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ABSTRACT
The high-frequency Pg /Lg discriminant is studied between frequencies of 0.5 and

10 Hz using 294 NTS explosions and 114 western U.S. earthquakes recorded at four

broad band seismic stations operated by Lawrence Livermore National Laboratory.  The

stations are located at distances of about 200 to 400 km from the Nevada Test Site (NTS).

Event magnitudes ranged from about 2.5 to 6.5 and propagation paths for the earthquakes

range from approximately 175 to 1300 km.  The discriminant is shown to be very effective

and displays improved separation between earthquakes and explosions as frequency is

increased.  Because of propagation effects, it is important to apply distance corrections

directly to the amplitude ratios or to the magnitude-corrected amplitudes prior to computing

the ratios.  Multivariate discrimination analysis using both maximum-likelihood Gaussian

classifiers and a backpropagation neural network show that approximately 95% of the

events can be correctly identified.  Both classification procedures were designed to handle

missing data filled in using a nearest-neighbor algorithm.  Except for a few notable
exceptions, most of the earthquake misclassifications occur for mb < 4, which is expected

for events having reduced signal-to-noise ratios.  All of the explosion misclassifications
occur for mb > 4 suggesting a source or near-source effect rather than an effect of poor

signal-to-noise ratio.  The explosions that were misclassified were typically of magnitude
large enough to be classified correctly by mb/Ms or Love wave energy.  The main

drawback of the Pg /Lg discriminant is that, because of signal-to-noise considerations and

propagation effects, the number of measurements are reduced considerably at higher

frequencies.  It is expected that the problem will be amplified as magnitudes are reduced

and event-receiver distances are increased.
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INTRODUCTION

Recent renewed interest in monitoring a Comprehensive Test Ban Treaty (CTBT)

has brought about a resurgence in the study of regional discriminants.  At the time the

classic discrimination paper of Pomeroy et al., (1982) was written, broadband seismic

systems were just coming on line in larger numbers.  Thus, many of the discriminants

tested used data from short-period (~1 Hz) and long-period bands.  High-frequency (> 5

Hz) studies were only beginning in the mid 1980s.  A number of high-frequency

discriminants have recently been tested, some having mixed performance.  For example,

the high-frequency Lg spectral ratio discriminant taken in the 1-2 and 6-8 Hz bands showed

good performance in the western U.S. down to relatively low magnitudes ( mb ~ 3; Taylor

et al., 1988; Walter et al., 1995).  In other geophysical regions, however, the performance

of the Lg spectral ratio discriminant is disappointing (e.g. Baumgardt and Young, 1990;

Chan et al., 1990; Hartse et al., 1995).  In contrast, the high-frequency P /Lg or Pg /Lg

discriminant appears to perform well in every region that it has been tested and shows a

marked improvement over the Pg /Lg ratio taken at around 1 Hz (e.g. Walter et al., 1995;

Baumgardt and Young, 1990; Chan et al., 1990; Dysart and Pulli, 1990; Chael, 1988).  

In this paper, we extend the discrimination study of Taylor et al., (1989) to include

the high-frequency Pg /Lg discriminant.  In that study, the Pg /Lg discriminant was tested at

1 Hz with disappointing results.  Recent work of Walter et al., (1995) using Nevada Test

Site (NTS) explosions and earthquakes located on the NTS has shown the excellent

performance of the high-frequency Pg /Lg discriminant.  In many ways, this work parallels

that of Walter et al., (1995), except we extend the analysis to include earthquakes that are

located in many areas of the western U.S.  This provides a slightly better test of the

discriminant in an actual monitoring situation and allows for the testing of propagation

corrections.

We first describe the measurement of the amplitude ratios and the development of a

magnitude scale based on the Lg amplitudes (used for plotting purposes).  Distance

corrections are then computed for each of the 6 different frequency bands used in the

analysis.  The discriminant is then qualitatively described and compared to other high-

frequency discriminants.  Finally, to examine the overall discrimination performance,

different multivariate discriminants are computed.  These include the traditional maximum

likelihood Gaussian classifier and a backpropagation neural network.  
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DATA

The data used in this study were from 327 NTS nuclear explosions and 170

western U.S. earthquakes recorded by the Lawrence Livermore National Laboratory

(LLNL) seismic observatory stations at Elko, NV (ELK), Kanab, UT (KNB), Landers,

CA (LAC), and Mina, NV (MNV), located at distances of 200 to 400 km from the Nevada

