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GENERAL FEATURES OF HUGONIOTS—II

by

J. D. Johnson

ABSTRACT

 I have derived a differential version of the principal Hugoniot jump relations for a

shock wave.  From this algebraic equation, relating equation of state and Us − Up

Hugoniot variables, I explain the general features of the Hugoniot, including two

regions of linearity, limiting forms, and insensitivity to shell structure.
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Introduction

There has been continuing interest in the behavior of shock Hugoniots for high

pressures, in particular for particle velocities greater than 10 km /s .  Data has been obtained

for such mainly through laser and nuclear shock experiments [1-4].  These data, plotted

either as shock velocity Us  of a sample material versus Us  of an assumed standard material

or as Us  versus the particle velocity Up  of the sample, are remarkably linear.  Modeling, as

represented by the SESAME database [5], shows the same behavior.  A general

understanding of this high pressure linearity and of the Hugoniot    as       a         whole    is needed.

Formalism

Rather than go to detailed, complex modeling, I use only the Hugoniot jump conditions

and thermodynamics to explain the linear regime and all general features of the Hugoniot.  I

assume that I have the hydrodynamic equation of state P ρ, E( )  and the three Hugoniot

relations [6]

P = ρo UsUp  , (1a)

ρ / ρo = Us / Us − Up( )   , (1b)

and E = 1
2

U
2
p . (1c)

Here P is pressure, ρ  is density, and E  is internal energy per gram.  Starting from an

initial point ρo , Po = 0, and Eo = 0 , and solving P ρ, E( ) and Eq. (1c) for P ρ( ), one obtains

the pressure versus density principal Hugoniot.  Then from Eqs. (1a) and (1b) follows the

Us − Up  curve.  I instead derive a differential form of the jump conditions.  First differ-

entiate Eqs. (1a), (1b), and (1c) with respect to Up  along the Hugoniot, and then express

the derivative of P  in terms of density and energy derivatives with the use of the partial

chain rule.  After some algebra and thermodynamic relations, I finally obtain the    exact   

equation
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Bs / P − x = 3s − 1 + s 2s − 2 − γ( ) / x . (2)

Here, x = c / Up , γ = 1
ρ

∂P

∂E


 ρ

, and ρ
P

∂P

∂ρ

 E

 = Bs / P − γ , where the isentropic bulk modulus is

Bs = ρ 
∂P

∂ρ

 s

.  The lower case s  is the slope of the local tangent line of the Us − Up  curve at

Up , and c is the Up = 0  intercept of the tangent.  All quantities in Eq. (2) are on the

Hugoniot and thus are to be thought of as functions of Up  or another Hugoniot variable.

This equation is a complex algebraic relation among s , c, Up ,  γ ,  P,  and Bs , but it is quite

manageable and we can learn from it.

Orientation

Before I give results from the above, let me present the generic behavior of a metal

Hugoniot with only phase transitions with small volume change.  I use our latest Mo

equation of state (solid line in graphs) as an example [5].  The structures will seem small,

but this is the reality of Us − Up  curves.  I look at two figures.  In Fig. 1 we see the lower

Hugoniot which is given very accurately by two dashed straight lines, one with slope

1.245, the other with 1.196.  There is clearly a break between them at Up ≅ 5 km/s .  This is

typical for many materials, as it is usually between 3 and 7 km / s , but the break is a little

small because for Mo the lower slope is close to the upper value of 1.196.  In other

materials, such as in Figs. 3 and 4, the initial slope is larger.  Figure 2 shows a larger scale

with the same dashed line fit to the upper part of Fig. 1.  From Up ≅ 6 km /s  to over

100 km /s , it is an excellent fit.  The two chain-dashed lines are straight lines through the

origin, the upper with slope 4/3, the lower with slope 1.228.  The upper is the ideal gas

limit which the physical Hugoniot must ultimately approach.  The lower is the lowest slope

tangent line to the Us − Up  curve that goes through the origin.  In such a circumstance c = 0 .

