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IMPLOSION CHARACTERISTICS OF DEUTERIUM-TRITIUM PELLETS

SURROUNDED BY HIGH-DENSITY SHELLS

— by

I
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+~o The effect of high-density shells on deuterium-tritium pellets imploded
s=====~~0 Q-1aser energy deposition or other meana is Investigated. Attention ie

g~~ r ‘centered on the inner parts of the pellet where hydrodynamics is the dominant
‘(9 ~“-rnechaniam.5==== The implosions can then be characterized by a pressure boundary

.~m I

e==rn .C.wdition.
Numerical solutions of the implosions are carried out over a

~~m ~ “wide range of parameters both for solid pellets and pellets with a central
~ t—void.
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1. INTRODUCTION

The implosion of small deuterium-tritium pel-

lets driven by laser energy deposition to obtain

thermonuclear fusion has been widely investigated.
1-6

It la necessary to achieve high densities (compress-

ions of 1000 or more from solid density) to obtain

efficient thermonuclear bum for pellets with masses

ranging from 1 pg to 1 mg. Emphasis has been on

“optimized” pulsea with a typical energy deposition

of the form

i(t) = l/(t-T)2,

with T a characteristic time of the pulse. Here we

consider energy deposition of a less singular form

but with high-density shells surrounding the thermo-

nuclear fuel. It is expected that the high momentum

density of the shells will help produce high com-

pressions in the fuel.

The pellet consists of the fuel, the shell, and

possibly other material on the outside. There may

be a void in the center. Energy deposition and

accompanying effects occur in the outer part of the

pellet. In the interior the temperature is lower,

and, if the shell is thick enough, hydrodynamic

dominates the implosion. Effects in the outer part

of the pellet then affect the implosion in the in-

terior only through a pressure boundary condition,

which will be applied at a constant mass point. An

appropriate position for the boundary condition is

at the front of the thermal or ablation wave from

the outside of the pellet at the end of the implo-

sion. It should be interior to regions signifi-

cantly heated by faat electrons or radiation. Its

position in the shell aa a whole dependa on details

of effects where the laser energy is absorbed and

on the shell thickness. In this -report, tihe mass,

interior to the point where the boundary condition

is applied, is taken as a given quantity. Deposition

of enerby through the entire shell usually degrades

the implosion.

The use of hydrodynamic solutions in the in-

terior requires that the hydrodynamic energy flux,

which is pressure times velocity, be much larger

than that due to electron conduction or rsdiation.

Necessary conditions on pellet size for a constant

applied pressure are derived. It will be shown

that typically about one-third of the implosion

energy is transferred to the fuel. Then, the

average applied pressure is



Pa ~ R TilvfPf = ; 13fRTilPf ,
= 3mf 2

(1)

where R is the gas constant, Vf is the fuel volume

(the shell volume can usually be neglected), mf, Pf,

and ~f are the fuel mass, density, and molecular

weight, and Ti is the ignition temperature. With

Ti~ 5 keV~ 5.8x107 K. ,

16
pa * 2XI0 Pf ewdcm3 s (2)

where pf is in gmlcm3.

We find characteristic hydrodynamic and thermal

fluxes in the fuel when the initial shock has passed

through the shell into the fuel. The pressure be-

hind the shock front is PI = Apa, where A depends on

the ratio of shell and fuel density, R . A is about
P

0.1 and 0.25 for Rp = 100 and 10,respectively.7

From Eq. (l), the fuel temperature Tf ~ plI.If/4pfR%

ATi. (The density behind ;he shock is 4 p~) The
19 #21Z ergs/cm-sec-keV*

thermal conductivity x 10

where Q is the temperature in keV and Z is the atomic
8

number. This gives a characteristic flux of 10
21

A3”5/rf (cgs units) with rf, the fuel radius, in cm.

The jump conditions for a strong shock give a hydro-

dynamic flux of about PI%fl’z * 3XI0 24 A3/2 pfO

Ifrf>>10-3 A2/pf,the hydrodynamic flux dominates.

For solid density fuel (pf = 0.2 gm/cm3) rf must be

much larger than a micron. Later temperatures in

the fuel become increasingly uniform (except close

to the center) and thermal conduction becomes less

important for that reason.