Test Site (Figure 1).  For each event-station pair, the spectra were calculated from

windowed Pn, Pg, and Lg phases.  Group velocity windows were defined by t1 and t2,

where t1  = ∆ / 6.0  and t2  = ∆ / 5.0  for the Pg phase, and  t1  = ∆ / 3.6 and t2  = ∆ / 3.0

for the Lg phase (where ∆ is the epicentral distance in km).  The Pn window was selected

manually and generally ranged in length from 4 to 5 seconds, starting from about 1 second

prior to the Pn arrival time.  To obtain a smoother spectrum, the Pn window was extended

to 20 seconds by zero-padding of the data.  Noise spectra were calculated in a 30 second

window preceding the Pn arrival.  To minimize numerical effects at high frequencies, the

signals were differentiated to acceleration, windowed using a 10% cosine taper between the

limits defined above and fast Fourier transformed.  The resulting acceleration spectra were

divided by f2 to convert them to displacement spectra.  If three-component data were

available, the final spectra were an average of the vertical, radial, and transverse

components for the Pg and Lg.  In order to reduce the effect of noise on the signal spectra,

only those frequencies for which the (S+N)/N level was greater than 2 were used (using

the pre - Pn noise).  The spectra for each phase were then sampled logarithmically at 41

points between 0.1 and 10 Hz.  The sampled spectra were instrument corrected using the

nominal instrument response (Jarpe, 1989).  We then computed amplitudes in six different

frequency bands (0.2-1; 1-2; 2-4; 4-6; 6-8; and 8-10 Hz) for each station by averaging over

available measurements for a particular band.  We also investigated the Pn/Lg discriminant,

but because of the short time windows used for the Pn phase and poor signal-to-noise

ratios, the performance was degraded relative to the Pg /Lg discriminant.

MAGNITUDE AND DISTANCE CORRECTIONS

Although not directly used in the analysis, we derived a magnitude scale for the

explosions and earthquakes based on the 1 Hz Lg spectral value.  This magnitude scale is

used for plotting purposes in this paper and is tied to the teleseismic mb through the

mb Pn( ) of Denny et al., (1987).  For the earthquake dataset, we solved the equation

logAij − mb Pn( ) = alog∆ ij + b (1)
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for a and b, where Aij  is the 1 Hz Lg spectral value (nm*s), and ∆ ij  is the epicentral

distance from for source i to receiver j.  The values for a and b were calculated to be -

2 .8   ±  0.14 and -5.74 ±  0.39, respectively.  These regression coefficients are then used

to estimate a new magnitude by rearranging equation (1).  Using this procedure the

explosion magnitudes were biased low by 0.35 magnitude units because of the poor

excitation of Lg relative to earthquakes.  Thus, a source-type correction factor of 0.35 was

added to the magnitudes of the explosions giving

mb Lg( ) = logAij + 2.8log∆ ij + Si + 5.74 (2)

where Si  is 0 for earthquakes and 0.35 for explosions.

The next step in the discrimination analysis is to derive distance corrections.  To do

this, we performed the same analysis as in equation (1) for each of the six frequency

bands, only substituting the new magnitudes obtained from equation (2).  For simplicity,

we will refer to mb Lg( )  as mb throughout the rest of the paper.  The residuals are then the

distance corrected earthquake amplitudes used in the discrimination analysis discussed

below.  The regression coefficients derived from the analysis of the earthquake data were

used to correct the explosion amplitudes.  Figure 2 shows examples of the fits to the Lg

amplitude (normalized for mb ) versus distance curves, linear fit, 95% confidence intervals

for the regression line, and the distance-corrected amplitudes (residuals).  

The distance correction could as easily be applied directly to the phase or spectral

ratios.  The advantage of correcting the measured amplitudes for a given frequency is that it

enables one to quickly investigate different discriminants without having to continuously

apply distance corrections (e.g. cross-spectral ratios).  The approach of correcting

measured phase amplitudes, however, would not be possible using data from poorly

calibrated seismic networks.  For amplitude ratios in a particular frequency band, the

instrument effect cancels.  However, for ratios involving measurements in different

frequency bands, knowledge of the instrument response is critical.

To test the significance of the distance effect on the various ratios, we regressed the

logarithm of the Pg /Lg ratios for the six different frequency bands and the logarithm of the

Lg spectral ratio (taken in the 1 to 2 and 6 to 8 Hz frequency bands) against the logarithm of

the distance.  Examples are illustrated in Figure 3 along with the corresponding residuals

and the regression coefficients are listed in Table 1.  From Figure 3, it can be seen that the
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distance effects are significantly different for different discriminants.  In general, the Pg /Lg

ratio had very little distance dependence for this particular dataset and the distance

correction has only a minor effect.  In contrast, as discussed by Taylor et al., (1988), the

Lg spectral ratio has a strong distance dependence and the distance correction appears to

help reduce scatter and separate the two populations.  A test was made of the hypothesis

that the amplitude ratio in a particular band is independent of the distance versus the

alternative hypothesis that the amplitude ratio is dependent on distance.  An F test was used

to test whether the slope was zero.  For each of the lowest four Pg /Lg bands (0.2 - 6 Hz),

we rejected the null hypothesis in favor of the alternative hypothesis that the amplitude ratio

is dependent on the distance at the 95% confidence level.  For the two highest frequency

bands (6 - 10 Hz), we could not reject the null hypothesis that the amplitude ratio is

independent of distance.  For the two highest frequency bands, the signal to noise levels

are generally low at large distances.  If we only include events having distances less than

600 km in the regression, the dependence on distance is greater and the regression

coefficients are more nearly equal to those at 1 - 2 Hz (Table 2).  However, the dependence

of the Pg /Lg ratio is still small and the overall results of the discrimination study discussed

below are not strongly dependent on the distance correction.

