that our A3 corresponds to 5/5 A3 in Ref. 6).

We thus can generally write
1 dwu

I=-N™d

@7

and obtain from Eq. (15) the 3-D generalized emittance equation (here actually
22

proven under the constraint of ey = &y and x© = y7):
dW
1d 2 1.d 2. 1.d 2 ___32 (d Ay
— ds Ex * — ds Ey ¥ — ds €2 =~ 73 2, <ds - 23 ds > : (28)
X y 2 my~v

The integration in W is performed over a large enough volume so that
dEn/ds 2> 0; hence, we may neglect the surface integrals.

Keeping in mind that the right-hand side vanishes for a uniformly charged
bunch, we have thus shown that the change of emittance is directly related to



the change of the nonlinear field energy. MWe observe that we have on the left-
hand side the weighted sum of the dezlds for x, y, and z, as a result of the
coupling introduced by the space-charge force. This equation, therefore,
promises an estimate of the change of the weighted sum of emittances if the
change in nonlinear field energy can be estimated from general principles.

It then allows also an estimate of the maximum emittance transfer if "equi-
partitioning" should occur as a result of a coherent instabilitys or single-
particle resonance. The actual dynamics of coherent instabilities requires
solving equations for higher than second-order moments, which is beyond the
framework of our derivation. Equation (28) also indicates the possibility of
slowly growing emittance caused by "structure resonances" in a periodic focus-
ing system if W oscillates with a period close to the focusing period. This
can happen for certain values of the phase advance S, and o (see Ref. 7 for
the 2-D analogue).

We thus suggest that Eq. (28) gives a rather general framework to describe
emittance growth. Its practical value depends yet on the possibility of esti-
mating changes of the nonlinear field energy, without actually calculating its
time dependence, which is in fact possible in many situations.

Equation (28) is supplemented by the rms envelope equations derived by
Sacherer.® With Egs. (6), (25), and (26), we obtain for the rotationally
symmetric ellipsoid

2
2 . e (s) 2 ~
Q_z X + kx(s) X - x~3 - Ng 3 5= hx % =0 (29)
ds 16x 20J§weomy voXz X
and
2
2 . e_(s) 2 ~
o F ke T - 2 N (2) -0 (30)
ds 162 20/§nsomy vozZX X
with
12
% = %2 (= a/¥5 for uniform ellipsoid) ,
a2
7 = 22 (= ¢/¥5 for uniform ellipsoid)



3 z\]
2[1—f(;}Jx3 , (31)

)
)

Note that for a spherical bunch, we have f = 1/3; hence, hx = hZ = x3 ~ 1.

=
>
N
>IN

1]
w
xINR?

)
=\ n . (32)
X 3

>
N
N
>IN

For a nearly spherical bunch (0.8 ¢ Z/X < 5), we have approximately, with
f =~ 1/(3z/x)(see App. A),

h z1+l<1-é> (33)
X 2 2

and

hZ =1 . (34)

B. Two-Dimensional Equation

In App. B, we show that for a continuous beam with uniform elliptic cross
section, the field energy calculated within a large circle of radius R is
given by

N2 o2 2R
W o=Na (1,400 , (35)
u l6weo a+b

where a and b are the semiaxes in x and y. Thus, we find

N, g—s(a + b)
s ="M a1 (36)
where we have introduced

2.2
woz N4 (37)
o 16weo

as field energy within the actual beam volume. The 2-D equivalent of I in
Eq. (22) is readily seen to obey again

dw
I = -1

"
y NG 0 (38)

10



The main difference with the 3-D case is that ?E; and yE_ are independent of

y
the density profile, as long as elliptical symmetry is satisfieds:
2 2
n(x,y,s) = n<"—2 + L2>s : (39)
a b

We then have I = IU and obtain (again neglecting a surface integral, if R is
sufficiently large)

2

e+
X

IQ.

2 32 d
Sty - - 33 (W-W) . (40)

mySv2N ds u

> f—y
ol |
o.lo.
wv
<l I~
~N
Q.

It is appropriate to introduce the in-beam field energy W, as the normalization
constant and rewrite the 2-D generalized emittance equation as

2

e, +
X

N - W

2 d u
--4k&
€y

ds w

(41)

x —
ol |
Q.IQ.
wn
Sl 17
N

o)

d d . X
Note that as wu has to be replaced by kz as wu, with kz a correction factor

*
close to unity if Eq. (39) is not satisfied. Here we have introduced the
generalized perveance given by (following the notation of Ref. 1)

2
—No= (42)

32
2ﬁeomy v

K

For a round beam( x2 = y2 and €, = ey), we readily obtain

—  W-W
2szg— u (43)
S WO

d 2 _ _
ds &x =

which agrees with the equation derived in Ref. 1 for continuous focusing (note

that x2 = X2/4, with X the radius of an equivalent uniform beam as used in
Ref. 1).

