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CURRENT DIFFUSION IN RAIL-GUN CONDUCTORS

by

J. F. Kerrisk

PBSTRACT

A method has been developed to analyze one- and”two-
dimensional, nonlinear current diffusion in rail-gun conductors. A
nonlinear current-diffusion equation that accounts for the tempera-
ture dependence of electrical conductivity has been developed from
Maxwell’s equations. A finite-difference heat-transfer computer
program was adapted to solve the current-diffusion and thermal-
diffusion problems for rail-gun conductors in one and two dimen-
sions. The nonlinear current-diffusion equation was also extended
to account for the magnetic-field dependence of the magnetic perme-
ability, thus allowing ferromagnetic materials to be considered. A
one-dimensional finite–difference technique was developed for
ferromagnetic materi als. Two one-dimensional test problems that
compare results with other analyses are discussed. A series of
calculations of current density and rail temperature was done for
various size rectangular rails. One analysis of current diffusion
in a ferromagnetic material was also performed.

I. INTRODUCTION

Rail guns or electromagnetic accelerators are

devices that accelerate projectiles by the inter-

action of an electric current and a magnetic

field.1’2 These devices offer the possibility

of producing very high velocities, much higher

than are attained in conventional gas-driven guns.

Indeed, experiments have shown that it is possible

to electromagnetically accelerate projectiles of a

few grams to 10 k~/s; considerably higher veloci-

ties appear to be attainable. One of the problems

encountered in the design of rail guns is the high

current flow (megaamperes) and high magnetic fields

employed. Although these conditions exist for

only a short time (milliseconds), rail-gun conduc–

tors can be damaged from joule heating or from

magnetic forces. This report describes a method

that can be used to analyze current diffusion and

thermal diffusion in rail-gun conductors. These

analyses are necessary to predict rail damage from

joule heating.

Physically, a rail gun is usually made of two

long, parallel conductors. The projectile starts

at the breech end, at rest or with some initial

velocity (see Fig. 1). Current flows into one

rail at the breech end, between rails in an arma–

ture behind the projectile (or possibly through

the projectile), and out of the other rail at the

breech end. Both solid metallic armatures and

plasma armatures (arcs) have been used in rail

guns. The interaction of the current flow through
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Fig. 1. Schematic diagram of a rail gun.



the armature with the magnetic field associated

with the current flow in the rails accelerates the

projectile toward the muzzle. As is evident from

Fig. 1, current flows in the breech during the

entire acceleration; no current flows in the rails

in front of the armature. Thus, near the muzzle,

current flow will occur only at the end of the

acceleration.

At any axial location along the rai 1s, current

will start to flow in the rail cross section as

the projectile passes. Figure 2 shows an example

of two rails with rectangular cross section (in

the x-y plane); the rails are assumed to be long

in the z-direction (perpendicular to the papeh).

Current flow is in the z-direction only; however,

the current density is a functfon of x and y.

Initially, the current is distributed over a thin

layer near the surface of each conductor. The

current density is not uniform oh the surface; it

is a function of the shape and separation of the

conductors. 3 With time, the current and associ-

ated magnetic field diffuse into the conductors.4

Because large current densities are involved, local

heating occurs in the rails. This changes rail

properties such as the electrical conductivity.

Thus, the current-diffusion process is nonlinear

in rail-gun conductors. In addition, thermal

diffusion is occurring simultaneously with current

diffusion. The thermal-diffusion process is also

nonlinear. The time scale over which current

diffusion occurs is so short (milliseconds) that

thermal diffusion is normally neglected.4

Most analyses of these phenomena have dealt

with magnetic-field diffusion in flux-compression

Y

4-6 The results of Kidder are par-generators.

titularly appropriate as an example of nonlinear

diffusion of a magnetic field in one dimension.7

Analysis of rail-gun conductors presents a more

difficult and somewhat different problem because

the rails require a two-dimensional calculation

and because current and not magnetic field is.the

primary vari able. In the linear case, magnetic

field strength and current density obey the same

partial differential equation, the linear thermal-

diffusion equation.4 This is no longer true in

the nonlinear case. In a two-dimensional, non-

linear calculation, coupled partial-differential

equations for the components of a vector quantity

such as the magnetic-field strength may be

required. Thus, the geometry of a problem and the

“quafitities known as initial and boundary conditions

play a very important part in the complexity of

the solution.

This report describes a formulation of the

current-diffusion problem that is appropriate to

two-dimensional, nonlinear calculations for rail-

gun conductors. This formulation has been applied

by adapting a finite-differenc”e, heat-transfer

computer program to the calculation bf current

diffusion. The calculation can include or neglect

thermal diffusion, so as to test its influence on ~

the resulting temperatures. This calculation

rethod has been applied to a series of differEmt-

size rectangular rails. Results for current den-

sity and temperature as a function of time and

location in the rail are presented. Some general

conclusions drawn from these results are discussed.

Two test problems, in which one-dimensional results

obtained by this calculation method are compared

with other analyses, are also presented.

II. CURRENT AND FIELD DIFFUSION

The starting point for the formulation of a

current- or field-diffusion problem is three of

Maxwell’s equations4

vxlT=3- , , (1)

vx’E= - aT/at s - vai7/at , (2)

b-l-;+ and

Fig. 2. Cross section of two rectangular rails. (3)
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In these equations, ~ is magnetic-field intensity,

Bis the magnetic induction, ~is electric-field

intensity, and ~ is current density; all are vector

quantities. In addition, t is time, a is electri-

cal conductivity, and v is magnetic permeability.

