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ABSTRACT—,

By the wo of the integral variation method and a one-velocity-

group theory, we oamyuto oritical sizes and multiplic:itionnumlxws for

rectangular parallelepipeds of squww cross isectio~. No do this by get-

ting values for the size of the gadget

is the net number of neutrons produced

age(i)neutron collision p200cosr3,and &

versus (1+ f’)/(1 * /f ), where i’

in the gadget per’(transport aver-

gives, in’certain unit3, the wl-

tiplicution rata’of themmtrons in the @get (cf. equations {1) and (2)).

[“rowthese values the desired results on oritical sizes and multiplicti%icm

numbers follow at once~

We oonsider also the much simpkr extrapolated end-point method

of oakula%ing these sam quantities, h a form which eIJpliesto our problem.

%e i;hen compare the results given by the two inethodsso as to compute cm==

reotion curves ko be ~pplied to the extrapolated end-point rasul%s in order

to obtain the variation method results. These corrections tur~~out to be

very small and, for praotiosl purposes, our conclusion is that the desired

quantities for the redang,ukr parcllelepiped we best oomputed by using tho

extrapolated end-point method (in the form given in Section IV) along wit!!

the c rrection ourves of M.:ures 1 End 2.
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Sinoe the integral variation ncthod for dctorm.inlngcritical sizes

and multiplication numbers is Mscussod olsewhersao of. e fGr%hconing cwq?ondiua tqr I

Franked and ??olsono we shall not derive it here nor discuss its details. ile

shall simply set forth the method and QpI.Jlyit to the prohlcm at hand.

Wo sugpose we have ~ gadget of any size or shape which> for simplicity,
-

we shall take as untamped (this is the only O=SF;wh;ch we shall cnnsider). We

consider all neutrons u being M ono velocity, i,o. t?~isis a one-~roup theory,

so that thero is a unique fission cross section &f, a unique absorption cross-

8cction &a, a unique transport cross seotion at, o-to. LetQ m usual be

tho number of neutrons ~,ittod per fission. ‘i’henwe define f by

( \~ - l)d”f-cra
f’= --—

cr~

that is, f is the.net nwnb+.rof neutrons produced per

neutron oollision process. This is clcarlya physical

the nature of the gadget materisl.

<tra~s~ort averaged)\

oonstsnt depending on

If x gives the multiplication rate of the neutrons in the gadget, ‘

that is, dn/dt=Mn (n is tho neutron density), and V is the neutron velocity,

then wa define the quantity { by

~ = Oc/(rtv) (2)

Thus ~ gives essentially the multiplication rate, since it is proportional to

Ct. ‘fiafurthermore agree th..t,instead of’cmusuring distances in units of the
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mean free,~th l/~ t, a6 is usua13.ydone, we shall

I/[(rt (1 +g )]. We now define two integrals

J(3-=12
x= n (1) n (2) dVl dv2

4W r;z

r&easureitinem in units of

{3) “

(4)

whei-~the numbers 1 and 2 eaoh denote an arbitrary point in tho gudget, r12

is ‘thedistance between the points 1 and 2 in units of ~/[r* (~ * ~$ %

denotes the neutron density, and tho integration is porf’omed with the points

1 and 2 eaah moving over the entire gadget independently. The assertion of

the integral variation method ap~]liedto a homogeneous gadget is then that of

all the trial fiinc%ionswhioh can be substituted for n in (3’)and (4), the

true neutron density will make the ratio N/I a minimum, and thut furthermore

for this dnhZUIC:

