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this paper i~ divided into two p~.rim,M-53 and LA-53 A. L4053

treats in groat ciotailthe various methcd~ whioh have bon used in the treat-

ment of the physical problsms

torwm of integral equations.

the,determination of critical

of this project which are roprenontable in

These problems are primarily those involving

sizes and multiplication

coni’j.guratj.onaof active and tamping materials. A few

alu.dingage aelculationsn pred~tona%ion probabilities,

prc~ble.mare aleo diocussed.

A number of graphs havo boon prepared giving

kwkh6 for various

related problemc in-

and a simple albodo

tho mathematical data

involved in the solutions of’~ne8e problemG and many of the solutions them-

1se ,veae A brief recapitulation of the methods of solutions of the more standard

problems has been prepared. Tnis may be ucod aither ~eprately or in aon~unc-

tian with the main part of tho paper. This recapitulation or ‘recipe book’$

~t,r~dthe full oolkotion cd’ graphs oompo8e LA-53 A.
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METHODS OF TREATMENT OF DISPLACW%WT INTEGRAL EQU5TIONS

INTRODUCX’K)N

In many problems involving the multiplication and diffuciionof

neutrons in fissionable and scattering material, integral @quation6 of the

+,ype

am mot+ Xt is proposed to discuss here tho properti.eaof equationa of this

type, the methods of solution whioh havo so far been ueed, and tho results

obtained. Equation~ of’this type have been used to describe the physioal

?xa.sisof the determination of the critical sizes and multiplication rates of

masses of fissionable material, with or with.outtampers, and such related

problems aa the determination of dbados and detonation probabilities of

hypercritical gadgets.

Soma of the methods of treatment of the problems di&X$u8aedhare are

considerably older than the pre~ent problems. The differential diffusion

thoozy was taken over i%omgas kinetic theory. The simplest from of the extra-
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similar problems, and more frequently, a= the Ritz method, to diff%u=mti.al

aigenvalue problems. Many of the mathomaticsl techniques employed here are

borrovwd from olmsical probability thsory.

In 2hapter I the existing body of mathematical theory of displace-

ment integral equations is examined. A largo part of this treatment is taken

1)from the review of tho sub@ct written by F. Smithies . His treatment if3

preoonted in a simplified and less rigorous manner and for the most part lnnans-

ctribodinto the notation customary in this project.

Zn (3haptarU the reduction of Elab and sphere problems to one-

dil~OnS~.Ondform is discussed.

Xn Chapter III thsse method8 are a~pliad to four speoi.aloases of

displacement integral equations. The first of those ie the int6gral equation

with the kernel K=e -IX-X* I, ~hich posses E simple exaot eolution and is

thoreforo a convenient example for displaying the properties coimnonto eque-

%ions of this typa. Tho Second kernel treated is the exponential integral,

‘#h:Lshis the one-dimensional form of tho MiIne kernel, whioh oocurs in the .

noIstfamiliar problems of’th$s work. This equation is treated in oonoiderable

detail. The rez!!iningtwo example8 are th08e of the Gaus8 kerne~ and the

kernel describing the water boiler problem.

M Chwpter IV other methods of treatment of these probkxm and

as,~ooiatedproblemo are diwxssed. Among these are the variation and numrtcal

. - s-—- ------- > .- —..—.-..—C

● .* ● ● 9* ● 9. ● m
●8* ● ● *

● : : :0
● ● .* ● ●* ::

1,) ~~Singular~ntagra”k~?c~~;.~~,c..a~~~:..?&Ofi.mMath. SOC* 46, 409 (1939)-
●* ●** ●,* ● ●9** ●a. ● ● ● ●*9
● ebb@ ●** ●99**9 ● 9.
● *. ● 0: ● O*
● 0 ● ** ● ● ● co UNCLASSIFIED

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



.

● 0 ● 9*
● O*

● 9●°0 :
● *.*. ●°0 s

● ** ●
●

: :*: ●
:.9 ● ●. . . . . . .

800 ● oo m**

● s ●:0 ● 9* ●:0 *O* . .
8 ●

● ●
9

● O● 0: ●* ::
●:

●
● :●:0 : ::

● O* ● .0 . .

oonil~urations.

suoh chsck i8 avai2-

is stu:Lied. In the simplo form of the integral equation a numbar of

simplificationsare used. All scattering prooossos are aosumed iso-

tropic and tdastic, and the inhomogen~ity in energy of the fis#ion spootrum

if;negleated. The effect of the ixvo”npproximationsis s-tudicxlto determine

nppropi-iat’.~waluea to uao for the cr~m mctions and energy.
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ClU4FTJJR1. THE GENERAL THEORY OF DISPLACEMENT

S.fi

where the variablo

The integration is

IMWGRAL WUATIO1?S

type of integral equation which we tioat wy bo written

(l.l)

is in ono or more dimensions, usually one or three-

be carried out over all epace or over that part of spaeo

fcwwhioh F(E)#O. In most of the problems ‘treated F(r~ ie piomwiae con-

stant and of one ~ign, usually having a value different from zero in only ono

cr two regions. In general there will exist a denumerable (except whore

F#O over an infinite volume) infinity of oigenvalues, o, one of which is

the least. Frequently this least oigenvalue and the corresponding eigen-

funotion are of primary interest.

The Amociated Differential Equation

. The simplest probloms of this type are those for whioh p[~) is

oonstant throughout all space. Although these problems are in tk.mselves of

litt~.ephysical interest their study ia of value in that it throws light on

the character of tke solutions n(~) in tho more interestin~ problems

rogiona far removed
[
ioe. beyond tho reach of the kernel K(\c- K*\)

1
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Z?.?the following it vAII bo asmmed that this io the case. Equation {2.2)

mny bo rewritten ao

;n(r_-$~t) may now * expanded as a Taylor series in ~;. Only the even term

of tho series will contribute to tho integral. For a threo-dimensional spaco

Izheequation than takes the form

w.hwo Mn is tha nth moment of the didxibution K(~a}. Xf c !JQ in cloee

to one, the seoond and later terms of the expansion may be small compared with

t;~efirst. In this caae it may be a useful approximation to nc~lect all term

APPROVED FOR PUBLIC RELEASE
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diffu8ion equation

[Om’!@ow-,10 CMo)mlojnb, = o (1.4)

A.s the approxi.mation

0$!()ia close to one,

leading to this diffusion equation ia valid only if

equation (1.4) my just as wall be written

‘.!!D,sapproximation leading to (2.4) and (1.4’) 3.salmost novor satisfied in

the present work- It is thereforo necessary to look for solutions of (1.3).

Sinco n(g) is analytic (exoept, perhaps, at infinity) it oan be

6xpreOsed e8 a Ewparpoaition of “v;nve-functi,ons”, nk(~), sati8fy3.n~the

equetiona

This forp of repremmtation of n(~) is just the Laplace or Fourier %rau3-

formatl.onwhich plays a central roh in all this theory. Xt oan be aeon by
.

6Ub6titutim that nk(~) will satie~ equation (1.3) if and only if

o(% +k2M/S! +k%@ +.....) = 1 (1.6)

‘I%isin kncnvnco the.tt~~~~ot?.~i?$.i$.aquationtaof (1.3). The general solu.
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all of tho values of k satisfying the chmactoristic equation, For mo6t

This rasult ia more clearly derived by the u80 of a L@EGo or

JMurior tran8form. such a transformation is noti.vtitodby the fcot that

the kernel of the integral equation i8 a displaoemmnt opcxrator,a function of

g’=~’ alone, suggesting an expansion ‘inthe eigenfunotions of displaaament

oporators,
$.z,

Forming the Fourier transform of equation (1.2), one haa

= on~K~

‘Wh@~O Kk 3.sthe Fourier traneform of the lcor’nel.
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Ii is clear from (1.8) that the above i8 the only condition imposed by the

integral squation~ i.e,, that the integral equation io satisfied by an

arbitrary solution of

for any k satisfying the charaoteriatic equation. ~~ is evident from tht8

solution thwt in the interior of a finite roedizxntho solution of (1.1) ha~

the clmraater of the wa.vofunc%ion~ nk[~), of the symmetry appropriate to

‘Gheahapo of tho medium. Near tho boundaries the aotual solution will doviato

from this wave function. Tho n~tu~o of this deviation and tho boundary condi-

tion thereby imposed on the aqanptotio solution nk(g) is the subjeot of the

nwnair.derof thi~ ohapter.

~-l.O ution for Half-Infinite Medium

The simpleet case in whichto study the bounda~*yeffeots is that

of a “half-infinite” medium, one extendinq indefinitely on one 8ida of a plauo

lxnwkry. In this ohaptor we will treat only the spscial ease in which the

f302ution, n(g), ie a function only of tha distance, x, fl?OiR tho bOIAnda~.

Where there is only one non-zero value of F(g), the %antampod ease, x wi33.

h kalmn positivo in that direction. Whero F ia grcwder %hsm zero on both

aides, -the“tamped” ease, x will bg taken positive on tha side on which 1?
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@~s ini’inity,it ie not immodiate~y olear tksl.W.z mms hxhlqu us

thm.tof the full opon space iaanbe applied. If, however~ the fiumtion

which i8 defined by (1.9) for all positive and negative x, is brokon

into two patia such that

n(x) = f(x) =$g(x)

M:) =0 for %>0

‘-)gi.- =0 for x <0
,

n(x),

up

(1.10)

t.lwmthe integml equation (1.03)oan M written in terms of an integral ovor

fidw full.range of x so that under Laplace trnnuformstion it boooma~ f?actor-

[?.tiie.

+ g(x) :
● em●88

b :
● 9

●
● 0 ●:9

:,).=;:”
● 0
● m

::*Q ● 00

g(xs) x(

99* ● O
9 90
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● e@*
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iWW becomes

((

m

F(k) + G(k) = o ‘U O-M (ixRg(x~) K($c= Xv})

-@ “-00

1

m

~

w

= G d(x-x@)e -k(x-xt) K(1x ~ ~el) &~U o-kc g(Xf)

-m -w

= a ii(k)G(k) (lOM!)

This equation has a unique moaning only if thero oxiato a utrip parallel to

tho :bna~inaryaxis in whioh all of the integ&d8 defining these Laplnco trans-

form] oxiat. If’this ic the caae then ~%notions G(k) and l?(k) which aatis-

i’y(1.12) and are consistent with the restriotiona of’(1.10) defino a unique

Colu<;ionto equation (3.9). It will be aamumd

the omwl.

The restrictions imposed on the forms

a:5surIptioriare quite wcwk. If the value of c

in the following that this iG

of n(x) and K(x) by this

is suoh that the asymptotic

i3i.tN;ionfor g(x) is Sinusoidal, i~eo ii’the charccteriatic equation has

rootw only on the imaginary axio, then the integral defining G(k) must exist

for all values of k in the ri~ht opon half plane. ‘fhisintegral extends

● 99
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● b
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o

r!’(k) = dxf(x) a-k

-lx

to cxmrerge in a mrti.od strip in Lho riqht half k-plane it 5.s

that f(x), hence abo X(lz\), deoay exponentially for large

%ke inte~rals defidn; F(k) and

k Mm between zero and b, end

b>O

only neoeaeary

mgative %0

~(k) are oonvergonti’lftlw real part of

equatim (1.12) Mic a unique winning.

If the value of o is buoh as to give a hyperbolic asymptotic

e:zponadiiallyfor large x. This exponential increase cannot, however, be more

rapid than the deoa.yof the kernel or tbe iutogral in equation [1.9) will not

converge. In this oaae tho integral defining G(k) will not converge through-

out the right half lc-pkum but only for values of k of whioh the rod. part

is gr~ator than the real part of the root of the characteristic equc~tiondeterm-

ining the asymptotic behavior of g(x). Since, hci’~e~er~ the kernel must have
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an asymptotic decay re~e greater khan the real part of this raot

defining ~(k) and F(k) will convorge in a strip in tho riRht

whioh overlaps tho region of convorgonoe of G(k).

The restriction~ imposed to make (1.12) meaningfid are

eatisfied for any kernel which admits a solution of the integral

Since in the problems of interest the existenoe of a solution is

tho integrals

half k-plane

thereforo

equation.

guartantoedby

the nature ofkhe physical problem, the restriction imposed above will be mtio-

f’iedin all euch problems.

