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Knowledge Fusion: An Approach to Time Series Model
Selection Followed by Pattern Recognition

by
Shirley A. Bleasdale, Thomas L. Burr, James C. Scovel, and Richard B. Strittmatter

ABSTRACT

This report describes work done during FY 95 that was sponsored by the Depart-
ment of Energy, Office of Nonproliferation and National Security, Knowledge
Fusion Project. The project team selected satellite sensor data to use as the one
main example for the application of its analysis algorithms. The specific sensor-
fusion problem has many generic features, which make it a worthwhile problem to
attempt to solve in a general way. The generic problem is to recognize events of
interest from multiple time series that define a possibly noisy background. By
implementing a suite of time series modeling and forecasting methods and using
well-chosen alarm criteria, we reduce the number of false alarms. We then further
reduce the number of false alarms by analyzing all suspicious sections of data, as
judged by the alarm criteria, with pattern recognition methods. An accompanying
report (Ref. 1) describes the implementation and application of this 2-step process
for separating events from unusual background and applies a suite of forecasting
methods followed by a suite of pattern recognition methods. This report goes into
more detail about one of the forecasting methods and one of the pattern recogni-
tion methods and is applied to the same kind of satellite-sensor data that is
described in Ref. 1.

1. Introduction and Summary

In a companion report (Ref. 1), the following idea was presented: in many situations we monitor a
facility, an operation, or an environment and watch for unusual behavior. Such monitoring inevi-
tably produces data recorded sequentially, which is known as time series data. Sections of the
time series that are judged to be unusual must somehow be scrutinized. Reference 1 covered many
possible ways to model the usual behavior so that reasonable rules could be constructed for locat-
ing unusual behavior. Then, all data that is labeled unusual would be further scrutinized by a suite
of pattern recognition methods. No particular method of modeling the background nor of doing



the pattern recognition was discussed in great detail in Ref. 1. This report provides more detail on
two of the ways of modeling the background and on one of the ways of doing pattern recognition.
The two ways of modeling the background are regression-type model fitting and vector autore-
gressive moving average (ARMA) modeling. The one pattern recognition method is a version of
Fisher’s Discriminant Analysis. This report is organized as follows. Section 2 gives the specific
time series that we used and the models that were applied to forecast that time series. Results for
the regression-type model fitting are given. Results for the vector ARIMA modeling were not as
good as for the regression-type model fitting. In section 3 we give further details about vector
ARIMA modeling. We present results of the vector ARIMA modeling on simulated data in
Appendix A. In section 4 we describe our approach to regression-type modeling in more detail,
and Appendix B documents some of the results of modeling the time series described in section 2,
with an emphasis on the computational environment and model-rejection criteria. Section 5 is a
summary.

2. Background

In Ref. 2 we documented that a pulse can be estimated by subtracting out pulses of varying widths
and heights at different locations from the series that has the event, fitting an autoregressive inte-
grated moving average (ARIMA) model, and computing the sum of the squared residuals. The
subtracted pulse that minimizes the sum of the squared residuals is a good estimate of the event
pulse. Given a “catalog” of possible pulses, the pulse can then be judged to be either from the cat-
alog or not from the catalog based on the magnitude of the sum of squared residuals. ARIMA
modeling of the data was tried, but we could not fit coefficients in about one-third of the data sets.
These poor results could be due to the scarcity of data points in each of the individual 730 data
sets or, more likely, due to a lack of a strong functional relation such as is assumed in ARIMA
modeling. The original data file contained over 1300 individual data sets, each with 25 concurrent
gamma counts and aggregated flld counts. The flid counts (acronym not defined here) are propor-
tional to the sum of the charged particle (electron and proton) counts. The flld counts were aggre-
gated to match the time stamp of the gammas. The data file contained 3 different types of data
with “wrigger events” supposedly occurring near point 20. The three types of data were true, cali-
bration (cal), and operator error (OPV). For this study, the OPV data was not used because its spe-
cial characteristics reduced the data file to 730 individual data sets.

Because there was such variability between the individual data sets and ARIMA models could not
be used effectively, it was decided to do one-step-ahead predictions of the gamma counts and
minimize the squared residuals from these predictions. To predict the gammas, they were
regressed on other components of the data using least squares. The residuals are defined as the
difference between the observed values and the fitted values, denoted by “e” in the following
models. Different combinations of the flid counts and the gamma counts were used as predictors
of the observed present gammas. The six models tried were as follows:

(1) gammas = B0 + B1*(past flid) + B2*(present flld) + B3*(prior gammas) + €
(2) gammas = BO + B1*(past fild) + B2*(present fild) + e

(3) gammas = B0 + B1*(prior gammas) + ¢

(4) gammas = B0 + Bl*(present flld) + ¢



(5) gammas = B0 + B1*(past flld) + B2*(prior gammas) + ¢
(6) gammas = BO + B1*(present flid) + B2*(prior gammas) + €.

We modeled the first 20 data points, so that “trigger events,” which were supposed to occur at
point 20, would not effect the models. The goal was to find one model that fit all of the back-
ground data accurately. However, we discovered that this could not be done due to the variability
among the different data sets and the variations caused by the orientation of the satellite. There-
fore, all 730 data sets were modeled individually with residuals computed for these 20 values.

The results of the modeling showed a tremendous difference between the “true” data and the “cal-
ibration” data in that the calibration data showed much more variability than the true data. In the
search for true background data, the calibration data was later eliminated from the analysis. The
variability was seen through the increased standard errors of the residuals in the calibration data

for all the models. Figure 1 shows plots of the individual residual standard errors for all 730 data
sets, which are indexed on the x-axis for four of the models.
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FIGURE 1. Residual standard errors. Data sets 1-644 are class=true and data sets 645-730 are cals.

The fitted coefficients for the models showcased the difference between the true and calibration
data. Figure 2 displays the B1 coefficients for Model 3 and Model 4 for all 730 data sets. Notice
that the B1 coefficients of the prior gammas were especially affected. The average B1 coefficient
of the prior gammas in Model 3 was .69 and fairly stable for the true data, but the calibration data
had several very large coefficients changing the mean of that data to 4.48.
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FIGURE 2. Plots of fitted coefficients. Data sets 1-644 are class=true, and data sets 645-730 are cals.

To choose the best model, we compared residual standard errors. With this method, the average
magnitudes of the residual standard errors are assessed as the number of variables in the regres-
sion increases, indicating the best number of variables in the regression. The residual standard
errors of all sets of “p” predictors, where p is the number of predictors in the model including BO,
are compared. The residual standard errors from all 730 data sets were averaged to use in the com-
parison. The true and calibration data were separated to determine if the results were affected by
the variability noted in the calibration data. Table 1 summarizes the results. In Table 1, p desig-
nates the number of predictors in the model. Thus, for the first line in “All data,” 2 is the number
of predictors including B0 in the model; 119.3498 and 224.4401 are the average residual standard

errors for Models 3 and 4, respectively; and 211.895 is the average of these two standard errors.

The average residual standard errors are high for all the models, once again indicating that more
data points per set would have been beneficial in establishing good models of the background
data. Model 1 has the lowest average residual standard errors for the combined data (true and cal).
Model 1 contains both past and present flld counts and prior gamma counts. The next best model
is model 6, which uses the present flld counts and the prior gamma counts. In the nudet detection
procedure, models 1 and 6 will be used along with model 3, which uses only prior gamma counts,
and model 4, which uses present and past flld counts.



TABLE 1. Comparison of Residual Standard Error for Six Models

All Data:
Model p Residual Standard Error Avg. RSE for models with given p
1 4 163.2 163.2
2 3 203.4 187.9
3 2 1994 211.9
4 2 2244 2119
5 3 183.3 187.9
6 3 177.1 187.9
True data:
Model p Residual Standard Error Avg. RSE for models with given p
1 4 163.2 103.2
2 3 1329 1159
3 2 113.2 126.9
4 2 140.5 126.9
5 3 108.3 1159
6 3 1054 1159
Cal data:
Model P Residual Standard Error Avg. RSE for models with given p
1 4 6124 6124
2 3 7314 7303
3 2 844.6 848.7
4 2 8529 848.7
5 3 745.1 730.3

6 3 714.5 730.3



Detection of the Pulse

To test our methods in detecting a pulse, a library of one pulse was used because a generalization
to a larger library could be made by a multi-dimensional extension of the Neyman-Pearson
Lemma or other multivariate discriminant procedures.

The four models selected previously were

Model A: gammas = BO + B1*(past flid) + B2*(present flld) + B3*(prior gammas) + e,
Model B: gammas = B0 + B1*(present fild) + B2*(prior gammas) + e,

Model C: gammas = BO + B1*(past flid) + B2*(present flld) + e, and

Model D: gammas = BO + B1*(prior gammas) + €.

