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Sws PRELIMINARYNUMERICAL STUDIES OF TAYIOR INSTABIIJTY

WHICH INCUJDE THS EFFYKTS OF MATERIAL STRENOl!H

by

K.A. Meyer and P.J. Blewett

A.B3TRACT

In this numerical study a two-dimensional Lagranghn code,
TOODY II, is used to compute the growth of a perturbed inter-
face between a perfect gee end an aluminum plate. The inter-
face undergoes accelerationin the direction of the ges to the
aluminum. Using en elastic perfectly plastic tmclelfor the alum-
inum the effects of yield strength, density ratio, wavelength,
initial amplitude,and the elastic shear modulus on the pertur-
bation growth rate are presented. Results are compared with Tay-
lor theory end an attempt is mede to develop an analytic expres-
sion for the effect of yield strength.

NU.MTION

pressure
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stress deviator tensor
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acceleration
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1. INTRODUCTION

During the course of a combined numsrical end

experiwntal Investigationof Taylor instabilityin

aluminum plates (to be published) some questions

arose as to the relative effects of material strength,

density ratio, wavelength and initial perturbation

size on the growth of the disturbance. A series of

numerical test problems with a such simpler config-

uration than the actual experimentalflow was con-

sidered in order to obtain some qualitative informa-

tion. The results of these preliminary numerical

studies are presented here.

The configurationunder consideration is given

in Fig. 1 end consists of a perfect gas at an ini-

tial pressure of .lMb, density of .55 gm/cm3 with

an adiabatic exponent y = 3 and en aluminum plate

also at a pressure of .1 Mb and with a density of

3.14 gm/cm3. The gas and plate extend indefinitely

in the y direction. The right face of the aluminum

is held at zero pressure while the left boundary of

the gas Is kept at .1 Mb. The gas-aluminuminterface

has a half sine wave perturbationwith wavelength A

and initial amplitude ~.

As the rsrefaction proceeds into the a-husinum

from the right the plate is accelerated. When the

rerefaction crosses the interface we have the csse

of a perturbed interfacebeing accelerated In the

direction of low to high density, which in the clas-
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sicsl incompressiblefluid case is unstable. Be-

cause of the wave action we have a time varying ac-

celeration. The variation of the interfacepressure

with time (averaged over a wavelengthA) is given in

Fig. 2. Figure 3 is a plot of the average gas den-

sity (over a wavelength)adjacent to the Interface

versus time while Fig. 4 is the density-tim plot

for the aluminum next to the interface. The time

origin for these problems is 2.* vsec; i.e., the

rarefactioncommences at the free surface of elumi-

num Rt t = 2.34 psec.

II. PHY151CALM0DELOF ALUMINUM PLATE

The code used fn these calculationsIs TUODY

11,1 a two-dimensionalLagrengien code developed at

Sendia Corporation. Here we will briefly describe

the physical model used for the stress supporting

aluminum pl.ate. The “hydro” equation of atate

P(o,E) Is the conventionalMle-Grunelsen equation

for the pressure P off the Hugoniot,

P -PH= o~E-~) , (1)

where the subscriptH I.ndicatasHugoniot values.

For the linear fit of shock speed versus particle

speed,

U=co+su>

Eq. (1) implies,

where,

130cfa(a-1)
PH =

[(s-l)a-s12 ‘

a= L.
!30

(2)

(3)

(4)

(5)

The values used for the above constants vere:

00 = 3.14 gnl/c!n3

co = 0.535 cm/psec

a = 1.35

r = 1.70

In addition la the hydrodynamiccharacter of

the aluminum an elastic component ia appended by

differencing the following equations:

s= - 2WXZSxz = *g+$l# (6)

sX2 + Wxz(sn+zz) . @+@
axJ (7)

s Xz
‘Z+2W

Sxz=+%+$%l
(8)

Syy = -(s=+s22) . (9)

By definition the stress deviators, S‘~, indicate

how much a normal stress deviates from the average

of the three normal stresses, which by definition

is the pressure,

S.Q . # + p6Q , (lo)

