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ABSTRACT

Iterative numerical methods for solving independent, simultaneous,
inhomogeneous linear equations are surveyed. Application of the methods
to elliptic difference equations as arise in neutron diffusion, heat con-

duction, and potential problems is discussed.
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1. INTRODUCTION

This paper presents a survey of the methods of solving independent,
simultaneous, inhomogeneous linear equations. Here we are concerned
with systems too extensive to be handled conveniently with a desk cal-
culator; therefore we restrict the discussion to iterative-type methods
performable upon high speed digital computers.

We assume that we have a system of equations of the form
N
Zaiﬁ xj+si=0 i=1,2, «oue, N (1.1)
j=1

where the xj are the unknowns, and the coefficients a.ij and the inhomoge-

neous term si are given. In matrix notation (1.l) is

+ 5= 0 (1.2)

1%

where A is the N x N non-singular matrix of the coefficients aij’ x is
the N-dimensional vector of unknowns xj, end s is the N-dimensional
vector of the inhomogeneous term.

We assume a correspondence between unknowns and equetions, i.e.,

the ith equation will be used to solve for the ith unknown. The order



of improving the unknowns in an iterative procedure may vary gccording
to a particular method, but a given equation will always be solved for
the same unknown.

We assume that the main disgonal elements of A are domina.nt.* Thus,
the solutions of Eg. (1.l) are not altered if each equation is multiplied

by a normalization constant l/a'ii' The matrix A then takes the form
A=I+L+U (1.3)

where I is the identity matrix, and L and U are lower and upper trian-
gular matrices, respectively.

The methods for solving Eq. (1.1) are direct, iterative, and com-
binations thereof. Direct methods, such as Gauss elimination are those
for which the exact solution is obtained (assuming no round-off errors)
in a finite number of steps. For a general system of N equations, these
methods require the order of I\I3 operations.** They can be used for any
set of independent equations (in contrast to iterative-type methods) »
but they suffer from the occurrence of round-off errors which, in some

instances, can be large.

*Iterative methods can be used if the matrix A is positive definite
(Sections 2, 3, and 6), it has real eigenvalues (Section &), or if
the main diagonal elements dominate the off-diagonal elements (sec-
tions 2 and 3).

**For a multidiagonal matrix, the number of operations approximately
equals the number of equations times the maximum row width between
non-zero row entries times the maximum column width between non-zero
column entries.

-8~




On the other hand, iterative methods (Sections 2 and 3) generate
only an approximate solution in a finite number of steps: the exact
solution would usually be obtained only in the limit of an infinite
number of steps.* They are iterative in the sense that an approximate
solution is successively improved in a steéwise manner. Round-off er-
rors are generally small, do not tend to propagate, and are reduced by
succeeding iterations. Iterative methods have an advantage over direct
methods in that if a reasonable approximation is available initially,
the effort involved in obtaining a "solution" will be reduced. Although
the exact solution cannot be obtained generally, a convergent solution
can be made to approximate the true solution of the equations as accu-
rately as desired. However, the iterative methods are applicable only
under certain cirecumstances, as discussed below. .

If the system of eéuations is very nearly dependent, the number of
iterations required to reduce an initial error of the approximate solu-
tion can, in some instances, involve ﬁore numerical operations than if
the system were solved by a direct method.

The inclusion in the iterative method of a dependence of an extrap-
olation parameter, ®, on the iteration cycle number is discussed in
Section 4., In Section 5, the application of iterative methods to blocks

of unknowns is considered. Some variational methods are discussed in

*
The methods of conjugate gradients and conjugate directions (Section 6)
are exceptions. These methods obtain the exact solution in N steps by
an iterative-~direct method.




Section 6. And finelly, the particular example of a system of difference
equations originating from a second order linear elliptic differential
opéra.‘bor, such as arises in neutron diffusion, heat conduction, and po-
tential problems, is considered in Section T.

We generally state results without proof, referring to the literature
for the details. The bibliography at the end is meant to be only repre-

sentative, not exhaustive. References to extensive bibliographies are

listed.
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2. BASIC ITERATIVE METHODS

Consider the system of N independent, simultaneous, inhomogeneous
linear equations given by Eq. (1.1). We assume a matrix equation of the

form

where

A=I+L+U . (2.2)

as in Section 1. The independence assumption guarantees that A is non-

singular.
The fundamental equation for the basic iterative methods is obtained

by rewriting Eq. (2.1)

x=-(L+U)x-s | (2.3)

Simul taneous Iteration

Gauss was the first to develop Eq. (2.3) into an iteration scheme

by forming

«1lle




§(p+l) = (L + U)_:g(p) -5 (2.4)

where the superscript denotes the iteration cycle number. This equation
defines Simultaneous Iteration.

The newest estimate of the solution, E(pﬂ'), is obtained from all
the components of §(p) , connected and weighted through -(L + U), and the
inhomogeneous term. All iterates of x are advanced simulteneously and
are entirely dependent on the previous iterate.

This procedure has various designations in the literature. Although

frequently called Gauss Iteration, such a term is misleading because Gauss

did not solve the equations in a fixed order as indicated in Eq. (2.4).
Schmidt, who used the method extensively, often has had his neme asso-
ciated with it. When it has been used to solve elliptic difference

equations, the label Richardson Method has been applied. Many later

authors refer to it as Method I. In this paper, we shall refer to it

by its descriptive title: Simultaneous Iteration.

It seems reasonable that the Simultaneous Iteration would converge

more rapidly if a component of _3_<(p+l)

» when determined, were used in
determining & component of E(pi- 1) still unknown. Such is indeed the

case, and this defines the next procedure.

-]12-



Successive Iteration

Solving Eq. (2.1) in the order 1, 2, ..., N, we define

§(p""l) - _Lﬁ(P'*‘l) - U-}_{(P) -5 (2.5)
or
;_;‘P"l) = -(1+1)™ U:_c(P) -+t s (2.6)

One notices from the form of Eq. (2.5) that the formation of the ith

(p+1) involves the components xﬁfl, k < i, and xi?)’

component of x
k' > i, Thus, x§p+l) depends upon the advanced iterates already com-
puted and the previous iterates yet unadvanced. Thus Eq. (2.6) defines
a Successive Iteration procedure.

There are many different designations for this method in the 1it-

erature. The most frequent are Seidel's Method and Gauss~Seidel Method.

This is misleading, for Seidel did not use the equations in a fixed
order.* Liebmenn, who used it extensively as applied to Laplace's equa-
tion, has had his name associated with it. The term Method II is
popular among many later authors. We shall adopt the descriptive title,

Successive Iteration.

*
Seidel's Method is essentially identical to Southwell's Relaxation
Method of 50 years later.

-13-



Convergence Properties

The convergence rates of the above procedures are not easily eval-
uated for a general matrix A; however, some conditions guaranteeing
convergence end relative convergence rates can be given.

Consider an error vector _E_(P) , defined by

E(P) _ (P) . (2.7)

I
1%

'
1%

giving the difference of the pth approximation, E(p)’ from the true

solution, x, which satisfies

Ax+8=0 (2.8)

Substituting Eq. (2.7) into the defining equations for Simultaneous and

Successive Iteration, we obtain the error equations
Simultaneous Iteration: g(pﬂ') = (L + U)_E_(P) (2.9)

Successive Iteration: E(pﬂ') = ~(I+ L)'l Ug(p) (2.10)

If the matrices on the right-hand sides of Egs. (2.9) and (2.10)
have eigenvalues I)\.il <1, then the iterated error vector, E(P*-l), will
tend to a null vector as p -» . In that instance the Simultaneous and
Successive Iteration methods are said to be convergent. The character-

istic determinantal equations for the eigenvalues are, respectively:

1l



Simulteneous Iteration: det |L + U+ AI| =0

Successive Iteration: det IU + MMI + L)l =0

or, in terms of the coefficients of Eq. (2.1):

Simultaneous Iteration:

T R

a21 A 823 . . . a2n

331 332 A .

. . . =O
anl an2 . . . A

Successive Iteration:

> B2 B3 -+ o By
xazl A a,23 . . . a2n
ha31 xa32 A .
. . =0
Xanl xane . . A

-15-
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The order of solving the Simultaneous Iteration equations, Eq. (2.4),
has no effect upon the convergencé rate. However, the order of solving
the Successive Iteration equations, Eq. (2.5), does affect the conver-
gence rate,

In general, the eigenvalues of the matrix A are not known in advance.
We now consider theorems determining the convergence of these elementary
procedures, which depend only upon a knowledge of the coefficients of A.
Proofs of the theorems are sketched, and a reference in which the details

can be found is given.

Theorem I (Ref. 30, p. 141, and Ref. 1)

Given a non-singular matrix
A=I+L+7UT

the methods of Simultaneous and Successive Iteration both converge for an
grbitrary starting point and for any order of solving the equations if the

* *¥
following conditions are satisfied

]
Simultaneous Iteration: max z Ia.i 3 l < 1
i -

J (2.15)
4
Successive Iteration: max Z Iai ] l <1
i
J

where the aij are the coefficients of the matrix A.

*
**'.Ehe prime indicates the absence of i = j in the sum.
That is, the disgonal elements of A are dominant.

