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This paper is divided into two parts, La=53 and LA~53 A. LA=53
treats in groat detail the variocus metheds which have bson used in the treat-
ment of the physical problems of this project which ere ropresontable in
torms of integral equations. These problems are primorily those involving
the determinatiion of critical sizes end multiplication rates for various
configurations of active and tamping materials. A fow rclated probleme in-
oluding age oslculations, predotonation probebilities, and a simplq albedo
problem are alsc discussed.

A nunmber of graphs have besn prepared giving the mathsmatical data
involved in the solutions of these problems and many of the solutions then-~
solvea. A brief recapitulation of the methods of solutions of the more standard
problens has been prepared. This may be used aither sem rately or in conjunc-
tion with the mein part of the paper. This recapitulation or "recipe book"

snd the full ocollcotion of graphs compose LA-53 A.
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METHODS OF TREATNENT OF DISPLACEMENT INTEQRAL EQUATIONS

INTRODUCT ION

In many problems involving the multiplication and diffuszion of

noutrons in fissionable and scatbering material, integral equations of the

Gype

~

n(z) = Xa:.c. a(x') K(lx = z']) F(x')

are mot. It is proposed to discuss here the properties of equationa of this
type, the methods of solution which haveo so far been used, and the results
obtained. Equations of this typo have been used to describe the physloal
mrasis of the determination of the critical sizes and multiplication rates of
masses of fisgionable materiel, with or without tampers, and such related
problems as the determinations of albados and Jetonation probabilitiss of
hyperoritical gedgets.

Soms of the methods of treatment of the problems discusaed here ere
c&nsiderably older than the present problems. The differontial diffusion
thoory was taken over from gas kinetic theory. The simplest from of the extra-

poiated end-point methogd weg Javalopzd ,in the course of the study of the
® o [ ] [ ) [ ] [ ]

L4 L4 [ [ E
13 - e . b, o
sauatior. of B. A. Milnd, Sgi:dowiils Tho 00"

s of radistion through the outer

layers of stellar atmoifg,héi‘fz);g.' . ﬁfessiurigticn method has heen applisd to menv
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similer problems, and more frequently, as the Ritz method, to differontial
oigenvalue problems. Mony of the mathomatical techniques employed here are
borrowod from classical probability theory.

in Chapter I the existing body of mathematical theory of displace-
ment integral equations is examined. A large part of this treatment is taken
froi the review of the subject written by F. Smithiesl), His treatment is
presanted in a simplified end less rigorous mannaer and for the most part trana-
gribed into the notation customary in this project.

| In Chapter I1 the reduction of slab and sphere problems to one-
dimensional form is discussed.

In Chapter III Ghose methods are arplied to four specisl cases of
displecenent integral equﬁtions. The first of these is thoe intsgral egquation
witth the kernel K.=9°tx"x'., which posses & simple exact seclution and is
thorefore a convenient example for displaying the properties common to eque-
tions of this typa. Tho sacond kernel treated is the exponential integral,
which is the onendiﬁensional form of the Milne kernel, which occurs in the
most familier problems of this work. This equation is treated in considerable
detail. The remaining two examples are those of the Gauss kernel and tho
kernel describing the wster boiler problem.

In Chepter IV other methods of treatment of these probleoms and

assooiated problems are discussed. Among these are the variation and numerical

SO AT ZtIr L T el e e srom s IR SNOumeRs

sol.tmtion Math. Coc. 46 s

.
#Heeese

ee
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1) “Singuler IntegraheZeiviicadt 409 (1939)
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mocheds of treatment cl the integral equations and albedo end non-steady-state
piroblems.

In Chapter‘v ihe eaxtension of the end-point method to other shapes
than the slab and splura is considered. The epplicebility of the mebthed to
oysindars and rootongular solids is primarily based on the check afforded by
the verintion msthod vhich has been applied fo a few such goniizurations.

The exkenpaion of 1he vse of this method to cases where no such check is avail-~
ablie iz discussor.

In Cherter VI the choice of suitable oconstants for the integral
squation is stuiled. In the simple form of the integral equation a numbar of
physical simplifications are ussd. All sceattering processes are agsumed iso-
tropic and clastic, and the inhomogencity in energy of -the fission spectrum
is negleoted. The effect of the two approximations is studied to determine

appropsiata values to use for the cross sections and energy.
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CBAPTER I. THE GENERAL THEORY OF DISPLACEMENT
INTEGRAL EQUATIONS

The general type of integral equation which we troat may beo written

as

n(r)

o Sdr_' F(z') n(z') K(lx < '} (1.1)

where the variable r is in one or more dimensions, usually one or three.