Then from Eq. (1b), ρ  is not varying, so the density derivative of P is infinite.  In my

example this point on the Hugoniot is the turnaround point, or point t , and is the maximum
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density on the Hugoniot.  In the case of Mo, Up,t ≅ 262 km/s .  For stronger shocks, c < 0 ,

and the density is decreasing as Up  increases.  At any point where c = 0,  P  has infinite

slope, and, since xt = 0 , then from Eq. (2), st = 1 + γ t / 2 .  Also from Eq. (1b),

ρt / ρo = st / (st − 1).  Typically for many materials ρt / ρo ranges between 5 and 6.2 implying

that 1.19 ≤ st ≤  1.25 and 0.38 ≤ γ t ≤  0.5.  The  slope  of  the  very  linear  section between

Up ≅ 10  and maybe 100 km/s  or more ranges between 1.14 and 1.22.  Finally, one sees that

the approach to the ideal gas line of slope 4/3 is very slow.  The Mo Hugoniot is only

approaching the ideal gas by Up ≅ 2000 km/s .

Results

Now  follows  some  analysis  using  my  equation.  If one takes the Up → 0  limit of

Eq. (2), I obtain the very initial slope and curvature of the Hugoniot as the Taylor series   

Us / co = 1 + soUp / co + e Up / co( )2
....   (One must in all analysis of the formalism carefully

expand all quantities self-consistently.)  After a few thermodynamic manipulations, I obtain

so = 1
4

1 +
∂Bs
∂P



 s












 and e = 0.5ρo

∂ 2Bs

∂ρ∂P


 S

+ so 2 + γ o − so( )












/ 6 . The initial slope is directly given

by the pressure derivative of the bulk modulus at constant entropy, and the curvature is

given by the higher constant entropy derivative of the Bs  with γ o first entering the

expansion at this order.  It is common, my Mo is an example, that the Hugoniot out to the

break is very linear.  This form for e partially explains why.  The two terms for e are

dimensionless quantities and in magnitude should lie between one and ten.  The sign of the

first is negative, the second positive with resulting cancellation.  After dividing by six, one

expects e to be small with resulting linear Us − Up .  For Nb, I estimate that e = 0.16  [7].

The natural variables that follow from the analysis of Eq. (2) for the series are Us / co  and

Up / co , where co  is the bulk sound velocity at Up = 0 .  This implies that the break should

occur for Up ~ co .  We will see later that Up = 1.6 co  predicts the break quite well.

One can do large Up  expansions to find the approach to ideal gas.  If it is assumed that
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Debye-Hückel theory [8] describes the very high temperature gas, for large

Up ,    γ ~
2
3

− b / Up
3 ,  b > 0 .  Then from Eq. (2), s ~

4
3

+ a / U 2
p − 2b / U3

p ,c ~ −2a / Up + 3b / U 2
p ,

and P ~ 12ρoa / ρ / ρo − 4( )  with a > 0 .  The parameter a  is given by the sum of cohesive,

ionization, and dissociation energies in going from ambient to T → ∞ .

I can expand around point t  and find the curvature.  Letting Us = stUp +  α t Up − Up,t( )2
,

α t  is given by α t = γ 1( )
t

1 + γ t / 2( ) / 2Bs,t / Pt − γ t( ).  It is a good approximation that

α t = γ 1( )
t  / 2 . γ t

(1) ≡ dγ / dUp at t.( )   Using numbers from the Mo equation of state,

α t ~ 10−4 s/km , and Us  is well approximated by the quadratic form for Up − Up,t  <~ 100 km/s .

At this point I already have an argument for the Us − Up  curve to be very linear for

10 <~ Up
<~ 200  km / s  or even higher.  There has to be an inflection point between 10  and

262 km/s.  I estimate for Mo from Eq. (2) that it is at Up ≅ 125 km/s .  There α  is zero and

should continue for smaller Up  to be small and negative. (Think of a Taylor series around

the inflection point.)  Thus the curvature is very small and the curve is close to linear.  I

actually did not even need to estimate α t  because the slow approach of the Up − Up  curve to

the ideal gas behavior implies it is small.