«16-




The proof of this theorem for Simultaneous Iteration relies upon
a theorem of Hadamard, concerning eigenvalues, that states: all eigen-
values of a matrix lie in or on circles centered at a;4 and of radius
Z'Iaijr Here we are concerned with the matrix -(L + U), which has zeros
glong the main diagonal. Hence, all the eigenvalues will lie within
circles of radius E'Iaijl centered at the origin. Convergence is guar-
anteed if the radiis is less than 1. Now -(L + U) cannot have eigen-
values equal to 1 since then we would have A= I + L + U = 0, vhich is
forbidden, since A is non-singular by definition.

The proof of this theorem for Successive Iteration foliows from
observing the error at each step and showing that it decreases to zero.

Note that in Theorem I, convergence is obtained if the diagonal of
the original matrix A (in our case I) is greater than the sum of the
off-diagonal terms in a row. In other words, convergence is obtained
if the diagonal term dominates. If the original set of equations does
not have 1's elong the disgonal, the matrix A can be obtained by di-
viding each equation by its diagonal term (if non-zero). The sums of

the resultant off-diagonal terms will be less than 1 if the original

disgonal terms were dominant.

Theorem II (Ref. 30, p. 14l)

Given a matrix

A=I+L+0U

-17-




the method of Simultaneous Iteration converges, if the norm of -(L + U)

is

|- + v =\/z lai.ile <1 (2.16)
i,J :

The proof of this theorem follows from Theorem I [since all eigenvalues
of -(L + U) lie inside a circle of unit radius].

A matrix is defined to be positive definite if

Z Bi4 Xy Xy >0 (2.17)
i,J

for all x # 0. This brings us to Theorem III.

Theorem III (Ref. 30, p. 1h42)

Given a real symmetric matrix

A=I+L+U

the method of Successive Iteration converges if, and only if, A is pos-
itive definite.

The proof of this theorem follows by forming the quadratic function

F(x) =

=

X+ AX+X-+8 (2.18)

-18-



and noting that the solution to the system of equations
AX+s5=0

minimizes Eq. (2.18). The proof then amounts to showing that F(x) is
diminished at each step of the iteration, if and only if, A is positive
definite.

Stein and Rosenberg (Ref. 23) have proved some very valusble the-
orems related to the two methods under discussion. One of the most
useful, whose proof relies upon the properties of non-negative matrices,

is the following.

Theorem IV (Ref. 23)

Given a matrix A with coefficients

ii

and

aij

A

0 for all i # J

then the methods of Simultaneous and Successive Iteration converge and
diverge simulteneously. In the case of convergence (A positive definite),

Successive Iteration is more rapid.

-19-




3., EXTRAPOLATED ITERATIVE METHODS

The Simulteneous and Successive Iteration convergence rates can be
incressed in various ways by extrapolation (using iterates at previous
cycles).

Assume that the matrix A has real eigenvalues, Hyo and a complete

* *¥
set of eigenvectors, Ny such that

where p, =1 = A;. The \, are the eigenvalues of the matrix -(L + U) of
Section 2. Throughout this section, we assume that Simultaneous Iteration

converges; i.e., Ihi‘ <1l.

Extrapolated Simultaneous Iteration

In a straightforward manner, Simultaneous Iteration, Eq. (2.1+), can

be extrapoleted by

*
That is, each eigenvalue is of index 1 or simple.

¥
It is not implied that extrapolation procedures will not follow with-
out these assumptions; however, the choice of extrapolation parameters
might be more difficult.

«20-



L1 _ () _ [Ax(p) . E] (3.2)

where ® is the extrapolation parameter.

(p)

The error vector, E , of Eq. (3.2) is trensformed by

Ibxpanding the error in the eigenvectors of A, Ny we have

N N
E(p) =Zai J; = Egp) (3.4)
i=l i:l

vhere each mode is transformed by
(p+l) _ (p)
E; =|1 - o(l-2)|E; (3.5)

Any individual error mode _Iggp) can be eliminated by the parameter choice

= (5.6)

Thus, if all the eigenvalues were known, we could eliminate all error
modes and obtain an exact solution in N iterations by choosing « dif-
ferently for each iteration. Unfortunately, the eigenvalues are not

known in general.

-2] -




For & fixed constant w, we must choose it so that all modes will be

decreased simultaneously; i.e.,

|1 - e -a)]<2 n. <A (3.7)

where )"o and A m 8T the minimum and meximum eigenvalues, respectively.

If Simultaneous Iteration converges (l hil < 1), then w is in the range
oO<o _<_ 1

To select an o that will minimize Eq. (3.7) requires knowledge of

M and e However, if we assume A = =), then the optimum w is
ws=1

Thus, the optimum Extrapolated Simultaneous Iteration becomes simply
Simulteneous Iteration and nothing has been gained.
On the other hand, improvement might be expected by forming & second

order extrapolation scheme

(P _ (@) L, [lc(p) . §(19-1)] . a)[Ax(p) + E] (3.8)

where the new estimate, E(p&l), depends upon the two previous iterates,
x®) ana %P2 The fom of the equation is determined by requiring

the equality to hold in the limit of convergence. Two parameters, o and

-2



®, must be chosen. As before, consider each error mode, Eip*- l), where

~1

g(P+L) _ [1 to- ol

)] £P) - o g{P-V) (3.9)

*
Assuming the relation

we have
_E_;épﬂ) = (1 + 0o - 0+ o - -Ogi-)_E_:(ip) (3.11)
or

2
o5 - (l+a-a>+wxi)0i+a_o

which has the solution

TN =% [(1 + 0 -0+ wxi) + \/(l + Q0 -w+ wxi)g - lla]‘(j.la)

If @ and @ are chosen so that the expression under the square root is
negative for all A‘i’ then a1l @ 1 will be complex and, more importantly,

all IOil will be identical.

* )

We are assuming that the second order procedure of (3.9) is equivalent
to applying some matrix with eigenvalues ©; to only the previous iter-
ate. We then choose the parameters such that this is true.

-23-




In particular, the choices

l+a-w+a>)\,m=2 fos
(3.13)

1+oz-a>+mxo=-2a ’

give o and
NG
a=<ﬁ-xo- Vi-x,
Vl-xo-t- Vl-xm

(3.14)

2

Vl')‘o"‘VT')"m

This choice of parameters, which mekes the square root of (3.12) negative, ‘

or zero, yields
|o;] =vo (3.15)

The eigenvalues © ; are complex, but all have the same absolute value.
Thus, &all error modes are decreased at the same rate. Note that loil is
always smeller than the maximum of |>.. ol and P‘ml' Consequently, the pro-

cedure is always more rapidly convergent than the Simultaneous Iteration.

-2l



If estimates of the minimum and meximm eigenvalues (xo, xm) for Eq. (3.1L4)
are not exact, it is best to estimate Ao lower and xm.higher to assure the
Oi being complex and therefore all modes decaying at the same rate.

Actually, the situation of Eq. (3.10) is never achieved (except asymp-
totically) because of the first mesh sweep. We estimate the initial error
E‘o) but require a second iterate E('l) in Bq. (3.9) differing fromng(o) by
Eq. (3.10). As only the norm of Oi is known, the initial iterates cannot
be picked appropriately. Thus the convergence rate indicated by Eq. (3.15)
is epproached asymptotically only as p —» .

In the literature, this method has generally been called Second Order

Richardson. We will refer to it here as Second Order Simultaneous Itera~

tion.
(The authors were unable to find an advantage in third order extrapola-
tion. The optimum scheme would seem to have been obtained using a second

order extrapolation.)

Extrapolated Successive Iteration

The extension of Successive Iteration, Eq. (2.5), can be achieved in

the same way as for the Simultaneous Iteration, by

E(p+l) - 5P _ “{i(P) + LE(p+l) + U§(P) + _s_] ., - (3.16)

where w is the extrapolation parameter. As for the basic iteration, Eq.

(3.16) is obtained when the latest estimates of the unkmowns are used in

-25-



the Extrapolated Simultaneous Iteration, Eq. (3.2). Successive Iteration
is obtained whenever @ = 1, and the terms Under- or Over-relaxation apply

as o is less than or greater than 1. Equation (3.16) can be rewritten as
§(p+l) = (1 +a)”t [(1 - »)I - muk(l’) - (1 +ap)”t ws (3.17)
For the error we have
™) (14 )t [(1 - o)I - aﬂ]g(P) (3.18)

There seems to be no clear procedure for writing (3.18) in terms of the
eigenvalues xi. Consequently, it is almost impossible to optimize the
iteration procedure in the general case. However, for en important par-
ticular case, when the matrix A results from using a five-point difference
equation, the matrix of (3.18) is such that w can be optimized. In that
instance, Extrapolated Successive Iteration becomes a powerful method, as

will be seen in Section T.

«26-



L. THE METHOD OF TSCHEBYSCHEFF POLYNOMIALS

In Simultaneous Iteration, the repeated application of a matrix M to
an error vector results in the application of Mp to the initial error vec-
tor. We now consider the application of a general polynomal GP(M) and.
find that Tschebyscheff Polynomals are optimm for convergence.