Two restrictions inherent in these equations as

written are that displacement currents have been

neglected in Eq. (1) and D has been assumed con-

stant in Eq. (2). The neglect of displacement

currents is normal for these calculations.4 The

second restriction means that this formulation

does not apply to ferromagnetic materials. The

assumption of constant ~ is removed in a later

development in this section.

Most analyses of these phenomena have dealt

with magnetic-field diffusion in flux-compression
4-6

generators. This formulation will be devel-

oped first; later it will be compared with a

formulation in terms of current diffusion. Taking

the curl of Eq. (1) gives

vXVX~=V(VOH)-V2~=VX3 , (4)

where a vector identity for VXVX~has been

employed.4 As long as u is constant, V-R= O,
giving V(VOH)=0 in Eq. (4). Using Eq. (3) and

then Eq. (2), Eq. (4) can be written as

-V% = VX(IJE) = V.XF + O(VXE) ,

or

J% s -M.3(aiT/at) + vc7XE . (5)

The quantity ~can be eliminated from Eq. (5) by

employing Eqs. (3) and (l),

-v2K+ ~u(aTi/at) sVaX(7/17)

=vax[(l/u)(vxlT)]

= (1/fJ)[vc7x(vxiT)] . (6)

If o is not a function of temperature or position,

VIJ = O, and Eq. (6) reduces to the linear thermal-

diffusion equation8

V2Ti= ~u(aH/at) , (7)

where (vu)-1 is analogous to the thermal dif-

fusivityo The magnetic-field intensity (~) is a

vector quantity; in a cartesian coordinate system,

Eq. (7) implies three equations in the three com-

ponents ofli,

V2HX= MU

V2HY= w

and

aHx/at) , (8a)

aHy/at) , (8b)

V2HZ = uu(aHz/at) . (8c)

These equations are not coupled because each equa-

tion contains only one of the components of~. If

a is a function of position (x,Y,z), then

VU = (au/ax)ex + (au/ay)ey + (au/a z)ez ,

where ex, e
Y’

and ez are unit vectors in the

X, Y, and z directions, respectively. Ifaisa

function of temperature (T), which in turn is a

function of position because of local heating,

vu = (du/dT)vT = (do/dT)[(aT/ax)ex

+ (aT/ay)ey + (aT/az)ez] .

In either case, Eq. (6) is very complicated for

the general three-dimensional problem. The three

cartesian components of H can be written as

V2HX- ~u(aHx/at) =-(l/u){(au/ay)[(aHy/ax)

- (aHx/ay)] - (au/az)[(aHx/az)

- (aHz/ax)]} , (9a)

V2HY- uu(aHy/at) = -(l/o ){(au/az)[(aHz/aY)

- (aHy/az)] - (aa/ax)[(aHy/ax)

- (aHx/ay)]} , (9b)

and

VZHZ - uu(aHz/at) =-(l/u){(au/ax)[(aHx/az)

- (aHz/ax)] - (aa/ay)[(aHz/ay)

- (aHy/az)]} . (9C)

3



These three partial-differential equations are

coupled as each equation contains the three com-

ponents ofti. These equations, as well as Eq. (6),

can still be considered diffusion equations, where

the quantities on the right-hand side of each

equation represent source terms.
8

For certain special problems, Eqs. (9) sim-

plify considerably. In the one-dimensional problem

where Hx = Hy = O and Hz and c are functions of x

only, one equation remains

a2Hz/ax2 - uu(aHz/at) = (l/u)(au/ax)(aHz/ax) . (10)

If the electrical resistivity (P = I/a) is used in

place of O, Eq. (10) can be rewritten as

a

()

aH

= P + = v(aHz/at) , (11)

which is analogous to the one-dimensional thermal-

diffusion equation with variable conductivity.8

This equation is often used for field-diffusion

calculations in flux-compression generators.
4-6

For the rail-gun conductors shown in Fig. 2, ~

will have two components, Hx and Hy, and u and T

will be functions of x and y. Equations (9) will

then reduce to

V2HX - ~u(aHx/at) = - (l/u) (au/ay)[(aHy/ax)

- (aHx/ay)] , (12a)

and

V2H -
Y

uu(aHy/at) = (l/o)(au/ax)[(aHy/ax)

- (aHx/ay)] . (12b)

These equations still represent two coupled

partial-differential equations that would be dif-

ficult to solve.

A diffusion problem can also be formulated in

terms of current density or electric-field-strength

diffusion. Taking the curl of Eq. (2) gives

vxvxr=v(v*F) -V+= +(VXR)I . (13)

If the free charge density is zero, then V“~= O;

this is a valid assumption for the high current

and field problems involving rail guns. Using

Eqs. (1) and (3) in Eq. (13) results in

v2(T/u) = ~(a7/at) , (14)

or in terms of F,

(15)V2F = Ja(aE)/at] .

If u is not a function of position, time, or tem-

perature, Eqs. (14) and (15) have the same form as

Eq. (7); that is, they are the linear thermal-

diffusion equation. For a given problem, the

boundary conditions and initial condition$ form,

~, and ~ wi 11 be different; thus, although they

obey the same differential equation, the solutions

for these quantities will differ. If u is a func-
tion of temperature, which can vary with time and

position, Eq. (15) results in a particularly

straightforward formulation

V2~=Ma(a~/at) +u~(aO/at) . (16)

Equations for the three cartesian components of~

can be easily written from Eq. (16),

V2EX= vu(aEx/at) + uEx(aa/at) , (17a)

V2EY= ~u(aEy/at) + ~Ey(au/at) , (17b)

and

V2EZ=uO(aEz/at) + ~Ez(au/at) . (17C)

These equations are not coupled, thereby simplify-

ing the analysis of a multidimensional problem.