The integratidh is to be carried out over all space or over that part of space
for which F(r)#0. In most of the problems treated F(r) ie piecswies con-
stant and of oﬁe sign, usually having a value differont from zero in only one
or two regions. In general there will exist a denumerable (except where

F#0 over an infinite volume) infinity of eigenvalues, o, one of which is
the least. Frequently this least eigenvalue and the corresponding eigen-

function are of primary interest.

The Associated Differentiasl Equation

The simplest problems of this type are those for which {r) is
constant throughout all space. Although these problems are in tivmselves of
little physical interest their study is of value in that it throws light on
the character of the solutions n(r) in tho more interesting problems in

rogions far removed |i.e. beyond the reach of the kernel K(|r - g'lj} from

———

e eoo o eo0e 203 o0
e @ [ ) [ 3 [ e o
e ¢ o o 6 [
e e e e oo o ¢
. e o . s s
00 606 NOO 000 009 00
ce o000 o 090 & o ¢
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o o @ ° ° see °
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any boundary. For such equations the constant ¥ may bo absorbed in the

oigenvalue c.

a{r) = cgdr_" n(z') 8(lc = £'{) (1.2)

where the integration i3 carried over all space. If the kerne) X is

ressonably regular, the salutions =n(r) of (1l.2) are of necossity enelytisc.
in the following it will bo assumed that this is the casae.

Equation {1.2)
mpy ©e rowritten as

n(r) = ogds:' E(Je'[) n(e + £*).

a(r + x') may now be expanded as a Taylor series in r'. Only the even terms
of tho series will contribute to the integral. For a three-dimensional spaco
ihe equation then tskes the form

2 2 2
(0) = olae' k(le'D) Lix2 2nl5) o gz Bnl) | o2 Bnlr)) |
n(r) OS e’ k(|z'}) [“(5) ' (" a2 Tz PR

i

c(n(;_') ¥, + & n(r) /5! + 28 na(r) MQ/si v .) {1.3)

whero ¥p is the nth moment of the distritution K(r’). If o My is cloes

to one, the second and later terms of the expansion may be small comparsd with

e first. In this case it may be a useful epproximation to neglect all terwms

eoe ooe o8
beyond the second, d:';*;a%?ré&uc.‘«:u_e;i:’;hfi gﬁtegral oscuntion to the differential
° ee M o
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diffusion equation
f(l/s!)(ug/uo)a= Q- cMo)//(cMo?} n(r) = 0 (1.4)

As the approximetion leading to this diffusion egquation is valid only if

cMp is close to one, equation (1.4) mey just as well be written
{(I/SE)(Mz/Ho)Aa (1= cMo)}n(g) = 0 {(1.2%)

The approximation leading t0 (1.4) and {1.4') is almost nover satisfied in

the present work, It is therefore necessary to look for solutions of (1.5).
Sinco n(r) is analytic {except, perhaps, at infinity) it oan be

expressed es a supsrpoaition of "wave~functions", ng{r), .satisfying the

squations

(A=) ng(zr) = O (1.5)

This form of representation of n(r) is just the lLaplace or Fourier %rans-
formation which plays a central role in all this theory. It can be seen by

substitution that ny(r) will satisfy oquation (1.3) if and only if

oMy + k2Mp/7! 4 ¥*Us/B! +....) = 1 (1.6)
This iz known es8 the "gpgﬁpcﬁggigogg.equation" of (1.3). The general solu~
tion of {1.3) is a &hne§Of:j§§f§§f§§3f Tarious wave functions, m(r), CLor

f'_
o g
v
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el) of the values of k satisfying the characteristic equation. For most
of tho problems which we treet, the charscteristic squation has only one
solution, i.e., specifies a definite value for lk]. The genaeral solution is

. . k-r . <
then e guperposition of waves, = =, for all vectors, k R of this magnitudo.