The reason for this frequency-dependent effect on the distance correction is unclear.

One explanation is that the effect could be due to changes in attenuation mechanism with

frequency.  If at lower frequencies, intrinsic mechanisms were dominant, the Lg

attenuation would be greater than that for the Pg and the amplitude ratio would increase

with range.  If at higher frequencies, scattering effects begin to dominate, the attenuation

for each phase would become more similar and little distance effect would be observed for

the amplitude ratio (cf. Taylor et al., 1986).  

Pg /Lg RATIO

Once the raw amplitudes are corrected for distance effects, we can compute cross-

phase (e.g. Pg /Lg at 6-8 Hz), or cross-spectral ratios (e.g. Pg (1-2 Hz)/Lg (6-8 Hz) or

Lg(1-2/6-8 Hz)).  As discussed above, in this paper we focus mainly on the Pg /Lg phase

ratio as a function of frequency.  Figure 4 shows the Pg /Lg ratios for the six different

frequency bands plotted as a function of magnitude.  For each band, we chose to only

include events having two or more readings for which we computed the log-average

amplitude ratio.  Figure 4 shows that the best separation is observed at higher frequencies.
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For both earthquakes and explosions, however, the most measurements occur in the 1-2

and 2-4 Hz frequency bands.  

The improved separation between the earthquakes and explosions with increased

frequency is further illustrated in Figure 5, showing the mean spectral ratio and one

standard deviation for earthquakes and explosions.  At lower frequencies (< 3 Hz), the

mean spectral ratios are closer and the overlap is greater between the two populations.  The

spectral ratios show greater separation at higher frequencies and show no overlap at the one

sigma level.  However, because of propagation effects, most of the data points are recorded

at the lower frequencies (Figure 6).  Note that points are not included in Figure 6 either

because of poor signal to noise, or because of data unavailability.  This points out one of

the limitations of the high-frequency discriminants: the performance is improved at high

frequencies, but propagation effects can significantly reduce the number of high-frequency

measurements.  

The increase of the explosion Pg /Lg ratio with frequency is not totally understood.

It is an effect that is also observed from the East Kazakh test site as well (Gupta et al.,

1992).  One effect that could account for this is Rg to S (and Lg ) scattering (Gupta et al.,

1992; Patton and Taylor, 1995) that would boost the Lg amplitudes at low frequencies (and

lower the Pg /Lg ratio).  It should be noted that simple 1-D elastic synthetic seismograms

predict the same effect of the Pg /Lg ratio increasing with frequency for shallow explosions

in velocity structures similar to NTS.  In this case, the effect is due to either the frequency

dependence of the non-geometric phase S*  or the near-surface low Q effect on pS  that

gets trapped in the crust as Lg (e.g. Lilwall, 1988).  However, these simple, 1-D elastic

calculations are unable to capture the complicated nonlinear effects associated with a nuclear

explosion or the two- and three-dimensional near-source elastic propagation effects.

From Figure 4, it can also be seen that the Pg /Lg ratio increases with magnitude for

all frequency bands and that better separation occurs for larger magnitudes.  This was also

noted by Taylor et al., (1989) for the 1 to 2 Hz band and by Walter et al., (1995) for the 6

to 8 Hz band.  Because of the correlation of explosion yield (and hence magnitude) with

depth, this at first glance appears to be a depth effect.  However, Walter et al., (1995)

concluded that the increase of the Pg /Lg ratio with depth is actually a material effect related

to the strength (measured by the product ρα 2 where ρ and α are the working point density

and compressional velocity, respectively) and the gas-filled porosity (GFP).  When they

separated ratios for explosions detonated in high-strength, low GFP rocks or low-strength,

high GFP rocks, the dependence on depth was negligible.  Similarly, Gupta et al., (1992)
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concluded that the higher-frequency Lg in the 3 to 7 Hz passband was dependent on source

medium velocity.  They hypothesized that for explosions detonated in low-velocity media,

more energy from the free-surface pS conversion is trapped in the crust, enhancing Lg

amplitudes.  If this is the case, we would expect to see an apparent increase of the Pg /Lg

ratio with depth, magnitude, and working-point velocity (and decrease with gas-filled

porosity) for explosions at NTS (since these factors are all correlated).  

Thus, for reasons that are still unclear, the explosions detonated in high-strength,

low GFP rocks have a larger Pg /Lg ratio than those detonated in low-strength, high GFP

rocks.  This phenomenon cannot be due to a direct source effect on Pg and Lg because the

two phases would be affected in a similar manner (assuming Lg is generated by near-source

P to S conversions).  A secondary source that depends on near-source material properties

could explain the enhancement of Lg to Pg for the explosions detonated in high gas-filled

porosity, low-velocity rocks.  Possible candidates for secondary sources that would

enhance high-frequency Lg and that could be related to near-source material properties are

some type of shear source such as passive block motion (Patton, 1991) or cavity rebound

(Jones et al., 1993).