Analysis of current diffusion in rail-gun

conductors is particularly simple because the

current density and electric field strength have

only one nonzero cartesian component, the z-com-

ponent, which is a function of x, y, and t (see

Fig. 2). Of Eqs. (17), only Eq. (17c) remains,

resulting in

(a2Ez/ax2) + (a2Ez/ay2) = uu(aEz/at)

+ vEz(aa/at) . (18)

4
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In the language of thermal diffusion, Ez is

equivalent to temperature, (w) is volumetric heat

capacity, the thermal conductivity is one, and

[-pEz(au/at)l is equivalent to an energy genera-

tion or source term per unit volume.8 Equation (18)

was used to calculate current density as a function

of time and position in rail-gun conductors. Local

values of the current density and electric field

strength were related by

jz

on

P*

. aEz“

The development to this point has been based

the assumption that the magnetic permeability,

is constant. This assumption can be relaxed at

the expense of additional complexity in the result-

ing equations. Variable permeability is usually

written as u = MoMr(H), where B. is 4n x 10‘7 H/m

and ~r is the relative permeability, which is

written as a function H, the magnitude of the mag-

netic-field strength (~). Relative permeability

data are tabulated for many materials.g Because

~ is no longer constant, Eq. (2) becomes

VXT=-voa(@i)/at . (19)

This change would affect al1 of the previous deri-

vations. However, only the current-diffusion for-

mulation will be discussed here. The development

parallels that for Eqs. (13) to (18), except that

Eq. (19) is used in place of Eq. (2) and that the

dependence of ~r on H, and thus on position and

time, is recognized. The equivalent of Eq. (15) is

V2E=~o[a(urd3/atl + uo[a(v@lT)/atl . (20)

In addition to the variation of pr with time that

is included in the first term on the right-hand

side of Eq. (20), an additional term involving the

magnetic field has been introduced. For the two-

dimensional rail-gun problem, the equivalent to

Eq. (18) is

(a2Ez/ax2) + (a2Ez/ay2) = ~o~ra(aEz/at)

+ uoEz[a(uru)/at]

+ uoa{ur’[(aH/ax)Hy

- (aH/ay)Hx] }/at , (21)

where II ‘ =dvr/dH. The second and third terms on

the rig~t-hand side of Eq. (21) are analogous to

the source terms of a diffusion problem. These

terms are considerably more complex than in the

formulation for constant v because the magnetic

field must now be known. For a one-dimensional

problem in which Ez, jz, and Hx are the only

nonzero components and are functions of y and t,

(a2Ez/ay2) = uouro(aEz/at) + uoEz[a(uro)/at]

- uoa[ur’H(aH/ay)]/at , (22)

where Hx = H in this case. Equation (22) can be

rearranged with the aid of the relation

jz = IJEZ = -aH/ay , (23)

for this one-dimensional case. This gives

(a2Ez/ay2) = ~oIJ(IIr+Hur’)(aEz/at)

(24)+ voEza[u(ur+H~r’)l/at .

Equation (24) is analogous to a thermal-diffusion
equation where Ez is the temperature, ~oU(Ur+Hur’)

is the volumetric heat capacity, the thermal con-

ductivity is one, and -uoEza[u(vr+Hur’)]/at is a

source term per unit volume.a

Formulations of the current-diffusion problem

for nonferromagnetic material (v constant) and

ferromagnetic material (y is a function of the

magnitude of the magnetic strength) have been

developed. Although the solution with variable v

is a more general development, it has not been

pursued for rail-gun conductors because they are

general 1y made of copper or other nonf erromagneti c

materi als. A comparison of one-dimensional current

diffusion for ferromagnetic and nonferromagnetic

materials is given as an example of the use of

Eq. (24).

III. FINITE-DIFFERENCEFORMULATION

Even though Eq. (18) represents a relatively

simple approach to the solution of current- and

field-diffusion problems in rail-gun conductors,

it is much too complex for an analytic solution.

5



Because of the similarity of this problem to

thermal-diffusion calculations, a finite-

difference, heat-transfer computer program was

adapted to solve Eq. (18). The CINDA program was

used?” Any heat-transfer pragram of sufficient

generality could be employed, however. This sec-

tion describes the finite-difference formulation

of the problem.

The geometry of the conductors shown in Fig. 2

is syntnetric about the x and y axes. Thus, it was

necessary to model only one half of one conductor

the portion in the first quadrant. No current or

thermal diffusion was allowed across the x axis.

A lO by lO rectangular mesh was used (see Fig. 3)

A relatively coarse mesh was employed at this ear Y

stage of the work to minimize the use of computer

time; a finer mesh will be used in the future if

It is warranted. The mesh spacing was variable so

that edge and corner nodes, where thermal and

current-density gradients were steep, could be

made smaller. For the calculations discussed

later, the relative node spacing in the x direc-

tion (from left to right in Fig. 3) was 0.1, 0.3,

0.6, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, and 0.1, and
the relative node spacing in the y direction (from

top to bottom) was 0.2, 0.5, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, andl.O.