In Simultaneous Iteration, the iteration matrix M = «(L + U) is ap-

plied to each iterate

5(p) _ M§(P‘l) - s (k.1)

The true solution, x, satisfies Eq. (4.1) exactly; i.e.,

X=Mx-s
(p)

As in Section 2, the error, E(P), associated with the iterate, x'*', is

defined by

g(P) (p)

= X -« X

and satisfies

-27-




E(p) - D@(p-l) (%.2)
writing x®) ana E®) in terms of the initial approximation x(°) ana
() gives
P VY . T (4.3)
and
2P _ 2 E(o) (4.4)

For convergence, all eigenvalues of M must be less than 1.
Consider the case where the pth degree polynomial in M, Gp(M), is
applied to the initial error, rather than the particular polynomial, Mp

of Eq. (4.4). Then we would have

This will give an improvement in convergence rate if the polynomial GP(M)
reduces the slowly decaying modes of M more rapidly than does MP. It is
rather well known that such a polynomial exists and is given in terms of
Tschebyscheff's polynomials (Refs. 5 and 7). First, however, we discuss

methods whereby a general polynomial can be applied.

-28-



Methods

A semi-iterative procedure for applying a polynomial to an initial
approximation consists of generating the Simultaneous Iteration iterates
and forming a polynomial as a linear combination of them. Considering
only the error, denote the Simultaneous Iteration iterates by E(P), and

the resultant approximation by g(p). We have

) . @(p-l) - P E(O) (4.6)
and
p ' p .
_F_:,(p) =zal E(l) =2ai Ml E(O) (1-|-.7)
1=0 i=1
= Gp(M). (®) (4.8)

where the a.i are real coefficients. The polynomial obtained depends
upon the choice of coefficients ai.
A second procedure for generating the polynomial is purely iter-

ative in nature; namely,

-29-




g(P) _ gle-1) o, [M_E_(p'l) ) E(p—l)]

(1 - @, M- wp) E(p-l)

P (o)
11=r1 (l-a)iM-a)i)_E_

Gp(M) E(O)

(4.9)
(k.10)
(k.11)

(4.12)

Again, the GP(M) is completely dependent upon the choice of parameters

(Di.

In both of the above cases » the generating polynomial has the prop-

erty

Gr(I) =1 .

(4.13)

In actual computation we do not work with the error, but with the

function itself.

the form

x(p) _ Msc:(P-l) - s

b
P N\ 3(2)

puiny i -

i=0

-30-
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*
and the iterative procedure

L) _ 1), [Mx(p-l) L (1) s] (4.16)
= = Pl - -

There are other similar ilterative procedures which lead to a polynomial

in M operating on an initial error.

Tschebyscheff Polynomials

Flanders and Shortley (Ref. 5) prove the following theorem:

Theorem: The pth degree polynomial in w, Sp(a)) , having the minimum-
meximum absolute value for o real and in the range -1 < ® < +1, and nor-

malized such that Sp(wo) = 1 for some @, > 1 is given by

T (w)

5,(0) = ?P'g(w_T (k.17)
P

where T () is the Tschebyscheff Polynomial. The denominator of Eq. (k.17)

is constant and achieves the desired normalization.

The Tschebyscheff Polynomials, Tp(a)), are defined by (Ref. 10)

‘I‘p(w) cos (p coa~t w) o] <1

(4.18)
cosh (p cosh™t ®) Jof >1

Tp(w)

¥
Essentially Extrapolated Simultaneous Iteration, Eq. (3.4) with var-
iable w.

-31-




?p(w) can be expressed as a polynomial

Qp(w) = of - (g) W21 - of) + (ﬁ) WPy - w?)e

- (g) P61 - ) k.. (4.19)

or, using simple trigonometric identities, can be written in the follow-

ing recursion relation!

To(w) =1 (4.20)
qi(m) =

From (4.18) we have
?P(-l) = +1 p even
TP(-l) = =1 p odd (k.21)
?P(l) = +1 p even or odd
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Optimum Polynomial

Using the previous theorem, the optimum polynomial can be deter-
mined. The matrix M has eigenvalues bounded absolutely by 1 (otherwise
the Simultaneous Iteration would diverge).

If, further, the assumption is made that all the eigenvalues of M

are real, then

-l<b<r<ac<l (k.22)

for all A. Thus the conditions of the theorem can be obtained by shift-

ing the range of the interval (a,b) to (-1,1), using the transformation

M - - b

u(m) = a->
(.23)

2N - - b

u(r) = S22

where p(\) are the eigenvalues of the matrix U(M) corresponding to A of

M. From Eq. (4.23) one notes that

w(a) = +1
a(b) = -1 (4.24)
w(1) = 25222 >




Using the theorem and the normelization of Eq. (h.l}), the pol-

ynomial to be determined is

M -~ (a + b)I
T (u() ] Tp[ -1 ]
G (M) = (k.25)

P T [U(I)] o [2 -a- b}
P 2a->

and the error for the pth iterate, from Eq. (4.5), is

<2M -a ; b) E(O)
(—————) i

The maximum ebsolute value of the numerator of Eq. (4.26) is 1. Thus,

(+.26)

convergence is governed by the denominator, and

-1

g(P) < [Tp@‘é_?t-:_ti)} E(o) (4.27)

In comparison, Simultaneous Iteration gives

g(P) < oP gl©) (4.28)

— — o -

D. Young (Ref. 6) established that the convergence rate of (4.27) is at
least a factor V2 better than that of (4.28). Actually, it might be

much better.
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The polynomial method, on the other hand, requires more work be-
cause the coefficients, as well as the iterates, must be calculated.
This is not very significant. Shortley (Ref. 7) estimates that the

computing time is of the order of Nl/e, where N is the number of equa~-

tions of the system. This tends to be optimistic, but is somewhat
more qualitative.

If the matrix A, Eq. (2.2), is symmetric (or can be made so by pre-
multiplication by a positive definite matrix), then the M obtained for
Simultaneous Iteration (2.4) has real eigenvalues. If the Successive
Iteration matrix has real eigenvalues, the application of Tschebyscheff
Polynomials results in an increased convergence rate. In general, how-
ever, it is not clear that the eigenvalues of the Successive Iteration

nmatrix are real.

Choice of Parameters

In order to generate the Tschebyscheff Polynomial;, the iteration
parameters of Eq. (L.7) and Eq. (4.9) must be determined.

The coefficients of the semi-iterative procedure are obtained by
expressing the Tschebyscheff Polynomials in polynomial form and matching
coefficients.

For the iterative procedure, Eq. (4.9), the roots of the Tschebyscheff
Polynomial and the generating polynomial, Eg. (4.11), are matched.

The roots of jp(u), ju| <1, are
k=0,1, 2, oo, p =1 (4.29)

=355~



Thus, for the transformed roots, Eg. (4.23), we have

k=0,1,2, «.., p-1 . (k.30)

or

xa-lé'-[a.-i-b-i-(a-b) cosak+lzr]

kK=0,1,2 voey p=1 (k.31)

Similarly, the roots of the general polynomial, Eq. (4.11), occur when-

ever
1+a>kx-wk=o (4.32)
or
O - 1
k
A= ()4“33)
"

Matching Eq. (4.31) and Eq. (4.33) gives

[a+b+(a-b) cosak"'l:l}-l

We
n
s
]
oj -

L
]

0, 1,2, oo, p=1 (4.34%)
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Both procedures have different coefficients for different orders p
of the polynomial. The usual procedure is to estimate in advance the re-
quired p and then calculate the appropriate coefficients. If it turms out
that the estimated p is not large enough to give the required error reduc-
tion, then the cycle can be repeated. This is not, however, as good as
generating the larger polynomial initially, and is clearly a disadvantage
of the method.

A second disadvantage is the susceptibility of the method to large
round-off error (Ref. 7). This occurs because the coefficients w; and
ai mey be very large.

One means of generating the Tschebyscheff Polynomials which elim-
inates both of these problems is to use a second order iteration scheme

(Ref. 4, p. 9, and Ref. 24), such as

x(P) - fKP-l) + ap[Mf(p-l) - E(P’l) - E] + sp[ﬁ(P-l) - E(P-Q)] (4.35)

Such a form is plausible because of the known recursion relation ?p(w),

Eq. (L.20). Again the error reduction is teken as in Eq. (4.26)

g(®) _ Tp[U(M)]

I A\ L) (4.36)
T,[U(1)]

which, when substituted into the error equation resulting from Eq. (4.35),

yields, upon rearranging,
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T,lU(D)]

T _[u(M)]

T,lU(M)] = (1 + aM - + By) -1

T, 1 (U(D)]

T [U(1)]
- B, —E—— T [U(M)] (4.37)
Po ouml *

%

Equating the coefficients of Eq. (4.37) with those of the recursion rela~

tion gives

' 2 - -Db
kT [6(I)] “Tp-1<—a?-r>
ap = p-l = (Ll--38)
(a- - b)Tp[U(I)] (8. - b)Tp(z ; f.; b>
and

2-8-5b

p (=22
) Tp.o[U(D)] ) p—?( a-b > (h.39)

B. =
P
R Tp<g;—f'%'3>

The first two values of the Tschebyscheff Polynomials (4.20) are satisfied

1f the following choices are made

1 2 -a-1v

(4.40)

™
-
|
O



Using the values of o, and ﬁp given by Eqs. (4.38), (4.39), and
(4.40), a set of iterates §(p) is generated in Eq. (4.35) such that
Eq. (4.36) is obtained at each step. Round-off difficulties are

greatly reduced, as the coefficients are order 1.
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5. BLOCK OR IMPFLICIT METHODS

It is sometimes advantageous to advance a set or block of unknowns
simultaneously. The equations are implicit if each of the unknowns. of
the block depends upon the other umknowns of the biock. The method of
solving these implicit equations depends, of course, upon the structure
of the matrix. Usually they must be solved simultaneously. In that
case, the blocks should be chosen so that the solution is simple and
the round-off errors are small.