*In this case, numerical calculations (private communication, P. M. Lapostolle,
1985) show that Ay differs very little from unity, for instance, a few times
10-3 for a rectangular cross-section beam. In long periodic systems, variation
of Ap might have a bearing on slow emittance growth in the same fashion as the
resonant growth from a periodically varying W - W, as discussed in Sec. VI.3.

11




Equation (41) is again a promising tool to describe changing emittances if
the change of the nonlinear field energy is known or can be estimated from some
general principles. Note that (W - wu)/wo only depends on the type of non-
uniform density, but not the actual size of the beam. For a parabolic density
profile, we show in App. D that it has the value 0.0224, whether the cross sec-
tions are spherical or elliptic. A Gaussian profile yields 0.154 for a round
beam! (numerical results indicate the same value for an elliptic cross section).

For completeness, we give the rms envelope equations following from
Eq. (6):

d? N
= X+ kx(s) X - —3 -3 =~*= 0 (44)
ds 16X X + Y
and

2

2 > .
ek y-—L-S-"1--o0 . (45)
ds y 16y X + Yy

C. One-Dimensional Equation

For a uniformly charged sheet (|z] : c and infinitely extended in x,y),
the field energy within |z| ¢ L is found as in App. C (N particles per unit
area in x,y):

2.2
u - Nd© (L _ E) (46)
u € 4 6
and
dW 2.2
_ _ N7g~ dc _
ds ~ 680 ds ~ Nun : (47)

In Ref. 6, EE; has been evaluated to be slightly dependent on the density

2 2

profile; hence (with 2z c“/3 for a uniform sheet),

1/2

—— _Ng 2
zt, = > fie N (48)
(o]

where A, is given by (differing by /3 from Ref. 6)

12




1 uniform

0.996 parabolic
0.977 Gaussian
0.987 hollow (z2 e Gaussian)

We thus have

1 35 (49)

and the 1-D generalized emittance equation:

1 d 2 _ 3 u\
— =€ - S (50)
2 ds “z my 3V2N <ds l ds /
172
The corresponding envelope equation is Z= 22
2 . . ek 3
5 2+ kz(s) z - =5 - K —-x] =0 . (51)
ds 162 /3

IV. MINIMUM FIELD ENERGY FOR UNIFORM-DENSITY BEAM

Practical evaluation of the generalized emittance equations requires esti-
mates on the possible change of nonlinear field energy. Numerical calculations
for a continuous, round beam have indicated that a uniform-density profile has
lower field energy than a variety of peaked or hollow profiles with the same rms
radius.*’® Here we show that this is generally true in any dimension. Let us
thus consider a 3-D bunched beam with the field energy W given by Eq. (14). MWe
require that the variation of

S ZH + apx’ + apy” + a322 (52)

be zero, with o Lagrange multipliers to keep the rms dimensions constant.
Hence,

85 = JfJ [eog SE + N (a]XZ ¢ ayy’ + a322)8n] dx dy dz = 0 . (53)

13




By partial integration we can write this as

-1 2 2 2
&S = ff{ [¢ + N (a]X +ay + agZ )w sn dx dy dz + £, I{ ¢ GEndo =0 . (5ay

The boundary integral can be neglected for a large enough integration volume
because the total charge is kept constant. The variation of density, 8n(x,y,2),
cannot be arbitrary because N must be constant and n + 8n 2 O everywhere. We
thus define it by an arbitrary displacement [8x(x,y,2), 8y(x,y,z), 82(x,y,2)]
of the position vector:

sn(x,y,z) = n(x + 8x, y + 8y, 2 + 82) - n(x,y,z) = Vn « §x (55
and obtain
§S = [[I L¢ . N']<a]x2 v oy + a322)1(2n e dx dy dz = 0 (56)

which is satisfied by either ¢ = - N'](a]x2 + a2y2 + a322) (interior of beam)
or n = const = O (outside) corresponding to a uniformly charged ellipsoid.

The same proof holds for 2-D and 1-D beams in full space, or with a far-
away boundary. The important conclusion from this is that relaxation of a dis-
tribution with nonuniform density toward one of uniform density is accompanied

by a growth of emittance to compensate for the reduced nonlinear field energy.

V. SHIELDING NEAR THE SPACE-CHARGE LIMIT

For a practical evaluation of the generalized emittance equations, we will
find it useful to study analytically the nonlinear field energy of stationary
distributions in high-current beams. This will enable us to relate the non-
linear field energy of a matched beam to its tune depression v/vO (or o/oO in
periodic focusing), as a dimensionless parameter describing intensity. For
small v/vo, we expect the well-known "plasma-shielding" effect, where the ex-
ternal potential is shielded from the beam interior by the space-charge poten-
tial. This collective behavior of an intense beam leads to the development of
a practically uniform density for v/vo + 0, regardless of the shape of the dis-
tribution function, provided that the external focusing force is linear. In
computer simulation, the general observation has been that an intense beam

14




relaxes to a more uniform self-consistent density profile if injected with a
nonmatched profile. The relaxation is accompanied by a change of emittance,
which we intend to calculate from our theory.

For the sake of simplicity, in the following discussion we assume round
(spherical or cylindrical) beams with time-independent (continuous) focusing
force.