The Choracteristic Equation

This result is more clsarly derived by the use of a Laplece or
Fourier transform. Such a transformetion is motivated by the feot that
the kernol of the integral eguation is a displacement operator, a function of
r = r' alone, suggesting an expension in the eigenfunctions of displacemsnt
oporators, ek's. Forming the Fourier transform of equation (1.2), one has
ne = [ar o™ Ea(x)
o {ar ol°E Sdz” n{z') K(lz - £'})
Ogd(l_'_ -1") eike(r=1r") K(ll_'."‘ r'}) de-:-' oik-r' a(r')

]

W

onyKy (1.7)
where Kj) 4s the Fourier transform of thc kornel.
By (1- ch) = 0 1.8)

Thus ny can differ from 2ero only where the characteristic equation is

setisfied, 1 - oKk-—-O-° ?hx scandif’on, aside from a change of sign in k¢,

in identical with (1 6)"u?h1 ch'is tha 'pov.rer sories expenaion of Ky and may

rosdily be °b'°9‘1§!@43!32¢)\2ﬂ§: ?:Eﬁ.?

ﬂ@ p&g_epegyential in ite dofinition.

)



APPROVED FOR PUBLI C RELEASE

- -

1% is clear from (1.8) that the sbove is the only condition imposed by the
integral aquationy i.e., that the integral equation is satisfied by an

arbitrary solution of
(6 + 1) ne(x) = 0

for any k satisfying the characteristic equation. It 1s evident from this
aolution thet in the interior of a finite wmedium the solution of (1.1) hes

the character of the wave function, n(r), of the symmetry appropriete to
the shape of the medium. Kear the boundaries the sctual selution will deviets
from this wave function. The nature of this defiation and the boundary condi-
tion thereby imposed on the asymptotic solution np(r) is the subject of the

romainder of this chaptsr.

Solution for Half-Infinite Medium

The simplest case in which to study the boundary effects is that
of a "half-infinite" nedium, one extending indefinitely on ono side of a2 plano
boundery. In thiz ohapter we will treat only the special case in which the
solution, n(g), ia o function only of the distance, x, from the boundary.
Where thore is only one non-zoro value of F{(y), the "untamped case, =x will
be taken positive in that direction. Where F 13 greater thun zero on both

sides, the "camped"” oase, =z will be taken positive on tha side on which F

is the greater. We illds firdfietsic?ee¥ to be zoro on one side so that the
o o [ 3 [ [ 4 [ 4

L] [ ] L 4 e
integration need oﬂig T 83m0uas avds® the half-space. In the integral in
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eonation (1.2), the two coordinates, y eand =z, enter only in the kernoel

and osm be integrated cut. The integral equation then hes the form

7 e

nix) = o\ ax’ n{x*) K(|x = x°|) (1.9)
{

iy \

Here the constant ¢ and the kernel K are not necessarily tho same ms those
oscourring in the three-dimensional form.

Sinco in equation (1.9) the integration extends only from zero to
plus infinity, it is not immediately olear thal the same techulqus us
that of the full open space can be applied. If, however, the funotion a(x),
which is defined by (1.9) for all positive and negative x, is broken up

into two parts such that

n(z) = £{x) + g(x)

0 for x>0

)
o~
e
Yy
"
(1]

0 for x<0 | (1.20)

@

~
#

~
[

then the integrel equation (1.9) ocan bs written im terws of an integral over
she full range of x so that under Leplace transformation it bocomes factor-

whnle.

2lx) 4 glx) « ol ax' g{x") X( x » x* ) (1.11)

APPROVE
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.‘T’C"fin.ﬂ F(k) 'T:.“ f dx oak.}':.i.t'zto} oe eoe

. ',r. i .
eik) = } dx o™ g

Tk}

]
8
& :
o
0
g
=
2

e

Z¢x chose parts of the complex k-plane for which thase inteograls oxist and

by analytic extension olsswhere. The laplace transform of equdtion (1,11)

ilow becomes

Plk) ¢+ G(k) = o[dx o~kx [dﬂ g(x*) k(x = x'})

=00
00 t g =
- c-( d(x = =) eak(xax ) qu - xo'}j dx! o~¥= g(x%)
-co -0
= o E(x) 6(kx) (1,12)

This oquation has a unique meaning only if thero oxiats a strip parallel to
the imegipary axis in which all of the integéals defining these Lapleco trans-
Torms exist, If this it the case then funotions G(k) and F(k) which satis~
iy (1.12) and are consistent with the restrictions of (1.10) definc a unique

enlution to equation (1.8). It will be assumed in tho following that this is

the osse.