For these calculations, it was assumed that

the total current in the conductor was known as a

Y

h201 NODE
~ “205

!, ///

II I I I \l I
I *X

100lJ -1005

Fig. 3. AlO by 10 rectangular mesh on half of
one rail.

function of time. Changes in total current were

made by changing the current density in the edge

nodes only; that is, it was assumed that current

density or electric field strength enters or leaves

the conductor through its exterior surface. The

surface current-density distribution (in units of

current per unit length) was obtained from static

calculations of the high-frequency inductance of

the conductors.3 This distribution varies with

the size and separation of the conductors. It was

converted into a current density in the edge nodes

(in units of current per unit area) by distributing

all the current on the surface of a given edge

node uniformly over th(? node area. With this pro-

cedure, each edge node requires a source term

(which can be positive or negative, depending on

how the total current is changing with time) of

the form

Sk=IIAkAjk/At ,

where Ajk is the change in current density of edge

node k required over time step tit, and ~ is the

area of edge node k. To determine Ajk, let jk’ be

the relative current density in edge node k based

on the surface distribution noted above. The jk’

are normalized so that

S ~ j~ .1 , (25)

k=l

where Ne is the number of edge nodes. Then,

Ajk=jk’ (In- In-l) ,

where In and In-1 are the total currents at times tn

and tn-l,
n-1

and At = tn-t . This method distributes

the change in total current for a particular time

step (tn-l to tn) among the edge nodes in proportion

to their static surface current distribution in the

high-frequency limit. The source term for edge

node k becomes

S! =uQk’(In - In-l )/At ,

and the total source for the entire mesh is

(26)

v
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Ne

s; . ~ s; = ll(xn- 1“-1)/At ,

k=l

where Eq. (25) was used.

In addition to source terms related to changes

in the total current, which occur only in edge

nodes, Eq. (18) indicates that each node has a

source term that is related to the change in con-

ductivity of the node with time. For node i in

the mesh, a source term of the form

(27)

is used, where Ai is the area of node i, and j;

and a? are the current density and conductivity

of node i at time step n. The derivative (au/at)
in Eq. (18) has been approximated by the change in

conductivity over one time step, and Ez for node

i is written as (ji/ai).

To follow the conductivityof each node with

time, the node temperatures must be known. Node

temperatures change during the calculation from

resistive heating of the conductor. For node i at

time t“, the energy generation (in W/m3) was

calculated as (j!’)2/a~. Two temperature calcula-

tions have been performed in this analysis. The

simplest gives an adiabatic temperature of each

node; it is assumed that all the energy generated

in a given node goes into raising that node’s tem-

perature. Conduction among the nodes is ignored

for the adiabatic-temperature calculation. The

adiabatic temperature is only an approximation to

the true temperature distribution in the conductor

however. In reality, thermal diffusion is occur-

ring simultaneously with current diffusion. A

diffusion temperature for which transient thermal

diffusion is considered has also been calculated.

For this analysis, a thermal mesh, with the same

geometry as the current-density mesh, is set UP

and the energy generation in each node is used as

an energy source term in the thermal-diffusion

calculation.
8 Values of the current density,

conductivity, and temperature from the past time

are employed during the current time step. In

addition, a surface heat-transfer coefficient is

included to account for heat losses from the

conductor during the calculation of the diffusion

temperature. A value of 100 W/m2°K has been used.

Two electrical parameters of the rail-gun

conductors can also be calculated as a function of

time from the finite-difference formulation of

this problem. They are the inductance per unit

length (L’) and resistance per unit length (R’) of

the rails. These parameters change as the current-

density distribution changes. The inductance is

calculated in the same manner as in the high-

frequency limit,

‘1

IL’=v
J

Hy(x,o)dx , (28)

-x 1

where I is the

y component of

ated along the

limit, xl = s/2

total current and Hy(x,o) is the

the magnetic-field strength evalu-

x-axis.
3

In the high-frequency

because there is no penetration

of current into the conductor (see Fig. 2). As

current penetrates into the conductor, xl becomes

greater than s/2. The value of xl is estimated as

the location within the conductor at which Hy(x,o)

changes sign. The magnetic field outside the con-

ductors is calculated as the sum of the fields

from each node, considered as an infinite current

filament in the z-direction.3 This allows Hy(x,o)

to be evaluated over the range O<x~s/2. Inside

the conductor, the relation

(aHy/ax) =-jz

is integrated along the x-axis for x? 512.4

Equation (28) is evaluated using lo-point Gauss

quadrature.
11

The resistance is calculated from the total

energy generation in the conductor at a given time.

The total current flow is

N

I.~jiAi,

i=1

and the total energy generation is

I

7



where N is the total number of nodes in the mesh.

Thus, the resistance per unit length can be written

as

(29)

Values of R’ obtained near the start of a calcula-

tion will be inaccurate because they depend on the

size of the edge nodes in the mesh. After diffu-

sion has carried the current into the nodes adja-

cent to the edge nodes and beyond, R’ should

accurately represent the average resistance of the

conductor.

Two one-dimensional test problems and a

one-dimensional calculation involving ferromag-

netic material were also done. A one-dimensional

mesh of 50 nodes with uniform node spacing was

used for these calculations. In other respects,

the two test problems were the same as the two-

dimensional formulation just described. For the

one-dimensional ferromagnetic calculation, Eq. (24)

was used as the basis for the finite-difference

calculation. The magnetic field (H) was calculated

by integrating Eq. (23) through the conductor. At

the surface y = O

H(y=O) =~jiAYi s

i =1

where ji is the current density and Ayi is the node

spacing of node i, and N is the total number of

nodes. The quantity (Ur+HVr’) in Eq. (24) was

expressed as a function of H. Some numerical

problems were encountered during the ferromagnetic

calculation because (Mr + HMr’) varies over a ran9e

of ’104 as H changes from zero to the saturation

field for the conductor.g Because the Saturation

field of most ferromagnetic materials is quite

small compared to the magnetic fields encountered

in rail-gun conductors, this change occurred over

a few normal time steps. These problems were

generally eliminated by reducing the time step by

a factor of 100 to 1000 whenever any node was

passing through the saturation field. Occasional

small perturbations were still seen in the current

density of a node at this time; however, these

perturbations damped out quickly.

