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ABSTRACT

This report discusses methods of obtaining dif-

ference equations to represent the conservation of

mass, momentum, and energy--the conservation

equations which represent the motion of a fluid,

The basic principle on which this work is based is

that these conservation equations can be written in

forms which apply whether or not discontinuities are

present when the equations are written in terms of

integrals. When the integrals are replaced by ap-

proximations in terms of quadrature formulas, dif-

ference e~ations are obtained for the relevant

functions.
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1. INTRODUCTION

It is the purpose of this report to discuss methods of obtaining dif-

ference equations to represent the conservation of mass, momentum and

energy--the conservation equations which represent the motion of a fluid.

The basic principle on which this work is based is that these conservation

equations can be written in forms which apply whether or not discontinuities

are present when the equations are written in terms of Wtegra.ls. When the

integrals are replaced by approximations in terms of quadrature formulas,

we obtain difference equations for the relevant functions.

The integrals may, of course, be written in terms of Eulerian or

Lagrangian coordinates and the difference equations may be obtained in

either case.

We shall be dealing with quantities of the form

(1.1) I(t) =

where the integral is

1(t)
p f(x, t) dV =

/ PO(Hf(~, t) dvo
v(o)

a volume (surfaoe or line) integral over the volume

occupied at time t by particles originally in a volume V(o), where

(1.2)

and

(1.3) xi
= Xi(g,t) i = 1,2,3, . . .
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(1.4) Li = Xi(g,o)

are the “particle paths’> followed by the particles originally at the positions
xi = i .

‘5* The variables xl are the Eulerian variables and the /ji are the

Lagrangian ones.

If there is a discontinuity in the function pf at a surface Z(t), given in

parametric form as

(1.5) ~ = l?(a,b,t)

or

we shall define

(1.6) I(t) =
/

p f dV +
/

p f dv -
I

p f dv
Vi(t) v2(t) ‘1+V2

where each of the volumes VI and V2 is bounded by a portion of the fixed

boundary of V(t) and by the surface Z(t). These boundaries are chosen so

that pf is continuous inside of Vi(t) and V2(t). Similar considerations may

be applied in the Lagrangian case.

It follows from equation (1.6) that

(1.7)
dI

r
a(pf)—=

dt I fv1+v2’t ‘v+ s1+s2pfui A’ds + z[pf]vndz

where

(1.8)
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are the Eulerian components of the velocity of the fluid; for an arbitrary

function h we write

(1.9)
,+,’’’ ’J:”+ p’J

12

where S1 and S2 are the boundaries of the volumes V, and VO minus the

surface Z; Ai are the Cartesian components

over which the integration is being carried

A a

of the normal to the surface

out;

(1.10) [m = (Pf)l – (pf)2

the subscript denoting the value of the function on one side or the other of

the surface Z, and Vn is the normal component of the normal velocity of

Z(t) in the direction of the normal to Z

The usual differential equations of

Hugon.iotequations follow from equation

from an arbitrary choice of the volume

function f.

In terms of Lagrange coordinates we have

drawn from VI to V2.

hydrodynamics and the Ranldne-

(1.7) applied to volumes V(t) arising

V(o) for specific choices of the

(1.11) ‘1—=
‘t f

~dvo +
I

[pof] Vond~o
V1(0)+V2(0)‘o at z

where VI(0) and V2(0) are subvolumes of

to that by which VI and V2 are defined.

o

V(o) defined in a manner analogous

2. THE CONSERVATION0)? MATTER

The equation describing this conservation law is contained in the

statement
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(2.1) d
x r

p dV = O
v(t)

This leads to the equations

(2.2)

AA 1.

.

with a velocity vector vI, snd with a normal

(2.2) over a fixed volume in space containing

holding in regions where no discontinuity occurs and to the statement that

(2.3)
.

pl(u;– ~V1)A = po(uo – vi) A: -m

across discontinuities moving

vector with components A.1
If we integrate equation

no discontinuities, we have

(2.4) J+dv=++dv=-Jui)Ajds
This may be written as

(2.5) $Jdv’-bhds
where the surface integral is applied to the surface boundingthe fixed

volume in space.

Equation (2.5) with the same definition of the surface integral applies

to volumes within which there is a discontinuity present. The justification

for this statement is the following: Integrate ecpation (2.3) over the vol-

umes Wl(t) and W2(t) into which the fixed volume referred to in equation

(2.5) is subdivided by the discontinuity surface Z(t). Then adding these we

obtain
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(2.6) J ~dv+
Wl(t)at w ,t~dv=-J’”’)’jds -JIJpui] ‘id’I

2

where ?2, is the normal to the surface discontinuity drawn in the direction

from the region Wl(t) to W2(t), and the first surface integral on the right-

hand side is taken over the fixed boundary of the fixed volume Wl(t) + W2(t).