The restrictions imposed on the forms of n(x) anéd K(x) by this

assunption are gquite woak. If the value of ¢ is =uch that the asynmptotic

s%lution for g(x) is sinusoidal, i.0. if the characteristic equution has
roots only on the imaginary exis, then the integral defining G(k) must exist

for all valuves of k in the right opon half plane. This integral exiends

*
[
.
o o
[
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oy whish is bounded, the other decaying exponsntially if tho real part of k
is positive. Tho oharsater of #(x) for lerge rogative x is dotermined by

the charncter of the kerncl for large valuos of its argument. For the integral

Q
#(k) = g dx £{x) a~%*
-
{9 ponverge in & vertioel strip in tho right half k-plane it is only necessery
that £(x), hence alao K(\z]), decay exponantially for large negative x.

IT then for all x20
K(lx‘) <y e"™, w>0, >0

the intesrals definin; F(k) and EK(k) are convergent if ths reel part of
L lies between zero and b, and equaticn (1.12) hac a unique mesaing.

If the value of o is such as o give a hyperbolioc asymptotic
solution, i.es if the characterisiic ecuation is satisfied for values of k
off the imaginary axis, then the asymptotic solution g(x) may incresce
exponentially for lerge =x. This exponential incroease cannot, however, be more
rapid than the decay of the kernsl or the integral in equation {1.9) will not
converge. In this cage the integralAdefining (k) will not converge through~
ocut the right half keplane but only for values of k of which the real part
is greator than the real part of the root of the characteristic equation determ-

ining the asymptotic bohavior of g(x). Since, hewever, the kernel must have

APBROVED *EGR PUBLYC RELEASE
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an asynptotic decay rate greater than the real part of this root the integrals
dofining XK(k) and F(k) will converge in a strip in the right half k-plane
which overlsps the rcgion of convergence of G(k).

Th; restrictions imposaed to make (1.12) meaningful ars therefore
eatisfied for any kernel which admits a solution of the integral equation.
Since in the problems of interest the existence of a solution is guaranteed by
the nature of the physical problem, the restriction imposed above will be satis-
fied in all such problems.

Since the integrands of the integrals defining F(k) and G(k) feil
.to vanish only for nogative and positive values of x reospectively, these
integrals will correspondingly convergo everywhere to the left and right res-
pectively of the common strip of convergence. G(k) will therefore be analytic
everywhore to the right of the left hand boundary of this strip, and F(k)
everywhere to the left of the right boundary. The analytic extension of k),
G{x), eand K(k) may be carried out so as to make equation (1.12) valid for
&1l k. The solution of equation (1.9) is now reduced to the problem of
finding two functions F(k) and G(k) satisfying (1.12) and which havs a
common strip of enalyticity and are amalytic left and right of this strip res-
peotively. Two such functions aro readily found by the following device:

Denote by P(k) the function cK(k) = 1. Then equation (1.12)

reads

P = 80g de i de i

APPRAED L3R PelBl4eC RELEASE
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b P(X) = Am P(X) = Img(k)

Thus Yn P(k) is exprossed as the sum of two perte which ere enalytic left
and right respectively of the common strip except for the roots, if any, of
#(k) end G(kx). *The roots of the characteristic equation are here reprevsented
a8 singularities in I P(k). If now a vertioal strip containing no singularity

of %n P(k) is chosen, this decomposition can be effected by expressing r P(k)

48 o Cauvchy integral.

-

I P(x) = (1/271) —— o P(K?)
%
= (1/2m) S + ”k,‘wk Ine(x?)

RO Vi
3
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If the point k is w@?hi§-g%s g?r%go@hg coytoura L and R are alsoc within
the strip and encloaeo't:haspéintosokzoo ii’: ¥ is outside Lhe strip ona or the
other contour will be so deformed as to onclose k but no singularity of

L P(k'). The integral over the contour R will therefore be analytio‘for
21l %X within or to tho loft of the atrié, snd the integral over I within

or to the right. If now the integral over R 1is identified with 8 F(x) and
the integral over 1 with -€mG(k) the conditions required in the decomposition
aro satisfied. This docomposition is unique onoe the strip is chosen. This

is appropriate since another decomposition alsc satisfying the conditions im-
posed muat differ from this only in the a&dition to ¥ G and subtraction from
P of a funotion of X which is analytic throughout the entire X plane,
i.ss 8 constant. This change will not‘arfeet the character of the solution,
g{x), btubt may be convenient in the eveluation of the integrals. Fregquently

the constant added end subtracted will be logaritbmically infinite. The
mathemnticai trénsgrossion required in this process can be avoided if it is so
desired by feotoring out of P(k) en aeppropriate polynomial in k so as to

neke the integrals over L and R separately convergeont (cf. F. Smithiosl))o

The solution of (1.2) is then given by

boelr) = ~(J/21L‘l)§h e fm,[c‘i(k') - 1] (1.15)
joo + O

g{x) dic o g(x) (1.16)
=ig4 O

tho latter integration being carried up the strip of convergence.
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Extrapolated End-Point