(?//1)min s ;:: (5)

for the gadget in question. It turns out tkt the approach of tho rritioi@

to its minimum, as wriom trial functions are used, is muci?snorerapid than

the approaoh of the trial funotions to the true neutron distribution. This is

vary useful, s:nce i.tmms thst oven a fairly rough approximation to the

neutron distribution gives a rather acourate value for (N/I)min, mdwa aro

inixnwsted primarily in the ratio (l*f)/(l+y) rather than the actual neutron

density. In praotioo it has been found thatp if the minimiz$~tionis performed

using only parabolic trial functions, the values obtained for (l+f)/(1+~ )

for the interesting cases are correct to a small fraation ofa percent; (indeed,

even with a oonstant trial function the result has turned out to be in error

by wily five or tan peraent a* most.) In cur application of this method we

s.hall~.cue. frmn.previouswork and use trial func~.ioriswhiehare Parabolio.----—

-%:%
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11. THE PROBLZM NM MCTAXWLAR PARALLELEPIPEDS

We are interested in critical sizes and multiplication nu!nbe:-sfor

various untam:ed rectangular parallelepipeds;we shall ~~nside~ here only thos~

oases in which at least two sides of tl’wrectangular solid are of equal length.

Lot us denote the length of the equal sides by “%. that of the remaining side

by 2b. Our problems then are these: 1) Given the physical constant f, what is

tho oritioal sizo (i.e.g=O) fors say, a cube a=b, or f’o~ a solid for which

b/a=2, or one for which b/a= 3, or in &~er$L~ one for whioh b/a=r “? 2)

*
Given f and given a, what is the vsh~e of’the multiplication number K , for

giv6n VQ1W8 of r6b/a 7 Both of these problems arc solved by obtaining curves

of ;g vs. a for various values of rab/a, according to the variation method

of Seotion 1. For, given f, to find tineoritical value oi’ a for any partiou-

hr type of solid (given by the value of r) we read off the graph tha value of

1+ f
a associated with—

l+a *2+?
(since~* O), andthis isouranswor. As were-

marked before, the values which we use for a and b are measured in units of

l/[(~t(~+)ffl;however, in the ease of critical sizes, for which #sO, this

means that wo are measuring a and b in the usual way, that is, in units of

the transport mean free path I/&t.

If on tho other hand we are given a and f, and also r, we can

reqcl from our graph the value of 1+ f—, and consequently tho value of the inu10
l+f

tipl.icationmusher ~ . It is to be noted tlvitsince

in units of l/[’&t(1+~] W-edO not know in this QaSe

our ohoice of’ a and b represents until aftcm ~ is

is no rail diffioulti~,since for any given fandr

eusily d~termine enough points on a grq)h of & vs. a

a and b arc measured

what actual physioal size

determined. This however

we can by this method

(in direct physioal units)

in the neighborhood of a given value of a, to be abla to read off easily from

the curve the correot value of’~ for this given a.-. --—— —.—. .—.— .—.—
— . . . —-

,..4

—

- —.. --- . .—

+-
—..— .- .
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As a matter of aotual practice it would be rather difficulk to

determine enough points by our vsrietion method to get good ourves of

I+f
V39

m~
e for various values of r. l’ortunc::t~tlyit turns out that

there is an oasi.erprooedure whiuh wo shall adopt. There iS9 as we shall

discuss below in Section IV, an approximate method for getting I+f v~.
~

a for ~iven values of r, which is quite aocurate and is very simple to

apply. ‘Yhisis the extrapcilutodend-point method. We shall use our varia-

tion method to get curves for oorrootions to be appliccito the results given

by this extrapolated end-point method. Since the oorreotions are quite small,

we get adequate correction curves by calculating only a few points with the

variation :l;ethod.‘I’hisis then the attsck on the problem which wo shall adopt.

Fur further discussioriof this, see Sections IV und V.

111. AFPLICATIO!!!0? ‘NW V.MIIATICWW?T?IODTO THIS PR051.XM

We can now proceed to use the variation method outl:ned in Section I

tc detcnmine (1+ f)/(l+g )=(N/I)min, for an arbitrary rectangular solid.