IV. ONE-OIMENSIONALTESTPROiLEMS

Two one-dimensional test problems were run to

compare the results of the current-diffusion for-

mulation with other analyses. The first test

problem was a comparison with the magnetic field-

diffusion calculations of Kidder.7 He calculated

field diffusion into a semi-infinite half plane

resulting from a step change in the magnetic-field

strength at the surface. The conductivity of the

material was assumed to be inversely proportional

to the absolute temperature, so that this is a

nonlinear problem. Kidder also calculated the

current density that resulted from the magnetic

field. The current-diffusion formulation described

here was used to calculate current diffusion

directly; the initial condition was a step change

in total current, which is equivalent to the ini-

tial condition on the magnetic field. Because the

mesh used here had a finite thickness compared to

the semi-infinite half plane in Kidder’s, analysis,

comparisons were made early in the calculation

when the current density at the back of the mesh

was still near zero. Figure 4 shows a comparison

of the current densities at 0.1 and 0.2 ms into

the calculation for a total current of 105.8 MA/m

(H. = 1.33 m in Ref. 7). The comparison is

quite good.

The second test problem was a calculation of

the current-density distribution in a semi-infinite

half plane where the total current varies sinus-

oidally with time. The conductivity was assumed

to be constant so this is a linear problem. How-

ever, it does test the manner in which current is

added and removed at the surface of a conductor.

This problem can be solved exactly and is the basis

of the calculation of the frequency effect in high-

frequency ac conductors.
12

The finite-difference

calculation used 50 nodes with a node thickness of

0.20 mm. The total current was assumed to vary as

I(t) = Im sin(2nft) , (30)

8



(u/4 radians) out of phase. Ife is taken as x/4,

Eqs. (33) and (30) are the same, and

Im= jo6/@ .

LOCRTION (MM]

Fig. 4. Comparison of current densities in a
semi-infinite half plane at 0.1 ms and
0.2 ms; lines from Ref. 7 and points from
finite-difference solution.

where I is the maximum current. A frequency (f)

of 2000 Hz was used; at this frequency, current

I

diffusi n to the back side of the mesh was negli-

gible f r the conductivity assumed [a = 5.28x

107 (oh m)-l]. The current density in a semi-

infinit conductor resulting from a sinusoidal

excitation can be written as
12

jz(x,t) = j. exp(-x/6) sin[2~ft - (x/s) + e] , (31)

-1/2
where & = (llalrf) , e is an arbitrary phase

angle,

I

nd x is location in the conductor measured

from th surface of the conductor. The surface

current density is

jz(O,t) =jo sin(2Tft + e) ,

/

(32)

where j can be recognized as the peak surface

current density. The total current. in the con-

ductor is

P’
I(t) = ~jz(x,t)dx

[= (“.6//2) sin[2~ft - (~/4) +e] .

Comparir g Eqs. (32) and (33), the total current

and surf ace current density are seen to be 45”

33)

Current densities obtained from the finite-

difference current-diffusion calculation are com-

pared with results from Eq. (31) in Figs. 5 and 6,

where the solid lines represent the analytic result

and the points represent current densities at some

of the finite-difference nodes. The finite-

difference calculations were run for five cycles;

steady-state behavior had been achieved by this

time. Figure 5 is at the start of a cycle, where

I = O A/m. Figure 6 is 4.375 x 104 s later

(7/8 of the way through a cycle); at this time,

I = -70.7 A/m and the surface current density is

zero. The agreement is excellent in both cases.

v. CURRENT-DIFFUSION CALCULATIONS FOR RECTANGULAR

RAILS

A series of calculations of current diffusion

in rectangular rails has been done. The objective

of these calculations was to compare rail tempera-

tures for a series of different-size rails that

would produce the same acceleration for a projec-

tile of a given mass. The rail separation was

assumed to be fixed at 10 mm and the force required

was taken as 1 x 105 N. The force was related

50.0 I

40.0-

30.0 I

20.0

1o.o- \

o.o-

-’O”Ot--Y=6
LOCRTION [NM]

Fig. 5. Comparison of current density in a
semi-infinite half plane with a sinus-
oidal variation of total current; total
current = O A/m; line is analytic solution
and points are finite-difference solution.
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Fi g. 6. Comparison of current density in a
semi-infinite half plane with a sinus-
oidal variation of total current; total
current E -70.7 A/m; line is analytic
solution and points are finite-difference
solution.

to the total current (I) and the rail inductance

per unit length (L’) as
13

F=l/2L’12 .

Thus, if L’ is known, I can be calculated as

I = [2 X 105/ L’]1’2 .

The total current was assumed constant during the

diffusion calculation. The value of L’ used to

calculate I was taken as the inductance in the

high-frequency limit,3 even though L’ changes as

current diffusion occurs. Table I shows calculated

values of L’, I, and the ratio of I to the conductor

area (A) and perimeter (P). Even before diffusion

calculations are done, some general comnents can

be made about the relative merits of various rail

sizes. Figures 7 and 8 show plots of I/Aand I/P

as a function of rail width (w) for the data from

Table I. Even though the current is not distrib-

uted uniformly over the rail surface or the cross-

sectional area, these parameters provide some

measure of heating. For a given rail height (h),

I decreases as the rail width (w) is

(see Table I); however, both I/A and

as w decreases. This would indicate
size should be as large as practical

10

made smaller

I/P increase

that the rail

to minimize

&
2

5

10

15

20

5
2
1

10b
5
2
1

1

15
10b
5b

20

TA8LE I

RAILPARAMETERS

&
0.790
0.921
1.007

0.575
0.640
0.715
0.758

0.413
0.431
0.456
0.495
0.536
0.556

0.362
0.380
0.407

0.303

Li!Q
0.503
0.466
0.446

0.590
0.559
0.529
0.514

0.696
0.681
0.662
0.636
0.611
0.600

0.743
0.725
0.701

0.812
15 0.313 0.799
10 0.327 0.782
5b 0.347 0.759

II%
.@!!!Q

50.3 x 103
116.5 x103
223.0 X 103

11.8x103
22.4 X 103
52.9 x 103

102.8 X 103

3.5 x 103
4.5 x 103
6.6 X103

12.7 x103
30.6 X 103
60.OX 103

3.3 x 103
4.8 X 103
9.4 x 103

2.0 x 103
2.7 X 103
3.9 x 103
7.6 X 103

I/P
u

35.9
58.3
74.3

19.7
28.0
37.8
42.8

11.6
13.6
16.6
21.2
25.5
27.3

12.4
14.5
17.5

10.2
11.4
13.0
15.2

ah = rail height and w = rail width; see Fig. 2.