The ideal procedure would be to obtain the exact solution by solving
all the equations simultaneously as a single block. However, this is im-
practical for a general system of N2 non-zero coefficients because of
round-off errors. On the other hand, if there are of the order of only
N non-zero coefficients, such & procedure might prove feasible if round-
off is not large.

If each block consists of just one unknown, then the procedure is
identical to the "point" methods of the previous sections. Also, if the
equations of a block are uncoupled (i.e., each unknown does not depend
upon the other unknowns in the block), then each unknown can be written
explicitly in terms of previous iterates and the method is identical to

the corresponding point method (Ref. 17).
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One can have simultaneous and successive block methods as discussed
in Section 2, as well as extrapolation of these basic procedures as in
Section 3.

As an example, assume that each block involves k unknowns. Order
Eg. (2.1) such that the first k equations have the coefficients of k un-
knowns of the first block on the main diagonal,* and the second set of k
equations has the coefficients of thé X unknowns of the second block on

the main diagonal, etc. Then Eq. (2.2) can be written (Ref. 17) as
Ax+s=(D+D+Wx+s=0 (5.1)

where the matrix D is formed from the (k x k) matrices of coefficients of
unknowns in the blocks. The matrices I, and U are the remaining lower and
upper triangular matrices which couple unknowns within a block to unknowns
outside the block.

Corresponding to Eq. (2.3) for the basic form, we have from Eq. (5.1)
DX_ = -(ﬁ + ﬁ)z(. -8 (5.2)

Analogous to Eq. (2.4) for Simultaneous Iteration, we have Simultaneous

Block Iteration

D}_{(Iﬁl) - T+ ﬁ)E(P) - s (5.3)

*As discussed in Section 1, each equation distinguishes an unknown, the
coefficient of which appears on the mein diagonal of the matrix A of
Eq. (2.2).
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or
i(p!-l) = -D'l(ﬁ + ﬁ)_}_:_(p) -t 5 (5.4)

Similerly, from Eq. (2.5) for Successive Iteration, we have for Succes-

sive Block Iteration

Dx__(p+1) - 2 @) (5.5)

orxr
P L oyt L o)t (5.6)

As before, the error obeys these same equations with the source term

absent. The characteristic eguations for the error matrices become

Simulteneous Block Iteration: dget [T+ T+aD] =0 (5.7)

Successive Block Iteration: det |ﬁ + 2D + f)l =0 (5.8)

with arrays corresponding to Eqs. (2.13) and (2.14). In particular, if

k = 2 (still assuming ay; = 1)

=42.



Simultaneous Block Iteration:

A

Moy

8

31

Mo

A

a

52

5 %y
23 &),
A M),
Mys

Successive Block Iteration:

Xazl

kaBl

My

ra

My

A

%30

Xau

pX:)

2

2

83 &y
Boz B
A Aag),
Ny 5

A

A

A

a
n,n-1

a
n,n-1

in

xanpl,n

a2n

kan—l,n

=0 (5.9)

=0 (5.10)

The basic block methods can be extrapolated as in Section 3 for the

point methods.

have

Thus for Extrapolated Simultaneous Block Iteration, we
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D-x_(p-!-l) - o® _ o [Ax(p) . _S_] (5.11)

or

N [Ai(p) + E] (5.12)
and for the Second Order Simultaneous Block Iteration

(P (@) 4 g [ﬁm i z(‘"l)} ol [A_}E(p) . 5] (5.13)
Similarly, for Extrapolated Successive Block Iteration

E(p+l) = x®) _ ot {q§(P) + ﬁé(p+l) + ﬁﬁ(p) + E] (5.14)

The parameters and eigenvalues and the extrapolated procedures of
Section 3 were dependent on the eigenvalues of thé Simultaneous Iteration
matrix equation (2.13). Similarly, the parameters of the extrapolated
implicit methods are dependent on the eigenvalues of the Simultaneous
Block Iteration matrix equation (5.9). 1In fact, the paremeters and
eigenvalues are the same functions of the Simultaneous Block Iteration
elgenvalues as the corresponding parameters and eigenvalues of the

point extrapolations are of the Simultaneous Iteration eigenvalues.
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The extension to Polynomial Implicit Methods is immediate if
Egs. (5.1) and (5.2) are used, rather than Eq. (4.1). The parameters
obtained are those of Section 4 with the Simultaneous Block Iteration

eigenvalues replacing those of the Simultaneous Iteration.
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6. VARIATIONAL METHODS

In considering the variational methods for solving the system given

by Eq. (2.1)
A_J_{_ + 5= 0 (6.1)

we assume that the matrix A is real, symmetric, and positive definite;

i.e.,

and for any x £ 0

}: 8 g X, %y >0 (6.2)
i,d

(p)

where the bar denotes complex conjugation. An arbitrary vector, x7,

will not, in general, be an exact solution of (6.1) but will generate a
(p)

residue, r'~’, defined as

r(P) = A?_‘.(P) + 8 (6.3)



If A is symmetric, the system of Eq. (6.1) can be written as the gra-

dient of a quadratic function

F(x) = (6.1)

N

X « AX + 8

I

Solving Eq. (6.1) is equivalent to minimizing F(x). In particular,

£(P)

for an arbitrary trial vector, x'°, the residue is

r(P) = Ax(p) + 5 =Grad F [x(p)] (6.5)

By Eq. (6.5), the residue, E(P), is normal to the surface of the ellip-
soid defined by Eq. (6.4) in the N-dimensional space of the elements of

X

If g(p) is some arbitrary direction and mp some arbitrary constant

(p+1)

dependent upon p, then the iteration scheme for x can be defined as

z(p+l) )

+ o, E(p) (6.6)

X

Equation (6.6) states that the new iterate is given by the old iterate

plus some "correction" vector.

The variational methods amount to choosing an @, such that the quad-

ratic function F[_}_c_(P*l)], given by Eq. (6.4), will be a minimum for a
(p)

given direction m'~°. Consider Fig. 6.1, which represents the intersec-

tion of a plane defined by g(P ) and _x:(p ) and the surface F(_:_c) = constant.
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Fig. 6.1

The tip of the vector §(p ) eppears a8 & point in this plane.

The minimum F[x(m l)] is tangent to the direction E(P ) and the new

residue, 'Z(P"l), is thus normal to E(p). We have |

2 | (B) e (eHl) | [Ai(p) . E] . A{5(1»1) . E(p)]

or by Eq. (6.6)

E._(]a':-l-l) - E(P) + o AE(P) ' (6.7)

Choosing E(P" 1) and 2(:9) as gbove implies

E(p+l) cal®) o @) ), &, A?‘_l(p) . ol® 2o (6.8)



which determines

m

(p) , (p)

WO = = (6°9)

P NG )

I

This choice of wp systematically reduces F[x(p*' l):l , and the method is
convergent for any given E(p) .
The choice of E(p ) differentiates the methods; a few of them will

now be discussed.

Southwell.'s Relaxation Method

If the direction E(p ) is chosen as one of the coordinates of the
space (ei) on which the matrix A defines a linear transformation, then
[Egp) . ei]
p+l) _ _(p)

X - ———————
- a,.
1l

5( (6.10)

i

Thus, the residue of the ith unknown is eliminated and other values are
undisturbed. Usually, the e; with the largest residue is chosen, but
the choice depends upon the individual performing the computation.

When the coordinates (ei) are all used in a fixed order, the method
is identieal to Successive Iteration of Eq. (2.5). Successive Iteration
is, thus, just systematic relaxation, and is suitable for high speed com-
puters, whereas ordinary relaxation is more appropriate for hand computa-

tion.
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Method of Steepest Descent

Let direction m®) be chosen equal to r®). mis is normal to the
ellipsoid at the point E(p) and, as such, is in the direction of steepest
change of the function I{_}_c_(:p) ] = constant. A useful diegram is obtained
by passing a two-dimensional plane through the residue, E(P). A manifold

of ellipses with & common center is formed by the intersection of the plane

and the surfaces F(x) = constant (see Fig. 6.2).
(p) r(Plzﬂ(p)

Fig. 6.2

From Eqs. (6.6), (6.7), and (6.9), we have

5(P"]-) = x(P) + O r(P) (6.11)

«(P)

. (?)
[/\)

Sl ) ) (6.12)

P) _ (), o Ap(P) (6.13)




This choice of m(p) defines the Simultaneous Extrapolated procedure

of Section 3, with the parameter “’p here variable rather than constant.

Method of Conjugate Gradients (C-G)

A better chaice of the direction m(p) is f._(p ) , directed from & point
(p)

on the ellipse towards the center of the ellipses. Then a and a vec-
tor _f:,(p ), tangent to the ellipse at E(P) , define conjugate directions

(Ref. 23); that is,

al®) . A_'E(P) =0 (6.14)
They are orthogonal with respect to the matrix A. A useful diagram is
obteined by passing a plane through E(P) and EP , Yyielding a manifold of
ellipses wherein the minimum F{g(P )] occurs at the center of the ellipses

in the plane. ‘ (p)
r

Fig. 6.3




The minimum F[_}E(P*'l)] occurs for an mp given from Eq. (6.9)

O = - -~ (6'15)

vhere, as before, the residue is given iteratively

(2 | (o) @ Ai(w (6.16)

and the iteration scheme is

=P | () 4 o(P) (6.17)
‘mu's, the new residue _x_'(p"l) is normal to F[g(p"l):‘ = ¢ at the point
§(Pﬂ) » the center of the plane at which point F(x) is minimel. Since
the plane is tangent to the surface at this point, the residue E(p!- 1) is
orthogonal to this plane and to the vectors 3(9 ) s E(P ) , and _*E(P ) which
lie in t};e plane.