In the shell, after the initial shock has pasa-

ed through, the thickness is Ars/4 where Ar= is the

initial thickness, and from Eq. (l), the temperature

Ts % Ti Pf@fP~, where ps and us are the shell

density and molecular weight. (Typically the mat-

erial is only marginally degenerate and a perfect

gas equation of state may be used for calculation

of the temperature.) The hydrodynamic flux ~ pa
3/2,

p 1/2
312/p ~12 (cgs units), and theN 3X1024 pf

t~ermal flux% 4x1021(SfPs/UfPs) 7’21ZArs. With Pal

Pf % 3,we require Ars >> 10-2 (pf/pa)2/Zpf cm.

The blackbody flux, o Ts4 ~ 1024 Qs4 erga/cm2-

sec, where u la

Qa is the shell

2

the Stefan-Boltzmann constant, and

temperature in keV, is an approxi-

mate upper limit to the net radiation flux. The

ratio of hydrodynamic to blackbody flux is then

about 3pf3’21 [Ps1’2 (15 pf/ps)4] from the results

previously derived. For valuea of ps ~ 8 - 20 and

pf ~ 0.2 gmlcs? this is about 10 or more. If the

shell is optically thick, the actual flux is approx-

imately the blackbody flux divided by the optical

depth. Radiation losses in the fuel are usually not

important during the implosion. Where the applied

pressure increases with time, temperatures during

moat of the implosion are lower and thermal conduc-

tion and radiation are correspondingly less impor-

tant.

II. HYDRODYNAMIC IMPLOSIONS

A. Boundary Conditions and the Equation of State

The implosions are determined by the pressure

boundary condition applied at a fixed mesa point.

We are interested in energy deposition with little

shaping, so pressures of the type

p = Ctn (3)

are used where n is small (O, 1, 2). A perfect gas

equation of state,

P = PE(Y-1) ,

where E is the specific energy

The initial pressure is zero.

and y = 5/3, la used.

Except for the ini-

tial zero pressure, this is also the equation of

state for nonrelativistic material of arbitrary

degeneracy. This equation of state with one other

factor, the degenerate zero temperature pressure,

aPPeara adequate for an underatanding of the im-

plosions. With this simplified mode~the number

of irreducible parameters (those with no scaling

lawa) is small enough so the calculation of a rep-

resentative set of numerical solutions over the

parameters becomes much more practical. With zero

initial pressure, the compression achieved in the

implosion depends only on the shape of the applied

pressure, not ita magnitude. The initial pressure

acts as a cutoff, with little compression for

applied pressures equal to or less than the zero

temperature degenerate pressure. To illustrate

details of the effect of a more realistic equation

t
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of state,calculations are also done with a Thomas-

Fermi-Dirac equation of state which includes effects

of degeneracy and ionization. Resulte are given in

Sec. III.

The zero temperature degenerate pressure in the

fuel is almoat never important for this type of im-

plosion, but it may be in the shell. The degenerate

solution differs from the zero initial pressure csse

only through its effect on the initial shock that

passes through the shell. The ratio of pressure

before and after the shock front is poeitive instead

of zero. The effect is small if the ratio Is emall.

The zero temperature degenerate pressure isg

3 2/3 h2 ~ 5/3
P. ‘ + (~)

513,m
o (P/ve) e

* 1.0X1013 (p/ue)
5/3 ergs/cm3,

where me is electron mass and pe is the electron

molecular weight. No is Avogadro’s constant and h

is Plsnck’s constant. The highest shell density is

about 20. With Ue ~ 5 (at typical temperatures and

densities behind the shock,the inner electrons are

tightly bound and do not contribute to the pressure),

p. ~ 1014. For n = O, the pressure behind the shock

ie that of Eq. (1) and is 4x10
15 15

and 1x1O for fuel

densities of 0.2 and 0.05. It Is a fairly good

aPprOXimatiOQ to neglect P. for pa = 20 and a better

one for smaller ps. For pellets with a void, the

applied Pressure iS approximately Pa/(l + Rv), where

Rv is the ratio of the void volume to the initial

fuel volume. For ps = 20 and pf = 0.2, we would

expect results with the realistic equation of state

to fall off substantially from those with the ideal

gas equation of state at Rv ~ 40. The initial shock

with zero pressure in front achieves a compression

of 4. The effect of degeneracy on applied pressures

only moderately above the zero temperature pressure

may approximately be taken into account by the use

of the zero initial pressure solution with initial

density one-fourth the density actually achieved

behind the initial shock.