Points 16-20 were predicted using one-step-ahead forecasting. Models A, B, and D were better

predictors than Model C, as noted by the magnitude of the residuals and the standard errors of the
fits. The standard error of the fits takes into account the variation in the estimated coefficients and
the variation because the predicted value will not equal its expectation. Model C, which uses only
flld counts to predict the gamma counts, has the largest residuals and standard errors of all the fits.

A pulse was then added in counts 16-20 in one-third of the data sets. The addition of the pulse did
not change the individual estimation of the coefficients significantly. In the model, which used
only flld counts to predict the gammas, the amount of change in the average value of the coeffi-
cient was less than .0001 and in the model that used gamma counts to predict gammas, the aver-
age change in the coefficient was about .006. Also, initial examination of the data and the resid-
uals with the pulse in the data did not show a substantial difference from the data without the
pulse. The models did show an increase in the second residual of the five points that constituted
the pulse.

Because none of the models performed very well, a search for “pure” background data was initi-
ated. All of the calibration data was eliminated because the variability in this data was so great.
Then, the remaining true data was tested using the “trigger criteria” for points 10-25. The trigger
criteria consisted of averaging the ten previous points, subtracting this average from the point
being tested, which gives a residual value, and comparing this value to ten times the square root of
the average of the ten points. If the residual value is larger than the trigger criteria, the point being
tested is considered to be a trigger point. All data sets containing trigger points in counts 10-23
were eliminated from consideration and a subset of this data was taken for further analysis.

We then fitted Model A, which uses both flld and gamma counts, to fit the gammas; Model C,
which uses only flld counts to fit the gammas; and Model D, which uses just gamma counts to fit
the gammas. The residuals still showed a highly linear trend for all three models. Residuals from
a least squares linear regression are assumed to be independent with zero mean and constant vari-
ance and follow a normal distribution. The linearity in the residuals was thought to be from the
nonstationarity of the gammas and the periodicity of the flld counts as seen in Fig. 3. Figure 3
shows the averaged gamma counts for points 1-20 and the averaged flld counts for the same
period.
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FIGURE 3. Background data: gammas and flld.

Several transformations were then applied to the data to obtain better fits in the modeling process
and a normal structure in the residuals. To remove the nonstationarity in the gammas, a first differ-
ence, as in time series modeling, was done. Also, to remove the periodicity in the flld counts, the
mean flld counts were subtracted off. These two transformations together provided the best struc-
ture in the average residual values. Figure 4 shows a comparison of the residuals for Model C
before and after the transformation.

Points 16-20 were predicted in various ways to establish a viable means of prediction. The follow-
ing methods were used: (1) one-step-ahead predictions using data previous to that point to fit the

model; (2) one-step-ahead predictions using only counts 1-15 to fit the model; and (3) predicting

points 16-20 using the model obtained from counts 1-20. More reasonable predicted values were

obtained from methods (1) and (3). Due to the scarcity of data points in each data set, method 2)

performed very poorly.

Once the needed transformations of the data and methods to predict points 16-20 were estab-
lished, procedures to classify the data with and without the pulse were explored. The first method
examined used the sum of the inner products between the residuals of the predicted points and the
counts constituting the known pulse as a means to discriminate between series that contained
pulses and series that did not. This is an application of the Neyman-Pearson Lemma. The level
of the discriminant was determined to contain at least 95% of the population without the nudet.
However, the detection probabilities were dismally low at 6%.
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Even with the transformations to obtain Gaussian white-noise residuals, the residuals of the pre-
dicted points (the last five residuals) were not meeting these criteria. Also, it was found that the
models without a pulse and with a pulse had different covariance structures. Thus, the theoretical
distribution was not being followed. Hence, a quadratic discriminant function based on the
Neyman-Pearson Lemma was developed and implemented empirically.

The data was randomly divided into 4 subsets of 45 cases each. Two of the subsets were used as
training sets and the other two subsets were reserved to be used as testing sets. We only used 180
cases for this stage because we put further restrictions on the candidate cases to ensure that those
considered in this stage were more representative of ordinary background. For example, we elim-
inated all cases whose gamma counts over points 16-20 had variance in the upper 10%. One of the
training sets contained a pulse in points 16-20 and the other set was background data. Model A,
which uses both flld and gamma counts to fit the gammas, and Model C, which uses only fild
counts to fit the gammas, were then applied to both training sets. Points 16-20 were predicted
using one-step-ahead forecasting as described earlier. For each model, a mean vector consisting of
the residuals from the predictions of points 16-20 and a covariance matrix for these residuals were
extracted from the empirical fits. These mean vectors and covariance structures were used to com-
pute the quadratic discriminant with a discriminant being developed for each model. The formula
for the quadratic discriminant D is (Ref. 3):

-1 -1 ). ool o~ -1 )
D = —ix(Zl -Z, )x +(u121 —-WHZ, )x 4))



where 2, and [i, are the covariance matrix and mean vectors, respectively, from the training set
without the pulse, and X, and [i, are the respective covariance matrix and mean vector from the
training set with the pulse added. The vector X is the 5-component vector of residual values from
the forecasts of points 16-20. This process was done separately for Model A and Model C because
each model would give different predicted values. We empirically selected the threshold k, for D
such that the training set’s false alarm rate was 3/45 under Model A or C. It was assumed that
Model C would best discriminate between the distributions with and without the pulse for two
reasons: the sum of the entries of the training-set covariance matrix (which is the variance of the
sum of the five forecast errors) for Model A was 1529, while that for Model C was 799. Because
the variance of the sum of the five forecast errors is a measure of the “noise” during the nudet
pulse, the noise using Model A was larger than the noise for Model C, and any model that uses
prior gammas will be penalized in terms of signal detection because the gamma pulse lasted for
more than one time period. However, that turned out not to be the case, as will be shown. The
detection probabilities for the testing set are given in Table 2. Note that the detection probability
in the “without pulse” case is the false alarm probability. Recall that the false alarm probability
was set at approximately 5% (3/45) on the training data.

TABLE 2. Detection Probabilities on the Testing Set for Models A and C

Model Detection Probabilities
Without Pulse With Pulse
A 17% 33%
C 35% 20%

Here is our explanation for the inferior performance of Model C. The sum of the entries of the
test-set covariance matrix (no nudet set) for Model A was 1302 and for Model C was 6693. It is
impossible to extrapolate general conclusions about models such as C that use only flld to forecast
the gammas. There is simply too much variability in the relation between the gammas and the flld
counts.

The testing data had 45 without-pulse cases and 45 with-pulse cases, so the percent misclassified
by Model A on the testing data was (83% + 33%)/2 = 58% and by Model C was (65% + 20%)/2 =
42.5%.

Different subsets of the data gave even lower detection probabilities, some as low as 11%, which
indicates the large variability between the individual data sets.

Sometimes in the application of discriminant analysis, the two types of misclassification have the
same “costs.” In this case, if a false alarm has the same “cost” as a “failure-to-detect,” then it
makes sense to use the discriminant D in a classification rule as follows: allocate the data set
associated with the residual vector x to the distribution with no nudet if

D>k, @



where

1 1 ~ 1~  ~, -1~
ky = Eln(zl/zz) +§(u121 Ky —H,Z, Hz) . 3
In Eq. (3), all symbols mean the same as in Eq. (1).

We allocate X to the distribution with the pulse otherwise. With this method, Model A classified
approximately 68% of the data sets correctly, while Model C classified approximately 59% of the
data sets correctly. These two percentages should be compared to the percentages 58% and
42.5%, respectively, that were achieved under the constraint that the false alarm rate would be 5%
on the training data. On test sets, Model C performed consistently while there was much variation
in the performance of Model A.

The poor detection probabilities could be a result of the scarcity of data points per individual data
set, but they are more likely to be a result of a poor-to-nonexistent functional relation between
prior gammas and present gammas or between present flld and present gammas and the weakness
of the pulse compared to the noise of the ordinary background. Also, the variability between indi-
vidual data sets, even for “true background” data, did not allow the fitting of one model for all the
data sets. For a specified false alarm rate, given enough data points to fit adequate background
models, we feel that the detection probabilities could be significantly improved. Also, see Ref. 1
for other ways to apply pattern recognition to this problem.

3. Multivariate Modeling of ARIMA Series

As mentioned in the introduction, no vector ARIMA model was better than the AR models pre-
sented in section 2. Therefore, we have not reported results of vector ARIMA modeling applied to
the “event” records from section 2. However, to support the effort to maintain a suite of old and
modern forecasting methods, we implemented the ability to apply vector ARIMA models to any
time series. Vector ARIMA modeling is reasonably well-treated in some time series texts. See
Ref. 4 for example.