Sinoe the integrand~ of the integrals definin~ F(k) and G(k) fail

.to vanish on~y for negative and pooitive values of x respectively, them

integrals wA1l correspondingly oonvargo everywhere to the

pectively of the common strip of convergence. G(k) will

everywhere to the right of the left hand boundary of this

let% and right res=

therefore be analytic

strip, and F(k)

everywhere to the left of tie right boundary. The analytic extension of F(k),

Q(k), and ~(k) may be cmrried out 60 as to make equation (1.I.2)valid for

all ke The aolu+iionOf equa%ion (1.9) ie now reduced to the problem of

finding two funotions E’(k) and (1(k) satis$ing (1032) and which have a

c;omon strip of analyticity and are ardytio left and right of this strip res-

~xmtively. Two sud funotions aro readily found ‘bythe following device:

Mnote by P(k) the funotion c~(k) - 1. Then equation (1.12)

~:eade
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Thus kP(lf) is expraeaed 6i8 the mm of two pwtR which era analytic left

and right respectively of the comon wbrip except for the roots? “ifany, of

!?(k) and G(k). Yhe roots of the cilxmmteristic oquatlon are hare reprusentac?

as singularities in &P(k). If now a vertioal etrip c.ontaininRno 6inEu2arity

of &P(k) ~8 cho8en, this decomposition can be effeotod by expressing .??.P(k

us a Cau~@ $ntogral.

% P(k) = (1/2ni)
[
- !@(k8)

●
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Li’the point Is is Wjssl” ‘i#wq+p ‘.k Cwntou?% L and R are alm within
● 99*... ::.

● ●: ●.
the strip and encloae”%*h&~mt.~&~.. ~g: k ie outsido We strip one or the

othor oontour will be so deforrr!edm to anclose k butino si.ngu~arityof

h P(kf).

.

The iotegral ovez’*M oontour 1? will thoreforo be anmlytio for

s13 k within or

or to the right.

tho integral over

to

If

L

the loft of tho strip, and the integx%l over L within

now tha integral over u is irlontifiadwith %I?(k) and

with -$vd3(k) the conditions required in the decomposition

decomposition is uniqw owe the Rtrip is ohomn. Thio

another decomposition alse eatisfyinR tho conditions im-

post~dmust differ frouithicionly in the addition to kG and subtraction Sron

&wlp of a funation of k which is analytic throughout the entire k plane,

ioe[ta oonatumt. This change will not affwt tho chraoter of the Solvtion,

g(x), hut may bo convenient in the evaluation of *ho integrals. Frcqmntly

the constant added and subtracted wi~l be logarithmically infinite. ‘l’he

mak?temnkhal tr&nsEresaion required in th~s proaess mn be avoided if it %s 80

desired by faotoring out of P(k) an appropriate polynomial in k so as to

make the integrals ova- L and R separately convorGont (cf. i?.Shuithiea1)).,

‘lhesolutiorIof(l.9) is then given by

tho lwtter integration being carr5al up the strip of convergonoo.

(1.15}

(1.16]
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Efirauokted End-Point

In

ba performal

i8 thgrefore

most of the probl.ensof interest those two integrations cm not

analytically. h order to find the complete formof g(x) it

necessary to eany out a double numerical integral. AS this

~~ocess is oxcoedingly laborious, it

important propertM6 of tho solutian

integral. For a sinusoidal solution

f. *

has not bcon done. However, a number of

can ba found with only a single nuimrhal

~(x) will have the form

●

~L ] qg(x) = A sinko(x *xo) +hx (1*27)

.

whoro h(x) approaches zero for large x. Mere i~ is Q root of ths Ghar-

acteristio equation. This must be true sinco far from the boundary tho ohar-

adxm of the solution is Just that of the sine solution of tho full-spaoe

problem. It is to be oxpefmd that the deviation from the asymptotic solution,

h(x), will fall off with increasing x about as rapid3y as the kernel. ThQ

most interuating property of the

sohtion, whioh may be expressed

solution g(x) is the phraseof the asymptotic

by the extrapolated end-point, ~.

J&. . . . ~● e* ● .** ● 90 :0
● 000:0 ::

● **O*
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Xiko. In the neighborhood of theso poles E(k)

The difforenoe between these 4xn3@xprosSion6 in the limit of vanishing ~ in

2%% + M-x). M evaluating this limit of the difference from the integral

{1.25) giving k G(k), we express k G(k),

R integral minus ~P(k). The R integral is

two poles, k%, as its contour may be taken

the negative L“ integral, 6.0the

finite in the neighborhood of the

so as to remain a finito distance

fromthem. P(k) is thp Laplaoe

itself even. Its derivative is

$,.(-1) + 0(<). The two terms

transform of an even function and is therefore

oddb hence L P{ike +6) - kl?{-~k +6) iu

~ (.1) combine to giva some multiple of 2’xi.

The various multiples give cnctrapolatodend-points differing by a half wnve-

Iength. It is convenient always to define tho extrapolated end-point ae the
●

diatanoe beyond tbo boundary of tho first root of tho cwymptokio so2ution.

Then we h~ve
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If the same derivation is followcxlthrough for the case of a

hyperbolic interior solutions tihe same result i~ found for tho zero of’tho

at3ymptio%ic oolution. &Lnh ko(x + Xo).

U!ho techniquo hero dewritwi for finding

ths 80htiOll, n(x) , in the interior of the right

the asyiRptoticform of

hand rogiorimay then bo

mxmmrizod as follms; The propagation v60tor, ~, of the mymptotio sinus-

oida3 or hyperbolic nolution ia given by the root of the characteristic cqua-

%ion, o ??(k)=l. The

extrapolated end-point

Valuo at %ho Surfaoe—.

The order of

pham of the asymptotic solution is 8pscified by the

distimce, xo, which is calculated by

magnitude of the deviation of the true

the use of (1.19).

aohkion from

the lz8ymptotic6ohtion in the neighborhood of the boundary canbo determined

b; Cwduating h(0), or what is equivalent - n(0)/’A, where A is the

asymptotic amp3.i.tude.The quantity n[O) cen be determined by making use

of tho f~ok that the limit as k goes to infinity of k G(k) is n(0):

%

lim k G(k) = lim
\

lcdx e-k n(x)
3C-+6Q k+aa o

The normalization constant, A, can be gotten by adding the two limiting

formfi~,(1oM}. Thus the

numerical integrations.

.

determination of h(0) can M performed with t~o
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SWM3 L’u P(k). The sum of the two R int@gra3s i6 now finite and can tw

be soon by the transformation

to depend only on tho limiting oharactor of P for large argyune.nt.This

will, in general. bo considerabljjsimpler than P itcolf. TIWJ the evaluo.-

By ~imilar methods i’urtbordetails of the character of the devia-

kiq~, h(x), CSU3 be ObtEliIX?d. An example of this teah~%qua is given in

tion of equation (1.1} with the afisumptionthat .E’(xS)is zero on om sick?

of n plane boundar~ and has a constant value grouter than zero on the othor

EMo o ‘i’hefurther rcxdmiction has been used that %hs solution, n(r), depends

fi.q,),ycxj the distjancefrom the boundary. wo now constdor the cnse in which
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different positire values on the two sides of the boundary. Vie

the restriction that the solution is a funotion of x alone.

Ut’kogmting out y and z as before, the integral equntion takeG the form

where for definiteness it will be assumed that c > 0 ~
21

We again brm.k up n(x) into a left and right part cm in (1.10).

Again performing a JAplace transformation, wo havo

F(k) + G(k) s ~@)~lF(k) + 02G(k)j

[b) (3.23)

.

The equation is now of exactly tho same form as 1.13. The rast of’ thg treat-

ment proceeds

somevdhatmore

P{k).

in exactly the

complicated in

9**●89
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000
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● 00
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eanm way. The solutioiaoftho problem is usually

this case, owing to tho greater complexity of
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.

equation

mlutim

fmGtiodQ, n(r), depends only on tho coordinate x. Thus wo M.ve found

:?0.?m,

(1.24)

tr8nt3-
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Mxqgral has been evaluated (the Mi3ne kernel) the effect of’this factor

was vwy slight. The form of the integral in (1.26) indicates that tho

effect of the trwwrerse wave will usually be -%ch as to diminish slightly

tb.oextrapolated wd-point, Th@ endnpoint dista.noewill still bs determined

jJX’~~?’ilyby k:, hence ~ co
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CHAPTER ISs ‘HE SLAB AND S?FERE

In *ho first chspter an exac% cohtion to the integral cxy..mtion

(1~1)was obtained for all cases involving only a singlo plem boundary. It

has not cm far prwwi posaibl% to find corresponding wumt 6olutions to

problems with two parallel plane boundaries as in R tsmped or u.rdxunped finite

ala-o. It is olecar$howwers that if the two boundaries are far apart com-

obtained b~ assuraingthat the two boiandmryoondition~ may bo applied inclepontly.

The ox-tentto which %Ms approximation brcmks down with decrominq slab

thickms= can be determined only by comparison of tho results so obtained

,:ikhtho refiultngiven by methods which for small thicknoe~es are more accu-

L*ute. Such comparisons have been obtsinod and will be di~cusaod in Qmptor

IV. Zt suffices to Btate here that tho results of thio coiapnricmnare such

(icmtral region in which Me asymptotic bahavior of kho solution is well

i~statJM.shed$and two outside regions in which tho boundary effoc-tsare im-

portant., Zf this i= the caso8 then} for a qmcifiod VUIUO of c (or of the

-W3ricfiis Vduea of c) and c spmifiad nwnbor of oooilhtions of the soPi%ionO
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l;:)&positions of the two $otia”sfie&”&r& Oz-f*ed with respaot to the common

wymptotic solution in the middle region, hence also tho thickness Of thg

32ab. If, on the othor hand, the tihicknea~of the Blab is spaa?fied, %he

the infinitely Muped slab

speotrum.

hao not plane but spherical 9ym-

qmmm%ric soluti.onacan be

pls.noproblom. ‘Mdking F(g) and n(~)
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as

F(r’) lf~-(lr=r’1) (2.2)

which iG just the one-dimensional form of the inteqrnl equation for a slab

havin~ tho samo F-distribution as that along a diameter of the sphsre. 1?

is clear fl-mnits definition that u(r) must be odd in r. ~1.lSthe soh-

tiion~of’tho epheric.alpro”blemare in ono-to-one oorreapondonco with tho odd

!~olnt5.onsin tho oorre~pondin~ slab problem. For bhis raason tileindopeszdent-.

‘ooundary-conditionapproximation gives much uoro accurate rcoults for the

i’undamgntalmode of a spherical problem than for the funde.rmntalmodo of a
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$7..● THE YUJfANAKERNEL.—

The yulmwa kernel?

is the Green”s fUXIGt5.Gnof a simple differential operator, 1 = A, and

tihoref’orathe integral equation with this kernel hms a aimplc solution.

I%quivalsnoeto ThQrmRl !liffusion Equation

‘thediffersntinl equation to whioh tha the Yulcawakernel is the

distribution of’therl~]alneutrons, ~(~)9 is determined by the differential

e(ylntioll

g!im solution of this equation is
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the solutions znd the awe of

kernel is useful in 3.Uuntrating tho

H’ n(~) is a solution of tho

I

(3*1)

than it ie also a eolution of the diffnremtial equati.o.n

It i8 not, ho,’;over,true that any solution of!(!3.2)satisfieo (3.1). If,

for Wwwlpls, F(r) differs from zero only in a definite region then the

in’tegrslequation r@quire6 that n(r) i’dl off exponentially rwiayfrom thi8

region. ‘Ihus the integral equation requires that its solution satis~ the

differential equwtion and a boundary cond5.tion.

H F(r) rnxl.n(~) depend only on x, equation (3.1) reduces to
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● 00
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1

The characteristic equ~tion of this kernel is

W@ may now solve by the methods of Chapter 1 tho integral equation (30S] for

the caae

F(x) = O for xeO

= o for X>(), 0>1+C2

Tho IApIaCe tranBform of the kernel is

[
~ c/(l=k2)

0 ‘1 = ‘[~” +’z)i(:~’~)r” ‘ence L ‘(k’ 15
which has branch points

~t ~:~end Tic, ‘l!hoappropriate strip of regularity will lie between 4-1 and

‘ikm imaginary axis. Then
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(305)

J!

oonatant which we discard. (This removal of the infinite con5%ant cm be

done more rigorously. Cf. Chapter s.)

~G(k) = -~(C2 +k2) + k(l=t id)- ~(1 -k)

G(k) = (1 + k)/(C2 + ke)

f

%ao+&

= (V’23LQ dkc% (1 +k)\(C2 +k2)g(x)

-iw + &

For negative x, *lixvanishes at +ca, thus the contour cau ba e.xtonded

&o the right and as ~o singularities are encloeed tho 5.ntegralvnni6hes.

,positive x tho oontour can bo extended to the left and tho value of the

.i.ntogralis given by the tiioresidues d ki(h

g(x) =
[ 1

(1/2iC) eib (1 ‘~iC) - e-iCx (1 - iC)

t

For

(306)

This ~o~otion exhibits

%he boundary cofidition

two interesting properties. R(o) =g”(o)=l, thus

on tha differential equation is very simple, just the
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roqwirementthat the Iogarithaic derivative of g(x) be 1 at tho Surfacxs.