A. Three-Dimensional Case

We assume, first, a Gaussian distribution function of the single-particle
Hamiltonian (thus automatically a stationary distribution):

22 .2
. n<o;/2 exp - [(x ry ez K2, 4 4,>/p] , (57)
(2rp) my v

where ¢ follows from Poisson's equation obtained by calculating the density

V2 = - L n(0) exp [-(5 r . 4 4))/}1] (58)
e 2 W
0 my v .

with n(0) the density on axis, and m = x'2 is the average of x'2 as a measure

for the beam temperature. Equation (58) can be solved explicitly in the low-
current 1imit, where ¢ in the density expression is negligible. Here we are
interested in the high-current 1imit and assume that the noniinear dependence
on ¢ can be expanded as a power series:

v2¢ - - g-_. n(o) [] _ (_'S r2 + —j——- ¢>/p + ...] s (59)
€ 2 3.2
0 my v

where we retain only the first-order term in the total potential. We make the
substitution

2

~ k kr

¢=9—n<o>[6——+c(——-1+—L—¢)J (60)
€4 2u 2u mY3v2}1

with
a°n(0)

C= 3 (61)
e,My Vv

15




and obtain the familiar equation
VE-Ch ,

which is solved by the modified spherical Bessel function \/gJ/Z In+1/2
n =0, and assuming z = JC r, then

‘/12—7/2 I]/?_ = z_] sinh z

Using Eq. (60), the density follows from Poisson's equation as

r/xD -r/kD a/)\D —a/)\D a/>\D —a/xD
N o= ncoy | & - e _ 8 - e ) _ 8 - e
K r/)\D a/\ a/n ’

D D

where we have introduced the Debye length according to

and defined a as the beam edge.

Introducing the plasma frequency (on axis) by

2 o
p - 3.2 °
EmY"V

we can write

—s 2

O xl2 _ Vthermal
D~ 2 2 2
W W W
Y p p

in agreement with the usual definition of Debye length.

Equation (64) reveals the shielding behavior, which can be seen more

easily by rewriting the expression, using XD << a (avoiding r = O)

(r—a)/xD)
r/a

n = n(O)[l -

16

(62)

for

(63)

(64)

(65)

(66)

67

(68)



The density is thus uniform except for a sheath of thickness XD’ where it drops

to zero. Comparison of Eq. (68) [more accurately Eq. (64)] with Eq. (59) shows

that the solution found is consistent with the series truncation as long as

|r - af > Ap and Ap << a. Inside the boundary sheath the truncation is invali-

dated when approaching r = a, where the full solution cannot have a sharp edge.
For a waterbag (i.e., step-function) distribution defined as

2 2 2
_ n(0) X'T+ y'T o+ 2! k 2 q 3
F=1 372 © [ 7 tar 3563 “] ' (69
3 m(3u) my~v
we readily obtain the nonlinear equaticn
3/2
Vo = - L no [1 -<§ r2+—§—2¢)/§ p] . (70)
o} my~v

This can be expanded and, with the leading term, we obtain again Eq. (59);
hence, the same density profiles as in Eqs. (64) and (68). The different
velocity space profile of the waterbag distribution leads to u = 5/3<x'2>r=o
(r = 0 denoting the local spread of x' on axis); however, we readily find from
Eq. (69) that for XD << a, the local average of x'2 is constant, except for
the boundary sheath because of the smallness of the potential energy compared

with % u. We thus replace <x'2>r=0 by x‘2 and obtain
m —
A = %3 . a7

The Debye length can be related to the more familiar betatron tune depression

v/vo if we use the harmonic betatron oscillation approximation. MWith vi =k

and Eqs. (1), (66), and (A-2), we find for the space-charge-depressed tune,

2

W
2 2 p
Vo= vy - 3 s (72)

and with x'2 ~ v2 x2, we readily obtain for the Gaussian distribution

(73)

‘C

~

}Q . n o1
a [15(vg - vz)]]/2 /Tg Yo
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and similarly, for the waterbag distribution,

~
~

*
d

<l<

(714)

wf—

@)

B. Two-Dimensional Case

For the Gaussian distribution, we obtain in the same manner as before a
Poisson equation [as in Eq. (58)1, which after linearization gives again

v = - L n(o) [1 . (5 P f»/;] . (75)
e 7 32
0 my~v

With a substitution analogous to Eq. (60) (the 6 is replaced by 4, in this
case), we find as solutions for $, the modified Bessel functions of zero
order IO(JE r) and the density

I (r/2y)

0 D

n=n [1 - ————————] . (76)
o) Io(a/xD)

where Ay is again defined as in Eq. (67).