Our current computational environment for time series modeling is within the statistical program-
ming environment called S+. With the addition of the time series library written by Paul Gilbert of
the Bank of Canada (Ref. 5), ARIMA modeling of time series may be implemented in S+. This
addition to our library of capabilities strengthens our ability to model data accurately.

In the Gilbert library of S+ functions, if a model is not specified, then vector autoregressive
(VAR) modeling is automatically done resulting in the best VAR model. Vector ARIMA modeling
may be done by specifying the ARMA model to be fitted. Diagnostics may then be performed on
the resulting model to determine the best fit. Also, the Gilbert library provides an automated pro-
cess that compares various models using selected well-known criteria such as the Portmanteau
test for goodness of fit, Akaike’s information criteria (AIC), final prediction error values, and sev-
eral other tests. See Appendix A for an example of vector ARIMA modeling on simulated data
with a comparison of the models.
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4. Modeling of Gamma Data

A series of different ARIMA models were tried on the gamma data to obtain the appropriate
model that best fit the background data. No model has been completely satisfactory on all the
different data sets. There is a periodicity due to the spin of the satellite that is hard to determine.
Several periodic models have been tried with no success.

Also, there is much variation among the different sets of gamma data along with variations in the
data obtained from different systems. In particular, System 2 gives much higher counts with a
larger variance than System 1.

Two models seemed to give the best fits from preliminary modeling attempts. These models were
a moving average of order one fitted to the first difference of the gammas, i.e., an ARIMA(0,1,1),
and an autoregressive moving average of order (1,2) fitted to the first difference of the gammas,
i.e., an ARIMAC(1,1,2). These two models were compared on approximate one-hour segments of
the gamma data.

The ARIMA(1,1,2) model consistently gave lower AIC values and a lower estimated variance of
the innovation process “e.” AIC is a penalized version of the log-likelihood function, which takes
into account the total number of parameters estimated. The best model is supposed to be given by
the model with the lowest AIC value. However, both the AIC value and the estimated variance of
the errors were very high for both models and the diagnostics often showed very little difference
between the models. Because neither model consistently fit well, it may be advisable to use the
ARIMA(0,1,1) for its simplicity.

However, the best method to fit the gamma data may well be to use the electrons as an exogenous
variable. This can be done using the Gilbert library for times series, which can be implemented in
S+. The Gilbert library (Ref. 5) was developed by Paul Gilbert of the Bank of Canada and may
also be used to fit multivariate time series. We have heard, but not confirmed, that the commercial
software known as SCA is capable of fitting vector ARMA models. To date, using the Gilbert
library is our only implemented way of fitting vector ARMA models.

Using the electrons to fit the gammas gives lower variances for the innovations and lower log-
likelihood values than the previous models. However, the log-likelihood values and, thus, the AIC
values should not be strictly compared with the previous modeling attempts because the gammas
must be aggregated to fit the same time sequence as the electrons, giving different series than pre-
viously used in the modeling process.

Fitting the gammas using the electrons seems to be a viable means of modeling the data although
it has not been extensively tested. This leads to further research in using our Kalman filtering
approach to disaggregate data. If the electrons could be disaggregated appropriately giving more
information instead of the current loss of information from aggregating the gamma counts, we
feel a better model for the gammas could be established.

See Appendix B for a partial summary of modeling efforts for the gamma data. Each of the 10
data files used is specified followed by the range and variance of the series with a brief description
of any trends or unusual patterns noted. The information about each model is then given with a

11



description of the diagnostic plots. Many of the series also contain information on other models
not previously mentioned, which were also used to fit to the data. The information from modeling
the gammas using the electrons is presented under the last data series.

5. Summary

This report documents two main accomplishments that complement the work in Ref. 1: (1) devel-
oping a connection between the pulse-subtraction method from Ref. 2 and the Neyman-Pearson
Lemma from classical statistics and (2) implementing the ability to model vector ARIMA models.
Prior to this, we were restricted to vector AR models. One next step is to explore the possibility of
nonlinear ARMA-type models.

Reference 1 includes a special case of the Neyman-Pearson Lemma as one of seven candidate dis-
crimination methods, but the setting is slightly different and particular details differ. At the time of
writing Ref. 1, we were not able to apply vector ARIMA models. However, for the problem pre-
sented, we do not think that vector ARIMA models were needed. Therefore, this report includes
the performance of vector ARIMA modeling only on simulated data, in Appendix A.

References

1. Tom Burr, Justin Doak, JoAnn Howell, Dave Martinez, and Richard Strittmatter, “Knowledge
Fusion: Time Series Modeling Followed by Pattern Recognition Applied to Unusual Sections
of Background Data,” Los Alamos National Laboratory report LA-13075-MS (February
1996).

2. S. Bleasdale, T. Burr, A. Coulter, J. Doak, B. Hoffbauer, D. Martinez, J. Prommel, C. Scovel,
R. Strittmatter, T. Thomas, and A. Zardecki, “Knowledge Fusion: Analysis of Vector-Based
Time Series with an Example from the SABRS Project,” Los Alamos National Laboratory
report LA-12931-MS (April 1995).

3. R. Johnson and D. Wichern, Applied Multivariate Statistical Analysis, Second Edition
(Prentice-Hall, 1988).

4. P. Brockwell and R. Davis, Time Series: Theory and Methods, Second Edition (Springer-
Verlag, 1991).

5. P. Gilbert, “State Space and ARMA Models: An Overview of the Equivalence,” Bank of
Canada Working Paper 93-4.

12



Appendix A

Example of Multivariate ARIMA Modeling

In Appendix A we illustrate some of the multivariate ARIMA modeling capability in the new
(1995) Gilbert Library (Ref. 5 describes 1993 version). We simulate data from a bivariate
ARIMA model, then compare 2 attempts to estimate model parameters. The first attempt specifies
the correct model, and the second attempt specifies an incorrect model.

The data was simulated in S+ from model 1;
1 <07~ _ |1 05+0.6L |-
X, = e,
1 -0.6L 1 -07+0.8L

where x, is a two-dimensional time series, (x,,x,) e (ey.e5) . is a two-dimensional vector of the

innovation process, and L denotes the backshift operator (Ref. 4). The first equation from model 1
is therefore:

x,=-07x,, = e1’+0.5e2‘+0.6e2(t_1) .

The second equation from model 1 is similar. Model 1 is fairly complicated, at least among linear
models, primarily because of the presence of the unobserved innovation process. Estimating the
coefficients of a specified ARIMA model is difficult, but one way to do it is to use the goodness of
fit or likelihood value (from Gilbert’s library of S+ functions) for a range of candidate coefficient
values (for a given model). By specifying the model, we mean to specify the ARMA order (AR
lag and MA lag). Model 1 is an example of specifying both the model and the coefficients, as
must be done for the Gilbert library. So, if the Gilbert library were to be used to estimate the coef-
ficients, each of a range of trial values of the coefficients must be tried, and the coefficients that
maximized the negative log likelihood could be chosen as the estimated coefficients.

The simulated data was evaluated with the correct model and another model with the same dimen-
sions. The results are summarized below along with a comparison of the two models.

Evaluation with the model used to simulate data:
> multi.testfit <- I(multi.testmodel, multi.test.sim) # function to fit maximum likelihood ARMA

Model with negative log-likelihood value:
neg. log likelihood= 1521.26063023462

A=
r -07
1 0-0.6L1
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B=
1 0.5+0.6L1

1 -0.7+0.8L1

Summary statistics of the model fit:

neg. log likelihood= 1521.26063023462 sample length= 500

L1 2]
RMSE 1.860476 1.096139

ARMA model:
input dimension = # If there is no input variable specified for the
output dimension =2 # model, the input dimension is denoted by a
orderA=1 # blank space in the output summary.
orderB=1
order C=NA

6 parameters
4 non-zero constants

Evaluation with second model of same dimensions:

# Note: This is known to be the wrong
# model.

> multi.testfit3 <- I(multi.testmodel3, multi.test.sim)
Model with negative log-likelihood value:
neg. log likelihood= 2178.78854539421

A =

1 0.7-0.2L1
1 -0.1+0.6L1
B 3

1 -0.5-0.6L1
1 0.7+0.2L1

Summuary statistics from model fit:

neg. log likelihood= 2178.78854539421 sample length= 500
L1l 2]

RMSE 1.486102 3.209154

ARMA model:
input dimension =
output dimension =2
orderA=1
orderB =1
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order C = NA
8 parameters
4 non-zero constants

Comparison of Models:

The Gilbert library also has an excellent tabled format to compare the performance of the differ-
ent models. The Portmanteau test is a goodness of fit test which looks at the sum of the squared
values of the autocorrelations of the residuals. If the fitted model is appropriate, the statistic
should be approximately distributed as a chi-square with (M - p - q) degrees of freedom, where M
is the number of autocorrelations used in the calculation, and p and ¢ are the number of AR and
MA terms, respectively, in the model.