Also tho sinusoidal behavior hoMn right up to the surfaoa, i.e. h(x) is

5ntegual equation. As pointed out above the solution to the integral equa-

+ion mat satis~ tho differential equation (3.2) throughout. ‘1’~fj*~*

sinusoidal behavior must continue to the surfece. Sinco tho integral oqua-

ticm (3.4) requires that n(x) decay for ne~ative x just as e-H, ~~

loge.rithmicderivative must be one at the surface. For this inte,qral

equation tho ‘middle region” in which the asymptotic behavior of the so~ation

iLtwell established exixmds rigorously to the SUI?ftiGf). Thus tho incl~pendent

nppliontion of tho boundary condition to two surfaces i~ peri’ootlyaocurate.

This example servee to give us conf%donoa that in other eqiiationawith

kernels diffeuing slightly f!rointhis one the independent application of the

boundary oondition may give fairly accurate rmuliw. MS shovm by the eolu-

tioa (3~6) the mtrapolatod end-point is ~~ tan”l C. I’hiscai be verified

by the Use Of the fO%%N&a (le~g).

Again t~a contour maybe doforxed so as to lie along the real axis and

onolosa the point +2. giving

poa
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It will be shown in Sect5.orI4 ot this chapter that this kernel and the

aesocintod diffueion equmtion are of use in the treatment of the water-boiler

problem.

&2. THE MILNEXERNEL

Dc&j~tion of Integral Equ@ion.

In the problwns of primwy interest in thiu work tho Ixwnol is

flow of radiation in the outer layers of a alxar.

A. Mi.lnodescribing the

R’ouse this kernel in the

inlmgral equations dosoribing the multiplication s.nddiffu8ion of’ntwtrons

in fiesionabla and soattoring material. WO treat primarily problems in which

tho total mean free path of neutrons is the same in all of the matsriala 3.n-

volvod. We here treat the ncwdmon~ as monochrom@tio and the fi~sion and

ticaek-teringprocmses ae isotropic. We demote by

bability per unit path length. a is the sum of

o,nd&boorption probabilities, ~liP af=p and CSa.

tha quarrtlty (vaf +aa)/a where v is the moan

c tho total collision pL’o-

the scattering, fission

Wo denote by F(r) =l+f(r)

number of ncwatroneemerging
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of 1A “perfoot tamper” as one in whioh f is zero, The density of ne~trOns

R% *M point ~ at time t we denote by n(~,t). Thww ~eutrofit3suffer

Col.liaionsat .5mte oxr per unit time. Wo may consider that 1 + f

nautron~ omorge from each of these colliail.onoand prorseeduniformly in ai2

dire@ions. The density of neutrons at ~ and t is determined by the

number of neutrons emerging from collisions at all po3.nteH Et, at 6hr?it3r

~L-ro~/v whi~h arriveat ~4Ane8 t = : - wit,!xnzt.suffering mother collision.

Tho probability of khsir arrival la given by e~l~”~”i multiplied bythe

irworse square factor, lk~~-~gpo Thus the rate at which neutrons arrive

‘1’hisequatiionwill hava solutions in which the time doperdnce i8 exponential,

henoa

then n(g,t) hence alao n(3j. s~tisfies the intiegralequation
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It is convenient

d“ia-ixuxw, l/(a HIV). With this unit of length tha equation takes the

form
#

where K now

‘l’he

reprosonts the Milno

one-dimcxmional form

kornol.

of this kernel is

= 0./’2) E(lx\)

Sinco we have frequent occasion to use this ftmcttion

notation for the exponential integral instead of the

For the ohm%cteristic equation we have

(3.9)

WO USS this simplif’iod

customary -E(-}x~).
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!~hacharacteristic Oquatiaflhas two real root8 if G<l, two imaginary

fy(l +x/Ov). o will be greater

a parfect tamperv i.oo f=o) less than
,.-

ths gadget is hyper- or @po.critica10

Graphs of the functions cccmrring in (3.11) and (3012) and their reciprocals

sre given in I’igoV.

Evaluation of tho Extrapolated 3nd-Point

Applying to this kernel the oxtrapolatad ond-Feint formula (1.19)

for an untamp~d surface, wo have

riwformingthe conl.~,ras bsf’oreand performing a few simple tre.nBformatione

Gives
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7F12w3a8 before

(3033)

The integral for X. has been evaluated for a number of values of o. it

is found that to a very good approximation OXo is constant. Since the

awuracy with which X. was evaluated is considerably greater than the

aocuraoy of most graphs~ it is OXG rather than x. itBelf whioh iB preson%d

in Figs VI. rho Valw of’ x~ for c =1 i8 oi’speoial interest for two

range (rising by lees

x~ is xo(l)/c. The

the “equation of

N. A. Mj.lne’tS has been tho subjeot of considerable study in the past. E. I~Opf

givw for the value of xo(l), .710. This is in agrcxnnenkwith our dotermi- ‘

nution which gives the value .71W0 (This number tia b98n more ac~Ur~te~Y

~.va’l.uatodby G. Blanoh at the request

~utfidwas .71044509).

9*9 ● .9*
●’. ●

● : :
● :000

●
● 0 ●:0 :00 ●:0

● ☛ ● 00 ● eb
● ee ●om ●
● 8e ●
● **9 :● 0000:
● * ● 89 ● ●

● 00 9*
● 9

:
● * ::
● ● m
● 00 9*

● 0
8 ● ●**
● 9* ●
● 00
● *O

● ● 0

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



● m ● 00
● .0 ● *●°0 :
● ***9 ●m. ●

● *O ● :
●

● O* :C:●a. ●
● O ● . . ● :●00::,

● * .:0 :00 ●:0 :*. . .
●

(=; :0 ;;.;:● 0
● ● ** ● ● . . . .. . .

Extrapolated End-Point at Tamped Boundary-—. -

For a tamped boundary the extrapolated end-point is

whero a = (1 +0/(1 -Wov) = k/tin-l k.

a’ = (1 +ft)/(1 +YAv), ft = f oftanpr.

Evaluating this integral in the same way as above give8 for the extrapolated

end-point, i-fthe intwior solution behaves SS sin ko(x + Xo) and the

interior Bolwtion as
kx~1,

. tan‘2 &#’k#’ko OA~o (3.14)

.
‘theextrapolated wd-point is thus expressed as the difference between two

term, one of whioh is simple, the other small. Tha first %orm .iGjust the

VQ:LUOof the extrapolated end-point whioh would be obtainod by nssuming tho
● ●** ● ●O* ●e* ●0

as-ymptoticsolution~.~o~b~~.,vi ~z +~~~boundary on each sido -andrequiring
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The eeo.o”~i~’%:;!i:~Y.jl.c& ~m~.’l.?,b~~ ~~o ~ Over the
● ●ea ● ●O* ●** ●0

interemting range of values of k ~ esrxmtially condmni. .4smay ba Is@en

in Figs. YII and VJX2 a reasonably good epproxirnationi~ ai’fordedby taking

C* 4,%0 to bo about .045. This qumt.ity is the deoreaao of We mrWapolated

~l~d.=pointas comp~rod with ito diffu8ion-thaoroticvalu~ measured in units

of tho w.e.anfree path divided by 1 + ft. This constancy is good, in the

final rosult~ of no~t problem, to about one percsnt*

in error for a very Iargs core (honco mnnll ?<.)and a

Accu:rt’yof.’the End-Point Method—.

Sirxx the !!4ilnokornol differs only slightly

St ia most eeriouoly

nearly perfect tamper.

Srom the Wlmwa

kornol it is to ba oxpeo%d that the application of tho end-point method to

okb13 and spheres should give fairly accurate results. The end-point results

for the untamped elab haw been compzred with *ho results of a parabolio

Variation calculation pe?formed by H. lletheand with an asymptotic formula

correot in tha limit of small thicknc~s. lh~ re~Ult of this com~rison is

presented in Fig. IX. The end-point netkod is aeon to be good to within one

percent in the interesting range. A parabolic variation calculation for the

untemped sphere was carried out by Pryce and by R. Feynman. The effeo% of’

tho inclusion of a quarkic tera was investigated by Pryoe shcwing tha quad-

ratic result good to one part in 50,000. No difference between theee results

antithose of tho end-point method was detectable Gxoept for the limiting

value of RF (a = radius) for small a f’orwhich the Qnd-pOint method gives

a result incorrect by about one percent. Ye therefore believe that for un-

‘umped and infinitely tamped spheres the end-point method can be used with
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Gent is not conaiderod oerious. It will be seen in

the end-point method gives very aocurate results in

if an error of one per-

subswxpmnt soctiona that

problem8 far bsyond the

of problems for which it was designed or for which any obvious theore-

~ld-Point Mokhod for Finitdy Tamped Spheres

In particular the exkmmion of the end-point

finite tamper proves to % quite aacurate, as verified

.

method to spheres of

by a numerical itera-

tion solution.

tnmped sphercm

connecting tho

The technique of applying the end-point method to finitely

is as follows: The integral equation gives a relationship

radius of the core, the tamper thickness, the rnultiplioation

rate, and the valuea of f in oore and tamper. Any four of thaw five quanti-

%ie6 may bo specified, ths equation then determines the value of the fifth.

The most convenient of those to leave unspecified is tho radius of the core.

As shown in Chapter I the spherical problem

of tho odd solution in a corresponding slab,

material of thickness equal to the diameter

is equivalent to

problem inwhich

of the spherical

tho detormiziation

a slab of core

core lie8

betwean two slabs of tamper material of’thickness equal to the thickness of

the spherical shell tamper. If the tamper thickneea, multiplication rate,
/.,
i“” and oore and tamper mo.torialaare spcoified then the forma of the “asymptotic”

solution6 in tho core and tamper are fixed as follows: The “solution” in

tha core is sin k~, where x is measured from tho center of khe slab of

core material and k. is determined from the specified fcore and multipli-

cation rate by aquation (3.12). The “solution” in the tamper is
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1,

sinh k~(T + a +Ax~ -

pertics by (3.11)9 T

the extrapolated and-point at the outer sdg~ of the ttunporas given by Fi~.

VI. At the core-tamper interface, x = CL, tho phase of the

is then fixed. Zto logarithmic derivative is “~~1cot~kl(T

diffus.ion-thooroticoore radiua, ~, is then determined by

hyperbolic oine

+Qxl). Ifa

equatin~ this

logarithmic darivakivo to k. Gtn kocio, the end-point radius is a=ao +&.

where &e is given by Figs. Vll and VIII. Since the numerical solutions

(itera%lve)whi~h suFply the chook orJthe aocuraoy of this approximationworo

carried out very early in the praaent study great ecouracy was not required

of tlwm. They were good to about ono percent in the oigenvalue. The cheek

is therefore leas precise than the expected accuracy of this approximation.

Even this oheok, howover~ is sufficiently precise for all practical purposess

Value of tineSolution a% the Surface

Tm the opecial cam of the nonndtiplying untampad equation,

[f.(), with neutrons introduood at ird?inity)the equation of E. A. M&m,

G study haG been made of the character of h(x), the difference between the

actual and asymptotic solutions. In this case the asymptotic soliitionia

linwr in x. The end vnluo, n(0)ti w-s determined by the method outlined

in Chapter 1. If the normalization is such that the asymptotic solution has

unit slope, so that n(x)+x + .710 for large x, then n(0) has the value

.577S. This strongly suggoslx that n(0) is I/&. This is eotually the

2]. The inte~ral equationca~es as shown by E. Hopf by the following method

2) Monthly Notices of bhe Roy. Astron. Me. ~, 287 (1930)
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Jo

wh:lre E is defined in (3020) and L

n(x) =x+#(x) %hisequationmaybe

whom

honco

()1=—
l=rJ

+ E3(x)

wprosents the integral

written,

E(1x - Xel)

.

(3016]

Differentiating (3.15) givas

$()n“(x) = 1 + ‘ x
[

-

~ &.a n(xU)(d/dxf) E(1x - X91)=.=-

Jo

‘-eta

( )($$’[4 = J_
2.’=7, ); E(x) #)(O)C-$ E2(x)
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The flux equation from whic&{3{l&/ is:d&?i&t3e is
● 9** ● ●

● 0
●00 :.0..

[

w x

1) [dx’ n(xt) E2(lx -x’ , .= dx’ n(XW) E2(\x = X:l) s const. (3s16]
x o

The derivative of this equation is (S.15). Evaluating the oon6tant for

krf:e x,

tho value

where n(x)) is well roprosented by Xt + conatantm givas for

of the constant in equation (3.18)

M tj,w,7 ogm evaluate by two different methods tho inte~ral

J
*
d.x#’)(X)E3(x)

o

J
00

d+(x) E3(X)

o

w
J.