bcurrent diffusion calculation performed.

rail heating. For a given rail area, rails with

larger width have a larger value of L’ and thus,

a lower value of 1. For example, ah= 10mn by

w = 15 mm rail requires I = 0.681 MA, but a

h =15nnbyw= 10mm rail requires I =0.725 MA

H-1OM

H-2otin

3.0,
. .

R;lL kl[D~H [Nil “
1.0

Fig. 7. Plot of current density I/A as a function
of rail width.
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Fig. 8. Plot of surface current density I/P as a
function of rail width.

to achieve the same force. Thus, the wider rail

would show less heating.

The surface current distributions for the

various size rails were calculated at the same

time as the inductance.3 For the calculations

of these quantities, the rails were assumed to

have a corner radius of 0.02 inn, that is, a rela-’

tively sharp corner. Figure 9 shows a plot of the

relative current density on the rail surface (con-

tinuous curve) compared with the average current

densities used for the edge nodes (stepped curve)

for one rail size (h = 10mmby w= 10mm). It is

evident that the peaks at the corners of the rails

0.00 I
0.0 5.0 !0.0 15.0 20.0

FIRC LENGTH {MM]

Fig. 9. Current density around surface of 10-mm
by 10-nun rail; continuous curve from
Ref. 3 and stepped curve is finite-
difference approximation.

are not approximated well. A much smaller node

size would be required for a better approximation.

For this reason, temperatures calculated at the

rail corners may not be accurate. The need for a

finer mesh size is recognized, but this refinement

will be postponed until some verification of the

calculated temperatures has been made.
4

Diffusion calculations were run to 5 x 10 S;

total current was assumed to rise from zero to the
-8

constant values shown in Table I in 1 x 10 s

with the shape of a quarter sine wave. This would

result in a final velocity of 16.7 km/s for a 3-g

projectile. The rails were assumed to be copper;

the electrical conductivity, volumetric specific

heat, and thermal conductivity were defined as a

function of temperature.
14 No attempt was made

to account for the effects of melting on the prop-

erties or on heat transfer. Unless otherwise

noted, all of the temperatures reported are adia-

batic temperatures; a comparison of adiabatic

temperatures and diffusion temperatures for one

run is made later.

Diffusion calculations were made for only six

of the rail sizes (see Table 1). Figure 10 shows

a plot of average rail temperature (area average)

as a function of time for these rails. The initial

temperature was 300 K in all cases. It is evident

that the smaller rails (h = 10rrun byw= 5mm and

h = 5 mmby w = 10 mm) would be impractical for

these conditions because average rail temperatures

in the vicinity of the melting point of copper

““””~

1400.0

1000.0

}

:=
0.0 0.1 0.2 0.3 0.4

TIME [MILLISECONOI

Fig. 10. Average rail temperatures as
of time.

0’.5 6

a function
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(1356 K) are attained. Gross melting could be

expected of these and smaller rails. Average rail

temperatures for the four larger rails are well

below the melting point of copper; however, as

will be seen later, local melting may occur in

these rails.

Local values of the current density and rail

temperature cannot be presented in detail for all

the cases studied because of the volume of data

involved. For this reason, only a sampling of the

local data is given. As a start, Table II lists
node temperatures for four nodes at two times

during the calculation, 1 x 104 4sand5 x10 s.

The locations of the four nodes are shown in

Fig. 3. Node 201, an edge node near the inside

corner, is generally one of the highest temperature

nodes. Near the vertical center of the conductor

on the inside surface (node 1001), temperatures are

usually well below those near the inside corner.

The two interior nodes (nodes 205 and 1005) show

lower temperatures still; node 205, which is near

the top edge, has higher temperatures than node

1005, which is near the middle of the conductor.

The relative values of the temperatures for all

nodes are generally related to their surface cur-

rent density if they are edge nodes and to their

proximity to the surface if they are interior

nodes. The two smaller rails (h=5mmby

w= lOn’nnandh=lOmmby w= 5mm)showrela-

tively uniform heating at 5 x 104 s (see

Table II). By this time, current distribution is

relatively uniform over the cross section of these

small rails, resulting in uniform heating. The

same phenomenon is responsible for the upturn in

the average rail temperature for these cases that

starts between 2 x 104and 3x10 4 s (see

Fig. 10).

The data for the four larger rail sizes in

Table II indicate that most of the temperature

rise of the edge nodes (201 and 1001) occurs by

1 x lo~ s. Figure 11 shows this behavior;

the temperature of node 201 for the rails with

h = 10 mm by w= 10mm is plotted as a function of

time. This situation is directly related to the

current-density behavior; Fig. 12 shows a plot of

current density as a function of time for the same

node. Tim? is plotted on a logarithmic scale

because most of the current flow occurs in a narrow

range of time, early in the calculation. AS the

conductor is heated, its conductivity drops and

current flows more easily in the cooler, inner

region of the conductor. This nonlinear behavior

accelerates diffusion of the current density.7

Figures 13 and 14 show plots of temperature and

current density as a function of time for node

1005 (an interior node) for the same rails. The

time required for the current to diffuse into this

node is evident.