But I can go into more detail with Eq. (2).  For that I need the qualitative behavior of γ

and Bs / P  as functions of Up  which is obtained from the SESAME database, where the

relevant physics comes from either TFD models or the Inferno model [9-10].  The two

models are compatible to the level I need, and one can see that the predicted features of γ

and Bs / P  are physical.  At low Up , γ  is high, say 1.5.  For Up  between 3 and 7 km / s , for

which the temperature is between 104 and 3 × 104 K, γ  drops fairly rapidly toward 0.4.

Once Up  is greater than 7 km/s  or so, γ  goes through a very broad minimum with γ 1( )

being very small.  Ultimately, at large Up , γ  slowly rises to go to the ideal gas limit of 2/3.

The physics of the decline of γ  is that the electronic thermal excitations are starting to

dominate the equation of state at the Us − Up  break point.  They pull γ  down below the

ideal gas value through the region the electrons are ionizing.  For small Up , Bs / P  diverges
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as 1 / Up , but, as Up  increases, Bs / P   decreases to γ + 1.

The physics of all this is that for smaller Up <~ 7  km/s the equation of state is dominated

by the zero temperature isotherm and the phonons.   Here, to avoid the left-hand side of

Eq. (2) being large, c is constrained to be approximately equal to co , thus making the

Us − Up  linear.  As Up  increases and goes through the break the thermal excitations, the

electrons, come into play.  The left-hand side of Eq. (2) is now not important, and the 1 / x

term constrains s ≅ 1 + γ / 2.  Thus γ   determines s , and the electrons are pulling γ  down

toward 0.4.  All this causes the break.  Putting this together in Eq. (2), I have that s  is well

approximated by s = 1 + γ / 2 for Up  from just above the break at 3 − 7 km/s to well above the

turnaround. With γ ≅ 0.4,  s ≅ 1.2  for the region between 10 and 100  km/s , quite in line with

my earlier statement of between 1.14 and 1.22.  Thus the break and high pressure linearity

are explained.

Experimental Comparison

All of what I have said fits very well with the detailed modeling that goes into the

SESAME database, both TFD and Inferno.  It also agrees very well with experiment.

Figure 3 shows data for iron and two straight line, least-square fits to the upper and lower

portions of the data.  I do not show all the lower data, as it then would be too dense; it is

very linear with a fitted slope of 1.553.  The other line, fitted to the upper five crosses, has

a slope of 1.213, in excellent agreement with all I have said.  The uppermost cross, one of

the pair next down, and the fourth and sixth crosses down are absolute measurements.  The

x's are data of Ragan [1] with Mo as a standard, and the remaining two high Up  crosses are

measured assuming lead as a standard.  The error bars on the uppermost point are ± 2% in

both Up  and Us .  The high Up  crosses and some of the low Up  come from the Russian

literature [11].  The rest of the low data points are from the Los Alamos Shock Compen-

dium [12].  I have also looked at Cu, Bi, Sn, Ar, Xe and Al, which all show the break with

slopes above it of 1.170, 1.203, 1.162, 1.144, 1.166, and 1.149, respectively [12-14].  
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These data do not go to as high a Up  as that of the iron, but they do strongly support the

existence of the break and the linearity.  Figure 3 shows Cu, and Fig. 4 presents Bi, Fe,

Cu, Sn, Ar and Xe.

I look now to the break and define it by the intersection of the linear fits to the higher

and lower portions of the Us − Up .  In Fig. 5, I plot the location of the break as a function

of co  for Al, Fe, Cu, Sn, Bi, Ar, and Xe, going down from the highest points to the

lowest.  The solid curve is a fit with a straight line through the origin; the slope is 1.6.

There are data on N2, a molecular system, which show a break, and also there is a

model showing a negative γ  in the dissociation region [14, 15].  I am pushing a little to

compare here, but the slope above the break is 0.985 and γ  = -0.03.  Dissociation pulls

the γ  down lower than ionization.