We show additional discriminants in Figure 7 to compare with the high-frequency

Pg /Lg ratio.  The high-frequency Pn /Lg ratio shows similar separation as the Pg /Lg ratio.

However, because of poor signal to noise for the Pn phase, the ratio was measured for only

a limited number of events.  The scatter appears to be a little less for the Pn /Lg ratio which

may be due to the lack of material dependence on the discriminant (as discussed by Walter

et al., 1995).  

The Lg spectral ratio taken in the 1 to 2 and 6 to 8 Hz frequency bands shows good

separation between the earthquakes and explosions (similar to that observed by Taylor et

al., 1988).  However, there are a number of problems associated with the spectral ratio

discriminant.  As discussed by Taylor and Denny (1991), there is a strong material

dependence on the spectral shape that causes complications with the explosion ratios.  The

rate of high-frequency decay is greater for explosions detonated in rocks having high gas-

filled porosity, resulting in a higher spectral ratio (and better separation from the

earthquakes).  Although magnitude is not directly used in the multivariate discriminant

analysis discussed below, there are a number of explosions in Figure 7 that overlap with

the earthquakes at both low and higher magnitudes.  This is probably due to the fact that

these events are detonated in saturated media (the low magnitude explosions shown in

Figure 7 are generally overburied and detonated below the water table) and the rate of high
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frequency decay is similar to that from earthquakes.  Additionally, effects of the corner

frequency with event size cause a systematic dependence of the spectral ratio discriminant

with magnitude that is difficult to remove if it is desired to form a discriminant with a

normal probability distribution for multivariate analysis.  Lastly, the good separation

between earthquakes and explosions for the spectral ratio discriminant is largely due to

fairly unique geologic effects at NTS and evidence suggests that the discriminant may not

be transportable to other regions (Baumgardt and Young, 1990; Chan et al., 1990; Hartse

et al., 1995).  Similar effects are observed for the Pg /Lg cross spectral ratio (Pg taken in

the 1 to 2 Hz band and Lg taken in the 6 to 8 Hz band).  Thus, for the multivariate

discrimination analysis presented in the next section, we confine our analysis to the Pg /Lg

ratio taken in the six different frequency bands.

MULTIVARIATE DISCRIMINATION ANALYSIS OF Pg /Lg RATIOS

In this section, we apply multivariate discrimination techniques in order to assess

the discrimination capabilities of the combined Pg /Lg ratio in the six different frequency

bands.  Two different techniques are investigated, each giving similar results.  The first is

the traditional maximum likelihood Gaussian classification (e.g. Duda and Hart, 1973) and

the second is a neural network approach (e.g. Haykin, 1994; Dowla et al., 1990).  Many of

the statistical problems associated with earthquake/explosion discrimination are cogently

described in Fisk et al., (1993).  First, we formulate the approach taken for the maximum

likelihood classification.

The distance-corrected (averaged over 2 or more stations) logarithm of the Pg /Lg

ratio taken in the six different frequency bands (Figure 4) are the parameters used in the

multivariate analysis.  For each event, we construct a feature vector, v , of length 6.  If
p v θ i( )  is the conditional probability of observing v from a population θ i , then from

Bayes Rule, the probability that an event is from population θ i , given a measurement

vector v is given by

P θ i v( ) =
p v θi( )P θi( )

p v( )
(3)

where for n classes

p v( ) = p v θ j( )P θ j( )
j =1

n

∑ (4)
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Note that p x( ) is the probability density function, and P x( ) is the probability of an event x

occurring

p x( )
x1

x2

∫ dx = P x1 ≤ x ≤ x2( ) (5)

Next, we form a discrimination function, gi v( ) = P θ i v( ), where v is assigned to class θ i

if gi v( ) > gj v( )  for all i ≠ j .  From (3) we define a new discrimination function

Gi v( ) = ln gi v( ) = ln p v θ i( ) + ln P θ i( ) − ln p v( )  (6)

and the equation for the decision boundary separating the populations is given by

Gi v( ) − Gj v( ) = 0 (7)

For two populations, θ1 = X  and θ2 = Q where X  denotes nuclear explosions and Q

earthquakes, we define the single discrimination function

G v( ) = GX v( ) − GQ v( )  (8)

where, from (6) is

G v( ) = ln
p v X( )
p v Q( ) + ln

P X( )
P Q( )

(9)

It should be noted that we can introduce misclassification costs into the problem where

C θ j θ i( )  is the cost associated with classifying an event in population θ j  when it is really

from θ i .  Equation (9) becomes

G v( ) = ln
p v X( )
p v Q( ) + ln

C XQ( )P X( )
C QX( )P Q( )