The inside surface of the rails, where they

contact the projectile, is their most critical

Rail Size

m h

5 10

10 10

10 5

15 10

15 5

TABLE 11

NODE TEMPERATURES FOR VARIOUS RAILSIZES

Temperature (K)a

t=lxlo-as t=5xlo4s

2olb 205 1001 1005 201 205 1001 1005
3907 G 1238 327 =9 Zo 1959 1457

2323 373 690 300 2387 596 896 477

2531 774 771 332 2888 1665 1669 1574

1648 349 614 300 1710 509 695 345

1778 648 677 316 1923 1045 828 574

20 5 1405 566 627 313 1533 895 693 414

aInitial temperature = 300 K.

bNode number (see Fig. 3).
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1803.0

1500.01

1200.0

903.0
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30C
0.0 0.1 0’.4 0’.5

TIME O(;lLLISg;ONOI

Fig. 11. Node 201 temperature as a function of
time for lo-mm by lo-mm rail; see Fig. 3
for node location.

region. Figures 15 and 16 show plots of the inside

surface temperature of five of the rails listed in

Table II, at 1 x 104 s. The temperature profile

generally follows the surface current-density

profile (see Fig. 9). Temperatures along this

surface are highest at the corner of the rail.

These figures indicate one method of increasing

the possibility of reusing rails; if the height of

the rails is greater than the height of the pro-

jectile, the projectile will not contact the rail

corners.where temperatures are highest and rail

damage is most likely. This argumentignores
problems of arc damage to the rails. Figure 17

500.0

: 4oo. o-

X

2
C9

300.0 1

z

u-l
z

H 200.0

+

z
w
lx

IO!J. O
z

0.0
-8.0 -7.0 -6.0 -5.0 -4.0 -3.0

LOG TIMC [N SECONDS

Fig. 12. Node 201 current density as a function
of time for lo-mm by lC-mmrail; time
plotted as log10 time in seconds; see
Fig. 3 for node location.

Fig.

500.0

450.0-

400.0 /

350.0

300.0
0.0 0.1 0.2 0.4 0.5

TIMC (MILLISi;ONDl

13. Node 1005 temperature as a function of
time for lo-mm by lo-m rail; see Fig. 3
for node location.

!0.0

8.0-

6.0 /

4.0

2.0

0.0
0.0 0.1 0.2 0.3 0.4 c

TIME [MILLISECONDI
5

Fig. 14. Node 1005 current density as a function
of time for lo-mm by lthun rail; see
Fig. 3 for node location.
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1000.0
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i
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Fig. 15. Inside surface temperature of rails at
0.1 ms.
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DISTFINC& FROM RFIIL CENTER IMfll

Fig. 16. Inside surface temperature of rails at
0.1 ms.

shows three rail and projectile configurations.

In Figs. 17a and 17b, the projectile contacts the

corners of the rail, but in Fig. 17c the projectile

only contacts the central, cooler section of the

rail. Thus, if a lo-mm-high projectile were used

in these rails, rail temperatures in the region

where the projectile contacts the rail could be

limited to-800 Kfor h =15 rivnand h = 20mm

rails; rail-surface temperatures

point of copper would occur near

the rail contacts the projectile

rails.

PROJECTILE
T

above the melting

the corners where

for h = 10 mm

r RAIL

/
I

(a)

(b)

M
(c)

Fig. 17. Three rail and projectile configurations.

The effect of the current rise time, which

was 1 x 10
-8

s in the previous calculations, was

assessed by one calculation for the h = 10 mm by

w = 10 mm rail in which the rise time was increased

tol x 10-5 s.

temperatures of

0.5 ms) for the

matic change is

is, the highest

Table III shows a comparison of

four nodes at two times (0.1 and

two calculations. The most dra-

for nodes near the corners, that

temperature nodes (see node 201

results in Table 111). The longer rise time

allows time for current to diffuse away from the

surface during the initial rise to a constant

current. Thus, peak currents and maximum

temperatures are lowe~ with a longer rise time.

All of the preceding temperatures have been

adiabatic temperatures. A coupled current-

diffusion and thermal-diffusion calculation was

done for one case, h=lOmmby w=lOmm rails.

Table IV shows a comparison of the two sets of

temperatures obtained. The edge-node (201 and

1001) diffusion temperatures are the same or lower

than the adiabatic temperatures because these nodes

tend to lose heat to the surroundings or adjacent

interior nodes. Interior node diffusion tempera-

tures can be higher than adiabatic temperatures if

heat is conducted into the interior nodes from

nearby edge nodes. Differences between diffusion

and adiabatic temperatures are greater at 5 x 104

than at 1 x 10
4

s; differences would continue to

increase with time as thermal conduction occurs.

The adiabatic-temperature calculation represents a

s

reasonable approximation at this stage of the work.

TABLE III

COMPARISONOFTEMPERATURESFOR FAST
AND SLOW CURRENT RISE TIMESa

Time Current Rise
Temperature (K)

-@_ Time (s) Zolb 205 1001 1005—. ——

1 x lo~ 1 x 10-8 2323 373 690 300

1 x lo~ 1 x 10-5 1722 366 609 300

5 x lo~ 1 x 10-8 2387 596 896 477

5 x lo~ 1 x 10-5 1810 587 840 470

ah =lo~xw=lom rails.

bNode number (see Fig. 3).