?OXIthe present we shall let the sides of the solid be 2a, 2b, 2C$ although

in S;:ylyingour results we shall always set asc. Then vie must evaluate

J
e-r12

1“=— n (1) n (2) dVl dV2 (3)
4Wr2 12

N=
s

n2 (1) dV1 (4)

and minimize the ratio N/I for & ohosen OIQSS of trial funotions n. We shall

use as our trial function the class

[

-as xsa
n(x,y,z)= n1(x)n2(y)n3(z)=(1 - Pxz)(l - QY2)(1 - RZ2) -bsySb (6)

-Cs z% o

where ?,Q,R may be arbitrarily varied in the minimizing. It :-eemsreasonable

from the symmetry of the probkm to use the separated f:xm for n, n=

n~{x)n~(y)n~(z); also the diffusion theory solution of the problem yiehis a

separated form for the neutron de~sity. We have furthermore previously noted,

Seotion I, th~rabolio trial funotions yield very acaurake results, and. .... .. -=

~~z=
uNCLASSIFIED—.
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since clearly we must use even f%notions here9 we are therefore led to the

fern (6].

The whole difficul’tyhere o~oourse is in evaluating the inte;ml (3).

‘lhexware several possible

is cme based on sons ideas

~?proaches to this,

due to Feynmtin. ‘lo

but tinescheme whioh seems best

begin with, lot us write (3) as

where we are now using vectorial notstion for’the i~ointsin space and where

llen(~eViemust klve

i% introduce

and using k=

polar coordinates whose polar axis is along the direction of &,

IIk_ , we have

J
f (l+-

J

.~y-z e-’ ~-i~ ..s Q?zd~ sin OdW

8n3
space

and using Peiroe 506 ~integrating 506 first with rcspeot to m),

tan-l k‘Q+-+”-T---

Ilenoe,from (7) and (8), wo have

(s)

where f (~) is ~iven by (9). Charging the order of integration and substi-

tuting from (6) for n we get.—.— — .-.--—-

m-:::~ IJNGMSSIFIED
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where the integrand in the y end z intc:rals is exaotly the same hs in the

x integro.lsGxo@pt that P, x and Icxare replaced by Q, y and ky)an~ by R, z

and kz respectively. What we have sooomplis~ed by tke :’ourierexpansion then

is to get our funotion of the spuce coordinates Xl. ‘--Z2 ~o~~P~ete~Yse~rab~e>

so that the integrat’lonover these coordinates is now very easy to perform.

?or the integration over the space coordinates we use the typical

for”!iula
Q,

h-
ikx XI 2 sin kx a

dxl (1 - PX12) e =
‘x

-a

[

2a2 sin kxa ~a 00S k+ 4 Gin kx a
-P +~

x kxd - ~xti

1
This gives us

[ liThe braokot-s Q, k3,,b and R, kz, c
1
denote the saw f’uncti-m9S the first

bracket with P, kx, q replat:ef~W the ~orre~ijondingquantit~~r~illthe othar

in order to pcrf’orulthe integrations over the k~s it would be

get the integrand to separate into a funotion of l:Xtimes Q fi~ncti@nof
. . ..- ---- .—..-

_.— — _—.._-

~,,..-: := lflCU4SSlFlED

useful to

%
times.
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a funotion of kz. This produot form already exists except for the function

?fe can get f (~) into the desired form by making tho @xp8n$ioL~ (due to Feynman)

vhre

n

i’(y)=+- ~ -J~ Er (~)= 1 e-t2 dt (13)
VT

(The correotmss of this expansion oan be readily ~hecked). Hence

-,

--

●

3

F{y)dy

where the brackets
\

..

\

$C2Y p,

[

-kzzy ~
e 9

kX9

kz,

1are the same as above in (11). The integr~tion$

over the kts can be performed by fairly straightforward,although rathsr lengthy,

metho:ls. We shall onit the details of this and sinply write down the results.

If ‘w3perform these integrations, and also replac:ey by X2 in (14) we get as our

final result the J?ollowi.ng:

Letting

E (x)=

2

‘r ‘x)= ii

x

e‘X2dx (15)

30

e‘X2dx (16)

.
and setting IJNCLASSIFIER
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I(O(x)=2 E (~/X) -X(I -e -1/xz )

Ui’WASSIFfED

(17)

.