The véctor g_(p) is easily found using Eq. (6.14). The plane is
determined by the vectors _1:(p ) and. E(p ). Thus, one could make the

choice

() _ (0, 4@ (6.18)
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Picking the parameter Mo to satisfy Eq. (6.14), we have

or, solving for HP’

2) as(®)

5 S 6 I e

(6.19)

(6.20)

. . . s . 1)
The resulting equations are simplified by realizing that E(p+ , the new

tangent vector, lies somewhere in the plane of E(P) and.z(p). Thus, one

might choose

L+ _ ()

with the result

(@) _ (p) ,  ,(®-1)

a

AP) . AE(P-l)

bp = ° 2B 1) T

and the residue

(6.21)

(6.22a)



£(p+1) _ 2, o Aﬁ(p)

(6.22b)
E(P) . E(P)
=TT aP)
The iteration scheme is defined
(p) (6.22¢)

L) P Lo g

Equations (6.22a), (6.22b), and (6.22c¢) imply the orthogonality relations

£(p+l) . E(P) -0 (6.238)
z(I'»'Z!-) ] E(P) -0 (6.23b)
5(1»1) i 2(P-l) ~ 0 (6.23c)

(6.234)

o®) L D) g

*
Likewise, it can be shown that all _x_'(p) are mutually orthogonal and all

_a_.(P) are mutually conjugate; i.e,
(p)

*Assume Eq. (6.24) holds through E(p) and E(P'l) and then show that a
and r(P*L) as defined by Eq. (6.22) satisfy (6.24) for each previous

iterate.
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P#I (6.24)

In performing the iteration defined by Eq. (6.22), one picks an

(o)

arbitrary vector x and. computes 3(0), but in order that Eq. (6.24)

hold for all E(p), the assignment g(o) = r(o) must be made; i.e.,

Hy = O. The method is exact in N steps and at each step

lrp+l| < lx—p' (6.25)

The procedure amounts to passing N mutuslly orthogonal planes through
the ellipsoid F(_’E) and finding the center of the resultant manifold of
ellipses in each plane.

With some simple algebraic menipulation, the relations of Eq. (6.22)

can be rewritten as second order recursion formulas. We have

r(p+l) _ <1 + ip Hp I.(P) . G&_ﬁ r(P‘l) + O Ar(P) (6.26a)
r 55 /)% A P

w
<) _ <1 + wif_lz <2 _ GP__“Q 221 4w (P 4 s) (6.260)
p-1 p-1 P -

=55=




= (1 + p‘p}-]_)i(P) _ up E:(.'P-'l) + wp Af'.(p) (6.26c)
We must still require, of course, that Hy = O

Note that Eq. (6.26b) is of the same form as the Second Order Simul-
taneous Iteration, Eq. (3.8), except coefficients are here varisble. Also B
it is of the same form as the second order procedure for generating the
Tschebyscheff Polynomials, Eq. (4.35) , where the coefficients are picked
to generate the polynomial. Here they are picked to minimize the quad-

ratic function F(x).

Method of Conjugate Directions (C-D)

The method of Conjugate Directions is similar to the conjugate gra~-
dient method. It also gives the exact solution in N steps. The direction

vectors are chosen just as before

E(P) . AE(.J) -0 D4 (6.27)
However, Eq. (6.27) is the only restriction upon them. The direction
vectors may be calculated at any time during the iteration (even before
iteration is begun), which may often prove to be a convenience that the
C-G method lacks. On the other hand, if fewer than N steps are used,

the C-G method will probably give a more accurate result than the C-D



method, even though both schemes improve the solution with each step and
give the exact answer after N steps.

Although both the C-G and C-D methods theoretically give an exact
answer in N steps, round-off errors prevent the residues from being
truly orthogonal in actual practice. Thus, we will have r(P'l) £ 0, but
one might expect it to be very close. If round-off is significant enough
to cause the solution to become too inaccurate, then it is not clear what
procedure should be followed. Iteration could be continued until E(p) is
sufficiently small or could be restarted with §(P+l) as an initial guess.

For large systems of equations, the variational methods may not be
best. This is because the scalar products needed for the calculation of
the parameters require considerable time to form and may be severely in
error due to round-off. Some computational experience should be acquired

in order to make a fairer appraisal of the methods.

..57.




7. APPLICATIONS TO ELLIPTIC DIFFERENCE EQUATIONS

Elliptic difference equations result from differencing an elliptic
differential equation at points of a mesh imposed upon the domain of the
differential equation, associated with the imposed boundary conditions.
A set of independent, simultaneous, inhomogeneous linear equations could
result, one for each mesh point. The numerical solution of these equa~
tions represents & solution of the differential equation to the approx-
imetions inherent in the differencing used, and the imposed boundary

conditions. The equations can be written in the form

N
j{:aij X5 + 8y = 0 i=1,2, «eu, N (7.1)
J=1

vhere N is the number of mesh points, and the source term, 845 depends
upon external sources in the problem as well as fixed non-zero boundary
conditions. The coefficients aij are assumed to be real and to give the
contribution of the point j to the point i in the differencing scheme.
In addition to whatever physical conditions are imposed upon the aij’

they must satisfy the following general conditions (Ref. 13):
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N,
(a) a; Zz |aij|’ and for some i strict inequality holds.
J=1
(b) The matrix A = (aij) is irreducible, i.e., given any two
non-empty, disjoint subsets S and T of the first N integers, W, such that

*
S+ T =W, then there exists some 24 5 # 0 such that i ¢ S and j e T.

() aii # 0 and for each equation can be chosen such that

a.. > 0.
ii

It is easily shown {Ref. 1) that conditions (a) and (b) imply the
‘non-singularity of the matrix A, i.e., non-vanishing determinant. Sim-
dlarly, the matrix A must be positive definite. For, if A is a negative
real number, the matrix A.— M also satisTies conditions (a) and (b)
above, and thus has non-zero determinant (Ref. 13). Hence, all eigen-
values of A are positive, and we have the additionel property (assuming

%
A is symmetric):
(d) A is non-singular and positive definite.

As a simple example, consider Poisson's equation in a rectangular
domain with zero boundary conditions along the edges

he}

*
This means that Egs. (7.1) are coupled such that each unknown depends,
perhaps indirectly, upon all others.

*¥%
The matrix A is symmetric if the coefficient in the difference equation,
giving the contribution from the point i to the point j, is the same as
the coefficient from the point j to the point i.
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2 2
0 \lr(xéy) + d ‘lf(xéZY) = s(x,¥) (7.2)
ax oy
A mesh of k vertical lines and £ horizontal lines is constructed and
n

Eq. (7.2) is differenced at each intersection (Fig. T.1).

AY

- D WD e

|2345‘oo'oooooo.ooo‘oook

Fig. 7.1

Assuming equal spacing in both directions, define (Ax)2 = (Ay)2 = h,

and for each interior mesh point we have

Vgl g = Vg + Vi1 g . Vi g1 = g ¥ ¥y g1

or
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1 1 1 1 . _
- <H Vil 2 PR Vil 0 PR Vil YR Vieer )Y R Vi F S = O (7.1)

or, in terms of general coefficients

= (o Vienr g+ Py Vien 5 * S Vi pant G Vi 2-1)

+e, qsz +5.,=0 ('7.5)

where, for Eq. (7.4) the coefficients satisfy

' 1 1
N TPy Ty T Yy =TT % T F (7.6)

for the y = (k - 2)(£ - 2) internal points.

Labeling these points in some mammer, 1, 2, ..., y, and writing
Eq. (7.4) for each point, we would obtain an equation like Eq. (T7.1).
Condition (a) is satisfied, since the inequelity holds for interior
points adjacent to the boundaries. Since each equation is ultimately
coupled to all the others, condition (b) is satisfied. Condition (c) is
true from the form of Eq. (7.4).

For illustrative purposes, let us consider now a very small mesh
(k = 6, £ = 5) and write the equations in detail. There are twelve in-

terior points, which could be labeled as in Fig. T.2.
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5 6 7 8
| 2 3 4

Fig. 7.2

Using this ordering of the points, the following matrix equation

results
Ay+s=0 (7.7)

Writing Eq. (7.7) in detail for Eq. (7.4), we have Eq. (7.8) (see sepa-
rate page) or, in terms of Eq. (7.5), we have Eq. (7.9) (see separate
page), where the coefficients satisfy Eq. (7.6). The form of Eq. (7.9)
is typical of that obtained for the given ordering whenever a five-point
differencing of an elliptic differential equation is mede. There are
two diagonals spaced k - 1 (interior points) to the right and left of
the main diagonel, giving the effect of the points above and below, re-
spectively, of the point considered in the difference equation. The

matrix is symmetric, in the notation of Eq. (7.9), whenever
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g = Prd g

and (7.10)

ke = Y% g1

Or, in words, the coefficient of a point to & neighbor (in this case,
one of the four surrounding points) is the same as the coefficient of
the neighbor to the point. The effect of the fixed boundary condition
is reflected in the absence of the terms ey bll in the matrix. Hence,
again, condition (a) is satisfied.