The Akaike information criteria (AIC), Bayes information criteria (BIC), generalized cross vali-
dation (GVC), Rice criteria (Rice), and final prediction error (FPE) statistics are all similar and
based on the negative log-likelihood but with different penalties for the introduction of additional
parameter values. For instance, the BIC attempts to correct for overfitting with too many parame-
ters of the AIC by putting a higher penalty on the addition of parameters. It should be noted that
the FPE test was designed for pure autoregressive models, so it should not be considered when
selecting the best ARMA models. In all these tests, the best fit is determined by the model that
minimizes the statistic.

The likelihood function mentioned above considers the joint density of the random variables as a
function of the parameter values rather than as a function of the observed values. The maximum
likelihood estimate (mle) of the parameter vector is the vector of values that makes the observed
data the “most probable.” The maximum-likelihood method is both a method to choose the
parameters and a measure of the goodness of fit of the covariance matrix of the parameters to the
data.

A sample table is shown below for a comparison of the two models previously fitted for the simu-
lated data. The “opt” row in the table designates the optimal model fit for each test. We see that
the model from which the data was simulated gives the optimal fit for each of the tests.

> information.tests(multi.testfit, multi.testfit3)
based on no.of parameters
PORT -In(L) AIC BIC GVC RICE FPE
Fit1 463.4 1521.3 3054.5 3084.0 3054.6 3054.6 3054.5

Fit2 1207 2179 4374 4413 4374 4374 4374

opt 1 1 1 1 1 1 1 #
PORT - Portmanteau test -In(L)- neg. log likelihood
AIC - neg. Akaike Information Criterion BIC - neg. Bayes Information Criterion
GVC - Generalized Cross Validation RICE - Rice Criterion
FPE - Final Prediction Error
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Appendix B

Summary of Gamma Modeling

This appendix documents some of our efforts to model the ordinary background gamma counts
with a time step of 2.048 seconds. Most of the 10 data sets described here represent approximately
1 hour of data: approximately 1800 counts. The longer data sets such as data set (5) were broken
into subsections of approximately 1 hour each.

The main concern in our gamma modeling effort was the dramatic nonstationarity. Our conclu-
sion is that any “systems-study” of the nudet-detection ability should work with a “worst-case”
background. Then, on a statistical-sampling basis, it should be verified that nearly any randomly
selected section of background would render the nudet-detection probability at least as large as
quoted for the “worst-case.” The secondary concern is the general treatment of nonstationarity. In
the nudet-detection case, the most reasonable approach is to work with the worst case. In other
cases, a larger effort could be justified to model the nonstationarity. General techniques for model-
ing nonstationarity are not currently available.

Each of the 10 data files used is specified followed by the range and variance of the series with a
brief description of any trends or unusual patterns noted. The information about each model is
then given with a description of the diagnostic plots. Many of the series also contain information
on other models not previously mentioned, which were also used to fit to the data. The informa-
tion from modeling the gammas using the electrons is presented under the last data series. Again,
we emphasize that the main conclusions from the analysis of these 10 randomly selected sections
of data are the gamma time series is dramatically nonstationary and the relation between the gam-
mas and the electrons or between the gammas and the protons is dramatically nonstationary.

The descriptions below are brief and have been made in an active S+ session. Comments are pre-
ceded by a # sign to improve readability.

Data Set 1
Note: Data in original form is approximately 1 hour long.
(a) range(gammasl.msevsmts) # Range of the series #
[1] 43 115
var(gammas1.msevsmts) # Variance of the series #

[1] 119.8954

(b) tsplot(gammasl.msevsmts) # Definite trend leveling out after the first 1500 counts.
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(c) Fits:

(i) gammasl.msevsmtsft # Model #

$model:

$model$order:

[1]011

$model$ma: # Estimated coefficient(s) of model #

[1] 0.9672681

$var.coef: # Covariance/Variance matrix for the estimates
ma(1l) of the coefficients #

ma(l) 3.719956e-05

$aic: # Akaike’s information criteria value #

[1] 12655

$sigma2: # Estimated variance of the innovation process #

[1] 87.37309

$n.used: # Number of observations used to compute the

[1] 1731 likelihood function. #

Diagnostics: Diagnostics were very good! There were no spikes in the ACE
plot of the residuals.

(i) gammasl.msevsmtsarmaft
$model:

$model$order:

11112

$model$ar:
[1] 0.1456266

$model$ma:
[1] 1.0943164 -0.1207158

$var.coef:

ar(l) ma(l) ma(2)
ar(1) 1.322746 1.326049 -1.284332
ma(l) 1.326049 1.329929 -1.288094
ma(2) -1.284332 -1.288094 1.247602

$aic:
[1] 12650.4



$sigma2:
[1] 87.28999

$n.used:
[1] 1730

Diagnostics: Diagnostics are once again excellent.

Data Set 2
Note: Data is already in approximate one hour segment.

(a) range(gammas2.msevsmts)
[1] 65193

var(gammas2.msevsmts)
[1] 383.266

(b) tsplot(gammas2.msevsmts) # Definite trend leveling out at about count 2000.
(c) Fits:

(i) gammas2.msevsmtsft
$model:

$model$order:

[11011

$model$ma:
[1]10.9298777

$var.coef:
ma(l)
ma(l) 7.817877e-05

$aic:
[1] 13298.36

$sigma2:
[1] 126.7587

$n.used:
[11 1731

Diagnostics: Diagnostics are very good. There are no spikes in the
ACEF plot of the residuals.
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(ii) gammas2.msevsmtsarmaft
$model:

$model$order:

[11112

$modelPar:
[1] -0.5684401

$model$ma:
[1]1 0.3612009 0.5295426

$var.coef:

ar(l) ma(l) ma(2)
ar(1) 347.5116 347.3164 -323.0833
ma(l) 347.3164 347.1216 -322.9021
ma(2) -323.0833 -322.9021 300.3725

$aic:
[1] 13293.28

$sigma?2:
[1] 126.689

$n.used:
[1] 1730

Diagnostics: Diagnostics are good, but p-values are not as good as in

the ARIMA(0,1,1) model. There are no spikes in the ACF plot of the
residuals.

Data Set 3
Note: Data was split into two approximate 1 hour series.

(a) range(gammasl .jtfsmts)
[1] 2604 3769

var(gammas|1.jtfsmts)
[1] 38494.14

(b) tsplot(gammasl].jtfsmts) # Definite trend .#

(I) First half of series: gammas].jtfsmtsw1

(a) range(gammas1.jtfsmtsw1)
[1] 2958 3769
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var(gammas1.jtfsmtsw1)
[1] 19854.42

(b) ts.plot(gammasl.jtfsmtsw1) # Trend evident.
(c) Fits:

(i) gammasl.jtfsmtswift
$model:

$model$order:

[11011

$model$ma:
[1] 0.9489382

$var.coef:
ma(l)
ma(1) 5.962626¢e-05

$aic:
[1] 19966.53

$sigma2:
[1]19161.017

$n.used:
[1] 1669

Diagnostics: Diagnostics are fair. The residuals are okay with a few
outliers between (-3, 3.5); the ACF plot of the residuals has two very
small spikes (largest about .06); the Goodness of fit p-values
fluctuate with the majority being below the desired cut-off.

(ii) gammas].jtfsmtswlarmaft
$model$order:
(11112

$model$ar:
[1] -0.4356843

$model$ma:
[1] 0.5359054 0.3898762



$var.coef:

ar(1) ma(l) ma(2)
ar(1) 0.5842974 0.5908654 -0.5615307
ma(l) 0.5908654 0.5980157 -0.5682894
ma(2) -0.5615307 -0.5682894 0.5401596
$aic:
[1] 19957.9

$sigma2:
[1] 9160.061

$n.used:
[1] 1844

Diagnostics: Diagnostics are once again fair. The residuals are good
with the majority between (-2, 2.5) and a couple of outliers; the ACF
plot of the residuals has a few (about 4) very small spikes (largest
about .1); the Goodness of Fit p-value is good for the first third
and then falls to zero.

(ii) gammasl.jtfsmtsw2armaft
$model:

$model$order:

[11112

$model$ar:
[11 -0.8500772

$model$ma:
[11 0.09472108 0.85246845

$var.coef:

ar(1) ma(1) ma(2)
ar(1) 0.01335090 0.01214253 -0.01172096
ma(l) 0.01214253 0.01119182 -0.01075532
ma(2) -0.01172096 -0.01075532 0.01043831

$aic:
[1]21857.45

$sigma2:
[1] 8241.077

$n.used;
[1] 1843



Diagnostics: Diagnostics are not as good as with ARIMA(0,1,1) model.
The residuals are fair but have outliers which go to (-4,4); the
ACEF plot of the residuals has a few (about 4) very small spikes (larg-
est about .1); the Goodness of Fit p-values are almost all zero.