It is a consequence of equation (2.3) that

[p~i] >i = [P]‘n

where Vn is the normal velocity of the boundary. Hence, equation (2.6) may

be written as

I ap dV +
/ /

~dv + [PI‘n ‘z
x I

= - @ui) Ajd’
Wl(t) w2(t)at

However, it follows from arguments similar to those used in deriving eqya-

tion (1.7) that this equation is just equation (2.5) with

right-hand side used there.

If in e~ation (2.5) we approximate the integrals

the definition of the

involved by using

quadrature formulas, we obtain a differential difference form of eguation

(2.5) which applies to regions where there are discontinuities present as

well as those to which there are no discontinuities present. Of course, a

given quadrature formula will not

regions.

In the one dimensional case

3 ~x+h

be equally accurate in

eqpation (2.5) becomes

both types of

(2.7) 1:x pdx = – (pU)x+h + (pu)x

where the linear integral is rigorously computed as described above if a
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discontinuity occurs in the interval x

k the two dimensional case we

A fx+b f y+&
(2.8) ax 1,

to x + Ax.

may write equation (2.5) as

p dx dy = –
J[

(Pu)g– 1(pV)$j dS

where the line integral is taken

x, y plane bounded by the points

a way that the area involved is

Again quadrature formulas may

around the boundary of the rectangle in the

indicated in the limits of integration in such

on

be

equations which will hold (but with

the left as the boundary is traversed.

used to obtain differential difference

different accuracy) across regions with

discontinuities as well as those without discontinuities.

As an example, note that if we use the trapezoidal rule in equation

(2.7) and write x = ZAx and x + Ax = (Z+ 1) Ax, it becomes

(2.9)

This may be further approximated as complete difference e~ations by inte-

grating both sides with respect to t and using a similar integration formula

n+l
i-p

n+l n
%1 1 – %+1 – p;

(2.10)
At

[
n+l

= –~ (PU)z+l- (@ ‘+1 + (pU);+l – (pU); 1

A variety of other difference equations may be obtained.

has used*

J

Thus, Lax

*p. D. La, “On Discontinuous Initial Value Problems for Nonlinear Equa-
tions and Finite Difference Schemes,” Los Alamos Scientific Laboratory
Report LAMS-1332, December 1952.
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(2.11)
n+l n

[
At d

Pl ——

ln=p4(pu)~+l-(pu)~}
= ‘z + 2 & (pz+~ + Pz)

of

in

When we deal with Lagrangian coordinates, the equation of conservation

mass which holds irrespective of whether or not a discontinuity is present

the fixed volume is

(2.12) d
z 1

p. dvo = O
V1(0)+V2(0)

In the one dimensional case when the ‘(volume” is the interval between &

and ~ + A~ this may be written as

(2.13)

As has been mentioned before

P. ax
(2.14) p.V(g>t) = ~ ‘—

84

and

(2.15) ax
u ‘Zi-

where V is the specific volume and x(~,t) for fixed $ is the particle path of

the particle at ~. It follows from this interpretation of x that it is a con-

tinuous function of ~ and t whose partial derivatives may become discontin-

uous along a curve in the ~,t plane. Thus,

(2.16)

holds everywhere in the ~,t plane except on

the equation

the discontinuous line. We may

write an integral form of equation (2.16) obtained by integrating this equation
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over a region of the Xjt plane or equivalently by

and (2.15). Thus

J
t+At

Udt = X (t+At) – X (t)

t
E 6

These ecpations hold irrespective of whether a

approximating the integrals appropriately, they

for V and u in terms of x~(t).

integrating e~atiom (2.14)

discontinuity is present. By

lead to difference equations

3. THE CONSERVATIONOF MOMENTUM

The eqyations describing the conservation of momentum are obtained

by considering the eqyation

(3.1) d
J

.
p U1dV =

r
pF (i) dv –

x r
p ?LidS

v(t) v(t) s(t)

where F(i) is the component of force per unit mass in the direction of xi

and p is the pressure acting. Equation (3.1) leads to the partial differential

equations

8(pui) i j u
(3.2)

~ tl(puu + p6 )
= P F(i)

8xj 8xi

in regions where the derivatives exist and to the equations

(3.3) (PI - P2) ~i ~ – u:)= m(ui

across discontinuities.
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It may be shown by the use of an argument analogous to that given in

the derivation of e~ation (2.5) that for a fixed volume

(3.4)

where the surface integral is taken over the fixed surface boundingthe

volume. Equation (3.4) holds irrespective of whether the volume contains

a surface discontinuity.