=---H fdx E(x) (0) =

H )

il~(x) -J--- E3{x)
2 1 -L

0

sinoe the operator L or any powor of L is symrnetrio.
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[
= 2 *(O) $(0) 1= ; 133(0) = l/3

= 2$2(O)+(O) “3/3

p( )o = vyi-

Thi8 Wmbor, ti$, plays an irn~O,tant rd. in this theory. lt

$( )was nmd for some time for O and for the extrapolated end-point as a

rotmlt of the f’o120wingargtument,owing to Fermi: If n(x) i8 i\”511 rep?e-

sorrlmdby a solution of the form

n(x) = a+x

the su.rfsceis

If this is oqu.atedto the as~ymptotioflux, .1/39 it gives a.=2/3. Using

the cwuneexpression for n(x) in the integral qquwtion (3.15) to computo

a second approximant to n(0),’one has

[

m

zl(o)~ = $ dxE(k)(a +x) = ~a 4 ~

If t.hizzi~ oquatod to a, the valuo.of n(0) in the first approximation,
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“Lhen a = l/2. Sinco in each of them two caloulation8 some featuro of the

first npproximant is identifiedwith the corresponding featura of tho

mcond approximant it iG not surprising that the two rem.al%sare somewhat

plausible -tooqv.wtetlm ratio of the two quantities,

and aooond approximation. l’hisgive~

Angular Distribution of Flux at tho %undary-.J..-

This arugment thus gives correctly fihaond value of n(x) but not

its asymptotic 23near form. This is presumably bacause th~ argument depcmds

@rimarily on the local Iinoar approximation to the solution rather than on

the charaster of n(x) for large x. If thi~ is truo then it is to be ex-

pected that an approximate solution of’tiheform’ x+ ti’fi would givo fairly

wxurately the angular distribution of emerging ncnrtrons(radiation). The

distiribukiofiin angle-cosine,
P’ Ofthoflw &tth”b0unda~i6

J
.%)

f(p) = dx n(x) e
-x&

o

gives
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?his result, also owing to Fermi, ivascheoked by calculating

(1(k) = f(~fl). The comparison is shown in Fig. X (cf. also G. Placzek, ET-6).

A8 may bo man from this graph the angular distribution of emer~ent nautrons

ov xadiation is excoedi.nglywell fitted by the Fermi approximation. The

ratio of normal to total flux whioh is used for calibration is fitted to a

f43wtenth8 of’one percent.

Charpotor of Solution I?eartho Boundary
.

The values of ‘G(k) calculated for the purpose

ware used to obtain an estimato of tho discrepancy term,

of this oonpariaon

h(x). This dis-

crepancy seems to be fairly well fitted for most of its mnge by an exponential,

,,109e-2045 X* The approximate aucuracy of this fit is indicated by comparing

the integral,of this approximation to h(x)

{

co

d.x

o

with the true

expansion of

.109 6.-2.4SX = -U45

value of the integral which can be gotten directly from the

G(k) about k=O. The oorrect value of the integral is

.04766which tiifforsfrom the above value for the integral by ‘?percent. This

approximate fit to n(x) is @ven in Fig. Xl.
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Ij3. ‘fH!I GAUSS lWRPiEL-—.——

Do%s.tion of Gau8s Xerncl by Compounding Wny Elmnontary Distributionfi

2%0 ksrn~l of an integral equation for tho diffusion of nsutrons

represents the diwtribu’tionfunction of the di~placcmmnt suffered tiJ&

neutron between succomivo events. Theso cnwnts need not b collision of I
any typo buk may be more viidolyspnced events. If the di6plamment oocurrlng

betwsen the two significant ovonts 5s ths vector sum of’any displacomwzto

mnsll compared with the ovorall displacements the distribution function will

be approximately Gaussian, This may be seen from the fact that the Fousier
.

transform of tho distribution function of the resultant of many displacemrmt~

i.EItho produot of’the Fourier transforms of the distribution functions of’

the individual displcwemcmts (these distributions being assumed independent).

These individual distribution funotions ccwar a small range in x and thore-

i’orofall off slowly with k’ in Fourier transform. The product of mr~y

of them will fall off rapidly with k so that the individual transforms

.~y~~~~~~$~f ~yir POWs sorios, 1.ark2 . .... .cwt~well represontod•~’

{,$’o~o.nor=nli.zeddi~tfihti~~~~~”~rl$~o~%~antmumt bo unity.) Iho product of
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NLVLysuch binomials i6 appOfl&&&’i~:” b“’~“” in

@J io 3nm12 for c3very r. Tho exponent of the

oompzred with any one of thosa; RO the GQuss function ia ewmrtially dead

beyond this range. TMS Gausa function is t:neffourievtranaforn of the over-

cL3 distribution function, which is therefore also (ku.ssian.,In this doriva-

kion it io aasumed that the suocossi.ve displaoemonts are Zradopendanttwhich

mm “DOt~e only if tho distribution of displacements is independent of

pacition. ThiG trcmtment will thereforo be npplicablo to n~utron diffusion

prablem6 only if the coro and tamper materiala are idantical es regards the

if tho oorrolaiion in direotion and lengths

be negloctod. For the wcdmr-boiler problem with

them conditions will ba approximntoly ~ati~fied.

requirement that no one of the elementary dis-

‘Theoffeot of this chmgc is discuszmd :n the next section. l’hevaluo of

the study of the GSUSII kernel lies in the fact that it i~ a rea60nab2y good

approximnti.onin many problems and has ‘AOf!rooparamters oxcopt for the

scale of size.

E.xtr.epol&todEnd-Point Troatn!ont

In the extrapolated and-point tmatnent of the Gauss kernel a

feature is met which doos no% occur in the preceding examploa. The Laplaoe

transform has tho form o
ekz

which is equated to a oonstant in the

charactoria%ic equation. T.hu8 ckz is the logarithm of this constant, ‘ahich

IVMIO.don-ujmosableinfinity of values. The ckarscteristic cq.nationhas an
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~DIj.~ityOr roots dis~ribttt”edoeaoiang ‘~”h~efhoha in the k-plane. This

di~itributionof.rooks &till permits a vertical strip of regulwity; so no

difficulty Briam in the

The normalized

end-point determination,

thrao-dimensionalChms6 function is

wM3re r.2 is the meen ~quare displacernontof

distribution furiationof the resultant of many

to ‘@ reprcwmted by a Gauss function, ro2 must ba the sum of the

ary moan mpmre displacements..

M the calculations w%ich were carried out with the Gauss

element-

function

tihaunit of length was taken to be (2r02/S)3~2. In these units the di~%ri-

bution ia

Ita ono-dimensional form, in which y rmd z aro integrated out, is

~(x)l,h .-d

which has for its La@ace transform

*k2/4
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equation is

-1= P(k) = O

roots of this equation occur at

k= 2(- ho +2r17@9~ n = o, *1, %2, .......

k = U + it, then

(3.20)

-z~c =Sz-ta

~ctthe roots

the real and

solutions on

lie on a rectangular hyperbola in the k-plane with axes along

haginRry axes. If c is greater than 1 there will be tw6

the imaginary axis, Aiko9 hence there viillexist a sinusoidal

mymptotic solution. If’ o is less than 1 there will be real roots, Akl,

which determine tho asymptotic solution.

‘Ma case of primary interest, for example in an approximate treat.

rneutof the water-boiler, is that for which c >1. Here tho strip of regu-

larity used indefining l?(k) and G(k) is that lying to the right of the

roots on the imaginary axis and to the left of the next roots in the right

half plane. Where 0=0 for XCOP the extrapolated end-point is

●** ● ●00 ●O9 ●a
●** ,

\

● ● *
: :0 ::

xrJ = (1/24) . . ~“~~!i.~~ %P(k)
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written as b’ @2
4 2CC$)/4 CalJ. Since -Eheoontour

the roots at & i.ko, we may Qdd to &P(k) my term

integral. It is convenient to replaoe
L

hF’(k) by k ‘p(k)/(l\~)(]c2+ko2) .
!

runs

whioh

crnw*12ion%3.y by numerical integration up

nmhwlmd roughly for a mmbm of values

integral which now may be em].uated

the imaginary axi.6. XQ has M90n

of c. The l“esd.ts are presented

Value o.tthe Solution at the+Surface—.

The end value, n(0)9 has been oonputed for the linear’solution,

C=lD n(x) = x + .410 + h(x). It has the value l/2. TIXM the chmmter
\

of tho devimtion~ h(x), differs markedly from that for -theMilm kernel.

In particular, the two are of!’opposite sign. This chmge in sign of h(x)

is not surprising sinco the ~mwral appeammm of the Yukawa kernel (for whioh

h(x)sO~ is intermediate between that of the Blilnoand Gauss kernels.
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4,, !ME CHRISTY KERNEL

Derivation of the Yukawa Karnel a6 the Distribution Rmction of Overall

Exponentially Di8tributod in Ruder

A reasonably accurate treatment OF the water-bo~lor problem 6ruGt

taka into account the facb that the elementary diephuxwwrta are not negli-

gible in cornpariaonwith the overall displaooment. h particular, the mew.

6que.redisplawmmnt in the first moan free path in of the order of’half of

the total mean square displacement in oooling neutron6 to thermal energy.

Since most of the oollieions are with hydrogen the correlation in direction

and mtagnitu.doof successive elementary diSpkC@ment6 will be significant.

The diffusion of neutrons after thermalization will not be G&uosi.ansinoo

+AG nl,vmtirof elementary displkxx3mont8RG

tioslly distributed. Tho distribution of

after thermalization haa been shown to be

section 1)0 A demondxation of this faot

follovs:

For a

function of the

well as their magnibudea 58 statia-

displacoments in the diffuoion

that of the Yuks.wakernel [cf.

by statistical arguments is es

definite number of elementary displaoemcmts tho distribution

overall displacement is (4*j-ti2 e-r2/4a w~~h tho LaPlace

tranf3form,
**2 ●

Here a is proportional to the numbar of elementary dis-

placements before capture. “Thi8number of elementary displacements will be

exponentially distributed sinoe tho probability of oapture is the same at

ea,ohstep. Avekaging the Laplace transfonc of the GaUBG distribution with
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which is the lmplace transform of’the

hi tk Gi.m@36t t~e Of tho

spherical core of.s wst9r solution of

pure water -tamper. The fissionable mwter&%l in tho oore nbsorb8 thermal

J .

Xukavm lmrrwl.

water-boiler problem we have s

fissionable matorisd surrounded by a

neutrons and emite fast nf3utronse Tho fissionable materinl of the ooro is

praaent in sufficiently lou concentration that the absorption of ncut.rono

ba$’orothermdizati.on is negligible. The fast neutrons poduemd by fission

are soe.tterodin the water oil’the cor~ and tamper and slowotito thcmmal energy.

Once thermmlized tlm neutrons diffuse in tho wntar until captured, either

&lf’forentin the oore and tamper, owing to.the absorption by the fioaioueble

mwterial, it wo’dd appear %hst the distribution of displncemerrbsbetween

Mermalization and capture could not be described by a displacement lcernd.

The problem can, however, bo formulated as a displacement integral equation

by tho following devices owing to k. Christy and R. Yoynmn:

IleXivation d’ the Chri6@ ?@rnol for the Water-Doiler.-

DerLot6by m(~)

uni-tvolume &t ~ ar16.by

tha unit of time tho mean

the rate at which noutron~ aro thermdized per

n(~) the dansity of thermal neutrons. Take fol”

lifetime of thermal neutrons in the coro material.

9’*
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fad” M&#”s in the core is n(~) v c,

whsre o is the fraction of all thermal neutrons absorbod in the core

material whioh are absorbed in the fissionable material, henco produce

fission, and v la tho number of fast neutrons produced per fission. Let

K(IE=’ Eq) ‘bethe distribution fumti.on of the displacement occurring

between tho production of a fa.etneutron and its t.hermalization. Then the

rato of production of Mermal neutrons will bo

whore the integration is carried over the cope. Denoting by g(g) as

before that part of tho thermal-neutron difitribution, n(~}, which lies in

the core, we may writm this equation as

where .&hointegration mq now bc carried ovar all space. The diffusien

distsnco is smaller in the core than in the water tamper booau?jeof the addi-

tional absorption of the fissionable material. The mosn square diffusion

d,if;tanceir.idiminished in proportion to the absorption rata, i.e. by a factor

1 ==o whoro c ic+as beforo the ratio of the absorption rato for the

fitisioxmiblematerial

fraotion abaorbed by

by -Wnnml diffusion

to tho total absorption rate. ~“hUS ~ - C is the

hydrogen. The distribution function of tho displacement

in the water tamper before capture, normalized to
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unity, is

where roz i6 the three-dimmsional

Y(\r - r’ p

moan square displacemmt. If for the

rfmment we negltnt

the oore tkm

whero the

n(g) = o ((h.:’

pure water.

time in the

kif’otimein

J

Yukmw kerml is

Tho faotor ti(l - c) ari8es from the i’actthat the mean lifo-

core material wa8 taken as the unit of tires. Therefore the mean

waker i8 1/(1 - o), henco also the ratio of n(~) to m(~) if

both are constant. TkM additional absorption by the fissionable nwterial in

the oor@ results in the di6appeara.nceof neu%rons at a rak~ O 12(z) in the

oom, hence at a r&te G g(z)” This disappearance of ncmtrons may be treated

as .snegative souroe of neutrons

henoe remits in a diminution of

- & n(~) where

corresponding to the positiv~ sourco m(~),

tho neutron d0n6ity, XI(E)O bj an amount

Thus the true neutron density is
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Uwe now substitute in thi6 equation

oqu.wtion(3.21) we get a displacement

the e~ression for m(~) given by

integral equation for n(~)

(3.23>

the character o.t’the Milne kernel and somewhat the oharaoter of a Gauss

kernel since the first paths are comparable with the total displacement. Tb

value of the kernel for large argument will be determined primarily by the

first paths giving the kernel an exponential tail as in the Mihe kernel.