K1 (X)=(4X2+ 4/3)~ (l/z)+
2x(4X2+1) ~-1/x2.. 2X(4X2+3)

3
(18)

3

t
X2 (X)= (4%2/3t 2/5) E (l/x)+ (16x/15 X% X2Y (3/16)~ e-1/x2

(19)
x (16x4/15* 1)

then

[ 1@f/b) -b2Qff1(x~)+ ~%2~2(X/’b)

[ .1
If. (x/o) -02RAJx/c)+ C4R2K:.$+)

It also follows immediately, after substituting in (4) from (G) and inte~rating,

(21)

The integration of (20) oan not be carried out snalytioally, so we must resort

to numerical means.

For my given a,b,c now we can compute the vtiriousintegrals in-

volved in (20) and thus get I as a polynomial in P,Q,R. N is already such

a polynomial. The ratio of these polynomials, 1;/1,can then be mininized

with respect to P,Q,R. As has been said before, we ha’:econsidered in the

applications only cases in which a= u, which Xmplies of course that in our

trial funotions we s~muld set R=F’. It was found in practice that the min-

imizing could be accomplished most easily by a triel and error method, rather

than by equating (~/M)(N/1) and (~/bQ)(N/1) to zero. This was la~gely due

to the fact tkt the actual value of the minimzmwas rather insensitive to the

particular ohoice of Pand Q; this of oourse also speaks well for the probable

mxmoy of the result aohieved
——

using parabolic trial functions. The results

MKLASSIFIED
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(listed as e.varia%.on)in the case of’a

c=a, and in the case whore bceo, c=a.
.

ckarly, i’ as a function of a for the

oube, in the case whero b=2a,

From this table we @ at once-

critical case #= 09 and khe multi-

plication number ~

tWC!001UFil16 Of ‘khe

There is

as a function of a for any desired f. The remaining

table are explained J.nSection IV below.

IV. TH7 EXTRAPOLATED t’ND-~IET METHOD

an approxim~te method which is very ea~y to apply and

which ena~tlesus to compute with very good accuraoy the same quantities

obtwined by the variation nethod used above. This is the extrapolated end-

point method. ‘1’M,s method i.s d~scr~b~~

~Jelsonand I?rankel(LA-8), and we shall

com~ting (l+f)/(l+ti ) vs. a

pate a. ‘Ihoscheme as applied

Yfesolve the di~f’usivnequation

0 “

here.

in considerable detail elsewhere by

merely set it forth as a reoipe for

Given (l+f)/(l*M), we raantto ccmy

to our problcn is the following:

for the neutron

v’ n=-k% inside gadget

n=O outside gadget

where k is determined by

tan-l k l+g
●

--Z---- ‘=

The fundamental solution is then

n= COS klx” 00S kzyo (30S ky3

n = o

where

dqnsiky n:

(23)

inside gadget
(24)

outside guc?get

(25)

In order to satisfy the condition tb-t the neutron density be continuous

ev~rywhere, we should get for the sides of the solid: a=ti/2k1, b=~/2k2,

C= ~/2k3. ‘l’heex@apoltited end-point me:.hodasserts thata much better
. . .._ -—

UNCLASSIFIED

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



.
.

.-
W

“.

approximation to the inte~ral theory solution of the problem is given’by

adding a correction term to each of these values. This ccrr~ction is of

.x (1 +)j )/(1+ t), where ~ is a funotiotiof (II-~ }/{1+ f)amount xo-

anclis given by the graph of Figure 3; for the derivation of this curve

of. Report M-$* Thus we have for the half-sides of the solid

a= ~/(2k~)*xo

b=~/(2k2)+xo (26)

c= r/(2k3)+ x.

As before, these lengths are in units of l/[~~(1 +g ~. Of course these values

for the 8ides are not determinate, s“nce the kl, k2, k3 are not uniquely do.

tcrmined by (25). \Tomust specify two more conditions. This iS accomplished

by setting o =a~ as in our previous work, and Ie%ting b=ra where r is fixed

in wbninceo If this is done the equation for a becomes

‘2=2k2/r2l/(a+xo)2*Q.S/(ra+xo] (27)

Eiuation (27) oan be solved for a for any choioe of r and any &iven

(1- r)/(l+d ). For the cases r=l, r=2, r=oo , the mlues of’ a deter-

mizwi by this extrapolated end-point nethod for oerkain values of (l+f)/(1+~ )

@..fIethose obtained using the

in Table I. If we a8sur,ethst

are probably of the order of a

variation method desoribed above) are shown

tho variation method is exact, since its urror8

fraotlon ofa pmoent, we om compute for eaoh

point in our table a percentage correction p to be applied to aeti to Set 8-.