In the

(3.5)

In the

d

one dimensional

d
!

X+AX

z x ‘“

=—
[
(P

two dimensional

case equation (3.4) becomes

dx

H
X+AX

U2 + p)x+= — (p U2 + p)x + PFdx
x

case we have

#[ 1g- (p u v) * dsUdx dy = - @ u2 + P) d.sz~x+vy+Ay
P

(3.6)

+ [x%
‘+*P F(l) & dy

(3.7)

a?x
‘Y

uX+AX ‘+AYPF(2) & dy
+-

x Y

These equations may be used to obtain difference equations by using quad-

rature formulas to approximate the integrals involved.
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When we deal with Lagrange coordinates, the conservation of momen-

tum condition may be written as

d
z J P.

V1(0)+V2(0)

Ui dv
o

(3.8)

(3.9)

=— [
‘o 8P ~~ +

1
p. F(i) dv.—

Jv1(o)+v2(o)f’ axi 0
0

V1(0)+V2(0)

M the one dimensional case we may write this as

By approximating the integral appropriately, we obtain a differential differ-

ence equation which may be turned into a complete difference equation by

integrating with respect to t and replacing the time integration by an ap-

proximation.

4. THE CONSERVATIONOF ENERGY

We shall assume that the forces per unit mass are derivable from a

potential function, that is, there exists an S?such that

(4.1)
~(i) . -~

axi

and that Q is independentof

(4.2)
80 - ~
at

The specifio internal energy

feet gas we shall write

t

of the gas will be denoted by E and for a per-
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(4.3) E = ~~
Y –lp

We shall also write

That is, we shall denote the s~are of the speed of the gas by q2.

The conservation of energy equation then takes the form

(4.4) d
j(

p~
z

v(t) 2
+E+Q.)dV=-\pui~id~

This leads to the differential equation

(4.5) a [(2+ E+$2)]=-~[p.i(. +E+~++)]~P+

and to the condition

(4.6)

across discontinuities.

In view of the equations of conservation of mass

equivalent form for equation (4,5) is
and momentum an

(4.7) (~+Ui 8E
p at )

auf ~
— + P— ‘
axi axi

In case the gas is incompressible, that is, in case

EO~

equation (4.7) becomes
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.

(4.8)
aul - ~

axi

By using the same argument as that given in the two preceding sec-

tions, it follows from equations (4.5) and (4.6) that

(4.9)
d

/( 2+ E+Odv’-/’ui+E+Q EOidsids
~

m ‘2

where the volume integral is over a fixed volume which may contain a sur-

face of discontinuity, and the surface integral is over the fixed surface of

the volume.

In the case of the incompressible fluid we integrate eqpation (4.8) over

the subvolumes Wl(t) and W2(t) (cf. Section 2), and we obtain

Livs+hilw‘0
Where the first integral is taken over the surface boundingthe fixed volume

and the second integral is over the surface of discontinuity. However, in

the incompressible case we have

[Ui]xxi = o

Hence equation (4.8) may be written as

(4.10) J.
U1 Ai ds = O

where the integral is taken over the surface bounding a fixed volume which

may contain a discontinuity.

JIIthe one dimensional case equation (4,9) may be written as
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(4.11)
U2H=–puz +E+ d)]x+h+[pU(:+E+ Q+;)]x

In the two dimensional case we have

(4.12)

(4.13)

d
J!l(

p q2
dt )

~ + E + Q dx dy

!(
X2

)(
dy=- +E + n +; U—–v

)
~ dS

‘2 dS

The two dimensional form of equation (4.10) is

In both equations (4.12) and (4.13) the line integrals are taken in direc-

tions which keep the area being bounded on the left.

5. TWO DIMENSIONALINCOMPRESSIBLEFLOWS

As an example of the method described above for obtaining difference

and differential difference equations, we consider the case of the two dimen-

sional flow of an incompressible fluid subject to a uniform gravitational field.

The ecpations we have to consider are the conservation of mass

(5.1)

The conservation of momentum

(5.2) d
J/ f[

dy
z p U dx dy = - (p U2 + p) ~ –

1
P UV~ dS

.- 17 -



(5.3) dz 1
p Vdx dy = -

#[ IJY
= – (fIl?2 + p) ~ ds –P u v ~s g p dx dy

and the conservation of energy

(5.4) !( )dy ~ dS=O—.
u dS v dS

where g is the acceleration of gravity.