“The‘quadraticsingularity of the W.lne kernel of the first path will, however,

bo smoothed over by tho later mall displacements. A very plausible appro-

ximation which oombines theso features is the rmmlt of compounding taMilne

with a Gauss kernel,
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I’heMilne and Gau8s kernels are determined by a specification of their

mean square displacements. The total mean square displacement is the sum

or thescltwo. Th8 total moan square displacement can be determined in a

nunb%r of different way6. Et ha5 been measured expsrimntally and can be

caloula%ed by a var~ety of simple arguments. One such simple argument will

be given below in this iiootion.

2 in FlydrogenousMaterialFermi Formula for Mean r

l’im

c.xm’bctly the

paths and the

bask calculation is that by Fermi whioh takes into account

oorrolation in direction and magnitude between sucaossive

offeot of nonhydrogenous scattorer~. Tho Fermi formula i~
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This formle was incorrectly given in the original articlo~), prosumab~j

by rfmson 03-’typographical errors, and citiodin the incorreot form in tho

4).artiicleof G. Rorva.y The difference between the &o form of the

i’oY’muladoes not lead to a great difference in the mean rx.

TWO different rsothodshave been used to determine

tt’iiwkion of

pmtcs of “W3

QqyM%Emtd

the total mean square displacement ,betwaenthe

kernel. The fir6t method, used by Uhristy, is

measurements the decay rabe of the tail of klw

tho proper dis-

P,!ilrieend (laws

to take from tho

slowing distri-

bution at large distances. This .%~.til,~the

j?o?tof *ho kernel. The oecond method is

the two parts so ae to fit correctly both

coefficient entering in the Milno

[to dis ribute the mean r2 betwwn

the moan square and man fourth

@.mple theory;

The ‘saattoringcro6s swtion of hydrogen follow cafairly good

3.J’vlaw from a f’ewtens ofkilov~lts up to two or threo million volts. The

fniluro of th~ I/v law at ISMR1lenargy is easily taken into acoount since

there the paths are 6hort, hence contribute only to the Gauss part of the

kornol. The angular distribution of hydrogen scattering follaws a coaino

31 E. Fermi, Rio. ~’cient.,~, (2), 13 (1936).
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law for forward scattering. The fraction scattered into a range C@ of

the cosine, ~ of tho scattering anglo is 2}d~ for O<}~&l. %f the

cosine of the Bcattoring angle is ), then the energy is reduced by ‘a

factor ,&2 and the velocity by e factor & Xf we assume that this sngle

and energy distribution and khe I/v law hold down to zero energy, them the

dititributionof displacements in slowing to zero energy is convergon-t.

!doroover~booauso of tho l/v law, this distribution will vary with initial

energy only by a scale fhctor. The linear soale of the distribution will

bo proportional to the initial volociky. This fact permit~ the deterni.nation

of the first few moments of the di6tributicn by a recursion arRument. Vie

chooao for the unit of length tho initial mean froo path. In each stage d?

the argument tho total displaoemont,will be represented as the sum @ the

first path and the resultant of all successive paths, denoted by xl and

r? respectively. The various momnta of this resultant of tho second and4*

cwcoeoding pathsj 520 are relcrtcdto tho oorre8pondi.ngmoments of tho dis-

tribution of the total displacamont, ~ = ~1 +~2, by tho scaling ~elation.

ship. Tho direution Of tho first path will bo taken to bo along tho x=axis .