Data Set 4
Note: Data was divided into two approximate 1 hour series.

(a) range(gammas2.jtfsmts)
[1] 6686 8416

var(gammas2.jtfsmts)
[1] 124255

(b) ts.plot(gammas2.jtfsmts) # Definite trend in data --
disturbance between 2000 and 3000. #

() First half of series: gammas2.jtfsmtsw1

(a) range(gammas2.jtsmtswl)
[117166 8416

var(gammas?2.jtfsmtsw1)
[1] 58222.48

(b) tsplot(gammas2.jtfsmtsw1) # Downward trend evident with strong
# disturbance (inverted V pattern)
# between counts 2300 - 3000.

(c) Fits:

(i) gammas?2.jtfsmtswift
$model:

$model$order:

[1]1011

$model$ma:
[1] 0.9242624

$var.coef:
ma(l)
ma(1) 8.73212e-05
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$aic:
[1]120316.36

$sigma2:
[1] 11299.87

$n.used:
[1] 1669

Diagnostics: Diagnostics show residuals which are very good with most
contained between (-2,2) and a few outliers now appearing to be over 3;
however, the ACF plot of residuals has small spikes (the largest about
.2) and the Goodness of Fit p-values are zero.

(ii) gammas2.jtfsmtsw1armaft
$model:

$model$order:

[1J112

$model$ar:
[1]1-0.5718512

$model$ma;
[1] 0.2894483 0.5920161

$var.coef:

ar(l) ma(l) ma(2)
ar(1) 0.03851194 0.03617829 -0.03297678
ma(l) 0.03617829 0.03437544 -0.03125480
ma(2) -0.03297678 -0.03125480 0.02862657

$aic:
[1] 20295.47

$sigma?2:
[1] 11216.48

$n.used:
[1] 1668

Diagnostics: Diagnostics are very like the ARIMA(O,1,1) model with the
residuals appearing good -- mostly between (-2,2) with a few outliers
reaching to 3: however, the ACF plot of the residuals has small
spikes (largest is .2), and the Goodness of Fit p-values are zero.



(iii) gammas2.jtfsmtswlar2maft
$model:

$model$order:

11211

$model$ar:
[1] 0.0290891 -0.1755446

$model$ma:
[11 0.9087727

$var.coef:

ar(1) ar(2) ma(1)
ar(1) 6.800248e-04 7.481135e-05 0.0001164489
ar(2) 7.481135e-05 6.620617¢-04 0.0001053123
ma(1) 1.164489¢-04 1.053123e-04 0.0001374862

$aic:
[1] 20245.95

$sigma2:
[1] 10966.66

$n.used:
[1] 1667

Diagnostics: Diagnostics appear the same in the residuals with most of
them between (-2,2) with a few outliers to 3;, the ACF plot of the
residuals has spikes but they are smaller (largest is approx 1.5),
but the Goodness of Fit p-values are still zero.

(II) Second half of series: gammas2.jtfsmtsw2

(a) range(gammas2.jtfsmtsw2)
[1] 6686 7746

var(gammas2.jtfsmtsw2)
[1] 30956.65

(b) tsplot(gammas2.jtfsmtsw2) # Definite downward trend that levels
# out between counts of 5000 and 5500.



(c) Fits:

(i) gammas?2.jtfsmtsw2ft
$model:

$model$order:

[1]011

$model$ma:
[11 0.9450301

$var.coef:
ma(l)
ma(1) 5.798165e-05

$aic:
[1] 22097.45

$sigma2:
[1] 9351.202

$n.used:
[1] 1844

Diagnostics: Diagnostics show residuals which are very good lying be-
tween (-2,2) with a few outliers to 3: however, the ACF plot of the
residuals has small spikes (largest .2) and the Goodness of Fit
p-values are zero.

(i1) gammas2.jtfsmtsw2armaft
$model:

$model$order:

[11112

$model$ar:
[1]-0.1815729
$model$ma:
[1]10.6846331 0.2534347

$var.coef:

ar(1) ma(1) ma(2)
ar(l1) 0.07067470 0.06913138 -0.06510777
ma(l) 0.06913138 0.06812950-0.06415164
ma(2) -0.06510777 -0.06415164 0.06048709



$aic:
[1] 22077.13

$sigma?2:
[1] 9290.148

$n.used:
[1] 1843

Diagnostics: Diagnostics are very similar to ARIMA(0,1,1) model with the
residuals appearing slightly better in the area of outliers.

(iii) gammas2. jtfsmtsw2ar2maft
$model:

$model$order:

[1]1211

$model$ar:
[1] 0.07388476 -0.09843337

$model$ma:
[1] 0.9409501

$var.coef:

ar(1) ar(2) ma(1)
ar(1) 6.016781e-04 2.357789¢-05 7.026411¢-05
ar(2) 2.357789e-05 5.933494¢-04 6.553673e-05
ma(1) 7.026411e-05 6.553673e-05 7.708103e-05

$aic:
[1] 22053.91

$sigma2:
{11 9232.596

$n.used:
[1] 1842

Diagnostics: Diagnostics are very similar to the other two models, but
the ACF plot of the residuals has slightly smaller spikes (largest
about .15); residuals are still good; Goodness of Fit p-values are
still zero.



Data Set 5§
Note: Data was divided into four approximate 1 hour series.

(a) range(gammas1.julnsmits)
[1] 596 1196

var(gammas].julnsmts)
[1] 10597.61

(b) tsplot(gammas].julnsmts) # Definite trend in whole data set,
but may not show up in 1 hour
segments. #

(I) First approximate 1 hour series: gammasl.julnsmtsw1

(a) range(gammas1.julnsmtsw1)
[1] 805 1196

var(gammas1.julnsmtsw1)
[1] 3016.162

(b) tsplot(gammas1.julnsmtsw1) # The data has a slight V-shape.
(c) Fits:

(1) gammasl.julnsmtsw1ft
$model:

$model$order:

[1]011

$model$ma;
[1]1 0.9708833

$var.coef:
ma(l)
ma(1) 3.450725e-05

$aic:
[1] 17924.39

$sigma2:
[1] 2800.488
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$n.used:
[1] 1663

Diagnostics: Diagnostics are not good. A few of the residuals go are
out of bounds (-4,4) [which may not be that bad for a data set this
size]; there are spikes in the ACF plot of the residuals (largest
about .2); the Goodness of Fit p-value is zero.

(ii) gammasl.julnsmtswlarma2ft
$model:

$model$order:

11112

$model$ar:
[171-0.2970529

$model$ma:
[11 0.7427035 0.2172329

$var.coef:

ar(l) ma(1) ma(2)
ar(1) 0.09431710 0.09587969 -0.09318860
ma(l) 0.09587969 0.09804146 -0.09527644
ma(2) -0.09318860 -0.09527644 0.09264688

$aic:
[1] 17908.2

$sigma2:
[1] 2785.428

$n.used:
[1] 1662

Diagnostics: Diagnostics are not very good. The residuals are not very
bad (a few go to -4 or 4), but the ACF plot of the residuals has
spikes (the largest about .2) and the Goodness of Fit p-value is zero.

(iii) gammasl.julnsmtswlarmaft
$model:

$model$order:

[1]211

$model$ar:
[1] -0.06529752 0.04493841



$model$ma:
[1] 0.9693758

$var.coef:

ar(1) ar(2) ma(1)
ar(1) 6.456263e-04 8.467541e-05 4.298284e-05
ar(2) 8.467541e-05 6.432612¢-04 4.183274e-05
ma(1l) 4.298284¢-05 4.183274¢-05 4.124380e-05

$aic:
[1] 17896.88

$sigma2:
[1] 2783.832

$n.used:
[1] 1661

Diagnostics: Diagnostics are not good.' The results are almost identical
to the ARIMA(0,1,1) model.

(I) Second approximate one hour series: gammas1.julnsmtsw?2

(a) range(gammas1.julnsmtsw?2)
[1] 761 1114

var(gammas1.julnsmtsw2)
[1] 2596.777

(b) tsplot(gammas1.julnsmtsw2) # The trend does not show up in the
# graph as it did with window 1,
# but ACF suggests a first difference.