In most of the problems of interest these two integrations can not
bs performed analytically. In order to find the complete form of g(x) it
i therefore necessery to carry out a double nmumerical integrel. As this
prrocess is oxceedingly leborious, it has not beon done. However, a number of
important properties of the solutisn can ba found with only a single numorieal

integral. For a sinusoidal solution g(z) will have the form

-~

g{x) = A{sin[ko(x 4 xo)] + h(x)} ‘ (1,27)

whero h(x) approaches zero for large x. Here . iky is o root of the charw-
pcteristic oquation. 7This must be true sinco far from the boundary the ohar-
acter of the solution is just that of the sine solution of tho full-~space
problem. It is to bo oxpectsd that the deviation frowm the asymptotic solution,
h{x), will fell off with increasing = about as rapidly as the kernel. The
most interesting property of the solution g(x) is the phase of the asymptotic

solution, which may be expressed by the extrapolated end-point, =xgs

a(x) = g ax a k% g(x)

[}

= dx o"5* (p/21) |etko%0 Gikox | g~ikoXe g-ikox 2111(::)}
e .E. E .E. 5.. :.. h g

(a/ax) ; :}!L ez ikg) = @ J‘3'03"/(1,: + 1kg) 2m(k)]
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This expansion hes poles at xik,. In the neighborhood of these poles HB(k)
is bounded, hence the logarithm of G(k)} ias primerily determinecd by the term

which bocomes infinite.

bwoliky +6) = W(a/2i) + ikoxo = Ine +0(e)
bnvgleikg + e) = In(-8/21) = dkgxg = Ime + 0(e) (1.18)

The difference between these two exprossions in the limit of vanishing € is
2ikoxe » In(sl). In evaluating this limit of the difference from the integral
{1.18) giving bna(k), we oxpress Iw G(k), the negative L- integral, as the
R inbegral minus WUwP(k). The R integral is finite in the neighborhood of the
two poles, %ik,, &s its contour may be taken So as to remain a finlte distance
from thom. P(k) is the laplace transform of an aven function and is therefore
itoelf even. Its derivative is odd, l;xence i Pikg +6) =« WnP(~ik <+ g) is
L. (=1) +0f¢)~ The two terms Im (-1) combine to give some multiple of 2mi.
Ths various multiples give extrapolated end-points differing by a half wnve~
length. It is convenient alweys 4o define the extrapolatoed end-~point as the

distance bayond the boundary of the first root of the aasymptotic solution.

Thon we heve

ak' b P(K") [1/(!:' - ik) - /(" + no‘j

25k x, = (1/2m)

Cmr™"y
2

zo =l \§dediio furae) (1.19)
o0 o000 oo0 oo e C X 0
R
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If tho sane derivation is followed through for the sase of a
hyperbolic interior solution, the same result is found for thoe zero of the
asymptotic selution, sinh ko(x + x,).

The technique hore desoribed for finding the asymptotie form of
the solution, n(x), in the interior of the right hand rogion may then bo
sumparized as follows: The propagation veotor, ko, of the asynptotie simus-
oicdal or hyperbolic smolution is given by the root of the characteristic cqua-
tion, o K(k)=1. The phase of the asyrptotic solution is spacified by the

extrapolated endepoint distence, Xxo, which is caloulated by the use of (1.19).

Vaiue at tho Surface

The order of magnitude of the doviation of the true solution from
the asymptotic solution in the neighborhood of the boundary can be determined
by evrluating h(0), or what is eguivalent -~ n(O)/ A, where A 1is the
agymptotic amélitude. The quantity n(0) cen be determined by making use

of the frot that the limit ms k goes to infinity of k G(k) is n(0):

e}
1in  k 6(k) = 2im Skdx o”X% n(x)
koo k =00 Jg
"
= 1lim idy oY n(y/k) = n(0) (1.20)
k—oa

The normelization constant, A, ocan bs gotten by adding the two limiting

forms, (1.18). Thus the determination of h(0) ecan be performed with two

numerical integrations.