P=- 1 e+oyy+uzz) .
$

(11)

Equations (6) through (8) are derived in reference

2. They consitute en extension of Hooke’s law from

static elasticityto dynmnics. The effect of the

second term on the left-hand aide of these equations

is to take into account the fact that a rigid body
ij

rotation changes the tensor components,S . That

is, under a rigid body rotation Hookers law in the

static equilibrium sense would say that the stress

deviators would not change because there is no de-

formation of ahape. The equations of conservation

of nmmentum, however, require the stress deviator

components on the fixed (x,z) frame. Thus the

stress deviator components nmst be “corrected” for

any rigid body motion occurring within the time

step, At. If one then ignores the rotntion terms in

Eqs. (6) through (8) he will aee that what remsfns

is an identificationof a stress rate deviator with

the appropriate strain rate deviator, i.e., Hooke’8

law differentiatedwith respect to time. ‘Ofcourse

the above equations are transformedto Lagrengian

coordinates in TOODY; we have left them In Eulerien

form for purposes of interpretatfon.

After finding all (Si~)n+l by means ofEqs. (6)

through (9) (all quantitieson the right-hand side

are known at n+ from usxnentumequations)we first

find the second invariant of the stress deviator

tensor, +/2, where,
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7n+l= [(sqa +(SW)2+ (s”)2 + @’)2]n+l.
.

(12)

We then use the von-Mises criterion to test whether

~n+l 5 ; (YO)2 , (13)

where Y“ Is the yield strength in tension. If con-

dition (13) holds, the values of (Si~)n+l found fTOM

Eqs. (6) through (9) are consideredthe true values

and the medium is described es “elastic.” If con-

dition (13) is violated all we can conclude is that
n+l

at some interwdiate time within At = t - tn

plsstic flow has occurred and therefore,Eqa. (6)

through (9) did not apply over the complete Interval.

One interpretationof the von-Mlaes crlterio~ is

thst there is an upper limlt to the energy of distor-

tion (as opposed to the work done in changing the

volume) that the medium cen absorb. When this limit

is reached the medium can support only this disper-

ity in the stress deviators regardless of the

strains. See references3 and 4 for fuller discus-

sions of the von-Misescriterion. Over At then the

toi.alstrain has now an unknown elastic strain com-

ponent and a plastic strain component. There are

various theories such as the Prandtl-Reusstheory

and the von-Mises theory that relate the plaatic

strain rate component to stress; however, all the

theories demand that in the plastic regime the

equality in Eq. (13) must be maintained for the so-

celled perfectlyplastic model, Wilkins shows in

reference 3 that s method, consistentwith the von-

Mlses flow rule which in our notation may be written

ij is the pl~tic co~onent
(here E

P
rate deviator end II is the second

tensor) is to reduce each (5i~)n+1

(14)

of the strain

invariant of that

found from Eqs.

(6) through (9) in proportion to the extent the von-

Mises criterion is violated, i.e.,

~Sijln+l-

r

~ (Sij)n+l (15)

C. Mader has calibrated dynamic @eld strengths for

alu”ml.numbaaed on one-dimensionalexperimentsby J.

Taylor using a undel similar to the above.5 Suffice

it to say that there 1s a wealth of models covering

elaetic, plastic, and vfscous behavior of materials

and until definitive experimentscan be made it

seems prudent to choose the very simplest model.

III. DISCWSION

Sefore discussing the numerical data Lt is of

interest to ascertain the rate of perturbation

growth from cl.aaslcalincompressibletheory using

an average accelerationend representativedensities.

The average acceleration of the system of the

gas and eluminum plate can be obtained as follows.

The initial conditions are

TAt= .254 cm (AL plate thickness)

= .356 cm
‘gas

PAL “ 3.14 gm/cm3

f’gae
= .55 gm/cu13

while the total pressure

the average acceleration

a= P

‘A&TA4.+pgaaTgae

drop is .1 Mb,

is

. .101 cm/~sec

therefore

. (16)

This implies an average interfacepressure

‘i” a x pA~TA~= ‘@lm (17)

which is in reasonable agreement with what one ob-

tains from the numerical solution as represented

by Fig. 2.