Tho moan displacement, i?x, (tha bar here repre~ants the average vnlue) is

the sum of th$ mean length of the first path -- ~ definition unity -- and

~~~ x-component, ~zxs of hhe remaining displacement, g2, tho firs% path

of which has tho irieenlength ~b. The mean remaininq displacement, ~2, is

orionted at an sngle of cosine ,@ to the x-axis and is of magnitude #
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.“. 7 = 2,

of the first path 58 exponentially distributed, its mean

the cross term tho averaging over tho lengths ot tho fimt

moan

this that after one colii6ion the remaining mean ~quaro

reduced by half’. TIzeeffect of the first path ie therefore

ckarly not negligible. Tho aorios of contributions t~ the mean square cZis-

;l],:.Ce~n~n.tis rapidly convergent, thus in ueplacing the part of the slowing

tdo?l, 6ay, 30 XV. by an appropriate GauBsian spr@ad tlw subtraction of ~he

af?ec% of this pnrt of the slowing is relatively unimportant.

‘i’homean squ8.rex-component, and the fourth-power displncerfiontarc
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mean squar9 r-componont
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—
rx2

x~component
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Moments of Distribution for Slowing in ‘HydrogenPlus Heavy Material—

This calculation of the seoond and fourth moments do3B not

into account the d’feet of scattering by nuclei other than those of hydrogen.

?&s effect of the inclusion of heavy elements will be taken into account in

two auocescive approximations. In both cases the heavy nuclei will be con-

sidorod infiniiwly heavy compared with the neutron, the scattering olaakic

and isotropic. In the first approximation the effoot of the heavy material

will not be taken into account after the first hydrogen collision. In this

approximationlwehave calculated the mean square and fourth power disp2ece-

men%so The result of this calculation shows the ratio of the fourth moment

to the square of the second momsmt (whioh rakio determines tho distribution

of the mean square diaplaocmxh between the Milne and Gauss kernels) to be

~ery insensitive to the concentration of hcmvy material assumed.

‘l’hoeeoond approximation used assumes a actatteringcross section

fc,rtho hewy material which is independent of the energy. The heavy
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makorial scattering i~ then takcm into

The treatment in thie approximation is

account in all Stages of the slowing.

oonaiderably more laborious than the

pivwoding approximation and has therefore been c~rriod

~l~a~uationOf the a~cond ~oment. “Sincethe dependence

on khe concentration of heavy makerial is 80 sl?ght in

Wily as far $A8the

of?the moment ratio

the firet approxima-

tion it mas considered sufficient to uso this first approximation in evQ.lua-

ting the monont ratio while using the result of tho seoond approximation

motkxi in determining the mesunsquare displacement. ‘lh~second moment is

more aocuratoly determined by the Fermi formula, but this formula is very

in~onveniont to uee as it involves a number of numerical integrals over ex-

perimental arrvee. The mean equtarodisplacement in Blowing in watcw has been

ouloulcdmd by P. Morrirxm5) using the Fermi formula. X@wever we do not now

know whether the oorroct form of tho .Fermiformula or tho incorrect published

form was used. In the absonoo of this knwledge the rowlt of the aecond-

approximation method is the most oonvmiont formula which is of sufficient

e.ocumoy.
●

In the first approximation the scattering probability for hydrogen

is egain taken to be om por unit length for the initial energy and varying

as V’vas beforo. The scattering probability for the heavy material is a

per unit length for the initial energy and zero for

tmforo wa divide tho overall displacommt into the

smaller energies. A6

first path and subsequent
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The mean length of tho first path is now 3./(1+-a). The firs-boolli.sion

oan either be a hydrogen collision, Ivithprobability 3/(1 + a), or a heaw

matorid colli8ion@ with probability 6/(1 + a). U’ %ho first aollision i8

with heavy material, then, since this oollision is i80tropic, the mean

x-compcmont of the remaining paths is zero. If the fir8t collision in with

hydrogen, then since the heavy-material cross seotion i8 to be negleoted

thereafter the mes.nx-oomponent of the remaining paths is just that given

by the preceding cfilculation(3.28), i.e. 1.

‘x = 2/(1 +a)

~2 may be divided into two parts. If the first collision is with heavy

material, with probability e/(1 + a), than r~ s ~. If the collision

i~ with hydrogen, with probability 1/(1 + a), then r?2 is, R8 before, 4.
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Tho rest of the calculak{a~O“r&&* ~.v&!
,.:

same way. Tha result obtained

is

2 1656 + 3176a + 226#a2 + 5s2a3

9(1 +a)~

—-
Tho rntio,

2~k~~z, variee only slightly with a as seen in the following

1

— -----

0 2.875

.2 2.853

.4 2.862

.6 2.887

.8 2.917

100 2.951

In the second approximation tho e$?fectof the noavy material

8cattoring is talceninto aocount in all stagc3s. After a hydrogen collision

tho energy is reduced, hence tho hydrogen cross section is increased. Sinoo

the h~avy

no kongor

a factor ,

material cross section is not increased the scale-f~ctor recursion

holds in the original cimple form. If the velocity is reduced by

AA we may consider the distribution of remaining pathe scaled

dom by a factor > ifalsothe hemymaterialc oncontration, a, is

red.uoodby the sa.mofactor. ~hus
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3 (2 + s)

A gxaph of this function is presented in Fig. XIII.

The compounding of the 3dilneand t?au~sparts of the Christy kernel

Fourier transform. “

aridsynmetric
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Mindex Theory

In compoundj.ngtwo kernels w in (3.26) vJe find the distribution

of the resultant of two independently distributed displacements. TlxJ

Fourior tm.nsi’ormof the distribution of this resultant is the product of

the Fourier transforms of tho distributions of tho two independent di8pleuo-

mnim. Denoting the sedond and fourth mcnentm of the first dialxibution by

a and b, of tho seoond ‘byat and bt~ and of tiioresultant distribution by

A n.ndB,

.4 =a+a”

Thus

Dafine

rn!=s!l.. l, and similarly m and me.
E@

6), doponds only on the character ofexpression M, known as tho mindex

di6ix5buti.onand not on tho scale of’eize,
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Owp = (ma)z + (m$a’)2 (3>31)

IkM”a Gyxm fiumtion, kl=07)e For a MilnQ kernel, ? 4=1.61245,for a

Wkawa kornol, %!=1.0000. Taking E/A2=2.9, aa indicated by tho result

of tho first approzcbwitionmethod for slo’wingin water, gives M =.860.

Writing (3.31) in the form

g2 . J&’ + mez~te

(a +a’)2

shows that the magnitudo of M2 i~ diminished by the

dis%ribukions. This is consistent with the fcwt that

prouoss of compounding

the limiting form of

dompoundcxidistributions is Gaussian, with zero mindcx.

(Wnotanto in the Christy Kernel

In th~ prosont case one of the two functiom is Gaus6ian, honoo

n]8=0.

~2/m2 =[d.+a~gz ‘

#(a +a’) = .860/1.612 = .534

Ono-6ixth of the soeond moment is ?moiinas the “age” of a neutron distribution,

‘thusthe.a~e, ~$, mutt be distributed about equally between the Milne and

of C@MJs distributions
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●

correction is

age of Milno.

to make tho Gaus8 age ton or f?ifteen

Criticnl l&st3of V;ater-E?oilor..——

Tho characteristic oquetion curve has been ca2c~xla.tedfor the

water.boiler karnol,(3~25),for %wo sots of Gooffioientsi 0310used by

R. Christy in hin calculation of the critical mass of the water-tamped water-

‘ooilar=the other corrected by the use of tho results of this calculation

(aoe Fige XIV). Christyto coefficients give the Gauss age about lC peraent

leEssthan the Milne age in tho slcxvingkernel. CorrociinK this rmtio makes

o.negligible ohange in the characteristic equation curve in the nei~kborhood

of the concentration giving tho minimum mass. The extrapolated end-point

7w3 calculated with tho Chrlaty coei’ficionts it? this neighborhood and t%

‘cablybe increamd by about 30 perccxrtif v =2.0.

‘l’he ohange in the coefficients in the slowing kernel produces a

smnll but approciabl~ change in th~ charaatoriskic equation curve away from

the qkbinm ro~iono This would produco scum chanqe in tho oxtrapola.tmdend-
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point. Howevor, it is boliovod that the resulting change in the critical

mass would n,otb9 approciabla in comparison with the u,?certaint~in the

conste.nt6.
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CHAPTER Iv ● OTHER ?4ETWDS OF SOLUTION AND RELATED PROBLEMS.—

In this chapter we propose to disouss the various method8 of

trosrtingintegral equa%iorm, othcw than the end-point method, which ham

proved of value in the present work. The two most important of tho60 are

the variation method and th6 i-terativonumorieal Golution. The variation

method is for mo8t problems the most accurate method of

ueo. It i8 quite flexible and can be applied to tamped

treatment now in

and ufiamped problem

of almofitany shape. However, the difficul~ of evaluating the i,ntegralB

involved increases rapidly with increasing complexity of shape. For this

re;ssonit has been applied %0 only a I%w examples of enoh of several types

of goomotry, spheres, slabs. c.ylindors,and roctczrugularsolids. Nor this

reason it does not secm particularly promising for the solution of probl~mo

. Qf gronter complexity than those alrcedy treated.

The numerical tnothodi~ the simplest and probably the most floxiblo

rml;boriumd to date. Although it is the first method used which gave reason-

q:nlyaccurate recmlts it is tiholeast well devolopod method of solution in

Lll?c).In itm prerxmt ruriimontmy f’orrrrit cm be applied to probleme of oon-

!3Uterablegeometric eompl~xity only with m enormous expenditure of computa-

tional labor. It is hoped that furtheu refinement of the torshniquemof

e.pplicationof this method will mke practicable the solut+on of integral
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wm%ions of type~ alr&&”:7!rilak&”‘9”‘“”, Ior much moro complicated .~oonotry.

h applying this method to the solution of an in%ogral equation oi’t?a

form (1.1) a plausible guess is made as to the 6hape of the function n(~)$

my no[~). l’hisgue=md function isinsertod intherightsidoof theoqua-

+ion and the integration oarried out numerically. The resulting function, ‘

n (A}S is again integrated numerically to givo a n~xt spproxirnntion.1
n.+).

TIIisiteration yocess is continuod until the .ew~ess5ve approximants difi%x-

only by a multiplicative factor. Ibis factor is the highest eignnvalue O.

Sinoe no(x) oan be ropronented as a superposition of the solutions of the

Ma3fgral equation for variou~ eigonvalues the rapidit,yof corrrergoncoFill

bn dGlx?rminedprimarily by the ratio of’tha higheBt to tho second h2@Gst

Cigcmvfdue .

of 1.5 or 2.

0:? c Which

integrations

In tho problems so far treated this ratio haG been of the order

Four or fiva iterations are WnN211y 8uf’ficientto Rive a value

is stable to e.feiitenths of ono percent. If the numwical

have boon carried out.Properly this will be the EIccurncyof the

solu%ion. lki6 method.has so far been applied only to slabs and spheres

where tho int~gral equation oan be reduoed to one in one dimension with a

dis~lacomont kernel. The itorakion procoss can thonb% sot up in 8 very

simple form and cnn be carried out by ralativoly untrained computers.

The iterative nunmvio”alsolution ia of’psrtioular value whm not

onJ.ythe oigenvaluo but also tho aigmfunction is dosiroi. k number of

solutions of q?herical pro-olomsfor the ‘dilnekernel have bosn ~btained.,

howover, with fairly urude integration techniques. (Trapezoidal integration

ia used except for the singularity of the kernel.ivhichis tmalmd to give
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curves obtained aro given in Fig. XVI. A more cweful cohtion fix R

1..6 and 20

In

Ckisplacomont

The rosultin~ curves are presented in Fig. XVII.

the numorioal treqtmmt of’spherical and slab problems tho

character of the one dimensional kern91 permits a very 8im@0

int~gration technique. The sot of numerical entries representing the 2cernol

is written on a strip of paper. The numerical ontrittsof the Euocossive

trld funotions are written on a parallel strip. The inte~;rfitionis then

performed by m.umningthe products of sdjncen% pairG of numbere, the value of

z being determined by the position of the center point of the kernal. A

difi’orentvalue of x is gotten merely by displacing the strips. The

numrical treatment of problemtifor whioh the one dimonoional form of tho

kcrrnolhaB not this displacwnont property, e.g. the infinite cylinder,

would requ.iromaking a s~prate !mrnol strip for cIaGh value of x. ‘fhoi%e-

r~tion -methodis~ Of ooumet not restricted to problem which can bo reduced

to one-dimensional integral equations. However, the application of *he

mothed would boeome prohibitively laborious if tho number of entries for

integrationwere large. It is h’opedthat the uBe of powerful imegration

methods and tho judicious choice of representative re@ons v;illgive reason.

R“Dly&ocurate results for a moderate number of sntries. Pro2iminar~yin-

vestigations are now being carried out. These indicate that it will lm

poosiblo to uso this method for a limited numb3r of’problom~ of complicated

epxnetry. The results of those may be u3ed to validato simpler recipes

~;hiohoan be app).i~dLo many cama.
—-
* ‘lhisdescribesapproximately e water tamped water boiler. It is “untamped”
in kbe sense that the integration is carried only over the core.
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Variation Method

The variation method of solution of?inteK.-aloqu~tions here d.eo.lt

with is ementially an appliostion of the familiar Ritz method of solution

of differential qmtions. The kernel is hero a fairly smooth function ex.

tending over the entire region of integration, thus small errors in the

oh+% of the trial fimction are much less important ‘thanif the kernel

involved only a delta function and its derivativ96. Thus, for example, in

the treatment of the untampad sphere a parabolic trial function (one &ee

prnmter) proved far more accurato than necessary. The cordent trial

f’~{notion,however, ia not sufficientlyaccurato for *he sphere. and presumably

would bo still more unsatisfactory for more oomplicwted shapes.

h the variation .“,athodthe

is expreemd by tho

Wlr?) =

variation equation

integral equation

wilere

and ~ denotes variation

c, is of interecit,hence

(4”1)

.

of n(~). Usually only the a.mallesteigenvalu~,

the groate6t maximum of l/N. This method has
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{>bkainedand a comparison with the end-point method results are given in

Figs. XVIII, A, E and C. For tho simplest shap3s the oaloulation was

wually mdo with e.constant and with a parabolic trial function. Tho con-

stant trial funotion rmult is givan and also the minimum obtained by vary-

ing the ono effective free paramotar in tho pora-boliotrial Lfunction. Tho

non-oubical reat8n@lar solids wore calculated with two free parameters

and bho finite cylindevs with thres. Xn all case~ the end-point method was

used to extend the fe% variation results to other sizes.

~za~ Bo-dary Condition Method

AnOthOr ana~ytic approxtiation method which wae used in the

eerly stages of thi~ investigation,tk.eintegral-boundary-aonditionmethod,

gives rea.eonablyacaurate results. In this method tho asymptotic interior

solukion is used throughou~ esch region of’constant F. Ihc phases of these

interior solutions are determined by tho requirement that at the boundaries

*M intopyal eqxationbe satisfied (cf. LA-5).

of asmming the several regions infinitely thick

Here also tho approximation

is of value. For example,

ii’we apply thi~ boundary condition to an untamped surfaoo with the ?.Ailne

kernel wo havw,

n(x) = sin ko(x +xo)

*zn %o =
H

dxE(x) sin ko’(x+xo)

c ah koxo ton-l ko !.,L(1 + koz)= + C?G08 k@o
2 ko 4?C0

“~
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This, with tho charecteristiicoquetion (o/’kn)tcm-l k. al, gives

A oorap.arisenof the value of X. so obtained with tho extrapolated end-

point solution $..8presented in thi6 table

1~ -1
0 ‘o-——__ _ -.

Integral J&brapolated
Eound. Cond. End-Point