Our program is to approximate the integrals by quadrature formulas

and to study the ensuing equations. We shall use the trapezoidal rule for

the approximation of the integrals and shall ignore the existence of discon-

tinuities in the region. This implies that our approximation is not equally

good for regions where a discontinuity (or abrupt transition) occurs as for

other regions. The form of the trapezoidal rule we shall use is the follow-

ing one: We shall replace any linear integral by the value of the function

at the mid-point of the interval times the length of the interval. We evalu-

ate equations (5.1) to (5.4) by this method, using as our region of integra-

tion the rectangle of sides 2 N and 2 Ay, centered at the point x = i @

y = j Ay.

Equation (5.1) becomes

@-J-Ii+l j+l
d

r

i+l
p dx dy = 2 Ay~ p(x, j Ay) dx = 4 Ax Ay :pij

dt i ~ j ~— i-1

/

i+l

/

j+l
= (p v) [x, (j -1) Ay] dx – @U) [(i + 1) Ax, y] dy

i–1 j–1

-J

i+l

I

j+l
(Pv) [X, (j+l) Ay] dx + @U) [(i – 1) Ax, y] dy

i–1 j-l

2 k [@ ‘)i, j-~ – (p V)i j+l] 1+ 2 AY[(P ‘)i-l, j= – o ‘)i+l, j9
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That is

(5.5) L P..dt 1] [=&y ‘Pv)i,j-l - ‘Pv)i,j+l 1 ‘~[ou)i-l$~-(pu)i+l$jl

Similarly, we may show that equations (5.2), (5.3) and (5.4) become

(5.6)

(5.7)

and

(5.8)

$ @‘)~j [
= *Y (p V2+p)i ~ ~ - (p V2+ p)i j+l

s— 9 1

1
[ 1

— (p u V)i–l, j - (p u V)i+l j – g pi j
‘2AX 9 >

–‘i,j-l-vi,j+ll ‘Zk[”i-l,j-ui+l,jl ‘0
1

2Ay [

respectively.

Note that if we had applied the trapezoidal rule by replacing a linear

integral by the average of the integrand at the two end points of the interval

times the length of. the interval, the differential difference equations (5.5) to

(5.8) would be quite different. h fact, equation (5.5) would be replaced by

(5.9)

Similar

[
‘Pdt i+l, j+l + ‘i-1, j+l + ‘i+l, j-l + ‘i–l, j-l 1

[
= & (p V)i+l j-l + (p V)i-l *1 – (p V)i+l j+l - (p V)i–l, j+l

9 s * 1

[
~ (p U)i-l j-l +(pU)i–l ~+1– (pU)i+l ~+1--(p U)i+l,j–l‘Ax 9 * 8 1

modifications occur in equations (5.6) to (5.8).
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The choice between the differential difference equations of the type of

equation (5.5) and the type of equation (5.9) must be made on the basis of a

stability analysis. We shall not attempt this here. Instead, we sM1 outline

a computationprocedure for dealing with the system (5.5) to (5.8). Similar

procedures would exist for the system involving equations of the type of

(5.9).

6. THE EQUATION(5.8)

E ‘e ‘efine ‘ij and V. in terms of a quantity $. by means of thelj lj
equations

(6.1)
1u.. = —2 Ay [

- +i j ~1] *i, j+l , –

(6,2)
. –1

‘ij [
+2 Ax i+l, j – *i-l, j 1

then equation (5.8) is satisfied for every choice of the quantities ?/Jij,as may

readily be verified.

If the other application of the trapezoidal rule were made, there would

be analogous expressions for uij ‘d ‘ij in terms of ZJwhich would automati-

cally satisfy the analogue of equation (5.8).

On fixed boundaries we must have the component of the velocity of the

fluid normal to the boundary vanish. If the fixed boundaries make up a rec-

tangular region, this may be accomplished by defining

* *i,–1 = i,1
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7. THE EQUATIONS(5.6) AND (5.7)

These equations may be written as

(7.1)

and

(7.2)

1
2J!h ( ‘i+l, j – pi–l, j)

= -~(P U)ij + Tij

1 ( )2 Ay ‘i, j+l - ‘i, j–l = - $@ V)ij + ‘ij

where

(7.3)

T 1
[

= — (Pu v)i, F1
ij 2 Ay - (p u V)i j+l

9 1
. .