For the waterbag distribution in 2-D, we find that Eq. (75) holds exactly,
a well-known result.® Hence, Eq. (76) applies exactly and can be used to
construct an exact stationary distribution. The Debye length in this case is
given by

12
=2 X 7
W j
p p
For large r/kD, we can use the asymptotic expansion
z 1
I (z) ~ (1 + 5=+ ...) (78)
o /57 8z
and obtain
e(r-a)/xD
n=n, 1] - —— , (79
Jrla
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which reveals again the uniform profile, except for the boundary sheath of
thickness xD.
We can express this again in terms of the tune depression by using

Eq. (B-2) and deriving the 2-D equivalent of Eq. (72):
2
W
2 2 p
Vo= v -5 (80D

Similarly, we find for the Gaussian distribution

W|O>’
|<

, (81

1
/8 Yo
and for the waterbag distribution

v

\Y
(o]

~
~

(82)

) 3
Y-

VI. APPLICATIONS

While we intend to evaluate the practical usefulness of our generalized
emittance equations in a subsequent detailed study based on computer simula-
tion, it will be useful here to outline a few basic relationships. From the
structure of the equations, we attempt a classification of the following types
of emittance growth:

A. TInitial Mismatch Emittance Growth

An rms matched beam is (intrinsically) mismatched if the nonlinear field-
energy term changes rapidly within a coherent oscillation period, which is
comparable with the plasma period given by Eq. (66) for a beam close to
the space-charge limit [in this limit, the plasma period is identical to 1/V/3
(3-D case) or 1//2 (2-D case) times the zero-current betatron period according
to Eq. (72) or (80)]. The conversion of this field energy into emittance growth
can be estimated from Eq. (28) if we assume that the rms envelopes remain nearly
constant, an assumption that is certainly justified in a space-charge-dominated
beam. MWe thus obtain for the 3-D case of a rotationally symmetric ellipsoid

% =y
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2:+:z——————A(W—WU) . (83)

(The change in x3 gives only a small correction negligible here.) This
expression can be rewritten if we use the third equation, Eq. (1), in smooth
approximation, evaluating E2 from Eq. (A-2); hence, we obtain, with

2 = kZ and vi the corresponding space-charge-depressed betatron tune:

\Y
oz
2 2
Ng _ e 2 oac (84)
32 oz z 3f
my~v 4wso

[az - 5x%, % -5 2% and £ from Eq. (A-13) or (A—14)]

Using Eq. (5) for the initially upright phase ellipse and the harmonic
betatron-oscillation approximation, we find, for the input emittance,

S— 2
e2 = 16 x2 x'2 = 16 v2 %%
L X

X (85)

and similar in z. We are thus able to express Eq. (83) in the two following
forms:

2 2 2 2 —\ 1/3
gL, V2% By (Yox ) 23 (2 AN M
2 2 2 1-f | — W
el. Vi X2 €2 Vx X2 ]
and (86)
2 2 .2 2 —\ 2/3
) vy X~ Ae \ Aez _ 292 » 1 KE A W - Nu ’
v2 2 82 82 - vz 3f 2 w]
z2" 7y ya z Z

W, = —Na (87)
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which is the field energy calculated inside a uniform spherical bunch of the
same volume; hence, its rms radius is given by

3 5 2
R - 2 (H2 _ac

= £ = (88)
0 53/2

The equations in Eq. (86), with tunes and rms envelopes evaluated from the
initial conditions, allow us to calculate emittance change from the change of
the nonlinear field energy. MWe observe that our equations do not indicate how
the total emittance change is distributed into the transverse and the horizon-
tal planes. If we make the assumption--in a thermodynamic sense--that excess

nonlinear field energy increases equally the “temperatures" (given by
— — Akl

x'<, 2'2) in each degree of freedom, then the terms Asi/x and Ae‘z/z2 in

Eq. (83) are approximately equal, and we readily find

2 2 —\1/3
bl 1 N (2) 7 H W
2 - 3 v2 1 - f - w]
SJ_ X X
and (89)
2 2 —1\2/3
Beg L 1f Yz YL [2) M H
e2 3 v2 3f > w]
4 4 4

To estimate the actual change of nonlinear field energy, we can use the
result of Sec. V, according to which
W - wu
W

>0 (90)
1

for xD/a + 0, i.e., v/vo » 0. Hence, For v/vo << 1 in the longitudinal and
transverse plane, the stationary nonlinear field energy is small; it can be
calculated for a spherical bunch from Eq. (68). The emittance growth resulting
from a strongly mismatched density profile can thus readily be evaluated; a
parabolic profile for a spherical bunch yields, for instance,

W - W
( ”\ = 0.0368 (91)
o/

1 parabolic
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For this spherically symmetric case, we can thus immediately conclude from
Eqs. (86) and (89) that

2

2 v W-HNW
Ae 1 0 u
T“‘E(’i“)A . (92)
€ v 1
and

2 v2
Ae 0.0368/ "o

7 £73 <z"‘>’ (93)
>4 AY)

where we have obtained an upper 1imit by neglecting the final (positive) non-
linear field energy. For more accuracy, we could do an iteration by using
Eq. (93) to determine a new v/vo and xD/a, according to Eqs. (74) and (85);
thus, we use Eqs. (64) or (68) to calculate the nonlinear field energy for the
corrected shielded stationary distribution and use this as the final value in
ALCHW - wu)/w]] of Eq. (92). MWe note that it is only for v/v << 1 that Eq. (92)
predicts a noticeable emittance growth; therefore, it is appropriate to make
use of the shielding concept in this discussion.