o “5 ~7~~

06 .4?2 .6590
100 u416 .5564
105 .S60 .4668

2.0 .314 .3954
I

WIC!sh~~~~t~i~ ~011.ltiOnto be reasonably aacura’tefor the interesting range

Of k. and most inaccurate for srmdl k. i’Orwhich such inaccuracy i.8

1.)sssignificant. This method is moro accurate in tamped problemo whero

tho deviations frointho asymptotic solution are smaller. The only advantage

?t’this method over the extrapolated end-point mothoctis the mee with which

it can be uppliod ko new k@~J?e~8. ‘fho inijegralginvolved can usually W

easy”numerical solutior..
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Albodo Of an 180trapic Surfaoo Source

A problem closely rolaimd to

of *he integral oquati.onis tha albedo

tsolu%ionof thf3same integral equation

that of the one-boundary solution

problem. Here the inhomop:aneous

is sov.Rht,tho inhomogenoous term

bsing a surfaco flux of incident neutrons distri.butadin angle in R speci-

i’iotiway. The general case, i.e. for an arkitrary anqul.ardistribution of

incident neutrons~ has been treated exactly by !.Wporn, Lueneburg and Clark8)0

Thnir treatmosrtuses much ths same method of analysis as the present extra-

polated ond=point method. It wao their troatmont which suggastod to us

‘Ghisiine of attack on problems

tho albsdo problem which can be

this. As this method may prove

of thie %ypc. There is one special cane of

solved exactly by a much simpler mekhod than

of value in rolalmd problems WQ present it

here= This 8pecial case is that for which tho number of incident neutrons

is uniform in angle. (T~s dist~ibutioflis tO be distinguished from that

called isotropic by lialpern,Luenoburg and Clark, which has its flux uniform

in solid angle.) The incident distribution treated here mi~ht be realized

5y irrfidiating

on the surface

of tho fission

in angle. The

.

with thermal neutrons a thin layer of fissionable materiel

of the half-infinite medium Wh08e dbodo is considered. ml f

neutrons produced will enter the scattering modiutnuniformly

scattering material is assum~d to produce only isotropic
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ela8tic scattering

We first

m3tiiumand compute

I;haboundary after

=82-

and absorption.

neglemt the absorption of neutrons in the scattering

th6 fraction of th~ incident neutrons returning across

any speoificd number of collisions. By summin~ thi6

ewies with the appropriate powers of tho reflectsd fraction in eaoh Golli-

xion the total albado is obtained 8s e function of the ratio of 6c~ttering
.

nntinborwtion oross soctiom. Ye first compute tho fraction returning

.dt@r n collisions for the first few in-teRcrs. Iho series suggested by

thio result is then verif’iodby matheritical induotion.

Tho fraotion of the incident neutrons returning after one collision

i.,me f-ourth. This follows from the fact that the inoident neutrons aro

distributed uniformly in (the cosine of’ the) angle between O and #2.

Af’%orbeing onto isotropically scattered, tho neutrons are divided into @o

equal parts, those 6till qoin.gforward and th06e returning. The returning

halt of the neutrons aro distributed in angle about the outward normal

oxe.ctilyas tho inoident neutrons were about the imard normal.. l’hm their

distribution of x-component path length before collision (x parallel tO the

normnl.)is oxoctly that of tho incident neutrons; i.e. their distribution

in distance from the boundnry after the f’ir~tcollision is tho same as the

di~tribution of (x-component) displacement before having anothor collision.

Of tho half of’the incident nGutrons returning tmrard the boundary after the

first collision, half.will moss the boundary without suffering Q further

co113.sione
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Fig. IX

The fraction returning after %wo collicion8 w divide into two

parte; thoso, f>, still going forward after tlmir first collision which

came back after their second oollision and oross the boundary without

&Qrthor coUisiono, and those, f2, which are returning after their first

Collisions, have anothor oollision boi’orereaching tho boundary and then

cross tho boundary without another collision.

<
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“ia””~h~probabil~ty, that a neutron i.13

going forward after its first collision, times tho probability, l/2, that

it go backward after the seoond collision, times the

“mckward displacement bo greaker than the 6um of’tha

men%s, The fraction, f2 > is tha probability, tiz,

probability that the ‘

tWO forward diS@tiC@

of going backward after

the)first collision, times the probn.bility,2/2, of Roing bsdcward after the

seclondcollision, times the probability that the forward displacement be

Ie&s than the sum of the two backward displacements but not lesq thrinthe

first of th~m. Tha mm of the.oeis

“1~ 1~lP(l+2 <3] + ?(1>2, 1<2+3]
-L

where the first P rqreaents tho probability that the’sw of two displace-

ments be greater than a thirds the second P the probability that one

ciisphuxxmnt be groator than a second but less than this second plus a third.

The first P may equally wall be written P(3 > 2, 3 > 1 + 2), the pro-

bability that one displacement be greater than another and aleogrea,ter than

this other plus still another (since if it isgreatar than both it is greater

than either one). Since %ha indicosn 1, 2, 3~ have no Spoci.alsignificance

hyond laholing the several ~ths all of which have tho same probability

di~tribution in length, th~ sum becomes
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probability that any one path excosd another.

Fig. XV

* p(2<l,4+2>l +3)
\
J

+ 2)

i

+ P(2c1, 4+2>1 +3) .
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P[Is2+3) +P(3<1+Z, 3+4>1 +2) = 1 0P(3<2+2, 3+4<1 +2)

= :L-3?{3+4< 1+2)

NW total fraction returning alter three collisions i= then

~$.imilo.rlycalculated, the fraction returning after four coUi8ions is 7/128.

The series of coefficients, ti4, tie, 5/64, ?/328... C=a 5S va’i”kkeuas

suggesting that the fraction returning after n collisions~ Yn, i~ ~2n +l/22n
n

where”
%

is tha number of co,mbinations of a things taken b at a time,
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Thus after n paths (at th~ nth collision) tho fraction remaining is

~2n//22n-1 . V@ show thd this is truo for all n as follows; Tho serieb
.n

of n paths joined by the n-l collisions can bs represented as a series

of cyclas$ eaoh being m excursion into the scattering medium and a turning

bauk. Each of the n“ paths exoept the first is equally likely to be

qirectmd into the medium or out. Similarly eaoh exaopt the first is as

I.I)KoQto be direoted in the same souse as the preceding as in the opposi%

mneo. Thus at each aollision there may or may not

?iky, an inversion of direction. The first, third.

inversions determino successive cycles. If n is

may be at most s oycles. The number of cycles is

“be,wibh equal vrobabi-

fifth$ Qtcs, such

2s or 2s+1 tlzero

half of the numbsr of

invor~irms or half of’one plus the number of inversions, Y;hichevcris

ir~:egral. Thus for n-l collisions 8apz3rating n paths, the prolmbiiity

that there be s oycle8 is the probability that there be among the n-l

collisions 2s-1 or 2s inversions. This probability.is

Tho total displacomont in each cycle may be either positive or negative
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MNJ i3 the GJ-MWfor otichof &ho s cycles so long as the number of paths

}.nihe various cycles is not specified. The probability -thntnowhere in

?<llga CVC1OS does the -pathcross the toundnry is just ono half C? tho

“@3tawe only half of tho tine for tho first cycle.

Ke,rmke the annatz that the fraction of neutrons ramainin~ after

n px~hs is c2rY22f~=l QC suggested “oythe first i’owterms. Then since
n

the first line & argument used to find thi~ probability applies equally well

,.,.,ita fi~tiriosof n cycle6 (excapt for the i?actor1/’2)it must bo true that

ill-wprobabi”litiyof romainin~ after n oyelt38 ia C~,[22n. Since, however,

‘Mm probability that in n paths th~re bs is CyOleS is on
n-1

~b\2 and

the probability of remaining in the “mediumin these s Cycles ie c:~/22B

the total probability of remaining after n paths is

wlmpg the summation is carried ovor all integers, s> for which tho tWO

combinatorial symbols do nat vanish. ‘fhisexpression will bo recognized %s

th9 constant term in the double binomial expansion of
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cIfwhich tho constant term is Cjn/22n-2. Thue if the .answbzis truo for

~ntegerr3up to n$ it must also be true for in’to~er~up to 2n. Since it

58 truo far tho first few values of n it is therefore truo for G1l n.

ikving no~~the fraction of incident neutrons returning after n

eoiii~iona in tho abaence of any absorption, we compute tho albodo as a

:[’unctionof tho amount of absorption by multiplying each auoh fraction by

tho appropriate powr of -therefloctivitys a, i.e. the fraction scat%ored

C% onch collision, ond summin~ on n. Ibis k;ive~for the albedo as a func-

tion of the reflectivity, A(s),

A(s) =
2.2/i.:-

- 1.
E

This result is consistent with the asymptotic

the cn6e, 1 - 8<<1, A(8)S1 - z~~.

f~iaotropicl~incide~ois given in Fig* Xn’

formula deri~cd by Fermi for

A graph of tho albedc for
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Another related problem is that of the detonation probability

for slightly hypcn?oriticaldistributions. For tmuh a distribution of

niwbrinl an initial didwibution of neukrons is certain to increaao 5.n

number exponentially to the point of explosive expan6ion only if tho

initial numlm’ is so great tihatstatistical fluctuation canbo negleG-&Xi.

A question of in+xweat, therefore, is the probability thn% a single neukrox

introduced into the distribution of material ccmposinq tho ~wiget in some

rmdom way load to “i~nition”. For simplicity

W.y“ in which -bhosi.ngloneutron is introduced

tion whioh is of the mm shape an the c,patial

we E2S6UTM3 that the ‘irandom

hwre Q probability distribu-.

dOpr3nd6nU0of the hypor-

crikioal ~oluizionof the integral equation. The extent ta which tho distri-

bution of material is hypororitical idll he d.efirwdby the assumption that

ihe probability that n mmtron in tho gadget produce a fission proce~s

(thus giving twoneutrone) is p,

oaptured without produoing fission

so defined, tho number of neutrons

Zp = ~ .,>~. This excoas, E, is

X5 de,noteby Pn the probability

nautrone lead to ignition. Since

the probability that it GEGapQ or be

is q = 1 -p. Then in each $cnxmxtion,

increases in the seen by a factor

that nn initial distributioriof n

th3 timo scale is of no significance in

this problem, we disregard tho actunl order of the procosse~ involved nnd

consider that first ono,.then another, etc., of tho ceutrons mkes the choice

botwocn dmth and multiplication. Rith this view it becoms clear that
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with the condition

PO= O, P==l

N(3100IC fO~ R solution of the fo~l pn ~ an, or a linear combination of

two such solutions (the difference equation is linear and hcxno~eneous).

Inserting this

a=

a=

Pn =

PI =

form for Pn givm

paz+q

Thus the ignition probabili~ is small for slightly hyparcrj.tioaldistribu-

kiona and increcums somwhat slower thar, linearly for increasingly hyper-
.

c:riticaldiaimibutions.

A% a time conaidarably aftmr the intiroduc%ionoi’the single

rmutron the expectation value

num?xm of neutrons that would
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expcnon%iallywithout statistical fluolxmtion. Since this fluctuation’

gives only a mall probability that there be any neutrons present (for

small e),,then the mao.nnumber present if this number is other than zero,

5..6. if’ ignition has oocurrod, must be greater by a factor (1 +e)/2e

than the number which would be proauced by a smooth non-statistical growth.
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‘“ CHAPTER V, EXTENSION OF TEE EXTRAPOLAT13DENi)-POINT

,, METHOD TO OTHER SWU?ES

1

I
I

I
I

The end-point method givm a rigorous solution to displacoraent

ir,tegrt+equationa where tho range of’integration covers all space to one
1

aide of a plane boundary. It vra~shown in,Chapter 11 that thi8 solution
I

f’cIra half-infinitb smdiusncan by used to supply a recipe for the solution
I

of’r+s~ and sphere problems whioh is correct in tho limit of large thick-

ncse or’diameter and which should be of sufficient nocuracy throughout tho

irrtores$ingrange of sizas. A comparisokiwith the variation-method results

juatifika.thisexpockation. There are many problems of interest in the

prmentwork involving con~iderably more complicated shapes. It will bs

shown i~ this chapter thnt tho end-point method can be applied with reaeon-
1

able aa~urecy to
I

Riven t~ justify

more co+plicatod

many such problems, even where no simplo argument can be

the accuracy of the approximation. In a few problems of

shape both tho variation and end-point rcethodohave bean

1

appliod~ ‘l’heclo~e agreement of’the reeults of tho two calculations is,.

‘takenap evidmce that the and-point method can safely be used in still more

oomplicatod Caoest for which the variation method can be used only with a

I
‘ prohibi$ivo amount of labor.

I

)

1

1“
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\ .!. ‘IIIEINFINITE CYLI1?DER”

The radial dependence of the asymptotic solution in the interior

of an infinitely long cylindcm is Jo(kOr). The true solution will drop

below this asymptotic solution near the surface but will not roaoh zero,

The edgo~of’tho cylinder ;rillthoreforo .noourfor an r somewhat smaller
I

than thalfirst root of Jo(kOr),

first rook exceeds the radius may

has not o far proved pos~ible to
i

i.e. 2.4048/ko. The amount by which this

be called the “cylindrical end-point’a. It

identify the cylinder problem with somo

corresponding plane problom.
I

is negligible, this end-point

I
surfaoe.~ Moreover it is ~oen

However, for largo radius, where the curvature

must hnve :he same F-dependence as for a plane

from tho analysis of Chapter 11 that curving

the surfkce in both directions, i.e. in replacing the piano by G spherical

rmrt%co,~the endpoint distance is not changed. This suggests the hypothesis

that in lintroducing& aurvature in one diroc%ion, i.e. in replacing khe

I
plane by;s cylindrical mrface, the and-point distanca will still not be

greatly phanged. he theruforo calculated critioal radii for infinite

cylinder~ of F-values by iaking the radius less than tho first root of the

Jo by t~ same extrapolated end-point

and sphe~o. The critical radius for a

culated by the varintion nethcd (D. R.

distance FA8that

fow values of J!

I!@is, LA-26).

utiedfor the slab

has a160 been cel-

Both results are

preuented in Fig. XVIII-A. It may be seen from this fi~re that tho diB-

crepnncy~ if my~ is lerj~than the accuracy of the variation calculation. ,

This verification of the hypothesis used in this ro~ipo for the end-point
f

oolution of cylindrical problems ext”endBthroughout the useful range of radii.

I

I
1
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I

be Im follows; The asymptotic solutions in the core and tampsr are the

Bomsel=funckion solutions for tho values of k. fixed by the charnatieristic

equation; If the tamper is finite -thephase of the asymptx?ttcsolution in

the tamp~r is fixed by putting its first root at the extrapolntsd md-po~

distancelbeyond the boundary. If the tamper is infinite, re~lmrity at

infinity:deternineathe plmse. The boundary condition at the coro-tamper

interface requiro~ that the logarithmic derivatives for the oore and tamper

1
?

0- ~-

asymptot$c solutiona~at a radius which is less thsn the actual core radius

b“bhew ~ o“ Both the end-point, Xo, and the discrepancy term Ax.
I

are to b+ taken from tha graphs calculated for plane problems.
I

; No sufficiently accura+;ovariation solutions have co far been par-

formxi f+ tamped infinite oylinders thus no oheck is available on the

aceuracy!oi this recipe. However, because of the close ~hock for untamped

1

cyl:~nderqwo are confident that this recipe is as accurate as is necessary.
I

2, FIjl.C’f’ECYLINDERS

I The SUCCOSB of the extension of ,.heend-point mathod to infinite

cylinderq encouraged the attempt to find a similar recipe’for untnmped.

finite oylindors. The folloxinR recipe i~~stried; For a definite value of’

F tho in~arior solution is fmken m 00S klz Jo(k2r) whero z is distance

from ‘bhalcmter, parallel to the axis. klz 2 2+ k2 = *KO where k. is
I

