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INVESTIGATION OF LINEAR-DISCONTINUOUS ANGULAR
DIFI?ERENCING FOR THE 1-D SPHERICAL-GEOMETRY

SN EQUATIONS (U)

W. F. Walters and J. E. Morel
Los Alamos National Laboratory

Los Alamos, NM 8’7544

ABSTRACT

In this paper two new angular differencing schemes for use in spheres are derived and
examined. These two schemes are the standard linear discontinuous (SLD ) scheme and
a hybrid scheme. In the hybrid scheme the a.nghr flux is assumed to be quadratic and
continuous i~~the angular cell whose boundary is the starting direction (p = -1) and SLD in
all other angular cel!s. The hybrid scheme is called the LDQ scheme. For smooth probiems,
both schemes are shown to exhibit fourth-order convergence as the angular mesh is refined
while weighted-diamond ( WD ) and diamond- difi’erence (DD schemes are second order,

!For more difficult problems, al] methods exhibit approximate y second-order convergence,
but the discontinuous schemes are always more accurate. The LDQ scheme is shown to
have all the advantages of the SLD scheme while yielding in a more nearly isotropic flux
at the center of the sphere Hence, the LDQ scheme should be the method of choice in
problems where the WD and DD schemes are not sufficiently accurate,

Linear-discontinuous (LD) spatial differencing schemes for the SN equations have been
in use for many years, and their accuracy relative to other schemes l-ins been well
characterized. 1 However, LD angthr differencing schemes have received very lit t Ie at-
tention. The schemes that have been developed treat several variables rather than the
angular Varin 1de9 alone. For instance, Mordant2 developed a space-angle LL) scheme for
the 2-D SN equations in r-z

f
eometry, and Honrubia and Aragones3 developed t, s Mce-

angle-energy LD scheme for t e Fokker-Planck equation in 1-D spherical geometry, + hesc
studies focused upon the performance of each respective differcncing scheme aa a whole,
i.e., as the entire multivariate mesh was refined. III contraat, the main purpose of our work
is to investigate the accuracy of LD angular differencin

?
when all but the angldm Nwsll

is fully rc+incd, In nddition, we tddress the trcatmrnt o highly nnisotropic scattering ill
rolljll~lcti{nl with an LD nngubw flux representation,



The derivation of the SLD scheme begins by first partitioning the angular domain into a
set of N contiguous intervals [p~_~, p~+~], with p =: -1 md PN++ = 1. Next we assume

ia linear-discontinuous dependence of the angular ux within each interval:

where p: denotes the local Gauss SN quadrature points for the m’th angular interval, and
~~ denotes the angular f!ux at those points. We obtain two equations for the two unknowns
in an

P
ar cell m by substituting from Eq. ( 1) into the transport equation, and takin the

C!zero’t and first angular moments of the resulting equation, respectively. The local auss
quadrature formula associated with the flux representation is used in conjunction with

Y
inte ation by parts to evaluate these moments exattly. The corresponding equations take
the ollowing form:

and

1’--
r [( l-W*:)+ (1 -Jw-)] ‘m (3)

where @m_4 is known from initial conditions, and #m++ is defined in tmns of @~-) and

@$l+) LY Eq. ( 1 , The two equmtion~ for ench cell are s-dved uimultaneoudy, beginnin with
) !the equ~tions ‘jr the first cell. The solution for cell m provides the initial flux for ccl m +

1. However, note that an initial flux value is not ncwhd for the first ccl]. Thus, the SLD
scheme does not require the calculation of R starting-clircction flux,



uses a uadratic-continuous scheme in the first angular cell and the SLD scheme in all
Jother ce Is. The unknowns in the first cell are the angular fluxes at the three local l%adau

quadrature points, the fist of which is p = – 1. The flux along this direction corresponds
to the starting-direction flux, and is obtained by so!ving the slab-geometry equation at
P – 1. Equations for the two other fluxes in the cell are obtained by using the local
Ra~au quadrature formula to obtain zero’th and first moment equations. The quadrature
formula is exact for this purpose. Note that the starting-direction flux is weighted in the
LDQ scheme, wherein it is always unweighed in standard anguiar differencing schemes.
Thus, the LDQ schemeeffectively gives rise to an asymmetric quadrature set. An obvious
way to eliminate this asymmetry is to use a quadratic-continuous scheme in both the first
and last cells, but this scheme gives very inaccurate solutions in certain types of problems.

To clarify this point, let us consider the form of the starting-direction equation used fo~
spheres

(4)

Normally we set p=- 1 in this equation and solve the slab starting-direction equation in
which the second tem~ in Eq. (4) is zero. If the angular flux contains a delta function in p
at -1, then this term can not be set to zero, and G simple slab starting-direction equation
can not be obtained. Normally the angular flux near A =-1 is a smooth function, and there
is no ~roblem.

Now to enerate a symmetric quadrature set, one could solve a finishin~-direction equation
t

1
obtaine by setting ~=+1 in Eq. (4 . There is a problem with doing this! The angular flux
from a point source in a vacuum ex ‘bits delta function behavior at p=+l, and the second
term in Eq, (4) can not be set to zero. If this term were set to zero for this problem, then
the finishing-flux would not fall off as l/r2 as it should; and in fact, the angular flux nt
p=+l would be a constant at all points! This is the reason an asymmetric set is used, and
a finishing-direction equation is not solved, The angular flux at p= + 1 is determined from
the lincrw relation in the angular interval bordering p= +1, ‘1’he flux is thus not pinned nt
/1=+1.