From the classical linear incompressibletheory

we have

at
ll=qo& J

where q la the perturbation

“=-=

The question swises as

(18)

amplitude and where

+. (19)

b what are the relevant

densities to use inEq. (1.8). Two sets of densities

were tried; first the initial.densities o = .55

gm/cm3 end PAL= 3.14 ‘gm/cm3, and aecond~estimated

averages obtained from Figs. 3 and k, namely—

‘gas = .5o5 gm/cm3 and pAt= 3.o6 gm/cm3. Table 1

lkts the linear incompressiblevalues of d Ln tl/dt
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for the cases of Intereet. These will be compared

later to the numerical result8.

Numerical problems vere run with en Initial

gus density of .55 gm/cm5 and an aluminum density

of 5.14 Sm/Cn?. Aluminum yield strength8 of 0.0,

1.0, 2.0, and 3.0 Kb were considered as were shear

moduli of 93 Kb, 280 Kb end 839 I@. The effect of

density ratio was investigatedby replacing the .55

gm/cm5 gas by a vacuum sndusinga tima varying

applied pressure profile obtained from Fig. 2. per-

turbationwavelengths of .254 cm and .5o8 cm were

consideredas were initial.amplitudes of .o1o16 cm

and .02052 cm.

The growth of the perturbationwith time is

given in Fig8. 5 through 8. Figure 5 i8 for an

initial perturbationamplitude of .0EQ32 cm and a

wavelength of .508 cm. The “gas” density was zero,

that is an applied pressure profile was prescribed

on the left surface of the aluminum. The aluminum

had a shear tmdulus of 280 Kb and curves for yield

strengths of 0.0, 1.0, 2.0 and 3.0 Kb are included.

Figure 6 is for the same conditions as Fig. 5 but
3an initial gas density of .55 gin/cm was used. Fig-

ure 7 condition8duplicate those of Fig. 6 but the

perturbationwavelengthwas changed to .254 cm.

Figure 8 conditionsdiffer from ’thosein Fig. 7 only

in that the initial perturbationwas .o1o16 cm

(rather than .02032 cm). Allof these plots (Figs.

5 - 8) show that after arel.ativelyshort initial

period the perturbation grows exponentially. The

rates of growth, d @ q/dt, obtained from the graphs

(slopes of the straight lines on the figures) are

tabulated In Table I. For the ca8e of O.OKb yield

8trength the numerical growth rates can be co~ared

with those obtained from Eq. (19) for linear incom-

pressible theory. One can see immediatelythat the.

numericallyobtained values of d ~ q/dt are always

lower than the linear incompressibleresults. Fur-

thermore, the ratio of the numerical to linear re-

sults for k = .254 cm is not the same as that for

k = .508 cmhence there is a wavelength dependence

in the function relating the numerical solution to
.—

the linear approximation. The data~indicate

that for the no strength case the growth rate is

not dependent on the amplitude of the initial per-

turbation (in the range considered).

It would appear that the rather large periodic

oscillationsof pressure and den8ity at the interface

have an effect on the perturbation growth rate and

sinply trying to u8e time averages of these quanti-

ties in the linear theory is not sufficient to give

agreementwith the numerical calculations. Thi8

means we have no simple analytic model against which

ta judge the effect of chenglng variables (e.g., o,

k, no) and hence since the numerical data is rather

sparse we can only get qualitativeresult8. We do

see that increasingyield strength results in de-

creasing the rate of growth. Also halving the wave-

length increases the rate of growth d & ~dt (but

not by the ~2 as would be predicted by Eq. (19) for

zero yield strength). Reducing the initial ampli-

tude has negligible effect on the low strength cases

(0.0 sndl.OKb yl.eldstrength)buthss amarked

effect at higher yield 8trength (2.0 and 3.0 Kb).

