REPRODUCTION COPY PUBLICLY RELEASABLE PerBaletting, 188-16 Dete: 2-23-96 By (Deb., Cic-14 Date: 3-1-96 364 (3 VERIFIED UNCLASSIFIED Per SU 6/14/79 By SDeb 3-1-96 documents Transmittal of the covered by a state to to it. When he are an unauthorist to it. Series and until you have obtained a signed recommendation of the course o THE THEOREMATION CONTAINED IN THIS DOOLS. UNGLASSIFIED APPROVED FOR PUBLIC RELEASE LAMS - 364 March 28, 1946 This document contains 4 pages. PENETRATION OF A RADIATION WAVE INTO URANIUM R. Landshoff Classification changed to UNCLASSIFIED by authority of the U. S. Atende Energy Commission. Per ALDRITID-1400-S2)Sept-0st 1974 REPORT LIBRARY Sit Martines 6-26-75 tional users. ing of the Espiser Starts. arrunauthorized persons product UNGLASSIFIED ## APPROVED FOR PUBLIC RELEASE ## PENETRATION OF A RADIATION WAVE INTO URANIUM ## Abstract We consider a plate of cold uranium whose surface is suddenly heated to and then maintained at a temperature T in the neighborhood of 2 Kev. A radiation wave will penetrate into the uranium as: $$(d/cm) = .1 (T/Kev)^3 (t/wsec)^{\frac{1}{2}}$$ If we assume the opacity of uranium to go as T^{-3} the diffusion of radiation is described by the following differential equation*. $$\frac{\partial T}{\partial t} = D \frac{\partial^2}{\partial x^2} T^7 \tag{1}$$ We can find a similarity solution for (1) if we set: $y = X/t^{\frac{1}{2}}$ and T = T(y). If we make this transformation we obtain the ordinary differential equation: $$-\frac{1}{2}y\frac{dT}{dy} = D\frac{d^2}{dy^2}T^7$$ (2) Equation (2) has solutions of a character represented in Figure 1 with a head at y = y. One sees easily that near the head the solution must have the form See LA-322. $$T = A \left(1 - \frac{y}{y_0}\right)^{1/6}$$ (3) with $$A^6 = \frac{3}{7} \frac{y_0^2}{D} \tag{4}$$ Instead of actually solving (2) we find an approximate T so that it: - 1) agrees with (3) and (4) near the head - 2) satisfies the integrated Equation (2) $$\frac{1}{2} \int_{0}^{y_0} T dy = -D \left(\frac{d}{dy} T^7 \right)_{y=0}$$ (5) which is merely an expression of the law of conservation of energy. We try to achieve this by setting $T = A \epsilon^{1/6} (1 + \alpha \epsilon)^{1/7} (\epsilon = 1 - \frac{y}{y_0})$ and find that $\alpha = \frac{13}{163}$. This leads to a surface temperature of $$T_0 = A \left(1 - \frac{13}{163}\right)^{1/7}$$ (6) We can now express $\int T dy$ in terms of T_o as $$\int T dy \approx 1.31 \sqrt{D} T_0^4$$ (7) If we transform back to X and t we obtain simply $\int T dX = t^{\frac{1}{2}} \int T dy$. We can define a depth of penetration $d = \int T dX/T_0$ which is given by: $$d = 1.31 \sqrt{D} T_0^3 t^{\frac{1}{2}}$$ (8) From equation (5) of LA-322 we find: $$D = \frac{(\aleph - 1) M}{N \kappa} \frac{ac}{3 \rho^2} \frac{4}{7 \kappa T^3}$$ (9) In the 2 Kev region the heat capacity of uranium is * 200 eV per atom 238 and per eV. Therefore we can write (8-1)M = 238/200 = 1.19 gm/mole. The opacity can be represented by the law ** $$X = 3.76 \times 10^{11} (T/eV)^{-3} cm^{2}/gm$$ and we obtain: $$D = 6.75 \times 10^{-15} \text{ cm}^2/\text{eV}^6 \text{ sec}$$ (10) We substitute (10) into (8) and obtain: $$d/cm = .107 (T_o/Kev)^3 (t/vsec)^{\frac{1}{2}}$$ (11) ^{*}AM-1668 ^{**} AM-1587 UNGLASSIFIFD DOCUMENT ROOM DATE 3/19/46 REC. NO. REC. UNGLASSIFIED