For n z O, the effect is more complicated be-

cause the initial applied pressure is small. But if

the spplied pressure (=p2) at the time the initial

shock reaches the inner surface of the shell is larg-

er (by a factor of ten or more) than the zero tem-

perature degenerate pressure, neglect of it is a

fairly good approximation. The time is roughly

that required to accelerate the shell maes through

one-half its thickness. The implosion time is

about that required to accelerate the shell through

its radius. When the work done on the pellet dur-

ing the implosion time is equated to the average

pressure of Eq. (1) times the displacement, we ob-

tain the approximate result

P2 % pa(Arslrs)
nl(n + 2)

s (4)

with rs being the initial shell radius.

B. Scaling Laws

The perfect gas solutions scale for all but

three or four parameters: Rp, the ratio of shell

over fuel density; Rm, the ratio of shell mass (in-

side the boundary condition point) over fuel mass,

n, and for pellets with a central void; Rv, the

ratio of volume of the void to initial fuel volume.

The scaling laws show that maximum densities are

independent of C [in Eq. (3)], while temperatures

do depend on it, so there is density-temperature

decoupling.

The scaling laws are found as follows: let

Pl(m, t). rl(m,t), vl(m,t), and ul(m,t) be the pres-

sure, radius, specific volume, and velocity of the

solution for a system with unit mass and unit spe-

cific volume in the fuel. The Lagrangian variable

m is the mass interior to a point, and t is the

time. The applied pressure is

pl (l>t) = tn .

The initial pressure is pl(m,O) = O. Consider

solutions of the type

P(m,t) = C2 pl(m/mt, Clt) ,

r(m, t) = C4 rl(m/mt, Clt) ,

v(m, t) = C3 vl(m/mt, Clt) ,

and

u(m, t) = C1C4u1(m/mt, Clt) ,

(5)



where mt is the total mass. The equation of state

ia

E = PV/(Y-l) ,

where Y = y(m/mt) only. The applied pressure is

p(mt, i)
= Clncztn = Ctn “

(6)

From the equations of motion,

+
-4Tr2 a

%,

++P*-O , (7)

“=% 9

and

v-4m2+ ,

we have

1- 2—-

C1-c
z “&

‘t 3(n+2) Pf s

C2 = c cl-n ,

C3 = Pf-l ,

and

(8)

III. RESULTS

A. Implosions with No Central Void

The solutions were calculated with a standard-

type spherically symmetric Lagrangian code with ex-

plicit hydrodynamic. Shock wavea are handled by

artifical viscosity. Values of Rp of 40, 100, and

400 were used, corresponding to pf = 0.2 and ps =

8 and 20, and pf = 0.05 and pa = 20. For these

values masa ratios from 10 to 100 are most interest-

ing. Maxtium fuel compression ia achieved in this

range. The transfer efficiency, the ratio of energy

transferred to the fuel over the total implosion

energy, is large enough at Rm = 10 so that it cannot

increase much for smaller mass ratios. There are

three important output parameters: the tranafer

efficiency, the maximum fuel p-R,and total p-R with

P-R= ~ pdr. The last two are conveniently normal-

ized by the initisl fuel p-R.

In a pellet consisting only of compreaaed fuel,

the effective reaction time ia the time it takea

a rarefaction wave from the surface to reach a maaa
4

element. This disaaaembly time, averaged over the

fuel, is rF/(4Cf) where Cf is the sound apeed. The

reactions per mass, Nm, are proportional to the

product of the reaction rate, <~ pf, with the

reaction time, where <c$VB, the product of the aver-

aged fusion cross section and velocity, depends only

on temperature.

N = QYD pf rf/(4Cf).
m

This can be factored into the p-Rf

temperature.