In some instances, in other geometries, symmetry can be easily
achieved, for instance, by premultiplication of the ith equation by the
ith cell volume, but, of course, this depends upon the particular form
chosen for the difference equations.

Young has shown that the matrix obtained by differencing an ellip-
tic differential equation with a five-point differencing scheme possesses

Property (A), which is defined (Ref. 13):

Definition: A matrix possesses Property (A) if there exist two
disjoint subsets S and T of the first N integers W such that S + T = W,

andifaij;éo, then either i = jorie¢Sand jeToriecTand j ¢ S.

With these properties of the matrix A, we consider the various
methods described in the previous sections for solving the system AX + s

= 0.
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Bagic Iterative Methods

Young (Ref. 13) has shown two very important consequences of any
matrix possessing Property (a). First, the eigenvalues of Simultaneous
Iteration as applied to such a matrix occur in + pairs. Thus, the max-
imum and minimm eigenvalues have the same absolute value. Second, there
are certain orderings of the points, called consistent orderings, in which
the eigenvalues of the matrices of Simultaneous and Successive Iteration
are related in a simple manner. More precisely, the characteristic deter-
minents of Simultaneous and Successive Iteration [Egs. (2.13) and (2.14)]

can be written, for a consistently ordered matrix A, as follows.

Simultaneous Iteration:

ABy G
D, AB, G,
D, By OCy
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Successive Iteration:

ABy C

1
'>ZD2 'iBz C,
Dy ABj 03
£(\) = . =0 (7.12)

vwhere B,, B,, ..., B, are square matrices and ) and X are the eigenvelues
of the respective methods.

For the example, Eq. (7.8), we can order the equations along the di-
agonels of the mesh (without altering the value of the determinant) and
obtain Eg. (7.13) (see separate page). Likewise, for Ea. (7.9) we would
have Eq. (7.14) (see separate page). In Egs. (7.13) and (7.l14), the square
matrices of Egs. (7.11) and (7.12) have been blocked off. Clearly, the
characteristic.equations of Simultaneous and Successive Iteration applied
to Eq. (7.13) or, to the more general form of Eq. (7.14), are of the forms
of Eq. (7.11) and (7.12). This is en indication that the ordering used in
Egs. (7.8) and (7.9) is a consistent ordering.

The convergence rate of Simultaneous Iteration is independent of the
ordering of the points. For Successive Iteration, however, this is not

generally true. Young has proved that the convergence rate of Successive
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Iteration is the same for all consistent orderings of the points. More-
over, the eigenvalues of Successive Iteration are the squares of those
for Simultaneous Iteration. Thus the convergence rate of Successive
Iteration is twice that of Simultaneous Iteration.

This last statement is demonstrated easily (Ref. 17). Consider any

disgonal non-singular matrix Q. Then for & non-singular square matrix M
det (@ MQ) = det (Q1) det M det (Q) = det M (7.15)

If M is the matrix of Eqs. (7.12) and (7.15) and Q is defined as

=1/2

'x3/2
Q= (7.16)

xk-l/ 2

then from Eq. (7.15)

(™



MB, A C)
=1/2 - =1/2
» D, M, x'°C,
=1/2 - 12
Dy By A/Cs

det(Q'lMQ)

A

= Kk/a f(i'l/e) =0

When Eq. (7.17) is compared with Eq. (7.11)

-xl/z .

=1/2

=1/2
M Cra

D, AB

(7.17)

(7.18)

and the statement is proved. If the Simultaneous Iteration eigenvalues

are real (e.g., the matrix A is symmetric), then the eigenvalues of Suc-

cessive Iteration are also real.

When applied to difference equations, Simultaneous and Successive

Iteration are often called Richardson's Method and Liebmann's Method,

respectively.

Remerks on Consistent Orderings

Given a set of five-point difference equations on a mesh [i.e., a

matrix with Property (A)], the consistent orderings for Successive Iter-

ation are easily determined (Ref. 13). They are just those orderings for




which the Successive Iteration equations can be solved in a consistent
wey, namely, those retaining the feature of Successive Iteration.

Let us assign an ordering vector ¢ to the mesh
g: = (al, Qs vy aN) (7.19)

where the subscripts on the components ai refer to the ith equation in

the ordering, and the Q; are integers such that
|ozi - aj' =1 (7.20)

if aij # 0and i # j. Under these circumstances, one can then use the

following definition to test for consistent orderings:
4

Definition: An ordering is consistent for Successive Iteration if,
for aij =0 an.d.ozi >-aj, the ith equation in the ordering is solved for

after the jth equation; and if, for 83 # 0 and ay > oy, the jth equation

i)
in the ordering is solved for after the ith.

Given an ordering vector ¢, with the properties of Eg. (7.20), one
form of consistent ordering is to arrange the componen.t.ai in en in-
creasing or decreasing sequence, corresponding to "forward" or "backward"
mesh sweeping.

Now consider the example with twelve interior points. The ordering

indicated in Fig. T.2 already has been established as consistent; however,
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for illustrative purposes we demonstrate it using the ordering vector of
Eq. (7.19) with N = 12.

=1, a,=2, 0

1 2 )
= k4, and ag = 5; and ag = 3,

*
If we assign the components of Q as o = 3, and

o, = L, then the choice ¢, = 2, g =3,

) T
= - = 5 iti order-
%6 L, @, =5, and o, 6 will satisfy the definitions of the r

ing vector. Thus, of the many possibilities, we have chosen

Q
!

= (al,a2,03,ah,as,ag,a7,a8,a9,alo,all,a12)

(l, 2) 3, )+’ 2, 3’ )4', 5, 5’ ’+, 5} 6) (7'21)

Equation (7.21) sat;sfies the consistency conditions, as can been seen
easily. For i = 3, we have oy > a, (since 3 > 2), and the 3rd equation
must be solved for, or follow, the 2nd equation. For i =4, Qy, > a3, and
we should have the L4th equation following the 3rd equation. Now for i = 5,
o), > a5 (since 4 > 2), and we should have the 4th equation following the
5th equation except that the aij between these points is zero. Therefore,
a; - oy # 1, and we could have the Sth equation following the Lth equation

and still satisfy the consistency conditions. Again, for i = 6, Qg > a5,
and the 6th equation should follow the 5th equation. In this way, we can
see how the ¢ of Eq. (7.21) satisfies the consistency conditions with the

ordering of the subscripts (of ai) i=1,2,3 4 5,6, 7 8 9, 10, 11, 12.

¥
This ordering corresponds to sweeping along the elements of a row (k = 1,
2’ ceey K) for all rows (£=l, 2, veey L)o




The inverse ordering of subscripts i = 12, 11, 10, 9, 8, T, 6, 5, 4, 3,
2, 1 is also consistent. These two examples correspond to a "forward"
and "backward" mesh sweeping, respectively.

One could also have swept "up" or "down" by the ordering of the sub-
seripts i = 4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9 or i = 12, 8, 4, 11, 7T,

3, 10, 6, 2, 9, 5, 1, giving the ordering vector

Q= (6: 25 b, 5, 4, 3, 4, 3, 2, 3, 2 1) (7°22)

for sweeping up (left or right), or
a=(4 5,6, 3 4 5, 2,3, 4 1, 2 3) (7.23)

for sweeping down (right to left).
_ Likewise, diagonal sweeping is consistent, corresponding to the ar-

fénging of the a, of Eq. (7.21) in the increasing order

Q= (l: 2, 2, 3, 3, 3, b, b, k, 5, 5, 6) (7.24)

with the subscript ordering i =1, 2, 5, 3, 6, 9, 4, 7, 10, 8, 11, 12.

Extrapolaetion Methods

For the particular case of finite elliptic difference equations,
Extrapolated Simultaneous Iteration carries over directly from the dis-

cussion of Section 3. The only alteration we could make is to utilize
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the fact that the eigenvalues occur in + pairs, i.e., A -Xm, where )\

0" 0
and xm are the minimum and maximum eigenvelues of the Simultaneous Itera-
tion matrix (assumed real). The Second Order Extrapolated Simultaneous

Iteration parameters, for this case, beconme

T
o = 2 << 2
2
1+ vyl - km
VAN
Q = =U.)"l > (7'25)

where Oi are the eigenvalues of the procedure. We can then write the

iteration procedure
?—(.(P"l) = (1 - o) .}E(P-l) - o ‘:LK(P) + UK(P) + E] (7.26)

This procedure, as applied to difference equations, is usually called
Second Order Richardson. Remember that the @, as given above, are ap-
proached asymptotically as n -, i.e., the error due to the first sweep

(section 3) becomes insignificant.
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Extrapolated Successive Iteration is treated much as the basic
Successive Iterstion. For any matrix possessing Property (a) , the

characteristic determinantal equation becomes

(1-a>-)\.)Bl -aCy

-wD, (1-a-n )B2 -aC,

=WD. . .

>3
o (7.27)

I

. . -ka_l

-y (l-w—k)Bk

where % represents the eigenvalues of the procedure. Factoring out the
{teration parameter ® end using the diagonal Q matrix equation (7.16), we

obtain the relation

1/2

N+w=-1l)=0rN (7.28)

where )\ is the basic Simultaneous Iteration eigenvalue equetion (7.12).