14



Time

A

1 x 10-4

1 x 10-4

5 x 10-4

5 x 10-4

TA8LE IV

CONARISON OF ADIABATIC AND
DIFFUSION TEMPERATURESa

Temperature Temperature (K)

Calculation 201” 205——

Adiabatic

Diffusion

Adiabatic

Diffusion

ah=lOmmxw=lOmm

bNode number (see Fig.

2323 373

2328 377

2387 596

2121 600

rails.

3).

1001 1005—.

690 300

658 301

896 477

834 480

Computer execution times were about three times as

long for the diffusion-temperature calculation as

for the adiabatic-temperature calculation. On a

CDC 7600 computer at Los Alamos, the adiabatic-

temperature calculation required ‘300CPU seconds

and the diffusion-temperature calculation required

-900cPu seconds.

Two electrical parameters of the rails, the

inductance per unit length (L’) and the resistance

per unit length (R’), are shown in Figs. 18 and 19

for the h = 10imn byw= 10mm rails. The induc-

tance rises from its initial value, where all the

current is distributed on the conductor surface,

as current diffuses into the rails (see Fig. 18).

The initial value calculated by the finite-differ-

ence approximation (0.466 vH/m) agrees quite well

0.s0.0 0. I 0.2 $ 0.4

TIMC (MILLISi;ONOl

Fia. 18. Inductance of lo-mm bv lo-tnn rails as a
“

function of time. -

-1

F
4.0 L-----l

l.oJ—J——4—

o.o~
0.5

TIME;tIlLLlS&20N01 “

Fig. 19. Resistance of lo-mm by 1O-MM rails as a
function of time.

with the value calculated by static methods3

(0.456 uH/m). For a uniform current density, L’

calculated by the finite-difference approximation

agrees with the result obtained by the method of

Grover?5 Initially, the resistance of the rails

is high because current flow is concentrated near

the surface of the conductor (see Fig. 19). As

the current diffuses into the rails and the current

density becomes more uniform, the resistance

decreases. Resistance values at early times are

probably inaccurate because they depend on the

mesh size.

VI. ONE-DIMENSIONAL CURRENT DIFFUSION IN FERRO-

MAGNETIC CONDWTORS

A one-dimensional calculation was done to

assess the influence of ferromagnetism on current

diffusion. A 50-node layer with a node thickness

of 0.20 mn was used. The initial condition was a

step change in total current at one side of the

mesh; the resultant current pulse diffused into the

conductor. This problem is similar to the test

problem that simulated Kidder’s results, except

that the material was assumed to be iron. The

electrical conductivity, thermal conductivity, and

specific heat were taken as functions of tempera–

ture>4 The relative permeability was obtained

from a review of various analytic functions that

can be used to represent magnetization curve

data.g The magnetization curve is a functional

relation between the magnitude of the magnetic



induction (B) and the magnetic-field strength (H);

the relative permeability is defined such that

The relations used here are

B =H/(Cl+C2H) for H~Hs s (34a)

and

B = [HS/(Cl+C2HS)l + Uo(H-Hs) for H >Hs , (34b)

where Cl = 88.3 and C2 = 0.620 when H is in

A/m.g

Figure 20 shows a plot of current density as

a function of location in the conductor for two

calculations. The total current for each was

10 MA/m. The solid line, labeled ferromagnetic,

represents the current density at 0.05 ms when

Eqs. (34) are used to define ~r. The dashed

line, labeled nonferromagnetic, represents the

current density at the same time if ~r is assumed

to be one, but all other properties are the scne.

The current-density pulse is much steeper in the

ferromagnetic case because the associated magnetic

field at the leading edge of the pulse is less

than H~ and the large value of ~r retards

diffusion.

FERROMIGNCTIC

axm.o-

2noo.o-

..--” --’-...

zQoo.o- :’
$.

. .
$.

. .
lom.o- $...

. ..$
. .

‘ . . . ..ohFEftf?&lflGhcr lC

----
0.0

-------- -~
,

0.0 2.0
m

8.0 10.0

LO&:l ON :%

Fig. 20. Comparison of current densities in a
semi-infinite half plane at 0.05 ms for
a ferromagnetic (solid line) and non-
ferromagnetic (dashed line) material.

VII. DISCUSSION
The objective of this work was to develop

techniques that can be used to assess thermal

damage in rail-gun conductors. Joule heating from

current flow in the rails is a major source of

thermal damage. The nonlinear current-diffusion

equation that was developed can be solved in con-

junction with the associated thermal-diffusion

problem by a finite-difference method. The results

of this analysis are rail temperatures as a func-

tion of time for a given total current.

The analysis developed here is relatively

general. It accounts for the temperature depend-

ence of material properties, in particular, elec_

trical conductivity, which is the major nonline-

arity in’the current-diffusion calculation for

nonferromagnetic materials. The two-dimensional

analysis should be capable of accurate temperature

calculations if the boundary conditions, initial

conditions, and material properties are represen-

tative of the actual situation. The material

properties of copper, the usual rail material, are

relatively well known up to the melting point.

The initial conditions are also generally well

defined. One of the primary boundary conditions,

the initial current distribution on the rail sur-

face, also controls the distribution for adding or

renwing current as a result of changes in total

current flow. This distribution was assumed to be

the current distribution on the rail surface in

the high-frequency limit (see Fig. 9). The form

of this distribution strongly influences the cal-

culated temperature distribution in the rail. The

high temperatures at rail corners are caused by

the large surface current density there.

This work is part of a continuing study of

thermal damage in rail-gun conductors. As part of

this study, attempts will be made to experimentally

verify calculated rail temperatures. Because rail

guns at Los Alamos use a plasma armature, arc

damage to the inside rail surfaces also occurs

during a test. An attempt will be made to incorpo-

rate an arc-damage model into the rail-temperature

calculation to more completely model thermal damage

in rail-gun conductors.

+
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