(10)
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This allows one to adjust the location of decision boundaries based on prior probabilities of

occurrence and misclassification costs.  If the second term in (10) is zero (e.g. equal

misclassification costs and equal prior probabilities of occurrence) the total error rate is

minimized.  For example, one may assign a high misclassification cost for misidentifying
an explosion, C QX( ), and the decision surface will move into the earthquake hyperspace

and few explosions will be missed (assuming equal prior probabilities of occurrence for

earthquakes and explosions).  The deleterious effect of this, however, is that numerous

false alarms will occur (earthquakes classified as explosions).  In our analysis, we want to

minimize the total error rate to examine discrimination capabilities, so we assume equal

misclassification costs and prior probabilities of occurrence.
If we assume p v θ i( )  is multivariate normal

p v θ i( ) = 1

2π( )d 2 Σ i

1 2 exp − 1
2

v − µ i( )T Σ i
−1 v − µ i( )





(11)

where Σ i  is the d-by-d sample covariance matrix, and µ i  is the d-component mean vector

for population i.  For two-category classification, equation (10) becomes

G v( ) = − 1
2

v − µ x( )T Σ x
−1 v − µ x( )





+ − 1
2

v − µQ( )T
ΣQ

−1 v − µQ( )





+ 1
2

ln
ΣQ

Σ X

+ ln
C QX( )P X( )
C XQ( )P Q( )

(12)

resulting in a quadratic discrimination function in v.

If the simplifying assumption of equal covariances for the two populations,
Σ X = ΣQ = Σ  , is made, then equation (12) reduces to

G v( ) = vTΣ−1 µX − µQ( ) − 1
2

µX + µQ( )T
Σ−1 µX − µQ( ) + ln

C QX( )P X( )
C XQ( )P Q( )

(13)

resulting in a linear discrimination function.

Three considerations that must be addressed with the maximum likelihood (ML)

discrimination approach are 1) whether the data are multivariate normal, 2) the covariance

structure, and 3) how to deal with missing data.  A chi-square test was made to test for

normality of the log(Pg /Lg ) ratios (e.g. Menke, 1984).  In general, it was found that the 1-

2, 2-4, and 4-6 Hz frequency bands were normally distributed at the 5% level of
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significance for both earthquakes and explosions.  As discussed by Weisberg (1980),

various transformations have been proposed to make data appear normally distributed (e.g.

Box-Cox transformations).  Application of those techniques, however, is beyond the scope

of this paper.

To test for equal earthquake and explosion covariance matrices, we initially used the

F-distribution to determine whether the individual variances were equal as suggested by

Fisk et al., (1993).  This is not as rigorous as other statistical tests because equal variances

are only an indication that covariance matrices are equal, and does not necessarily eliminate

the possibility that they are unequal.  For both filled (see discussion below) and unfilled

data, we could not reject the hypothesis that the variances of the earthquake and explosion

populations are equal for most frequency bands at the 95% level of confidence.  A

maximum likelihood ratio test (Appendix A; Anderson, 1984) was then applied to test the

hypothesis that the earthquake and explosion covariance matrices are equal.  A chi-square

test was performed to test the value of the likelihood ratio and we rejected the hypothesis

that that the earthquake and explosion covariance matrices are equal at the 5% level of

significance.  As will be further discussed below, however, no improvement was observed

in discrimination performance under the assumption of unequal covariances.

One of the major problems faced in the multivariate discrimination analysis is how

to deal with missing data values.  Because of signal to noise problems or station

unavailability, amplitude ratios are not available for all 6 bands for the majority of events.

Out of the original 327 NTS explosions and 170 earthquakes processed, 294 explosions

and 114 earthquakes have amplitude ratios in at least one band.  Of these, 47% of the

explosions and 49% of the earthquake ratios were missing, the majority of which were in

the higher frequency bands (Figure 6).  As discussed by Hand (1981), there are a number

of approaches for handling missing data, none of which are without problems.  Probably

one of the most rigorous techniques is the Estimation-Maximization algorithm (Dempster et

al., 1977), which basically consists of iteratively solving for missing values by combining

maximum likelihood estimates of data mean and covariance structure with regression

analysis using available data.  This is numerically quite intensive and we chose a simpler,

ad hoc method using a nearest-neighbor technique (Duda and Hart, 1973).  The nearest

neighbor technique is a non-parametric method that basically consists of comparing an

event having missing values with all other events to find those with the closest data
structure and averaging to fill in the missing values.  If rk f i( )  is the logarithm of the Pg/Lg

amplitude ratio at frequency fi  for event k (having missing values to be filled in), and
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r j f i( ) is the amplitude ratio for a comparison event j (having at least as many values as

rk f i( ) ), then we calculate a measure of the distance between the measurements for the two

events

βkj = 1
m

rk f i( ) − r j f i( )
i =1

m

∑ (14)

where m is the number of overlapping frequency bands for events k and j for which there
are measurements.  For each event k, a matching function, Mkj , is then computed relative

to all other events j having amplitude measurements in overlapping frequency bands

Mkj = 1
1+ βkj

(15)

The value of the matching score can vary from 0 to 1 and the values of the best matches are

then averaged to fill in the missing values for event k.  The main parameter to be adjusted is

the number of events used to fill in the missing values.  If too many events are used, the

missing values are basically filled in with the mean of the event population which distorts

the probability distribution of the filled data.  Since filling in the missing data has the effect

of reducing the variance, an F test was performed to determine if the variance of the filled

and unfilled data were significantly different at the 95% level of confidence.  Experiment

showed that selecting the top 10% matches did not appreciably affect the distribution

between the filled and unfilled data.  