detormin~d by the chzuwdxristio equation. The

I

half-length of the cylinder
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I

I

h taken less
I

the rad$us is
I

where *O is

boundaries in

● O ● . .

● *e ●*O : 9**.
99***
● **

“=‘“:’~-k-●
b09
. . . . .

● * ●:. .*. ,.. ● .* . .
● 900

● *9. ●0::● 0:.●:.. be

than tho ~ir% ;oo~:~f:““c%”k~,z by the amount XO ● similarly

taken less than the first root of Jo(k2r) by the amount Xo,

the extrapolated end-point distance calculated for plane

the absenco of kransver6e wavga (i.e. X. is deterninod only

by l?).~Thus the asymptotic solution vanishes everywhere on a cylinder whose

radius @d half-length excectdthose of the actual cylinder by Xo. It is

not clo& how well this solu~ion kremt~ the neutron distribution near khe
I

edges. ‘It might equally XOII have been assumed that the surface on which tti

1.
asympto%xo solution vanishes is that surface, all points of which me at

1“

a diaka~ce X. from the nearest point of tho actual cylinder of material.

This su~face is a cylinder with its edges rounded off’to the shape of a

I
toroid. ! The solution of the wave equation with this boundnry condition is

much mo~o complicated than that first tried. Since tfi:.suncertainty in the

Lreatnxentof the corners exists it seems unprofitable to include in tho

recipe -& further complication of talsin~into account the effect of the

trnnsve~se varia~ion of tho solution on tho and-point. experience with the

cuba (cr. Seotion 3) indicates thnt the error nmdc in ne~lectin~ the trrans-

vcrse wa@ is of ‘thesame order of ma~nitudo as the error in the treatment

I

of the cprners &nd od~os. Since both the transverse-wave effect cnd tha
I

off”octok tho inaccuracy in the tre~tmont of bdqea.!md corner~ arc zmall, it

is to be:expected that this recipo for +Ae troatri@n’tof finite oylinder6 will
I

ha i%irl’
Y

accurate. A number of Special ca8es were treaked aiso by the

varietio~ method and no discrepancy greater than a fow tenths of one percent

W2S foun~. The dwtails of both trea~ments and a comparison of the results

I
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is giv@l in LA-31.

I

treatmept are given

I

1

I For
I

corresp~ndinq

corresponding

solution i’sa

is determined
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● **,-*$●

● O

::
::
&xtrapolated end-point method

hero in Fig. XX.

the end-point treatment of tamped finite cylinders a reci~e

to that of the tamped infinito cylinder can be stwtod. The

recipe would be aG follovm; ~n each medium the asymptotic

rmlut,ionof the wave equation in which bhe scale factor, ko,

by tho oharactoristic equation. At ench open boundary tho

condition is the vanishing of the asymptotic solution a aistanco Xo,

det%ned’as before, beyond the boundary. At each interfaoa between two

imaterials the boundary condition is the equality of tho lognrithmiu deriva-

1

%ivcm a% a distance &o into the medium of lower 1?. If the tamper isa

conoent~ic cylinder of the Dame length as the core, thin recipe am bo

applisd’with reasonable ease. If tha tamper extends on all sides of tho

cylindr~al coro the application of this reoipo beoomes very difficult since

no simple solutions of the wave equatione give equal solutions and derivc.-

tives at the extended boundario~. For suah problems, some sort of numerical

sclution may provo more useful.

I

jy Itwrm(wimsomls

I For untampod raotangular solids the sam recipe as thmt used

for tholfinito cylinder has been employed. The asymptotic solution is
1

required to vanish at a distance % s again a

I
I
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(W8 klx 000 kzy COS k i,
3

klz + k22 + k32 = ko2

most convenient prooedure for finding solutions i~ to fix F and two of

linear dimensions. F determines k. and Xo. X. and the two linear

W.mens%one f% kl and k2, hence k3. k3 and X. then determine the

romaini& linear dimension. Variation calculations havo been performod by

Ohm and Davis (LA-47) for ecvoral cubss ad several rectangular solids with

done f3q,arecrows section. The end-point and variati.onresults for oubes

aro giyen in Fig, XVI. Tha discrepancy.eabetween the end-point and variakion
I

rosult~ are of the order of l/2 to 1 percent for both oubss and rectangular

solids! In an attempt to determine how this error is distribubd Ix%wez.
I

,

the va~i.ouaroughnesses Ln tho treatmenta few of tlm ouboe were recalculated
I

taking’into account the effect of the transverse wave. This overaorrecte

tho error by about a factor of two; thus the error with this correction is

about as great as before. Xt would therefore seem that the error arising

from the negled of the transverse we.veis of the ~ame order as that from

the ro&@ess in the traatmenb of corners and edges. St is therefore an

inconsistency to correct one of these errors without correcting both.

]
For a tamped rectangular solid tho end-point recipa is the same

a(~forlthe finite ciylinder,the asymptotic Bes8el funot.ionsolutions having

I

been rqplaced by tho appropridm cosines (or hyperbolic ~Wnotions in rcgiona
I

wlzem i?is 10s5 than one). Iioretoo the actual application of

condition between the core and tamper may be very tedious.
I
I
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Tho exceedingly acourate results of the end-point method in

treating slabs, spheres, oylindors (infinito and finite), and rectangular

solide suggests that it can be wrtonded to more complioatod shapes. Yn

particular, ita succese in the ca6er3of cylinder~ and racimngular solids,

whom we have not

sida?able support

can be determined

found a rigorous tlzooreticd motivation for i%, gives con-

to our a6sez’tionthat the wctre.polatedund-point diwlxmce

only from F and is independent of the particular sym-

metries of the boundaries; ioe~ it is tho same function of 1? for all

6hapes -- Slatispshperos, cylinders, rectangular solids, ice cream Gongs, etc.

Hence we enunciwto the following reoipa for the extrapolated end-

point method, which oan bs applied to any shaped solid in which all surfaoes

are exterior surfacesi i.e. no part of’ a surface can seo another parti

hollow objeots and objects having sawtoothed mzrfaces are excluded; In

each medium (definite F value) the asymptotic solution, which AG a eolution

of tho wawo equation with the umgnitude of its propagation vector, ko,

datmninod by tho characteristic equation, is establi~hed. (It is assumed

that the thickness of the medium is not small compared to a moan free path).

At all open boundaries this asymptoticwave-equation solution is taken to

vanish at an extrapolated end-point distance X. (a function of E’ alone)

beyond the boundary. At each intorfnco between two ms,te--ials,the boundary

condition is the equality of the Iogarikhmio derivatives of the two solu-

tions at a distance &o into the nedium of lower F. The values of X.

and &x. are th~ values belonging to the plane problarnof the same F. (Cf.

IWgs. VI, V119 VIII for the Milne kernel, Fig. XV for the Gauss Kornol.]
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Ono shnpe to which this recipo is easily

of material bounded by two surfaces, one

&pplicGble is m untxunpedchunk

plane and ono spherical, so

situated that the expanded surface on which the aaymptoti~ solution is to

Vmish is a hemisphere. The

condition in
m

then ico is 1.261 and X.

an argument of 4.4936, hence

litmma 3..0!56. The volume of

wave-equation solution with bhis boundary

P,(c08 e). If, for example, we take 1?= 1.4

is .5084. The first root of J3/2 occurs at

at a radius of 3.564. Diminishing this by x.

tho resulting “half-loaf” i~ then 45.0 which

is 38 percent greater than the volume of’the critical untampd sphere of the

~mmo F=valw. If we oompare this result with the minimum volumo for a

finite oylinder (at a length slightly less than the diameter) or the volume

for a oube, both about 5 or 6 percent greater than tho volume for a sphere,

it is seen that tho excess volume increases first slowly, then more rapidly,

s-athe departure from spherical shape increases.

A more general shaps of which the above is a spcoial case to

which this nmthod can be applied with roaoonable ease is that of the

untamped ‘~icecream cones’,ie~. a convex’mass boundod by a cone and capped

by part of a sphere. Tho radius of curvature of the sphorioal cap and the

l.ongthof the oone may not be choson independently but are ralated through

the angle of the cone and the value of F. The angle of tho cone may bo any-

thing between O and Y/2 in co-latitude. W general the order of the

h~endre and Bessel functions will not be simple (e.g. integral or half.
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In generals any shape can be treated by this method with reasonab:s

ease if the surface obtained by expending in thi~ way by one extrapolated

end=point (a function

vani8hea.

of F) is a surface on which a known wave funct3.on first
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CMPL3R VI. THE EVALUATION OF EQUIVALENT CONSTANTS

In Chapter 11, Section

tho multiplication and diffhsion

%, we set up the

of neutrons. H

sII processos are isotropic and that the neutrons

i.ntegrnlequation

wae thero assumed

are monochromatic. In

problems of physical interest those asmmptions are not justified. Ao the

axaot integral equations, taking into account both the anistropy Jr scatter-

ing and the spread in energies, is much more difficult to solver we look

for appropriate av&ago constants to introduce into the simpler integral

equation which will take aacount of these effects. Sinco the size i~

determined primarily by ko, the root of the characteristic equation, and

only secondarily by the extrapolated end-point, we choose the equj.valent

constants to give

thn.tof ko.

.

k. correotly and disregard any effect on X. other than

The Veloci&y- and Anglo-Dependent Integral Equation---

The full integral oqus.tiontrdcingboth effects into account is

~~h~r~ n(~,v$t) is the density of neutrons at point ~ti volooity

/

v.-* and
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=lo3-

at tires t. Here $ denotes a unit vector in the direction of the vector

W6-* is tho distance from the point g in the direction g, a(\+ is

the total probability of scwt”ceringor fisnion pm? unit length at velocity

v. o=3(ge”+~) i~ the probability por unit length of the scattering of a

neutron of velooity yg into a unit veloci~ volume olenent at ~.

af(~v]) is the fission prcbabi.lityper unit length and %(y) the fission

6pectrum0

Equivalence o.fthe Boltznmn Hquation and the Integral Equation.—

This full form of the integral equation may ba doriwod from the

Bol.tzmanequation as follows;

dn(r,v,t)
- + (~.y) n(~,v,t)

bt

whore

dei’ine s as before so that SSO at r, increasing in the direution of -v.
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my.co ,

Tho solutions of equation (6.1) in full open spaec have fsmtorablc

tine, and velocity dopcndences.

-.
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-Io!y

of ~. Than (6.1) beoomes

Jo

?83..
J AIW30TROPIC SCATTERING

We here assume that

uni.~y. Then (6.3)

n(p) =

Fission will still

d.epu..d011 /4, the

%0(/4

then

●
y(p) =

becones

2

the offeot Of anisotropy

the neutrons have

P.

-\

CT( ‘ -+)
d~’ +

a+~+ik}l

of scattering and

only one v010a5ty, Bey

no! )

be asmuncd i.~otropic,scatteringwill be assumed to
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-1o6-

jy~]~~~ c = (yO + Of and f’ = (Y -1: of/(co + fff). If the original

direction makes en angle cosine, ~’, with the polar axis, we ~xpand the

Logendre polynomials in term Of spherical harmonica in ~ en< ,fie.

,Woraging over tho azimuth gives

:?-=:, Z.y +’ ].
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beyond ro
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may be disc&@8. : ‘N& R+ha”fningequations are a finito set

f as a function of the remain-

-if

i.fl

This expression for k hae been evaluated for several values of

for 1’= .5 with an assumed dependence of cross section on aggle which

plausible for the ecattoringof neutrons around 2 Nev by heavy nuclei

(two Fig. XXI). The values of k resulting were

obtained from the simple characteristic equation

1 *W’C—— = ttm”l (k/a +“$)/(k/a +lo, “
l+f

COlIlpW3Ci with ‘&OSO

.

in which u has boon taken throughout to be tho transport average of the

cro13ssection, G - (3/3)01. The Wa.naport average was also v.sedin the

definition of f, (v - l)af/G The hvo values of k

pwcent throughout the significant range.of ~. Sinca

varioue cross sections and their angular dependence 5.s

agree to about one

our knowledge of tho

fairly rough, this

ivouldindicate that Sufficiently accurate results may be obtained by using

only the transport cross eection throughout the problem9
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in (6.3)

averagee

To study the effect~ Qf velocity spread we take all cross wctionc

i~otropic, or what is approximately aquivelenti,the tranaport

are used throughout.

g(v) = + lxm=l
‘*T

\

dv’ C$(V’--Mf] ~(V’) (6.6)

where g(v) = vn(v)

Z’hisequation (6.6) can ba solved by iteration accompanied by readjustment

at each stage of tho constants entering. iiithcertain choices of the forIs

of ‘chooross seotion, C$(”rl+v), it can be solved analytically. @10 mmh

is the following, owing to R. Feynman:

a(vc~v) will oonsist bf three parts, olastib and inelastio.

chattering cross seotione and t:time~ the fisoion cross section. The

elastic oross section is ae(vs) ~(vw I=v). The fission cross seotion is

factorable, (ti@)~f(v’) X(V) (~~lere % isno~a~i~edtom~~ ~dv X(V)=Y)
\

The inelastic scattering cross seotionwill IN taken in the form

~i(vc)fi(v] for V<V9, zero elsewhere. In this form the normalization
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con8tant has been absor~~”~n” ~i(~”). ‘lh~sthe total croso section is

\

v

CT(v) = U~(v) + ~f(v) ‘~i(v) dvs fJ(V’)

o

Here the on2y restrictive assumption is that the velocity spectm.unof in-

ols,sticallysoattered neutrons dopcnds on the inlti~] velocity only through

a scale factor and the position of the high enor~ cut-off. l“i%hthis

assumption (606) beoomes

IS

Defining

F(v) ‘
g(v)

$(v) G(v) = k

\
‘dv’ ~(V*) L7f(V8) “
0

tan”~ ~(a(~] +Y/V)

= se(v)

differentiating

Tho solution of

= (3(v) F(v) ‘

with respect to v

F(v) +@v) F’(v) = ()x(v) ‘
— o ~.j(v) F(v)
b(v)

this first order linear differential equation ie

--- $———
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F(w)

The definition Of F(v) imposes on it the oondition

Any one of the oonstmnts entering into the determination of F(v). G.g$

k or %0 may be ohosen so as to satisfy thi~ condition.

A very much cruder model than khis, but one giving more insight

into the effect of the velooi~ spread, is the following. WQ assumo that

the total oross section, O(y’+y), as it occurs in (606) is factorable.

where A(y) is normalized to unity. Then

+ tm”l
k

g(v) = (1 +f)A(v)
!

dv’ U(V’) g(V’)
u(v) +x/v

or
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JWJASSIFIED

The bracketed expression in th~ intqgr~d ;vi~l ~ recognized t18 the

i’unotionwhich the characteriotio equation equates to unity if only ono

veiocity is represented. A(v) is the velocity spectrum (no% as observed

at one instant but as produced in each collision). Thus for this model

the characteristic equstion must in this sense ba sati~fied in the mean. In

order to

cOnsixult

dci’iniGe

see the type of effect produced by this averaging we took a(v)
,

and JL(v)uniform in the threo-dirnensionalvelocity space belo’wa

e~wg and zero above. The integral occurring in (6.9) can then

be evduatiod analytically. This gives a relationship botwoon f and ~.

For each value of X there will exia% an average velocity, Gay vy, which.

makes the bmcketed expression unity for theee values of ~ and f. For

very small ~ this average velocity must bo the harmonic average. The

rasult of this calculation is presented in Fig. XXII. It is seen there that

for n sizable range in %, V3 differs only slightly from the harmonic mean,

2/3 ‘ This suggests that in problems involving not too great a spread in

\

ant)rgic36, e.g. in tho metal gadgetP the time scale is determined primarily

?}y~he ~rmonic mean Velocity of the neutrons emerging from the various

-~ of colliaiomi. Tho above argument is, of course, exceedingly rough

4

.

and vest ~wlinnce should ““. aced on its result. ,1 Rood solution to

khe p %L~ .xwait8 the dmrelo

?

~ Of a Gati.sikctory many-velocity ,, Ory:
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