Solving Eq. (7.28), we have

2
2
x:[%i ‘-”-?‘-.. (w—l)l (7.29)
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Since the convergence rate of the process depends upon the magni-
tude of its eigenvalues, we wish to minimize X. This is accomplished by

forcing the square root to be zero for the largest eigenvalue, xm. Thus

w? xi = h(w - 1) (7.30)
or
® = 2 (7-31)
1+ Y1 - xi
and Eq. (7.29) becomes
r=w-1 (7.32)

for all eigenvalues. These eigenvalues are the square of thé asymptotic
form for Second Order Extrapolated Iteration. One would expect that
Extrapolated Successive Iteration would converge in, at most, half the
number of iterations required by Second Order Extrapolated Simultaneous
Iteration. Such is not the case! The iteration matrix defined by Ex-
trapolated Successive Iteration does not have a complete set of eigen-
vectors. The Jordan normal form has one off-diagonal element, and thus
the matrix lacks one eigenvector (Ref. 13, p. 103). Thus, instead of

the error decaying as (@ - l)p, we have

E®) < p(w - 1)? &) (7.33)




The parameter w, defined by Eq. (7.31), is greater than 1. This proce-
dure is generally referred to as Successive Over-Relaxation (SOR). It

is also often called Extrapolated Liebmenn.

Tschebyscheff Polynomial Methods

Usually the matrix of the difference equations is symmetric ,* and,
in that case, all the eigenvalues of the Simultaneous and Successive
Iteration are real. Then, Tschebyscheff Polynomials can be applied to
either of these two basic techniques. Since the eigenvalues of the basic
Simultaneous Iteration occur in + pairs, the parameters of the Second Or-

der Simultaneous Polynomial method are

Bp = —TW p>2 » (7.34)

By =0

7/

*
The differential equations usually can be differenced so that a point
has the same effect on its neighbors in the difference equations as
the neighbors have on the point. This will yield a symmetric matrix.
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where xm is the meximum eigenvalue of the Simultaneous Iteration matrix.

The error reduction is

gP) o1 glo)

E¥ < -T;W E (7.35)

The eigenvalues of Successive Iteration are the squares of the Simulita-
2

neous Iteration, and thus the replacement of A‘m by A n in Egs. (7.34) and
(7.35) gives the appropriate values for the Second Order Successive Pol-
ynomial method.

The Extrapolated Successive Iteration for difference equations does
not have real eigenvalues; therefore the convergence rate cannot be ac-
celerated with Tschebyscheff Polynomials. Sheldon (Ref. 31) has shown,
however, that i1f the mesh is swept first in one direction and then back
in tﬁe other direction, using Extrapolated Successive Iteration for each
sweep, then the two-step process has real eigenvalues. The eigenvalues
are all positive, and the maximum is approximately the usual Extrapolated
Successive Iteration eigenvalue. Accelerating this two-step process gives
a gedin in over-all convergence rate. Each iteration requires two mesh
sweeps and the associated arithmetic of the polynomial generation. The

Second Order Extrapolated Forward-Backward Successive Polynomial pa~

rameters are




a ~ -l:

Y o 3.q
g - 1

Q
It

1 2 -0 -1
B, =0

and the error reduction is

E(p) < 1 z(0)

= = 5 -\
T§ 1l - a)

a -1

(7.36)

(7.37)

If any eigenvalues exist that give a larger value of a than that esti-

mated in Eq. (7.35), they must be damped out by some other procedure.

Steifel (Ref. L4) suggests using a method essentially equivalent to

Conjugate Gradients. Extrapolated Successive Iteration would probably
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be sufficient. We can, of course, apply the Tschebyscheff Polynomial
method to Simultaneous or Successive line methods or even to a Forwarde

Backward Extrapolated line method (Ref. 25).

Block or Im;glicit Methods

Because the equations of this section arise from differencing an
elliptic differential equation on a rectangular mesh, a logical block to.
be advanced simultaneously (Section 5) consists of all points on a row
or column. Each such block is, in itself, a tridiagonal matrix which
can be easily solved by Gauss Elimination (e.g., Ref. 18) N

Assume that the mesh has k rows and £ colums. If we advance each
row as & block, then the diagonal matrix of Eq. (5.1) consists of k
square matrices of size £ x £. Similarly, if we advance each colum as
a block, the matrix D consists of £ matrices of size k x k.

Call the maximum eigenvalue of the Simultaneous Row Iteration O
replacing xm. Thus, for the Second Order Extrapolated Simultaneous Row

Iteration, we have

(7.38)

% ‘
Note added in proof: A particular form staeble against round-off, ap-
parently due to J. von Neumenn, is discussed by J. Douglas (Ref. 20).
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and for the Extrapolated Successive Row Iteration

(7.39)

Since Property (A) holds for the five-point difference equations,
one could teke the logical block of unknowns to be the entire mesh, solve
for the unknowns by direct inversion, and iterate the result with one of

the methods discussed to reduce round-off effects. The matrix would be

B C |

v O
D, B, G,

. . . (7.40)
. . Coq
D B
n n

wvhere for orderings along rows or columns Bn is the 2 x £ or k x k tri-
disgonal matrix appearing in the row or column iteration, and Cn and Dn
are £ X £ or k x k disgonal matrices representing the aij terms for col-

wms or rows. For orderings along mesh diagonals Bn isanf xforkxk
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diagonal matrix representing the a,, terms of Eq. (7.1) and C, and D
are rectanguler matrices, as in Eq. (7.l4), representing the 24 5 terms
of Eq. (7.1)

In either case, direct inversion could be accomplished in a menner
analogous to ordinary Gauss Elimination for tridiagonal matrices, only
using matrix multiplication for products and matrix inversion for inverses.
Either K £ x £ or L k x k inverses are involved in performing the direct
inversion. If either K or L is small, then it should determine the mex-
imum matrix size since round-off can be large in many instances. If the
round-off does not render the answer ridiculous, the application of Si-
multaneous or Successive Iteration, as well as their generalizations,
could be made to the solutions X -

Recently, Nohel and Timlake (Ref. 26) applied & procedure of this
type to nine-point difference equations [possessing Black Property (A)]
and, for the test cases considered, found no appreciable round-off.
Oliphant and Baker (Ref. 29) have exhibited a factorization of the nine-
point difference equations for the Heat Equation. Oliphant (Ref. 27) has
proposed a factorization of the general case for nine-point difference
equations using a Lagrangian multiplier technique to obtain consistency
of the equations.

Peaceman and Rachford (Ref. 18) have introduced an altermating di-
rection implicit method where first rows are swept as a block and then
columns. Each sweep is similar to a Simultaneous Row (or Column) Itera-

tion in that previous iterates of adjacent rows (or columns) are used.
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However, the new values in each sweep also depend on old iterates of the
rov (or column). A single iteration of this method consists of sweeping
first in one direction and then in another. Thus, the amount of work
involved per iteration is equivalent to about two Simultaneous Row
(Column) Iterations.

Peaceman a,nd Rachford split the metrix A into the sum of two ma-
trices H and V, where H results from differencing in one direction and
V from differencing in the other direction. Referring to our example of

Poisson's equation (7.2), we have

1 2 1
B =gV "5 Y Y R Ykel s
(7.41)
1 2 1
VW=g Vg1 "8 Vg T w Yk os-1
The iteration procedure can be written (with y = x)
* -
(H+p I)x =-(V-pI)xpl-s
p - P -
(7.42)

(v+o,1) 2 = @0 1) 5 -5

where pp are parameters to be chosen for optimum convergence rate. We

see that we sweep first to improve the terms corresponding to the H



matrix and then sweep in the other direction to improve the V matrix

terms. If x is the unique solution, i.e.,

H+V)X+s=0 (7.43)

then the error, E(p) (p)

= X - X7, satisfies Eq. (7.43) without the source

terms. Combining the two equations of Eq. (7.42), we have
g(®) _ v+ o 1)t (u- o INE + 0.1)° (V - p.I) g(®-1)
= P P P P = (7.44)

If H and V have a common set of eigenvectors, Q,;, we can expand‘g(p'l)

in these eigenvalues. Thus,

n
(p-1)
E =Z Ci (_I_i (7',4'5)
&
where
oy =052
(7.46)
V=79

and o and 75 are eigenvalues of H and V, respectively. Then from

Eq. (7.4k)



§ i p£> (Gi - pp)
= N c, Q. ('7.47)
A (;i *o,/\ay ¥ o) 1

In terms of the initiel error we have

E <MW<7 +pJ>Cf +p:J £ (7.48)

The matrices H and V for our example (Poisson's equation) do in fact have
a common basis of eigenvectors. They are just the sine or cosine func-
tions. In general, any two matrices have a common set of eigenvectors

if they commute, i.e., if

HV = VH (7.49)

Keller (Ref. 16) has shown conditions under which H and V commute
. for elliptic difference equations. If the mesh region is rectangular,

and H is derived from

2
K(x,y) 2 “a";_‘ L+ 1(x,y) 2EI) 4 p(x,y) ¥(x,y) (7.50)
X

and V is derived from

Py(x,y) ¥ (%,¥) ,
R(x,y) ?L—‘ + S(X,y) '—EL' + Q(x,y) V(x)Y) (7051)
N
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by & three-point approximation for H and V, respectively, then Keller
found that H and V will commute whenever the variable coefficients in
the differential operators of Egs. (7.51) and (7.52) are functions of
x only when multiplying x derivatives and functions of y only when mul-
tiplying y derivatives. ‘

A physical application of some interest is the steady state diffusion

equation with absorption and an external source

Y - D(x) W(r) - 2(x) B(z) + s(z) =0 (7.52)

where r is the position vector. Defining H and V as for Laplace's egue~
tion, the coefficients must now include the diffusion constant D. We
also have the vector Z(r) entering into Egs. (7.42). With these addi-
tions, H and V will not, in general, commute. Moreover, if 3 % 0, then
to expand as in Eq. (7.47), we must further require that I commute with
both H and V. Varga and Birkhoff (Ref.'l9) proved that when Z and D are
constant and the domain is rectangular, all the conditions are satisfied.