Figure 8 shows an example of the Pg /Lg ratio for the unfilled and filled data.  For

this frequency band, the number of points increased from 69 to 294 for the explosions and

54 to 114 for the earthquakes.  Visual inspection of the two plots in Figure 8 suggests that

the data structure is not significantly different between the filled and unfilled data.

However, there is a slight indication of an increase in the number of points near the mean

value for the explosions at a particular magnitude, and as discussed below, did not pass a

chi-square test for normality at a high level of significance.  

As mentioned above, a chi-square test was performed on both the filled and unfilled

ratios for each frequency as a test for normality.  The explosions generally passed the chi-

square test for α  = 0.05 for all but the highest frequency band (8-10 Hz) and the

earthquakes for the bands between 1 and 8 Hz.  For reasons discussed above, the test for
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normality for the filled data was not as convincing.  The filled explosion data passed the

test for α = 0.01 for frequencies between 1 and 6 Hz and the earthquakes between 1 and 4

Hz.  Thus, in the multivariate discrimination analysis performed below, it must be kept in

mind that the filled data are not normally distributed in the extreme frequency bands.  

The multivariate discrimination was performed on the filled data by assuming both

equal and unequal covariances for the earthquake and explosion data and the results were

not significantly different for both cases.  Thus, we assumed the simplest model of equal

covariances (equation 13) with equal misclassification costs and equal prior probabilities of

occurrence for the earthquakes and explosions.  The leave-one-out method (Hand, 1986)

was used to assess discrimination performance.  Using leave-one-out, a discrimination

function (e.g. using equation 13) is computed using all events except one.  The one event is

then classified using the discrimination function based on the remaining events and

misclassification probabilities are tabulated.  

The value of the discrimination function for each of the events having data

assuming equal covariances using equation (13) is shown in Figure 9.  The discrimination

performance by assuming both equal and unequal covariances is listed in Table 2 where it

can be seen that the difference between these two cases is negligible.  In both cases, at least

95% of the events were correctly identified.  This performance is similar to the multivariate

study of Taylor et al., (1989) (that did not include the high-frequency Pg /Lg ratio) and

Dowla et al., (1990) who used complete Q-corrected Pg  and Lg spectra.  However, in the

present study, much fewer data were used than the two previous studies and the same

discrimination performance was achieved.  Interestingly, many of the misclassified

explosions do not occur at small magnitudes (less than magnitude 4 as was observed in the

study of Taylor et al., 1989).  Except for a few notable exceptions, most of the earthquake
misclassifications occur for mb < 4 which is expected for events having reduced signal-to-

noise ratios.  This is further illustrated in Figure 10 showing the cumulative probability of

misclassification as a function of magnitude for earthquakes and explosions.  All of the
explosion misclassifications occur for mb > 4 suggesting a source or near-source effect

rather than an effect of poor signal to noise.  The explosions that were misclassified were
typically of magnitude large enough to be classified correctly by mb/Ms or Love wave

energy.  Detailed analysis of the misclassified events will be the subject of future work.  

A backpropagation neural network was also used in the multivariate discrimination

analysis.  Details of the backpropagation algorithm are given in Dowla et al., (1990).  The

main modification to the study of Dowla et al., (1990) is utility of a Levenberg-Marquardt
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learning rule that shifts from a gradient descent method to a Gauss-Newton method for

adjusting the weights as an error minimum is approached (Haykin, 1994).  Experiments

were undertaken with different network architectures involving hidden layers, and, as with

the study of Dowla et al., (1990), a simple network appeared to perform very well.  The

network consisted of one input layer with six inputs feeding into a single neuron having an

output through log sigmoid nonlinear transfer function giving an output between 0 and 1

(corresponding to earthquake and nuclear explosion, respectively; Figure 11).  

The leave-one-out approach was used to estimate discrimination performance on the

same filled matrix used for the maximum-likelihood classifier (ML) discussed above.

Random initial weights were used and weights were adjusted until a predetermined error

goal was achieved.  The final results are very similar to those using the ML classifier and

are listed in Table 2.  There was a strong correlation between the output of the neural

network and the discrimination function.  For this case, the ML classifier was almost a

factor of 10 faster than the neural network (although no attempt was made to optimize the

training of the neural network).  This is in contrast to the study of Dowla et al., (1990)

which used complete spectra sampled at 41 points.  In that case, the covariance matrix was

very large and significant computer time was consumed in computing its inverse so the

neural network was much faster than the ML classifier.