1
+ 2fhc [

(p U2)*1 j – (p Vz)i+l j
9 s 1

‘ij [
= *Y (p v2)i j ~ – (p v2)i j+l

9— 9 1
(7.4)

9 ro 1
— (/l u V’)i–l, j – (p u V)i+l jJ – g /lij+ 2 iy 1 9

We may eliminate p.. from equations (7.1) and (7.2) in a manner suggested1]
by the differential equations analogous to these equations and obtain

(– ‘i$j+l-Ti9j-1)-* (si+l,j-si-l,j)

1
2AX

d (p U)i j+l – (p U)i j ~

[

d (PV)

1[
i+l, j – (p V)i–l, js=— s—

dt 2 Ay –z
2AX 1

‘I%is equation may be written as
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1 (
dui, j+l

du.1,j-1
2 Ay ‘i, j+l dt – P.l,j—1 dt )

(7.5)

1
(

dvi+l, j dvi-1, j
‘2Ax ‘i+l, j dt ‘Pi–l, j dt ) = ‘ij

where

(7.6)

Eqpation

equation (7.6).

Equation

(7.7)

where

(7.8)

‘– ‘i,j+l-Ti,j-l~-& [si+l,j-si-l,J
1

‘ij 2Ay (

1
(

dp dpi, j+l i, j-1——
2Ay dt ‘i, j+l – dt ‘i, j-1 )

L *v
(

dpi–1, j
‘2AX i+l, j - dt ‘i-1, j )

(5.5) may be used to replace the terms involving dpij/dt in

‘ence’ ‘ij is a function of the p
ij

and the # alone.ij
(7.5) may be written as

1
4 Ax Ay [ (“‘i, j+l iyj+2-~ij)-pi$j-l f~i)j-$ij-2~

– ‘i+l, j ( ‘, ‘ii,j)+pi-l,j(ii,j -4i-2,j)=Bij
ii+2 j

(7.7) is a linear equation for $ of the form

A$=b

Equation

(7.9)

where A is a matrix and $ and b are vectors, and if it is solved subject to

the proper boundary conditions ($ = O on the boundary of the domain under

consideration), we may then determine ~. Equation (5.8) enables us to
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determine

dp..IJ
b. ‘—lj dt

Time integrations will then enable us to follow the behavior of the fluid in

time.

8. TIME INTEGRATIONS

In the above

functions of ~ and

tions and apply an

discussion we have shown how

P. We may consider these as

integration procedure to them.

to calculate $ and ~ as

ordinary differential equa-

Since we have already

approximated spatial integrations by quadrature rules, we apply the same

considerations to time integrals. The equation

is equivalent to the equation

I

t+At
(8.1) $(t + At) - #(t) = ~ dt

t

Even if we use the trapezoidal rule we may obtain two

for this integral

(8.2)

or

(8.3) Y(t-+At) = Y(t)+ $ [?j(t+ At) + ~(t)]

approximations
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In the methcxioutlined above for dealing with our problem neither

$(t + At) nor ~[t + (At/2)] are available at time t. Therefore, neither equa-

tion (8.2) or (8.3) may be applied. There are at least three possibilities

open to us:

1, Replace equation (8.1

?j(t + At) = ~(t)

by

where ~(t) is computed by differencing ~(t) or by differentiating equation (7.7)

with respect to t and substituting appropriate expressions for $ and ~.

2. In equation (8.3) replace the term [$(t+At) + ~(t)]/2, which is a

time average of ~ over the interval At, by an appropriate space average of

~. That is write as an integration formula

A procedure analogous to this has been suggested by Lax* in dealing with

the hydrodynamic equations of compressible flow.

3. Recast the previous discussion completely in terms of difference

equations instead of differential difference equations. In essence, this means

that it is not strictly true that we do not have $(t+At) available to us. We

have from eqyation (7.9)

$(t + At) = A–l(t + At) b(t + At)

If this were substituted into equation (8.3), we would have an equation for

~(t + At). However, it is easier to achieve this equation by transforming

equations (5.1) and (5,4) wholly into difference equations instead of into dif-

ferential difference equations.

*~id.
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In subsequent reports we shall discuss the various difference equations

that may be obtained in Eulerian

on approximations to the integral

will hold irrespective of whether

regions where discontinuities are

coordinates. These equations will be based

formulation discussed earlier and hence

discontinuities are present. Of course, in

present the accuracy with which they

represent the equations derived will be less than in the continuous regions.

The existence of a unified method for dealing with continuous and dis-

continuous regions in Eulerian coordinates indicates that it is feasible to

deal with Eulerian coordinates in obtaining numerical solutions to multidi-

mensional hydrodynamics problems. If such coordinates are used, the dif-

ficulties encountered when Lagrangian coordinates are used in problems

where slippage occurs are obviated. A detailed discussion of numerical

schemes for doing hydrodynamical problems by use of Eulerian coordinates

w-ill be given subsequently.
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