If we define the Atwood ratio as

(2Q)

then for the applied pressure (vacuum) case 6 = 1,

whereas for the gas case p = .55 gm/cm3 end

‘At = 3.14 so we have 6 = ‘? From Table I we see

that the reduction in growth rate associated in

going from abase flow 6= 1, A = .508 cm, ~ =

.02032 cm and 0.0 yield strength to the same flow

but with 6 = .7 is the same as the reduction obtained

by going from the base flow to one with the only

chenga being yield strength, namely a yield of

2.0 Kb instead of zero.

An attempt was made to try to determine a nmdel

whtch would indicate more clearly the effect of

yield strength. We consider an expression (snal-

ogous to Eq. (19)) of the form

,* al
=a=

‘At-pgas -
h— a oAt+Pgas

H(~,A,o, ) .(21)

If we assume that H(Y”=O) = O and define

Thena= A2-H . If we take A from the zero yield

strength calculation inTable I and look at H as a

function of yield strength we can obtain curves of

H VS. yield strength. These curves are plotted in

Figs. 9 and 10 and indicate that H is a linear func-

tion of yield strength.

A further feature of the strength model u8ed

4
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in the code is shown by the data in Table 11. Here

we hwe kept k, ~, and yield strength con8tant and

varied the shear mdulus G. The wide variation in G

(a fsctor of9 from the largest to the smallest val-

ues of G considered)produced no variation In the

rate of growth of the perturbation.

1.

2.

3.

4.

5.
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Fig. 1. Typical initial.configurationfor a gas-

alum.lnumproblem with perturbationwave-

length A.
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Fig. 2. Gas-altinum Interface.presaureva. time

for three cases Y. = 1.0 Kb, Y. = 2.0 Kb

and Y. = 3.0 Kb. The pressure is averaged

over one perturbationwavelength A (A =

.508 cm).
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Fig. 3. Gas density adjacent to the perturbed slu-

mlnum Interface v8. ti!m?for the caaes Y.

= 0.0 Kb, Y. = 2.0 Kb and Y. = 3.0 Kb.

The density is averaged over one perturba-

tion wavelengthA (A = .5@ cm).
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Fig. 4. Aluminum density adjacent to the perturbed

interface vs. time for the cases Y. = 0.0

Kb, Y. = 2.0 Kb andYo. 3.0 Kb. l!heden-

sity is averaged over one perturbation

wavelengthA (A = .509 cm).

I . y“. 3.Okbor

2 = y“.z.okb~r /i!/2,

3 A Y“= l.Okbar

4 v Y“=O.Okbar m

00

t I 1 1
I

o
3.0 4.0 5.0 6.0 7.0 I

t(psec)

Fig. 5. Perturbation growth for the case of en

applied pressure on the aluminum plate.

The Initial perturbation amplitude?’10=

.02032 cm and the wavelengthk = .509 cm.

Alum.inumyield strengths of 0.0, 1.0, 2.0

and 3.0 Kb are considered.
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Fig. 6. Perturbationgrowth for the case of a gas- Fig. 7. Perturbation growth for the case of a gas-
propelled elumlnum plate with initial per- propelled aluminum plate with an initial
turbation amplitudeTo . .02032 cm and perturbation amplitudeq. . .02032 and

wavelengthA = .506 cm. Aluminum yield wavelength h . .254 cm. Aluminum yield
strength of 0.0, 1.0, 2.0 and 3.0 Kb are

strengths of 0.0, 1.0, 2.0 and 3.0 lcbare
considered. considered.
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Fig. 8. Perturbationgrowth for the case of a gas-

propelled 81uminum plate with an initial

perturbationamplitudeTo = .o1o16 and

wavelengthk = .25k cm. Aluminum field

strengthsof 0.0, 1.0, 2.0 and >.0 n are

considered.
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Fig. 10. Plot correlatingyield strength Y. and

the functionH (Eq. (21)) for the casea

with no = .02032 cm and A = .254 cm and

the cases with q. . .o1o16 cm and~ .

.254 CM.
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