(c) Fits:

(1) gammasl.julnsmtsw2ft
$model:

$model$order:

[1]1011

$model$ma:
[1] 0.9687148
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$var.coef:
ma(l)
ma(1) 3.34737e-05

$aic:
[1] 19539.68

$sigma2:
[1] 2389.678

$n.used:
[1] 1840

Diagnostics: Diagnostics are not good. The residuals look good, but the
ACEF plot of the residuals has spikes (largest about .25), and the
Goodness of Fit p-value is zero.

(ii) gammas].julnsmtsw2arma2ft
$model:

$model$order:

11112

$model$ar:
[1]-0.2579033

$model$ma:
[1]10.7784477 0.1872956

$var.coef:

ar(1) ma(l) ma(2)
ar(1) 0.1120445 0.1134570-0.1106111
ma(l) 0.1134570 0.1154120 -0.1125081
ma(2) -0.1106111 -0.1125081 0.1097206

$aic:
[1] 19520.35

$sigma2:
[1]2373.503

$n.used:
{11 1839

Diagnostics: Diagnostics are not bad in the plot of the residuals (there
are a few near -4 or 4), but the ACF of the residuals has spikes (the
largest about .25) and the Goodness of Fit p-value is zero.



(iii) gammasl.julnsmtsw2armaft
$model:

$model$order:

[11211

$model$ar:
[1] -0.07727684 0.02102533

$model$ma:
[1] 0.9645753

$var.coef:

ar(1) ar(2) ma(1)
ar(1) 5.890838e-04 8.681054¢-05 4.438434¢-05
ar(2) 8.681054e-05 5.863812e-04 4.303862¢-05
ma(1) 4.438434¢-05 4.303862¢-05 4.353074¢e-05

$aic:
[1] 19507.3

$sigma?2:
[1] 2370.218

$n.used:
[1] 1838

Diagnostics: Diagnostics appear the same as with the ARIMA(0,1,1) model.

(III) Third approximate 1 hour series: gammasl.julnsmtsw3

(a) range(gammas1.julnsmtsw3)
[1] 661 1027

var(gammas1.julnsmtsw3)
[1]1 3764.902

(b) tsplot(gammas]1.julnsmtsw3) # Definite downward trend noted.
(c) Fits:

(1) gammasl.julnsmtsw3ft
$model:

$model$order:

[1]1011
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$model$ma:
[1] 0.9587858

$var.coef:
ma(l)
ma(1) 4.385109¢e-05

$aic:
[11 19395.22

$sigma2;
[1] 2196.943

$n.used:
[1] 1841

Diagnostics: Diagnostics are not good. There are several residuals that
reach to (-4,4); the ACF plot of the residuals has spikes (largest
about .175); and the Goodness of Fit p-value is zero.

(ii) gammasl.julnsmtsw3armaft
$model:

$model$order:

11112

$modelPar:
[1] -0.04296537

$model$ma:
[1] 1.00488588 -0.05017581

$var.coef:

ar(1) ma(l) ma(2)
ar(1) 0.06515140 0.06485310 -0.06228211
ma(l) 0.06485310 0.06509828 -0.06251568
ma(2) -0.06228211 -0.06251568 0.06008130

$aic:
[1] 19373.92

$sigma2:
1] 2179.433

$n.used:
[1] 1840



Diagnostics: Diagnostics are not very good -- very similar to the
ARIMA(0,1,1) model.

(IV) Fourth part of series: gammas1.julnsmtsw4

(a) range(gammas|1.julnsmtsw4)
[1] 596 936

var(gammas1.julnsmtsw4)
[1] 3474.853

(b) tsplot(gammas]1.julnsmtsw4) # Plot shows definite downward trend.
(c) Fits:

(i) gammasl.julnsmtsw4ft
$model:

$model$order:

[11011

$model$ma:
[1]1 0.9670451

$var.coef:
ma(l)
ma(l) 3.909762e-05

$aic:
[1]117143.03

$sigma2:
[1] 1805.963

$n.used:
[1] 1658

Diagnostics: Diagnostics are not as poor as before. There are three large
residuals (which is not that bad); the ACF plot of residuals has
very small spikes (largest about .07); however, the Goodness of Fit
p-value is once again zero.

(ii)) gammasl.julnsmtsw4armaft
$model:

$model$order:

[11112



$model$ar:
[1] -0.2769792

$model$ma:
[1]1 0.7776408 0.1783456

$var.coef:

ar(1) ma(1) ma(2)
ar(1) 0.06217476 0.06322449 -0.06128438
ma(l) 0.06322449 0.06487624 -0.06287207
ma(2) -0.06128438 -0.06287207 0.06099105

$aic:
[1]17122.88

$sigma2:
[1]11791.421

$n.used:
[1] 1657

Diagnostics: Diagnostics are the same as the ARIMA(0,1,1) model.

Data Set6
Note: The data was already in approximate 1 hour segments.

(a) range(gammas]1.atvsmts)
[1] 183 425

var(gammas]1.atvsmts)
[1] 1193.366

(b) ts.plot(gammas]1.atvsmts) # Slight trend evident, more like a
# wave pattern.

(c) Fits:

(i) gammasl.atvsmtsft
$model:
$model$order:
[1]011

$model$ma:
[1] 0.9536135



$var.coef:
ma(1)
ma(1) 5.43619¢e-05

$aic:
[1} 16317.75

$sigma2:
[1] 1041.247

$n.used:
[1] 1667

Diagnostics: Diagnostics are not very good. The residuals are fair with
a few outliers which go to (-4,4); the ACF plot of the residuals has
spikes throughout (largest about .22); the Goodness of Fit p-value is
Zero.

(ii) gammasl.atvsmtsarmaft
$model:

$model$order:

11112

$model$ar:
[1] -0.199984

$model$ma:
[1] 0.83863582 0.09891227

$var.coef:

ar(1) ma(l) ma(2)
ar(1) 0.06593341 0.06654309 -0.06343245
ma(l) 0.06654309 0.06775278 -0.06457218
ma(2) -0.06343245 -0.06457218 0.06162072

$aic:
[1] 16297.76

$sigma2:
[1] 1032.639

$n.used:
[1] 1666



Diagnostics: Diagnostics are not good. The residuals are fair with
a several outliers to 4 (no outliers on the negative side); the
ACEF plot of the residuals has spikes throughout (largest about .2);
the Goodness of Fit p-value is zero.

(iii) gammasl.atvsmtsmapdft
$model:

$model[[1]]:
$model[[1]]$order:

11011

$model[[1]]$ndiff:
[1]1

$model[[1]]$ma:
[1] 0.9998757

$model[[2]]:
$model[[2]]$order:
11010

$model[[2]]$period:
[115

$model[[2]]$ndiff:
[1]1

$var.coef:
ma(l)
ma(l) 1.495368e-07

$aic:
[1] 16988.28

$sigma2:
[1] 1600.653

$n.used:
[1] 1662

Diagnostics: The residuals are fairly good with one large outlier which
goes to 4; the ACF plot of the residuals has only one spike at lag 6
with a magnitude of -.46; the Goodness of Fit p-value goes above the
desired cut-off and then drops to zero.




Data Set 7
Note: Data is already in approximate 1 hour segment.

(a) range(gammas2.atvsmts)
[1] 606 1069

var(gammas2.atvsmts)
[1] 5027.686

(b) ts.plot(gammas2.atvsmts) # Definite trend with wave pattern.
(c) Fits:

(i) gammas2.atvsmtsft
$model:
$model$order:
[1]011

$model$ma:
[1]0.8916038

$var.coef:
ma(l)
ma(1) 0.000123001

$aic:
[1] 17700.04

$sigma2:
[1] 2387.192

$n.used:
[1] 1667

Diagnostics: Diagnostics are not good. The residuals are not bad with
all being within (-3,3) range; the ACF plot of the residuals has very
large spikes throughout (largest about .5); the Goodness of Fit
p-value is zero.

(ii) gammas2.atvsmtsarmaft
$model:

$model$order:

11112



$modelPar:
[1] -0.3141006

$model$ma:
[1] 0.83228805 -0.05725149

$var.coef:

ar(1) ma(l) ma(2)
ar(1) 0.004987129 0.004893088 -0.004320532
ma(1l) 0.004893088 0.005399092 -0.004710031
ma(2) -0.004320532 -0.004710031 0.004341307

$aic:
[1] 17519.97

$sigma2:
[1]2151.94

$n.used:
[1] 1666

Diagnostics: Diagnostics are slightly better in the residuals than with
the ARIMA(0,1,1) model. The residuals are mainly between (-2,2) with
a few outliers at the beginning and end of the series; the ACF plot of
the residuals has very large spikes throughout (largest about .4 --
which is better than previous model); and the Goodness of
Fit p-value is zero.