With a high-density shel~the

with the fuel and the inner highly

of the shell all at about the same

and a function of

implosion ends

compressed part

pressure. The

reaction time la increased by the time it takes a

rsrefaction to cross the compressed part of the

shell. The solutions show that, if at the end of

the implosion the shell thickness is not more than

about the fuel radius (which includes moat cases

calculated here),moat of the shell p-R cnmea from

the inner compressed part. Then,

N = <uV> Pf (rf/4 Cf + Ara’/C~)
m

(9)

with Arsg being the width of the compressed part of

the shell and C~ being the speed of sound. With

112
C6 % Cf (Pf/Pa) ,

Nma~ [P-Rf/4 + P-Rs(Pf/P~)l’2] . (lo)

Usually,to within a factor of two,the density ratio

is established when the firat strong shock hits the

fuel-shell interface. For7 Rp >> 1,

(Pflb5)
If2

~ 0.5/Rp0”2

% 1/5 for Rp = 100 . (11)

It is not a strong function of RO. The shell p-R

,.

t
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Fig. 1. Fuel p-R for pellets with no central void.

Is typically as effective as the fuel p-R; the

figure of merit la the total P-R. The p-Rf la still

importsnt for effects as alpha particle deposition.

Figure 1 givea the normalized p-Rf. It in-

cr=ses as n and Rp increaae, and varies from about

20 to 150. The p-R for bare pellets variea from

5t07forn=0,1,2. The mass ratio varies from

about 15 to 100 for maximum p-Rf for different R .
P

This roughly corresponds to an aspect ratio (r6/Ar~)

of ten. Figure 2 gives the total p-R for the same

cases; this varies from 102 to almoat 104. Figure

3 givea energy transfer efficiency. It 1S typically

about one-third for those masa ratios which give

maximum p-Rf. The transfer efficiency also increases

with RQ and n.

At the beginning of the Implosion,the boundary

pressure forms a shock in the shell. When it reach-

es the fuel, the shock continues through the fuel

and a rarefaction propagates back through the shell.

The shock is reflected at the center and is again

reflected at the fuel-shell interface. Further

shocks are usually weak and may be ignored. The fuel

Fig. 2. Total o-R.

1 I 1 I I 1 I 1

10

RM

Fig. 3. Transfer efficiency.

Id
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is then nearly isentropically compressed as it con-

tinues to decelerate the shell. The compression

increaaea with shell mass (and momentum) until, for

sufficiently large Rm, the outer part of the shell

remains too far away from the fuel to contribute to

its compression. A pressure pulse originate at the

outer boundary when it ia reached by the rarefaction.

The pulse propagates through the shell and fuel, and

tends to turn the reflected shock from the center

around in the fuel before it reaches the shell. This

allows for more isentropic compression. The timing

of the pulse ia moat effective at about the value of

Rm which produces the m~ximum fuel p-R. For larger

Rm the p-Rf decreases to an asymptotic value.

The shock formed in the fuel (and its reflec-

tion) ia weaker compared with the original shock in

the shell for larger Rp. This allows more of the

nearly Isentropic compression after the transit of

the first strong shocks. The total compression

is then greater for larger Rp. Higher valuea of n

produce a weaker initial shock and allow compress-

ion on a lower adiabat.

Figures 4 and 5 give results using the Thomss-

Fermi-Dirac equation of state. The fuel and shell

density and type of material, and the constant in

Eq. (3) must be specified, besides the parameter

n, Rp, and ~ required for the perfect gas equation

of atate. Deuterium-tritium fuel densities of 0.05

and 0.2 were used. For shell densities of 8 and 20,

iron and gold were used. The perfect gas solutions,

plus the scaling rules,give the value of C which will

produce a given average temperature in the fuel at

maximum compression. The value of C giving an aver-

age temperature of 4 keV was chosen. The actual

temperature with the Thomsa-Fermi-Dirac equation of

state was usually within 10% of 4 keV. Because of

the low sensitivity of the output parameters on C,

there were no further adjustments in ita value. BY

Eq. (4), we expect the results for R = 400, n = 1
P

to begin to fall off from the perfect gas solutions.

fiis is obsemed, the worst case giving about 55%

the perfect gas p-R. For other Rp and n,the com-

pression was occasionally somewhat greater than

that of the perfect gas solution. This seemed to

be caused by a higher shell density behind the in-

itial shock, due to ionization effects on the equa-

tion of state. The compression was as large as 5,
—.
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of state.
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Thomas-Fermi-Dirac and perfect gas equations
of atate.