The 2-D analogue of Eq. (86) is derived in similar fashion as

- 1/2 1/2
2 2 2 .2 - - 2
Aex . vy y Aey . X2 . y2 Vox AW W - Nu (90
2 - 2 - 1/2 2 W
€y vZ XZ ey -3 vy o
X 2y

(or with x,y interchanged).
Emittance increase in each phase plane can again be calculated if the
above thermodynamic argument of equidistribution is used, yielding

Ae2 —51/2 —51/2 W2 W— W
. UV o S X 1\ a u (95)

2 7 2 1/2 2 W

E:x '—2 VX o

2y
and also for ey with x,y interchanged.
The round beam limit yields
2

s _ l(vj_])AN_wu (96)

2~ 2 2 W ’

€ v o



which is in agreement with the result of Ref. 1. For a parabolic profile, we
have® (W - wu)/wo = 0.0224; hence (ignoring again the final nonlinear field
energy),

Ae?  0.0224 Vg
e (%0 21 . (97)
>4 v

Comparing Eq. (97) with Eq. (93), we see that each degree of freedom gains
about the same emittance increase from a parabolic profile in 2-D or 3-D.

We observe that, for a parabolic nonround beam, (W - Nu)/wo has the same
value independent of the ellipticity, which then can be used in Eq. (95). (See
App. D.) A Gaussian profile (truncated at four standard deviations) yields1
the much larger value of (W - Nu)/wo = 0.154.

Note that we have made use of the smooth approximation to derive the mis-
match emittance-growth formulae; we expect however, that they are also valid
in periodic focusing if the average envelope is used.

B. Emittance Transfer

Computer simulation in 2-D and 3-D beams has shown® that emittance trans-
fer can happen in intense beams with strong anisotropy of temperature, (diver-
gence). This transfer was accompanied by nonuniform density oscillations (at
about the plasma frequency). Our emittance equations provide a framework to
study this mechanism as well. We observe that emittance transfer occurs at
a much stower time scale than the initial mismatch; hence, the latter has to
be calculated first to provide the correct initial condition for emittance

transfer.

While we cannot obtain from Eqs. (28) or (41) the explicit time dependence
of individual emittances, we can show in the following discussion that an
approximate invariant exists, which is of a practical value. 1In App. E, we
show that the left-hand side of Eq. (28) can be expressed explicitly as a
derivative in s if we use the envelope equations, Eqs. (29) and (30), in
smooth approximation:

2 2 1 ~ RE Y 4 8
-EdS€L+-EdSSZ gs —+ = + 32Wu:| . (98)
X
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The right-hand side of Eq. (28) is oscillatory and thus yields a negligible
integrated contribution (it is given by the change of W - Nu, which is
negligible because we assume here that the beam has been properly matched
jnitially). The approximate invariant is then

82 82
2 —_-—'_L_' + :Z + 83 5 Nu = const (99)
X2 Z2 Nmy~v
or, with Eq. (5,
2 2 —
€ € 2 2 AW
LalaZe 2 e &2 )2- 1 —% . (100)
XZ z2 Nmy~v

A comparison with the energy expression in Eq. (17) shows the physical meaning
of this invariant: 1/4 of the change of the uniform field energy goes into
the thermal energy of the beam, whereas the remaining 3/4 must go into the
potential energy (with respect to the external focusing force).

In the 2-D case, the corresponding expressions are (see App. E)

2 2
€ €
XL, T8y x const (101)
2 72 Ny
and
22 AW
A Xy 1 U ' (102)
2 2 3,2
my>v

indicating that 1/2 of the uniform field-energy change goes into the potential
energy, and the other 1/2 into the thermal energy.

In practice, we expect that, for high-current beams, the change in uniform
field energy is small because the envelopes change only a little in a space-
charge-dominated beam; hence, we may assume as a first-order estimate in 3-D
that

2
€ €

2 A<:J'> x - A<—_5) (103)
X2 Z2
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and in 2-D,
[ 4 €
A<:X>z - A(%
X2 y2
and (104)

These estimates imply that the total thermal energy or divergence remains
roughly constant during an emittance exchange, which agrees well with results
from previous computer simulation.® MWe note that the nonlinear field energy
does not appear in the approximate invariants defined in Eqs. (99) and (101),
yet the nonlinear field energy plays a crucial role as the actual mechanism that
drives the exchange dynamically, either by a coherent 1nstabﬂitys or by single-
particle resonance. We also note that, in computer simulation,® the presence

of continuous or periodic focusing does not change the results on emittance
transfer, as long as structure resonances are avoided (see next section). This
justifies the use of the smooth approximation model here. Finally, we observe
that there is actually a sufficiently strong imbalance of thermal energy, which
is necessary for emittance transfer to occur;5 hence, Eqs. (103) and (104) also
provide an upper limit for the emittance growth in the initially "cold" plane.