Wachspress (Ref. 24) has shown that expansions such as Eq. (7.47)
can.be carried out if a diagonal matrix F can be found such that FH, FV,
and I satisfy the commuting requirements., Such an F will exist if Z is
constant and the coefficients of D vary in one direction only.

These two results are special cases of Keller's more recent results.

Assuming conditions are satisfied for the expansion of Eq. (7.&7),

. we have yet to choose the parameters P+ But usually the problem is so
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simple that the eigenvalues are known and the p 1 can be picked to elim-
inate successively each error made. If the matrix is very large and
there are many eigenvalues close together, one Py can be chosen to re-
duce a group of eigenmodes to an insignificant contribution (Ref. 18).
Wachspress (Ref. 24) has obtained a set of parameters by minimizing

the maximum absolute value of the polynomial in Eq. (7.48). He concludes

that if
(a) a<y;endo; <b
(b) o, = px~t 121, 2, «ory D (7.53)
(e) pp<a.a.nd0<x<l
then
L
/2
@) . [ilie'xa /(1—x)] &(0) (7.5%)

where x is chosen to give the desired error reduction.

The Peacemen-Rachford iteration has been used to solve the general
diffusion equation (7.52) even though convergence cannot be guaranteed
(Ref. 24). When D and Z are slowly varying functions in space, the com-
muting requirements are nearly satisfied and the error reduction of

Eq. (7.54) is approximately correct.



If we choose
pi=p>0 (7.53*)

then convergence is guaranteed in the general case.

Variational Methods

The methods of Section 6 can clearly be applied to elliptic dif-
ference equations whenever the matrix is positive definite. Though the
method of Conjugate Gradients is exact in N steps, N may be so large for
8 reasonable mesh that N steps are too many. We know that for p < N we
have improved the initial approximation, but we have no accurate the-
orems for estimating the amount of this improvement. Hence, the varia-
tional methods have not been used a great deal for large systems.

In addition to the sbove drawbacks, round-off errors for large N

*can be very serious.

Convergence Properties

To compare the convergence rates of the various methods, assume we
are solving Poisson's equation (-Vz¢ = §) on a rectangular mesh. Then
the scheme of Peaceman and Rachford can be rigorously applied. Moreover,
we can easily calculate the eigenvalues for this simple problem and get
estimates of the maximum number of iterations required to reduce the

error by some given amount. -
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Assume the largest eigenvalue of the Simultaneous Iteration method
is )\.m; then generally

My ~1 - ¢ e<x1 (7.55)

If we further assume that the mesh spacing is constant and the same in
the x and y directions, then the maximum eigenvalue of the Simultaneous
Line Iteration, ¢ - is given by
Sn >l - 2¢ (7.56)

We can say nothing about the required iterations for the variational
methods except that if round-off errors are insignificant, the conjugate
direction methods* will converge to the exact solution in N steps, N
being the number of mesh points and equations.

For the remaining methods, we can construct Table 7.l (partly teken
from Ref. 25). The quantity R is the error reduction

gP) _ RE(O) (7.57)

The simultaneous and successive iterations all require about the

same amount of calculation per mesh sweep per point. If appropriate

*
Conjugate Gradients is a method of conjugate directions.
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coefficients are calculated in advance, the line methods require about
the same effort as the point methods. The Tschebyscheff Polynomial
method requires only slightly more calculation.

The alternating direction implicit method of Peaceman and Rachford
requires about 50 per cent more calculation per point than the above
methods. The varistional methods require the calculation of three
scalar products to get the necessary parameters, or approximately a

100 per cent increase in calculation per point.
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Teble 7.l

Approximate Number of Sweeps Required to Reduce the [nitial Error
to R of Its Initiel Value for Given ¢ [Eas. (7.55) and (7.56)]

Simultaneous Iteration
Successive Iteration
Simultaneous Line Iteration
Successive Line Iteration

Second Order Simultaneous Iteration*

Second Order Simulteneous Line
Tteration®

Extrapolated Successive Iteration
Extrapolated Successive Line Iteration
Simultaneous Tschebyscheff Polynomials
Succebsive Tschebyscheff Polynomials

Simulteneous Line Tschebyscheff
Polynomials

Successive Line Tschebyscheff
Polynomials

Forward-Backward Ebctrapolateg*
Tschebyscheff Polynomials

Forward-Backward Extrapolated Line
Tschebyscheff Polynomials

H¥
Peaceman-Rachford

Approximate
Number of
Sweeps

*Assumes asymptotic eigenvalues.
A [ 2

Assumes a = 2/(1 + V1 = )"m)'
WK

x is related to R by Eq. (7.54).

R = 0.02
€=10"7° e= 10'“
390 39,000
195 19,500
195 19,500
98 9,750
28 280
20 200
26 350
17 210
33 330
24 240
ol 240
17 170
12 27
8 20
8 1k

R=

€ =102

620
310
310

155

bl

31

35
24
b
35

35

25

15

10

10

0.002

€= 10‘“

62,000
31,000
31,000
15,500

440

310

k30

300

490

350

350

250

L6

32
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8. SUMMARY

Several of the rather well known methods for solving large systems
of simultaneous equations have been presented. Both the general case
and a specific application -~ elliptic difference equations -- have been
discussed.

It has been noted that simple restrictions on the coefficients of a
given matrix are sufficient to guarantee convergence of the various meth-
ods. The Simultaneous Iteration and Second Order Simultaneous Iteration
require that the diagonal terms of the metrix dominate or equal the off-
diasgonal terms. The Successive or Successive Extrapolated Iterations
will converge if the diagonal terms dominate the off-diagonal terms.
Successive Iteration, Extrapolated Successive Iteration, and Variational
Methods require that the matrix be positive definite. The Tschebyscheff
Polynomial method requires that the matrix used in the polynomial have
reel eigenvalues. .

The basic iterations are usually very slowly convergent. Second
Order Simultaneous Iteration gives an order of magnitude improvement
while the Successive Extrapolated Iteration cannot be used optimally in
the general case. The Tschebyscheff Polynomial method, when applicable,

is generally the most rapidly convergent. Variationsl methods are rapid,




but restricted to small matrices of less than a few hundred equations.
They have the advantage of producing an exact solution in a finite num-
ber of steps.

The iteration and polynomisl methods can be extended to implieit
methods where blocks of unknowns are improved simultaneously. If the
matrix of the block can be easily inverted, this procedure can save a
great deal of computation time. The effort involved in solving for the
unknowns in the block must be balanced against the improved convergence
rate. This latter is difficult to estimate for a general matrix.

In the particular case of five-point finite difference eguations,
[more generally, when the matrix possesses Property (A)] more can be
sald sbout the iteration methods. It can be shown that the Successive
Iteration converges twice as fast as the Simultaneous Iteration. The
Successiv¢ Extrapolated Iteration is an order of magnitude improvement
over the Successive Iteration and converges more rapidly than the Second
Order éimultaneous Iteration. Moreover, both Successive and Simultaneous
Iteration matrices have real eigenvalues and can be accelerated by
Tschebyscheff Polynomials. Also, & Forward-Backward Successive Extra-
polated Iteration (due to Sheldon, Ref. 31) which has real eigenvalues
and can be accelerated with Tschebyscheff Polynomials can be used.

The entire mesh can be inverted simltaneously in block form where
the blocks are diagonals of the mesh if convergence is slow and round-off

low. The resultant solution cen then be iterated as described in Section

T



A logical block of unknowns for implicit methods consists of all
the points along a}row or colum of the mesh. It is not always clear
in which direction it is best to sweep. If the coefficients of the
differentiel equation are constant over the mesh, the implicit equations
should be obtained in the direction of fewest mesh points. Usually, no
preferred direction cen be determined and, in any case, the gain in con-
vergence rate is often small.

The alternating direction implicit method of Peaceman and Rachford
cen be proved applicable only for the case in which the operator plus
its domain is separable.

The convergence rate for this problem is so rapid, however, that
the method has been used for more general problems with good success.
It sometimes appears applicable if the operator is almost separable.

We close by proposing that for a general non-symmetric matrix, the
Second Order Extrapolated Simultaneous Iteration is most applicable.

If the metrix is symmetric (real eigenvalues), then the Tschebyscheff'
Polynomial applied to the Simultaneous Iteration is best. For a matrix
possessing Property (A), the Extrapolated Successive Iteration is suf-
ficient for problems having inherently rapid convergence rates (diagonal
terms dominant), and the Forward-Backward Successive Extrapolation ac-

celerated with Tschebyscheff Polynomiels is best for poorly converging

problems.
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