B. Implosions With a Central Void

Figures 6, 7, and 8 give results for pellets

with a void in the center. (The p-R is normalized

in terms of the initial fuel p-R for the fuel in a

solid sphere at the center.) The constant in the

boundary pressure for the Thomss-Fermf-Dirac equation

of state was chosen in the same way as before. For

large Rv, after the initial shocks and rarefactions,

the internal energy of the materiel remains nearly

constant until it approaches the center. The applied

pressure goes into kinetic energy. When the material

hits the center, a shock propagates outward. Most of

the compression comes from isentropic spherical con-

vergence before and after passage of the shock. For

# I 1 v 1 I I 1

l?, 100

6 - R~ 40

n o
—PG

?J ---TFD

X4 -
;i

Q.

2 - -------------

-e----- ------

01 I I t 1 1 I 1 * I
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Rv

Fig. 7. Total p-R.
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Fig. 8. Transfer efficiency.

this reason compression is more than that due to

just one strong shock. For a perfect gas equation

of state, it appears that compression increases in-

definitely as Rv increases. (The large values of

Rv are probably not realistic as we would not ex-

pect these cases to retain sufficient spherical

symmetry. ) For the Thomas-Fermi-Dirac equation of

state, the applied pressure necessary for ignition

decreasea as Rv increases, and it becomes compar-

able to the degenerate pressure in the shell. This

causes the results to fall off compared with the

perfect gas cases.

Iv. CONCLUSION

The (normalized) p-R for no shell was about 5

forn=Oand7forn= 2. For the case (Rp = 100,

Rm = 40, n = O),the total p-R is about 600. The

use of shells for energy input pulses with little

shaping can increase the p-R by 100 or more. From

Sec. 111 this increases the yield by the same fac-

tor. Since the typical transfer efficiency is about

a third, the fuel mass (for a given implosion energy

and the same fuel temperature) is decreased by a

factor of three. The net yield is then increased

by about 25.

The linear relationship between yield and p-R

neglects the heating due to thermonuclear burn.

TMs in effect produces a nonlinear dependence of

yield on p-R. The most interesting case is in the

strong nonlinear region. For a O.1-mg pellet with

density 0.2,the initial P-R is 0.01. A constant

boundary pressure gives a final p-R of 0.05. For a



temperature at end of implosion of 3

burn efficiency of 5x10-5 (Ref. 4).

that with a gold shell of 4 mg gives

about 6 and a burn efficiency of 0.6.

keV,this haa a

Surrounding

a final p-R of

The crucial factor in obtaining efficient ther-

monuclear burn in this type of pellet is to achieve

a fuel pR which is sufficient to stop alpha parti-
4

cles. lhis is ab&t 0.5 gmlcm2. If this is achiev-

ed, the reaction time, which depends on the total

pR, will usually be large enough for efficient burn.

For solid density deuterium-tritium,an increase in

the pRf of a factor of about 60 may be obtained for

pellets with no central void (Fig. 4, Line E). The

fuel mass required is roughly 0.05 mg, which has a

reaction energy of 16 megajoules, the equivalent of

about 2. kg(51h)Jof high explosive. With a transfer

efficiency of one-third,75 kilojoules are needed for

the implosion. The total energy required depends on

the efficiency with which it is applied to the im-

plosion; for an efficiency of 10%,somewhat less than

1 megsjoule is required. Much higher compressions

are possible with the use of voids, and this lowers

the mass and energy requirements. The llmiting

factor will be the spherical symmetry that can be

achieved. For pellets of marginal size, the best

mass ratio (Rm) is that which gives the maximum PRf.

This is typically given by an aspect ratio of the

shell of about 10. Because the transfer efficiency

usually increases rapidly with a decreasing mass

ratio at thi.a point, the beat ratio for larger pel-

lets will be several times smaller where the transfer

efficiency ia close to one.
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