C. Structure Resonances in Periodic Focusing

Multiplying Eq. (28) by x2, yz, or zz, we recognize the possibility that
the corresponding emittance (possibly also the other two) increases with time

if, because of some coherent oscillation, the nonlinear field energy contains

the frequency of oscillation of the envelope x2 (or, respectively, y2 or 22) as

induced by the periodically varying focusing force. In such a case of "struc-
ture resonance,"’ we could derive an upper bound for the emittance increase with
time, if we knew an upper bound to the nonlinear field energy. Obviously, this
would require us to determine the eigenmodes of osciltiation from the linearized
Viasov equation (as in Ref. 7), which is beyond the scope of this work.
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Nonetheless, we can derive a relationship, which gives some general insight and
the time scale for the emittance growth formed by a structure resonance.

To this end we assume, for simplicity, a round beam in periodic solenoidal
focusing; hence, Eq. (43) applies. The squared rms envelope is assumed to con-
tain as leading harmonic the periodicity of the focusing channel (w = 2w/L, L
focusing period):

-~

x2(s) = x° + &x° sin (ws) (105)

where we ignore all other harmonics. Likewise, we assume the same harmonic

W-W

within U = w 4 (phase shifted by 90°):
o}

U=0U+ 8U cos (ws) (106)

and find a nonoscillating term for the emittance change

2 2K oxlwsU . (107)

Q.IQ.
)

In the smooth approximation, we replace K by

2 vz
>4 0
K = 4 = > - 1 (108)
v

XZ

and integrate Eq. (107) to yield

) B 172
v 2
E |1+ T 21 ) & s . (109)
€ 2 2 — L
o) v x2

A practical difficulty lies with estimating §U, which can develop exponentially
from an infinitesimal noise level during the early stage of the resonance. We
recognize, however, that the emittance growth is most significant after 8U has
come close to its maximum level, which is typically of the order of 10_] (see
Ref. 1 for calculations of U for different profiles). MWe then conclude from
Eq. (109) that the rate of emittance growth during the first doubling of

26




2

v
emittance is about proportional to —% - 1 and to the relative envelope modula-

v
tion, thereafter to the square root of these quantities.

Structure resonances are avoided, in practice, for systems with 0y = 60°.
A general discussion of the conditions for structure resonances is found in
Refs. 7 and 9.

VII. CONCLUSIONS
We have shown that the generalized emittance equations derived here are

of basic importance to understanding emittance growth and to evaluating it
quantitatively on different time scales. These equations allow us to predict

rapid mismatch emittance growth if the concept of Debye shielding in stationary

distributions is applied. For the slower process of emittance transfer, we

have suggested an approximate invariant, which applies regardless of the actual

coupling process whether coherent or incoherent. A future systematic study of

the conditions for emittance transfer by numerical simulation will be very help-

ful to further deepen our understanding. A further task will be to incorporate
the formulary derived here and that obtained by numerical simulation into high-

current linac design procedures.
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APPENDIX A
THREE-DIMENSIONAL FIELD ENERGY CALCULATION

From Eq. (14), we obtain for the field energy in a volume V by partial
integration,

£
=3 il ¢pdxdydz-52[f¢Ed . (A-1)
S

Assuming a uniformly charged ellipsoid with rotational symmetry around the
z-axis, we can write for the space-charge potential inside the beam

Po 2 2, 1-f .2
¢1=_—2€_ol:(x +y)—2—+zf:l, (A-2)

with f yet to be determined by the condition of continuous potential and field
across the boundary of the ellipsoid given by

52__;_.L2+ =1
a

nlN
LK)

%*
For an oblate spheroid (a > ¢), we introduce the variables u, v, and ¢
according to

X

a sin u cosh v cos ¢ ,

a sin u cosh v sin ¢ , and (A-3)

<
]

Z =a Ccos U sinh v

with az = a2 - c2 and the boundary given by v = Vo that is, a = a cosh Yo

and ¢ = a sinh Vo

Introducing
£ =Cos U ("angular" variable)
and (A-4)
n = sinh v ("radial" variable)

*The proof for a prolate spheroid (c < a) is analogous and will be omitted here.
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Laplace's equation for the exterior solution can be written as!®

2, 1 a (- g2\, 8 2) 3
7% az(n2+ EZ) ’ 9% [(] : ) 88] " on [(1 oo ) a”}

=0 . (A-5)

This allows a separation of variables for the angular and the radial part; a
general solution, which is regular and vanishes at infinity, can be expanded

10
as

by = A, + E B, P,(E) Q(in) (A-6)

with Pv(g) Legendre polynomials and Qv(in) Legendre functions of the second
kind with imaginary argument. The interior solution can be rewritten in terms
of Legendre polynomials in the new variable &:

2
P 2 2
o = - geo [(nz £ 1 - f)Po " (3n f-1-n4 f)Pz] : (A-T)

Because of the orthogonality of Legendre polynomials and the requirement of
continuity of ¢ on the boundary, only Bo and 82 in the expansion of Eq. (A-6)
are different from zero. We thus obtain, for n, = c/a, two equations for the
continuity of ¢:

A +B cotln o0 [2 ¢ (A-8)
0 o "o 6e, 0
and
oo
2 - o 2 2
Bz[(3no + 1) cot Ny - 3no] = - 650 (3nof -1 - n, + f) , (A-9)
where we have used Q_(in) = - i cot™'n and Q,(in) = /2030 + 1) cot™'n = 3n1.