(iii) gammas2.atvsmtsmapdft
$model:

$model[[1]]:
$model[[1]]$order:

[11011

$model[[1]}$ndiff:
[1]1

$model[[1]]$ma:
[1]1 0.9998601

$model[[2]]:
$model[[2]]$order:
[1]1010



$model[[2]]$period:
[1s

$model[[2])$ndiff:
(111

$var.coef:
ma(l)
ma(l) 1.683188e-07

$aic:
[1] 17555.22

$sigma2:
[1] 2251.378

$n.used:
[1] 1662

Diagnostics: The residuals are mainly between (-2,2) with a few outliers
(to 4) at the beginning and end of series; the ACF plot of the

residuals has one spike at lag 6 with a magnitude of -.34; the
Goodness of Fit p-value is once again zero.

Data Set 8
Note: Data was divided into two approximate 1 hour series.

(a) range(gammas1.antsmts)
[1] 3281 4666

var(gammas1.antsmts)
[1] 42429.18

(b) ts.plot(gammas1.antsmts) # Definite trend with V pattern.

(D First half of series: gammasl.antsmtsw1

(a) range(gammas1l.antsmtsw1)
[1] 3498 4494

var(gammasl.antsmtsw1)
[1] 24893.11

(b) ts.plot(gammas1.antsmtsw1) # Definite trend with V-pattern
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(c) Fits:

(i) gammasl.antsmtswlft
$model:

$model$order:

[11011

$model$ma:
[1] 0.8798249

$var.coef:
ma(l)
ma(1) 0.0001352744

$aic:
[1] 20723.86

$sigma2:
[1] 14321.7

$n.used:
[1] 1670

Diagnostics: Diagnostics are not very good. The residuals range from
(-3,3); the ACF plot of the residuals has very large spikes throughout
(largest about .3); the Goodness of Fit p-values are zero.

(ii) gammasl.antsmtswlarmaft
$model:

$model$order:

13112

$model$ar:
[1]1 0.4086561

$model$ma:
[1] 1.4111664 -0.5000728

$var.coef:

ar(1) ma(l) ma(2)
ar(1) 0.01569154 0.01429208 -0.01235365
ma(l) 0.01429208 0.01346675 -0.01167458
ma(2) -0.01235365 -0.01167458 0.01017513



$aic:
[1] 20679.58

$sigma?2:
[1] 14006.67

$n.used:
[1] 1669

Diagnostics: The residuals are slightly better than in the ARIMA(0,1,1)
model with containment between (-2.5,3) with most between (-2,2.5); the
ACEF plot of residuals has very large spikes (largest about .3); the
Goodness of Fit p-values are zero.

(iii) gammasl.antsmtsw1mapdft
$model:

$model[[1]]:
$model[[1]]$order:

[11011

$model[[1]]$ndiff:
[1]1

$model[{1]]$ma:
[1] 0.9999041

$model[[2]1]:
$model[[2]]$order:
[11010

$model{[2]]$period:
[115

$model[[2]]1$ndiff:
[1]1

$var.coef:
ma(l)
ma(1) 1.152015e-07

$aic:
[1] 211309

$sigma2:
[1] 18916.52
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$n.used;
[1] 1665

Diagnostics: The residuals have a few outliers ranging from (-3,3); the
ACEF plot of the residuals has one spike at lag 6 with a magnitude of
-.47, the Goodness of Fit p-value falls to zero after the first lag.

(I) Second half of series: gammasl.antsmtsw2

(a) range(gammasl.antsmtsw2)
[1] 3281 4666

var(gammas1l.antsmtsw2)
[1] 53425.49

(b) ts.plot(gammasl.antsmtsw2) # Definite V-pattern in data.
(c) Fits:

(i) gammasl.antsmtsw2ft
$model:

$model$order:

[1]011

$model$ma:
[1] 0.8833405

$var.coef:
ma(1)
ma(1) 0.0001239896

$aic:
[1]21755.39

$sigma2:
[1] 12549.64

$n.used:
[1] 1772

Diagnostics: The residuals are between (-2.5,3) with one outlier to 4;
the ACF plot of the residuals has very large spikes tapering off
(largest about .35); the Goodness of Fit p-value is zero.



(i) gammasl.antsmtsw2armaft
$model:

$model$order:

[1]1112

$model$ar:;
[1] 0.3991508

$modelPma:
[1] 1.3698639 -0.4542322

$var.coef:

ar(1) ma(l) ma(2)
ar(1) 0.02941173 0.02771449 -0.02410930
ma(l) 0.02771449 0.02656334 -0.02314019
ma(2) -0.02410930 -0.02314019 0.02021095

$aic:
[1]21729.33

$sigma2:
[1] 12416.34

$n.used:
[1]1 1771

Diagnostics: The residuals are mostly between (-2,3) with one large out-
lier to 4; the ACF plot of the residuals has spikes which taper off
(largest about .3); the Goodness of Fit p-values are zero.

(iii) gammasl.antsmtsw2mapdft
$model:

$model[[1]]:
$model[[1]]$order:

[1]011

$model[[1]]$ndiff:
(111

$model[[1]]$ma:
[1] 0.999837

$model[[2]]:
$model[[2]]1$order:
(11010



$model[[2]]$period:
[1]15

$model[[2]1$ndiff:
[1]1

$var.coef:
ma(l)
ma(l) 1.845269¢-07

$aic:
[1] 22228.31

$sigma2:
[1] 16925.93

$n.used:
[1] 1767

Diagnostics: The residuals are okay with more outliers appearing in the
second half of the series; The ACF plot of residuals has one spike at
lag 6 which has a magnitude of -.42; the Goodness of Fit p-value is
above the desired cut-off and the falls to zero about lag 10.

Data Set 9
Note: Data was divided into two approximate 1 hour series.

(a) range(gammas2.antsmts)
[1] 7968 10290

var(gammas2.antsmts)
[1] 182528.1

(b) ts.plot(gammas2.antsmts) # Definite trend and V-shaped patterns
# in data.

(I) First half of series: gammas2.antsmtsw1

(a) range(gammas2.antsmtswl)
[1] 8146 10126

var(gammas2.antsmtsw1)
[1] 93709.29



(b) ts.plot(gammas2.antsmtsw1) # Trend and V-pattern are evident.
(c) Fits:

(i) gammas2.antsmtsw1ft
$model:

$model$order:

[11011

$model$ma:
[1]10.7987582

$var.coef:
ma(1)
ma(1) 0.0002167577

$aic:
[1] 21519.41

$sigma2:
[1] 23067.79

$n.used:
[1] 1670

Diagnostics: The residuals are very good; the ACF plot of the residuals
has large spikes throughout (largest about .5); the Goodness of Fit
p-values are zero.

(il) gammas2.antsmtswlarmaft
$model:

$model$order:

[1]112

$modelPar:
[1] 0.5176097

$modelPma:
[1] 1.4866318 -0.6265308

$var.coef:

ar(1) ma(l) ma(2)
ar(1) 0.004458140 0.003582006 -0.002694642
ma(1l) 0.003582006 0.003242020 -0.002497740
ma(2) -0.002694642 -0.002497740 0.001992693



$aic:
[1] 21428.9

$sigma2:;
[1]21943.3

$n.used:
[1] 1669

Diagnostics: Diagnostics look almost identical to the ARIMA(0,1,1) model,
but the spikes in the ACF plot of the residuals only go to .4 which is
an improvement.

(ili) gammas2.antsmtsw lmapdft
$model:

$model[[1]1]:

$model[[1]]$order:

[11011

$model[[1]]1$ndiff:
[1]11

$model[[1]]$ma:
[1] 0.9998574

$model[[2]]:
$model[[2]]$order:
[11010

$model[[2]]$period:
[115

$model[[2]]1$ndiff:
(111

$var.coef:
ma(l)
ma(l) 1.713112e-07

$aic:
[1] 21437.69

$sigma?2:
[1]22744.83



$n.used:
[1] 1665

Diagnostics: The residuals look fairly good with a couple of outliers to
-4; the ACf plot of residuals has no spikes after lag 10 -- there is a
spike at lag 6 with magnitude of -.3 and one at lag 3 of magnitude
.16; the Goodness of Fit p-values are zero.

(II) Second half of series: gammas2.antsmtsw2

(a) range(gammas2.antsmtsw2)
[11 7968 10290

var(gammas2.antsmtsw2)
[1] 250011.7

(b) ts.plot(gammas2.antsmtsw2) # Definite trend with V-pattern.
(c)'Fits:

(1) gammas2.antsmtsw2ft
$model:

$model$order:

[11011

$model$ma:
[1] 0.8080643

$var.coef:
ma(l)
ma(1) 0.0001958421

$aic:
[1] 22541.74

$sigma2:
[1] 19564.43

$n.used:
1311772

Diagnostics: The residuals look very good with one outlier to -4; the
ACEF plot of the residuals has large spikes throughout (largest about
.45); the Goodness of Fit p-values are zero.