This is gi.wm in tha fourth oolumn of the table.

V. CONCLUSIONS AND SU?MARY .

The xostvseful product of the work described here is the set of

~+f for the cases b=a, b=2a, b=eoourv,ssof p versus aext and p versus ~=

{d’, Fibwres 1 and 2).

pute, since all that is

the vtilu6sM aextwe

In the first plaoe aeti ie exceedingly easy to oors-

required is to solve (27) for a. In the seoond place

quite dose to those OfUvQr (d’. ‘&Me 1). This mans

—-—-—--— .-.—.,-..——.,———- ——.— 14NCiASSlFiED
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through only three points, although relatively large compared with p,

are absolutely very small and hawo ne~ligiblo erfect o:.the f~nal answer.

We can suwmarize our results then as follows: Given (l+”f)/(l+#y),

Given that c=a, and given r= b/a, to compute a bvofirst compute aext

using (23) ud (27) and then correot this result to g.::tavar using the

graph of p, either F’iUuro1 or Figure 2. Tho (survesgiven in these graphs

are only for the cases r= 19 r= 2, r=oe , but it is clear that an adequate

interpolation oan be made for any intermediate cases. (“~;ehave not been in.

ixn-estedin this work in the cases for which r<l). The values of a which

wo gat will be in uuits of l/[&t(l+~~ ant)the actual physical size of a can A

be determined only when the value of% is specified (we can assume that the

physical oons*nt mt is Ao?m)o

we u:ightbe given the oonverse problem, for given a (khat iS,

amr) to determine {1+ f)/(1●W ). This is reuciilydcne as wc shall see below

if a is given in units Of l/[&t(l+ti]* I~O,ww in ~en{:=l ~ ~~ill lm given

in some r,oredireot physioal wuy; ewn so, if~t and I*Y are given, so that

tineobject is to deteraine f, we can at once proceed to get a in the desired

units,

f l~nd

at she

dotcrmine (1+ f)/(lt~) (see below) and hence f. If, as is most likely,

~t are given, and it is de6ired t~ compute~ , our best hope is to gaess

“aaighborhoodin which the answer Ilos, take several values of~ and

hence (l+f)/(1+~) in this neighborhood, and oompute a from these, as des-

cribed above, in direct physical units; thus we get a graph of’ a VS. (1+ f)/

{1+~ ) f’romwhich the value of (1+ f)/(1+~), and hence & , fcr the specified a

can be read off at onoe~

We must fkally justify aur above statemant that if wq are

in units of l/[~t(l+~~ , thl (l+f)/(1*#) is readily determined.

given amr

we Illust

_—. . .—
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not differ much from avar)

——--- .— --—..—.—

~~c~ss/Fl[
-14-

a~ainst a
ext

and determine

phM30 this value in (27) and use ~ trial

(1+f) from (27) and (23).

instead of

from it the

avars sinoe willaext

vtilueof a lyethen
extb

and error method to solve for (l-}#)/

.

●

k.

A
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.

l+f %ar
aext. end ~oint -aext” 100%

%riation P.
~ %xt

~“
—.

Cube: a=b=o .

—~””-”-—-”-—-— ...
,80 2.0409 .7831

I

2. 16?

1.50 1.4634 ?..4819 1.22$

2.30 1.2527 2.2810 0.83~

2 x 1 x 1 ReolxangularSolid c=a b=2a
1 —1 -~—--”— -—---—-

.70

1.20

2.00

.62

1.10

1.80

z*!30’70

1.4s74

1.2429

.6862

1.1859

1.9896

Infinite Rectangular Solid c=a b=uw
—---— . —..- .

1.9669

1.4798

1.2464

.6129

1.0907

1.7901

1.16%

0.85%

o ● 55%

\
b

.
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