Likewise, we obtain for continuous 3¢/dn

Bo poaz
- - 5 = - _EE; o (A-10)
"o
and
1 3ng + 1 poaz
BZ 6”0 cot no - : 5 - 3} = - ? 3r]of: - no , (A-11)
+ n (o}
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where we have used (see Ref. 10, p. 145)

1
1 +n

d -1
Eﬁ cot n= - 5 - (A-12)

We thus have four equations for the unknowns f, Ao’ Bo’ and B,, which result in

2’
2 -1 \
£ - (1 + “o) (1 - n, cot™ ) (A-13)

or, with p = c/a (p < 1), in

1 P -1
f = 5 - 5373 €OS P - (A-14)

1-p (1 - p")

The equivalent expression for p > 1 (prolate spheroid) is found as

.,
¢ - D cosh L ‘ (A-15)

% - D p? - 1
-1 2 1/2 < -
with cosh” 'p = Inlp + (p° = 1) ""1. In the near spherical limit

(0.8 < p < 5), one finds the approximate expression

’ (A-16)

w |—
< |

with f = 1/3 for a sphere.
These expressions for f are in agreement with Ref. 11. The remaining
unknowns are

2 2
P Q& n
o 2 -1 o 1-f
A, = - e [no(l + ”o) cot™ ny + 52+ } , (A-17)
b a?
0 2
By = 1 —5— “o(‘ + e ) , (A-18)
(o]
and
poaz 3ngf 1 ng + f
B, = 1 5 > - (A-19)
o (3“0 + 1>cot ng - 3n,
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Here we are interested in the asymptotic expression for ¢e at large distances,
noting that

n -+ 5 as  (n > o . (A-20)

With the asymptotic expansion of cot_] n derived from Eq. (A-12),

- _l§ " —lg -, (A-21)

]
n 3n 5N

we readily find the asymptotic behavior Qo ~ 1/n and 02 ~ 1/n3, and thus
. -1 1
¢ex = Ao - 1BO cot n+0 (;§> (A-22)
or, with p. = - Ng s
0 4 2

= a‘c¢cw

3
b . = _Nga? [, 2\ e LA (A-23)

ex = 4 2 {Mo\" * "ojin o)~ 2 (“o - ) ‘
me A C

To evaluate W from Eq. (A-1), we need the asymptotic expression for

En = -3¢/3r, which results from Eq. (A-23) as
E =N ol . (A-24)
n 2 4

4veor r

The leading term of En is identical with the field of a point charge at the
origin, as expected.

Using Egs. (A-2), (A-13), (A-18) and (A-24), we obtain from Eq. (A-1) that
the field energy wu of a uniformly charged ellipsoid calculated within a large
sphere of radius R (n » R/a) is given as

2 2 2
__Nqg |6 c ) _
W, = ome. [C (1 _f s > f) -2 . (A-25)

Assuming that the semiaxes a, ¢, and thus f(c/a) are functions of s, we are
able to calculate dwu/ds. To this end, it is convenient to use Eq. (A-13)
and write
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2 2
N"q~ [6 -1 5
wu = 40wso [c o cot "o " R . (A-26)

With Eq. (A-12), we find
dW

_u_ _3Ng fdcf  dal-f
ds ~ 201reo|:ds 2 tds Tac | - (A-27)
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APPENDIX B
TWO-DIMENSIONAL FIELD ENERGY CALCULATION

Analogous to Eq. (A-1), we have
1 o0

W=5 [ épdxdy - 5= [ ¢ E do |, (B-1
2 2 s n

for the field energy per unit length and within a cross-sectional area bounded
by s. For the potential inside a beam with uniform density and semiaxes a,b,
we have the well-known expression

% bx2 + ay2
¢ = - 280 a+b : (B-2)

from which we readily calculate

gfI¢p=—g—N— ) (B-3)
o

To derive the exterior solution, we introduce elliptic coordinates according to

X = %-cosh u cos 6

y = E—sinh M sin ® , and (B-4)

(9 =a~" -b

(]

with a = < cosh u.oand b = ¥ sinh p.. MWith these coordinates, we obtain
2 o] 2 o]

poab a 2 costh sinth costh costh (B-5)
¢1=‘4eo<a+b)(§)[ a * b *( a b )wsze]'

For the exterior solution, we use the Green's function expansion in elliptic
coordinates and make the substitution'?)