(i) gammas2.antsmtsw2armaft
$model:

$model$order:

[11112

$model$ar:
[1] -0.8567515

$model$ma:
[1] -0.0982364 0.7452668

$var.coef:

ar(1l) ma(l) ma(2)
ar(1) 0.002243993 0.0018113443 -0.0012744012
ma(l) 0.001811344 0.0017131436 -0.0009318839
ma(2) -0.001274401 -0.0009318839 0.0009747857

$aic:
[1] 22511.03

$sigma2:
[1] 19315.13

$n.used:
[1]1 1771

Diagnostics: Diagnostics are almost identical to ARIMA(0,1,1) model (the
spikes in the ACF plot of residuals are slightly smaller -- about .4).

(iii) gammas2.antsmtsw2mapdft
$model:

$model[[1]]:
$model[[1]]$order:

[11011

$model[[1]]1$ndiff:
[111

$model[[1]]$ma:
[1] 0.9980484

$model[[2]]: ' ) -
$model[[2]]$order:
(11010



$model[[2]]$period:

[115
$model[[2]]$ndiff:
[1]1
$var.coef:
ma(l)
ma(1) 2.206788e-06
$aic:

[1] 22634.15

$sigma2:
[1] 21316.15

$n.used:
[1] 1767

Diagnostics: Residuals look fairly good with one outlier to -4; the ACF
plot of the residuals has one spike of magnitude -.35 at lag 6; the
Goodness of Fit p-values are zero once again.

Data Set 10
Note: Data in original form is approximately 1 hour long.

(a) range(gammasl.marscsmts)
[1] 46 187

var(gammasl.marscsmts)
[1] 615.749

(b) tsplot(gammas1.marscsmts) # First 2600 counts on graph show
# no trend, but large jumps appear

# after that. They almost looks like steps.

(c) Fits:

(i) gammasl.marscsmtsft
$model:

$model$order:

[1]1011
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$model$ndiff:
[111

$model$ma:
[1]0.878984

$var.coef:
ma(l)
ma(1) 0.0001295653

$aic:
[1]1 13534.46

$sigma2:
[1] 130.5927

$n.used:
[1] 1755

Diagnostics: The residuals are mainly between (-2,2) with a very large
outlier near the end of the series; there are no spikes in the ACF plot
of the residuals; the Goodness of Fit p-value is below the desired cut-
off for the entire series.

(i) gammasl.marscsmtsarma2ft
$model:

$model$order:

[11112

$model$ar:
[1] -0.9023966

$model$ndiff:
(111

$model$ma:
[11-0.02025184 0.78905851

$var.coef:

ar(1) ma(1) ma(2)
ar(1) 0.2495446 0.2536002 -0.2238983
ma(1) 0.2536002 0.2579368 -0.2275164
ma(2) -0.2238983 -0.2275164 0.2011029

$aic:  [1] 13530.09



$sigma2:
[1] 130.5079

$n.used:
[1] 1754

Diagnostics: The residuals look much like the ARIMA(0,1,1) model as does
the ACF plot of the residuals; the Goodness of Fit p-value is lower than
the previous model.

(iii) gammasl.marscsmtsarmaft
$model:

$model$order:

11211

$modelSar:
[1] 0.08041740 0.07409809

$model$ndiff:
[1]1

$model$ma:
[1]1 0.9124628

$var.coef:

ar(1) ar(2) ma(1)
ar(1) 0.0007379196 0.0001036996 0.0001611430
ar(2) 0.0001036996 0.0007044850 0.0001444922
ma(1) 0.0001611430 0.0001444922 0.0001522093

$aic:
[1] 13509.92

$sigma?2:
[1] 129.596

$n.used:
[1] 1753

Diagnostics: The plot of the residuals appears much as before as does the
ACEF plot of the residuals; however, the Goodness of Fit p-value is above
the desired cut-off for the entire series. This appears to be the best
fit of these three.



Using electrons to forecast the gammas:

(iv) Using electrons as exogenous variable to fit gammas.

Data Set 1
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Note: Gamma counts were aggregated to match electron counts.

model:
A=
1-0.9L1

B=
1+0.02L.1-0.5L2

C=
0.04-0.002L.1

neg. log likelihood:
2286.60615004514

RMSE:
44.24452

n:
439

Diagnostics: The residuals looked very good until the last one-fourth of the plot where some
were rather large, but the kernel estimate of the residual distribution appeared normal
centered at zero; the auto-correlation plot of the residuals has spikes throughout which are
all positive except for the first one which is approximately -.17 (largest
is approximately .5 with most around .2); partial autocorrelation
plot has spikes in first three positions (largest .5 others smaller).

Note: The AIC values for this model and the previous models can not be
compared since the number of observations is not the same.

This model can be improved, but illustrates the possibility of obtaining better fits using the

electrons as an exogenous variable in fitting the gammas. The residual mean square error
is much less as is the log-likelihood.

(v) AR models with electrons as exogenous variables:

(A) Using channel one of electrons to model first channel of gammas.



(a) electgaml.marsc.armodel

A=
1-0.26841.1-0.074221.2-0.29891.3-0.23421.4-0.02245L.5-0.09733L6

B_='
1

C= ‘
0.04111-0.002607L1-0.0039541.2-0.02223L.3+0.004881.4-0.01382L5

neg. log likelihood= 2152.12787570545 sample length= 439
RMSE 32.57037

model estimated by est. VARX.Is
inputs: ts(electl.marsc.data, start = 61.416748, delta = 8.192)
outputs: ts(gammasl.marsc.datasm, start = 61.416748, delta = 8.192)
ARMA model:
input dimension = 1
output dimension = 1
orderA=6
order B=0
orderC=5
12 parameters
2 non-zero constants

Diagnostics: The residual plot looks very good until the last fourth
of the series where there is more fluctuation and many more outliers
but the kernel estimate of the residual distribution appears very
normal centered a little to the left of zero; the ACF plot of the
residuals has a few spikes at the beginning with the largest having
a magnitude of .2; the Partial ACF plot of the residuals has very
small spikes at lags 50 and 150.

*

(B) Using all three channels of electrons to model first channel
of gammas.

(i) elect3gaml.marsc.armodel

A=
1-0.23441.1-0.02381L.2-0.2803L3-0.18361.4-0.02597L5-0.08235L6

B=
1



C=
0.03111-0.008811L.1-0.0040961.2-0.029341.3+0.00096351.4-0.008111L5

0.3021+0.25681L.1+0.1699L.2-+0.2955L.3+0.1077L.4-0.1398L5

-0.2368+0.5015L.1-0.033241L.2+0.15021.3+0.10651.4+0.2861L.5

neg. log likelihood= 2142.93402995751 sample length= 439
RMSE 31.89535

model estimated by est. VARX.1s
inputs: Series 1 Series 2 Series 3

outputs: ts(gammasl.marsc.datasm, start = 61.416748, delta = 8.192)
ARMA model:

input dimension = 3

output dimension = 1

orderA=6

orderB=0

orderC=35

24 parameters

2 non-zero constants

Diagnostics: The plot of the residuals looks good for the first 3/4’s
of the data then starts to fluctuate and has very large outliers,
but the kernel distribution of the residuals looks like a normal
distribution centered at zero; the ACF plot of the residuals has a
couple of spikes at the beginning of the series (with magnitude of
largest .2) and then a very small spike at lag 50; the Partial ACF
plot of residuals has small spikes at the beginning, lag 50, and
lag 150.

Comparison of the three models:

information.tests(electgaml.marsc.mymodel7df, electgam1.marsc.armodel,
elect3gaml.marsc.armodel)

based on no.of parameters
dim.

PORT -In(L) AIC BIC GVC RICE FPE
Fit1 423.1 2286.6 4583.2 4603.6 4583.3 4583.3 4583.2
Fit2 47.76 2152.13 4328.26 4377.27 4328.59 4328.94 4328.26
Fit3 47.01 2142.93 4333.87 4431.90 4335.23 4336.70 4333.92

opt 3 3 2 2 2 2 2
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PORT - Portmanteau test -In(L)- neg. log likelihood

AIC - neg. Akaike Information Criterion  BIC - neg. Bayes Information Criterion
GVC - Generalized Cross Validation RICE - Rice Criterion

FPE - Final Prediction Error

The “opt” row designates the best model for each criteria. Thus, it appears that using the first
channel of the electrons does as well as using all three channels except for the first two tests.
However, the values are very close in both cases. It was found that if the data was windowed, all
three channels did as well fitting the data with no “disruptions”, but data with disruptions was fit
better by the first channel alone.
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