SR I
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minus Yy P(X). The sum of the two R integrals is now finite and can be
evaluated numerically. Yo P{k), ovaluated at =xik, + ¢, contributes z finite
term and the =2 Une. The finite term is just twice the derivative of P(k)
at ik,, hence can be evaluated without an integration,

The limiting value of the logarithm of k G(k) for large k can

be seen by the transformetion

k" = k&

Inalk) = {=l/2m)j-}£51- o p(x k)
+6 depond only on the limiting character of P for large argument. This
will, in general, be considerab}y simpler than P itself. _Thus the svaluoa~
tion of n{0) cin usually be offscted Ly the evsluantion of an snalytic integral or
& simple numerical integral, orliy somo enclytic device (ef. Chapter III),

By similar mothods further details of the charncter of the devia~
tion, h{x), can be obtained. An example of this techniqua s given in

Chapter III, section 2.

Tamped flalf~-Infinite Yedium

In tho preceding soctions we have treated the problem of the solu~
tion of equation (1.1) with the assumption that F(x') is zero on one side
of a plane boundary and has a constant value grester then zero on the other
gide. The furthor restriction has been used that the solution. n(r), depends

only o¢n the distance from the bounderv. We now consider the cnse in which

L] o0 o 09 o0 oo
o [ [ ] o [ 3 o o
[ ] L [ (.4 ® e o
L] ® o® [ ] ¢ e o
[ L3 (4 L3 [} e &
00 900 900 000 J00 o0
o0 (2 1) ¢ o9 o € ?
e o e & O o & & o
o o & L 4 [ ] (1 X ] [
o ¢ O L4 L4 e O L]
o ® o o o P 0 0
L X ] ere [ ] L] [ [ 2]
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P(r) has different positive vmlues on the two sides of the boundary. We
here «eep the restriction that the solution ie a function of x alone.

Integrating out y and 2z as bofore, the integral equation takes the form

n(x) = °1S ax' n(x') K(|x~-="}) < cZ% ax' n(x') K(ix-x*}) (1.21)

-0 °

where for definiteness it will be assumed that 02>-01.

Ve again brask up n{x) into a left and right part as in (1.10).

(1.21) now bacomes

£(x) + glx) =& dx* K(’xax'“{cli‘(x) + czg(x)] (1.22)

- 0c

Again performing a Laplace transformation, we have

F() +000) = ROOferP) + opa()]

sekl) ~ 3

B = o)

P(k) G(x) (1.23)

The eguation is now of oxactly tho same form as 1.13. The resi of the treat~
mont proceeds in exactly the eame way. The solution of the problem is usually

somevwhat more complicated in this case, oving to the greater complexity of

P(k).
APPROVED FOR°*PEBLIC RELEASE
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2olution with Transverse Wave

In the abovn.we have found an exact solution to tre integral
squation (1.1) for a geometry characterized by a single plare boundsry. Tnis
solubion has teen obtained subject to the restriction that the "demsity
fanction™, n{r), depends cnly on the coordinate x. Thus we have found

the family of solutions whoss asymptotic bshavior is thet of é plane wave
with 2 propagation vector normal to the boundary. To complete the general
selution it remains only to trest the cauge in which Shere moy bo a transversc
component of the propagation vector. To do this it is, of course, only
nocapsary to consider ono transverse component, say in the y direction. Sinco
the medium is infinite in both directions nlong the y exis, the y depondence
w311 be factormble. o therefore assume a deofinite sinusoidal (or hyperbolic)
v deopendence characterized by a propagation vector, ky, and then reduce

the three-dimsnsional integral equation to one in one dimension as befors.

I then

e
af{r) = n(=x) o 33,

osguation (1l.1) becomos
\J ik 'G \
n{x) = &g& dx‘dy‘dz® n(x) e yl'=y) i(q;_agj]; F{x®). (2.24)

if F{x) hse two poaitive values as before, we have for the Laplace trans~

Yorm,
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P +ok) = [ch(k) . cgsm] £(x?) (1.25)
whore k' is the geometric sun of k and kg, .. x* - k,f . The

rest of the treatment is now the same es in tho simplest case.
7o ree the character of thw vhinge in the extrapolsted end-point
iatyvoducsd by the transverse wave, we consider in greater deteil tho untemped

cage, o3 =0. Wo have ithen .