¢ = Bou + By In %-+ Bze_Z‘Jl cos 20 . (B-6)
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Matching potential and field at the boundary given by u = Mo results in

poab

% 2 ¢, oM T 2%23

-2Cpu-p )
— b °" cos 29] . (B-7)

o

o

At large distances from the beam, the angle-dependent term can be neglected,
and we have, with Po = N/(abw),

S Y PR/ SR | _
b 2we (‘“ a+b 2] (B-8)

where we have used the asymptotic behavior u » 1n(4r/a). The faraway En
becomes

. Na -
En Zﬂeor ’ (B-9)

which is the field from a 1ine charge.
With Eq. (B-1), we obtain for the uniform-beam field energy within a
circle of radius R

W= N4 <1 + 4 1n Zf ) . (B-10)
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APPENDIX C
ONE-DIMENSIONAL FIELD ENERGY CALCULATION

The potential of a uniformly charged sheet of thickness =c is readily
found as

- _-Ng 2
¢ = - Fz ¢ ? (|z] ¢ ©
0
.. Ng z-¢
o = e el + 2 =) (Jz| 2 ©

and we obtain for the field energy within |z] < L

(C-1

(C-2)

(C-3
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APPENDIX D
TWO-DIMENSIONAL PARABOLIC PROFILE BEAM

We assume a parabolic density profile
2 2
2N _ X _ ¥
N = fab <‘ vl z> : (0-1)

The interior electric field is®

2 2
2 Ng [ X X X Y ]
E = - (2a+b) + (D-2)
X LCA aCa+b) a(a+b)2 <3a2 b >

(Ey with x,y and a,b interchanged), with the respective potential as

N

1 2a+b 4 1 2 2b+a 4] . (D-3)

2 2
N X y 1 2 1
by = - [—— + 3 - X - oy XY - —% y
i weo(a+b) a b 6a3 a+b ab(a+b) 6b3 a+b

For the exterior potential, we use the Green's function expansion in elliptic
coordinates’? (see also App. B):

bg = Bow + By In o Bze'z‘1 cos 20 + B4e'4“ cos 46 . (D-4)

From the requirement of continuity and continuous derivatives, we find for the
leading term

b = E%gg [“ - (4o - %)] : (D-5)

The terms with cos 26, cos 46 decrease exponentially at large distance because
for large u

2r
p—po->]na+b . (D-6)

We thus find for large r

. Ng 2r 3 5
d)e"'_21rs:o(]na+b+4>’ (b-7)
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and the normal component

£ =% _No (D-8)

n r o r
d Zﬂeo

With Eq. (B-1), we obtain

2 2

L N A SO P S IR - I (D-9)
16weo 6 x

where we introduce the rms envelope

S Ve (D-10)
Using Eq. (B-10)(with a = 2 X), we readily find
W= W
u_5_490% . 0.0004 | (D-11)
wo 6 2
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APPENDIX E
INVARIANT EXPRESSION FOR EMITTANCE TRANSFER

The left-hand side of Eq. (28) can be rewritten as

2 2
2.d 2, 1.d 2 _,d () df%
— ds "L —ds "z~ " ds\ —= ds\ —
x2 z2 x2 z2
(E-1)
2 2
eL. d _E ez d _E
+2?a"§x +:2§'°(EZ
X z

To evaluate the second term on the right-hand side, we use the envelope
equations, Egs. (29) and (30), in smooth approximation (kx, kz constant and
d2§/ds, dZE/ds negligible), obtaining

2
eJ_ hx
- =16k, -16 -5 L (E-2)
x4 X zx2
ei hZ
4 = 16 kz - 16 p L (E-3)
X Xz
with L = Nq2/(20J5 weomy3v2) and §2 = x2, 22 = 22. We thus have ignored the

rapid flutter of X, z and only consider slow changes due to ¢ , €, changing
on a slow time-scale. Using Eqs. (E-2), (E-3), and (A-24), we find:

€

2 2

X +

Q—EZzle(zk d 5

2 ds x ds

d ~2 2 d )
+ k. =20 + —=—= T— W . (E-4)
z ds Nmy3v2 ds "u

NAln

ll ]
&l
gle

X
where we have replaced k3 by 1. The first term on the r.h.s. of this equation
is the derivative of the potential energy, which we can express, by using again
Eqs. (E-2), (E-3), and (A-27), as

16(2k d—§2 kd—22)~—2—— Z_ d (E-5)
x ds + 87 ds = ds 2 Y ™2 32 ds u) - -
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We thus obtain from Eq. (E-1):

2 d
~ 2 L =
€2 ds Wi 5

4
oS W - (E-6)

Q.lQ..
w

m
t— o

ll
N
N

For 2-D beams, we see from Eqs. (44) and (45) that Eq. (E-5) is replaced by

2 2
d 2 d =2\ _d [ 5x Sy .
16 (2 kx s * +k-y 35 Y ) % 4 <~2+~2 ; (E-T7)

hence, we find

2 2
1.d 2. 1.d 2 _,d 5% Fy _16
_zd ey + _zd ey~2ds _2_+_2_+Nm3V2Nu . (E-8)
y xX“ y Y

which yield the invariants in Sec. VI.2.
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