Using tlm transport equation, it is eaay to show that the angular flux at the center ot”
a sphere should be isotropic and equal to the starting direction value, At the center of
the sphere, the LD scheme used in the spatial differencing computes the an@ar flux for
all incoming directions and does not as~ume that the vake for afl the into’mng direciiom

is jbed at ihc ~ttirting direction value as some other methods do, At the center of tllc
s here, tllc agreement between the va!!w of i”
r

~ ang~dar flux at the st ilrt,ing direction and
t w wdues of the angular flux for all other incoming discrete directions is then a rne~qtirf~

of the nccur~cy of the method,

Ill Fig, 1 wv SIMJWtlw results from a silnple test problem which cl(mrly dcmonstrntrs
tllr sllper-iority of the LDQ method, In this prokdern the on!.y so~rrf i~ assumed to IMI
rm isotropic boundury source at the surface of A homogeneous purely-ubsorbing sphcrr.
Thnt is, nll incoming directions have the same amplitude at the surface. The proldr;l~ is
exul]lillc(l (Isin rm s4 quadrature set so there ere two incomin

b F
directions for all t lw sch~INN’S

rxcrpt the LD SCIIWXWwhich haq three inrr)min. (Iircctions mcallse of the inclllsiml of 111(s
sthrtillg (Iirrcti(m, 5Clmwly, the WD nnd LDQ sc mrlcs yickl nn m ldm fi[ix tlmt is III(W

tllcrwly isot r~q)ir nt thr crnter of tlw sphcrr ns comlmrml to t Iw SL w’]N*IIw. Tllr Wl]ll (’s

of tlw nllglllm !IIIX ut tlw twt) inconling (lircrtiol~s ill tilr SL13 w-hmnc wr mwly rqlid 1)111
tlwy vw-y r(m~i(lrrnl)ly’ from t]w stnrting (!ircction vrdlw of 3,64. Thi;: l)llr(~ly-lll)sfjrl)illg
t(’st ])rol)ltvll is llsml Im-ntw it i~ tlw most (Iifficll]tl test of tllc isf)tfro])ic flllx roll(litioll” [It



sphere center. Scattering tends to smooth out the flux, and it is difficult to discern the
relative accuracy of the various angular differencing schemes.

In order to treat highly anisotropic scattering, we have developed Galerkin quadratures4
for the SLD and LDQ schemes. These quadrature were tested on electron transport
calculations and gave very accurate solutions.

We have performed a series of calculations to compare the accuracy of our schemes with
that of the DD scheme and the weighted-diamond (WD ) scheme of Morel and Mont ry. 5
All of these calculations were performed for the same problem: a homogeneous purely-
absorbing sphere with an absorption cross section of 1 cm-:, a radius of 1 cm, a constant
isotropic distributed source, and a vacuum condition at the outer surface. Standwd linear-
discontinuous spatial differencing was used with 1000 cells in all of the calculations to
ensure spatial convergence. The errors in the global mrticle leakage from the sphere are
compared for the various schemes in Table 1. Both the SLD a~,d LDQ schemes give
essentially fourth-order accuracy for this problem, whiie the DD and WD schemes give
essentially second-order accuracy. It is conjectured that these high orders of convergence
are obtained for two reasons. First, the angular flux is extremely smooth in this problem.
Second, an integral quantity is being examined.

To test this conjecture, a third test problem is examined. This is a 5 cm radius purely
absorbin sphe& with an absorption-cross section of 1 cm-l with a point source at the
center. 4 he angular flux in this problem is not at all smooth. Analytically, all of the
angular flux is concentrated in the p=+ 1 directiou. That is a delta function at p=+ 1. The
numerical results for net leakage at the surface and the scalar flux at the surface are shown
in Figs. 2 and 3 along with the exact analytical result. The LDQ and the SLD schemes

h
ive the same result because the starting-direction flux is not involved in the calculation,

D/DSN is the weighted dimnond in angle using double Gauss quadrature. ‘ND SN is
ithe weighted diamond in angle using Gauss quadrature. The spatial mesh is very ne for

all runs; it is 1000 meshes per mem free path. In both cases the discontinuous method is
seen to be more accurate, It is cleex that the LDQ/SLD results are more accurate than the
WD/SN and WD/DSN results, The Gauss results are much n~ore accurate than the double
Gauss results because the Gauss set &ways haa a point nearer to +1 than the double Gauss
set sat the same SN order. The discontinuous scheme fairs well in this problem, in spite
of employing equal p intends ad having no points near +1, simply because there nrc
two de rees of freedom in each interval including the one bordering p=+ 1. For the LDQ,
WD/D\N, and WD SIN results, the order of convergence for the leakage is 1.95, 1.68, and
1.83, respectively, Ffor the angular flux at the surface ( 5 cm), these orders of convergence
are 2.2, 1.68, and 1.83, respectively. Thus, the prior conjecture is txue; the fourth-order

Jconvergence of the previous test proLlem is not obsewe in this problem, The order of
convergence here is approximately 2.0, Notice that the discontinuous result tcncls to reach
the asympotic limit at a lower SN order than do the two weighted diamond results.

In all cases studies, the accuracy of the LDQ scheme wao found to be c ual to or superior
Yto that of the diamond or weighted diamond schemes. For most prob cms the WD nncl

J3D schcmm could kw sufficient. For clames of problems where this is not true, the LDQ
schcrnc is X1OWm alternative. No attempt hna Lecn made to optilnize the coding for t,lmw
discontinuou~ Hchemw+, TINXWschemes are rmdly bilinear space-angle schmncs witl~ fmlr
Iltlknowns pm spncc .nnglc cdl.
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Fig. 1, Angular Flux at r=O.O for Incoming Directions.
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Fig. 2. Leakage vsSN Order.
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Fig. 3. Scalar Flux at Surface vs SS Order.
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