It should be noted, that in the simplest sense, the fundamental structure of the

backpropagation neural network shown in Figure 11 is very similar to that of the

maximum-likelihood classifier.  To see this, we note that the maximum-likelihood classifier

assuming equal covariances (equation 13) is of the form

G v( ) = wTv + wo

= wivi + w0
i =1

d

∑ (16)

Equation (16) is the form of the simplest neural network called the single-layer perceptron

used for two-category classification (e.g. Duda and Hart, 1973; Haykin, 1994; Figure 11).

The structure of the perceptron is very similar to that of the backpropagation network used

in this study.  The principal differences are that the backpropagation learning algorithm

uses a nonlinear log sigmoid transfer function (as opposed to a hard limit transfer function

that outputs either a 1 or 0, depending on the output from the neuron of the perceptron)

resulting in a different learning rule.  For the ML classifier, the wi are the coefficients of the
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discriminant function to be solved for.  For the perceptron, the wi are the synaptic weights

(solved for by a given learning rule) that weight each input prior to summation (Figure 11).

In both the ML classifier and the perceptron, the bias term, w0, controls the location of the

hyperplane separating the two populations.  

Despite the similarities, there are a number of fundamental differences between the

perceptron and the ML classifier that can give each an advantage or disadvantage depending

on the problem to be solved.  The way in which each algorithm solves for the weights is

different.  For the ML classifier, the weights are computed from the covariance structure of

the data assuming a normal distribution.  This involves computation and inversion of the

data covariance matrix and can be a burdensome problem for large datasets (e.g. for the

case of complete seismic spectra in Dowla et al., 1990).  The perceptron is nonparametric

in that it makes no assumptions regarding the underlying probability distribution of the

data.  As discussed above, some of the seismic discriminants are not convincingly

Gaussian.  However, the overall performance of the ML and neural network classifiers was

not significantly different (Table 2).  A recursive learning rule is used for the perceptron

where the weights are iteratively updated according to the rule (in its simplest form)

wn+1 = wn + ρn v
v∈Εn

∑ (17)

where Εn  is the set of events misclassified by wn and ρn is the learning rate.  Because the

perceptron uses a hard limit transfer function, it only works well when the two populations

are linearly separable and have essentially no overlap.  This is not a problem, however, for

nonlinear neural networks like that used in this study.  Because of the recursive learning

rule, the main advantage of the perceptron is that the storage requirements are greatly

reduced over the ML algorithm.  

CONCLUSIONS
The high-frequency Pg /Lg discriminant has been studied using NTS explosions

and western U.S. earthquakes.  The events used in the analysis are essentially the same as

those used in previous studies (e.g. Taylor et al., 1989; Dowla et al., 1990).  The study of

Taylor et al., (1989), however, did not incorporate the high-frequency Pg /Lg discriminant.

The study of Dowla et al., (1990) implicitly had the high frequency ratio in the sampled

phase spectra and examining the weights of the neural network demonstrated that the

network used this information (in addition to spectral shape) as part of its classification.
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However, the data set was very large and would be inefficient to use for regional

monitoring on a world-wide scale.  In contrast, the high-frequency Pg /Lg discriminant is

comprised of relatively few measurements and provides discrimination performance that is

as good as the previous studies (generally 95% correct classification).  It is expected that if
additional discriminants were added (e.g. mb/Ms), performance would be further

improved.  As discussed above, the explosions that were misclassified using the high-
frequency Pg /Lg discriminant were of magnitude large enough to be classified by mb/Ms

or Love wave energy.  The main drawback of the discriminant is that, because of signal-to-

noise considerations and propagation effects, the number of measurements are reduced

considerably at higher frequencies.  It is expected that the problem will be amplified as

magnitudes are reduced and event-receiver distances are increased.  Future studies will

involve analysis of the explosions having anomalous high-frequency Pg /Lg ratios in order

to obtain an improved understanding of the physical basis of this important discriminant.

The classification techniques used in this study will not be directly applicable to

many regions of the world for CTBT monitoring because of the deficiency of nuclear

explosions in the training set.  Thus, the problem will be one of outlier detection (rather

than classification) in which the training data consist of a single class (e.g. earthquakes).

In this case, a hypothesis test is undertaken to determine whether a given event belongs to

the same population as the training set (e.g. Fisk et al., 1993).