Shell Structure

I now discuss the effect of shell structure on the Hugoniot above the break.  Here shell

structure enters in two ways.  One is through the variation in ρo  in going through the

periodic table.  This, in particular, varies the location of the turnaround point.  But I do not

want to focus on this.  I look to the shell structure from the thermal part of the equation of

state.  I obtain upper bounds on the variation of γ  and Bs / P − γ  due to shell structure from

Inferno.  I see no shell structure in Bs / P − γ , and, as this is a density derivative, this makes

sense.  So I drop Bs / P − γ − 1 from the equations, and I can argue that this is a conservative

approximation for the size of the variation in s .  For Al and elements with higher atomic

numbers, the maximum variation in γ   is ± 0.1, with a functional form that is quadratic in

lnUp  and a width guided by Inferno.

From Eq. (2), the variation in s  is ∆s = ∆γ − ∆c / Up( ) / 2 , and ∆c  can be obtained in

terms of ∆γ 1( ) .  So one finds the variation in s , but what is of interest  is ∆Us  which is an

integral of ∆s .  Carrying all this out, I find that for the ± 0.1 in γ ,  Us  varies by ± 2%, quite

in line with what is seen in full SESAME equations of state based on Inferno.  These are
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conservative approximations, and this is a maximum variation at an    exact    Up .  It will be

extremely difficult to see shell structure above the break.  If one goes to the P ρ( ) Hugoniot

and looks in the neighborhood of the turnaround, the small wiggles in Us  are amplified by

the presence of the singularity and appear large.  But experiments are not known that can

measure P and ρ  directly, so this is not relevant.

Summary

I have presented a number of results.  First is Eq. (2), which relates Hugoniot variables

and thermodynamic quantities.  From it I have expansions of the Hugoniot for

Up → 0,  Up → ∞ , and Up  at turnaround.  From simple features of the equation of state, the

linear region above the break is understood, and the slope and the location of the break are

estimated.  The perturbation of thermal shell structure is quantified.

I have focused in this paper on elemental metals, and certainly I feel the ideas are valid

there. (I am not referring here to the exact results, such as Eq. (2), but to the approximate

results.)  For all other substances, if one is high enough up the Hugoniot that all molecules

are dissociated, then all these ideas should be applicable.  Further down, the details of my

picture will be altered for molecular systems and insulators.  An example here is N2.

Furthermore, below the break where thermal excitations do not dominate, phase transitions

with large volume changes introduce structure.  Also, for the alkali metals there are shell

structure effects for small Up .  But even with these caveats, I have a very powerful

overview.
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Fig. 1. Mo Hugoniot—lower portion around break. The solid line is the Mo Hugoniot. The

two dashed lines are straight line fits to the two linear portions of the Hugoniot. (The dashed

lines might appear to the eye as one straight line since their slopes are almost the same. Their

intersection is around 5 km / s .)
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Fig. 2. Mo Hugoniot— Up  out through turnaround. The dashed line is from the fit above the

break. It shows that the straightness of the solid Hugoniot curve persists to quite high Up .
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Fig. 3. Fe and Cu Hugoniot data. We see clearly the linearity of the upper data and a well-

defined break. The Cu data and curves have been shifted upwards.
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Fig. 4. Bi, Fe, Cu, Sn, Ar, and Xe Hugoniot data from bottom to top. Shifts have been

introduced to avoid overlaps.
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Fig. 5. Breakpoint as a function of co .



This report has been reproduced directly from the
best available copy.

It is available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62,
Oak Ridge, TN 37831.
Prices are available from
(615) 576-8401.

It is available to the public from the
National Technical Information Service,
US Department of Commerce,
5285 Port Royal Rd.
Springfield, VA 22161.



Los
N A T I O N A L L A B O R A T O R Y

Alamos
Los Alamos, New Mexico 87545


	ABSTRACT
	Introduction
	Formalism
	Orientation
	Results
	Experimental Comparison
	Shell Structure
	Summary
	Acknowledgement
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.