APPENDIX A: Testing for Equality of Covariance Matrices

We briefly review the likelihood ratio test done to test whether the earthquake and

covariance matrices are equal, details can be found in Anderson (1984).  Using a maximum

likelihood ratio criterion, we wish to test the null hypothesis

H0: Σ X = ΣQ = Σ (A1)

versus the alternate hypothesis

H1: Σ X ≠ ΣQ (A2)

The likelihood function for the null hypothesis is
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L0 = 1
2π( )dN 2 Σ N 2 exp − 1

2
vik − µ i( )T Σ−1 vik − µ i( )

k=1

ni

∑
i =1

2

∑







 (A3)

where N = nx + nQ and d is the number of discriminants (dimension of Σ ).  The likelihood

function for the alternate hypothesis is

L1 = 1
2π( )dni 2 Σ ni 2 exp − 1

2
vik − µ i( )T Σ i

−1 vik − µ i( )
k=1

ni

∑









i =1

2

∏ (A4)

The likelihood ratio for testing the null hypothesis is given by

λ0 = maxL0

maxL1

(A5)

As shown by Anderson (1985), a new test statistic can be formed, λc = −2 lnλ0, that has a

chi-square distribution with d d+1( ) 2 degrees of freedom.  Using the chi-square test, we

can reject H0 if λc ≥ λα , where λα  is the critical value such that the chi-square test has a

significance level of α  (i.e. α   is the probablility that H0 is rejected when it should be

accepted).  
For the filled Pg /Lg amplitude ratio data, λc  was calculated to be 206.5 which is

greater than λα = χ 2 0.95,21( ) = 32.7 and we rejected the hypothesis of equal covariances

at the 5% level of significance.
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TABLE 1
REGRESSION COEFFICIENTS FOR Pg/Lg VERSUS log10(distance - km)
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Band (Hz) n slope interc
ept

corr. coeff. F
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0.2 - 1 42 -0.73 1.25 0.21 -0.50 13.20
1 - 2 338 0.42 -1.55 0.24 0.29 31.50
2 - 4 285 0.36 -1.26 0.22 0.25 18.78
4 - 6 235 0.23 -0.84 0.23 0.15 5.56
6 - 8 185 0.10 -0.47 0.27 0.05 0.54
6 - 8* 170 0.45 -1.36 0.24 0.23 9.27
8 - 10 112 -0.02 -0.18 0.26 -0.01 0.02

* - regression performed only using events with distance less than 600 km

TABLE 2
PERFORMANCE OF DIFFERENT DISCRIMINATION ALGORITHMS

Algorithm P QX( ) P XQ( ) P X X( ) P QQ( ) nx nQ

Σ X = ΣQ
0.017 0.053 0.983 0.947 294 114

Σ X ≠ ΣQ
0.041 0.044 0.959 0.956 294 114

ANN 0.022 0.053 0.978 0.947 294 114
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FIGURE CAPTIONS

Figure 1.  Map of the western U.S. showing western U.S. earthquakes used in this study,
the Nevada Test Site (NTS) and the four broadband seismic stations operated by
Lawrence Livermore National Laboratory.

Figure 2.  log(Lg ) - mb for earthquakes plotted as a function of the logarithm of the

distance, ∆ , for 1-2 Hz (upper left) and 6-8 Hz (lower left) and fit from linear
regression.  Residuals from each of the regressions shown in right-hand column of the
figure.  The residuals are used as the distance-corrected amplitudes in subsequent
analysis.

Figure 3.  Logarithm of the Pg /Lg ratio and Lg spectral ratio for earthquakes plotted versus

the logarithm of the distance, ∆ , and linear fit with 95% confidence interval (left).
Residuals representing distance-corrected ratios shown in the right column.

Figure 4.  Logarithm of Pg /Lg ratios for six different frequency bands plotted as a function
of magnitude.

Figure 5.  Mean of the logarithm of Pg /Lg ratios and 1 standard deviation for six different
frequency bands for earthquakes and explosions.

Figure 6.  Histogram showing number of events used for Pg /Lg amplitude ratios as a
function of frequency for explosions (top) and earthquakes (bottom).  Note that a total
of 294 explosions and 114 earthquakes were available for analysis.

Figure 7.  Examples of different distance-corrected discriminants;  6 - 8 Hz Pg /Lg ratio
(upper left), 6 - 8 Hz Pn /Lg ratio (upper right), Lg spectral ratio 1 - 2 over 6 - 8 Hz,
Pg (1-2 Hz)/Lg (6-8 Hz) cross spectral ratio.

Figure 8.  6 to 8 Hz Pg /Lg discriminant for raw unfilled data (top) and data filled using
nearest neighbor rule (bottom).  See text for details.

Figure 9.  Discrimination function plotted versus magnitude using equation (13).  Zero line
indicates division between explosions, G v( ) > 0( ) , and earthquakes, G v( ) < 0( ) , by
assuming equal covariance matrix misclassification costs and prior probabilities of
occurrence.  Explosions below the line are classified as earthquakes (missed violations)
and earthquakes above the line are classified as.explosions (false alarms).

Figure 10.  Cumulative probability of misclassifying an explosion or earthquake as a
function of magnitude for the case assuming equal covariances.  

Figure 11.  Schematic diagram showing network architecture of backpropagation neural
network used to discriminate earthquakes and explosions on the basis of Pg /Lg
amplitude ratios in six different frequency bands.
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