Flk) P(x) alk)

shere

P(k} = oKf(k*

o
f
o

Then

r
o = (1/2’)11)}

X
= Inp(i’)
+ kP

¥e

abere k% =2 k% -k, k2<% o k?  and P(L!)=0. Since k° 4 k% =

RERNY LK TR e/ SR
~ ~ k% end dk-v--l;-—-r-zkdk“/v/k- #B’ésdk/‘/l+lcy/k'

y ak® L P(xe") .
% = (I/2m) \nEy K2 )Y SRR R 1-28)

-

Since kj has the same numerical value (for the same c) as k., in the

A}

wheviave problem the oplyw, chansq.s » %= thet intraodvuced by the scuare
o o

LY [ 2 ”... *
[ [ [ o LK.
[ [ ] L 4 L ] ® o
; Y o .o oo o _ oo o o . ) .
vpot factor in the domQplsgiifs,- .00 8450 8e% 4 nroblem in which this end=point
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integral has been oveluated (the Milne kernel) the effect of this factor
was very slight. The form of the integral in (1.26) indicates that tho
effect of the transverse wave will usuaslly be such as to diminish slightly
the extrapolated end-point. The eond~point distance will still bec determined

prizarily by kg3, hence by ¢.

.
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CHAPTER II1. THE SLAB AND SPHERE

in tho first chapter an exact colution to the integral equation

(1.1) was obtained for all cases involving only & singlo plane boundary. It
nas not so far proved possible to £ind corresponding eoxnct solutions to
problems with two parallel plane boundaries s in a tamped or untamped finite

slab. It is clesr, however, that if the two boundaries are far apart com-
vared with the extent of the kernel a sufficiently accurate solution can be
cbtuined by assuning that the two boundary conditionz may be applicd indepontly.
The ertent to which this approximation breaks down with decreasine slab
thicknass con be determined only by comparison of the results so obtained
wath the results given by wmethods which for smsll thicknesses are more accu-
tnbe. Such comperisons hove buoen obtsinod and will be discusaed in Chapter
IV. It sufficss to state here that the rosulis of this compariscn are such
na Lo indicate that the extrapolated end-point method is a useful tcol for
nimost all of the problemt of physical interest.

he uso of this method in treating slebs of finite thickness rests
o1 the assumpbtion that the thickness is sufficient to contain threo regions;
& contral region in which the asymptotic bshavior of the solution is well
ostablished, and two ocutside regions in which the boundery effeocts are im-
poriant.

1f this is the case, then, for a spocified value of ¢ (or of the

varicus values of c¢) andé e speeified number of osoillations of the solution,

:.. =.. ... :.. : : Q..
HEE I
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e positions of the two Pouharfies *Art’’rikxed with respect to the common

ssymptotic solution in the middle region, hence also the thickness of the
3lab. If, on the other hand, the thickness of the slab is specified, ths
gouation beoonmes an eigenvalue problem in c. Tﬁe untanpad slab will have
only a disoretc spoctrum of eigenvalues, e;' the infinitely tamped slab
will have & continuous as well as a discrete spectrum.

If the weighting function, F(r), has rot plane but spherical syme
nebry. the iﬁtegral equetion for spherically symmetric solutions can he
rafuoad o thot of a corresponding plene problem. TPaking F(r) end nflr)

Tanetions only of the radius, r., we have

nlxr) = ( de® F{r") n(c") K(\g - g“l)

~

e o0
= 2% ‘ du | dr¥ @ P(r®) alr®) KQA’Z + 792 o er"c\
~a o /
v2 = r% +r% o 2rr:u
g = =,Xié
! vy’
N oo p?
Mir) = A1 ( ar' P{r®) vr'n(r?) ydy Ely)
Jo Ir=rx1
e .
= g dr® B{r®) rialr®) 1%1(\re-r“l) - Kl(r-%r‘)j (2.1)
Ja
~OC
wshere Ki(d) = 2n \ vy K(y)
R
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imonsional kernel is
Q& o0

Say Sdz K(\/xz + 32 +z§)

- -0

]l

ffe b

211—( yay E(y) = (¥
{x}

If now we define

aler) n(r), F(er)

]
i

FMr). ul(r) = rn(r)

aquation (1.27) cen be written as

to
u(r) = ar® u(r') F(r') Er{jr = r¥]) (2.2)

)
wiich is just the one~dimensional form of the integral oquation for a s&ladb
naving tho some Fedistribution es that along a diameoter of the sphere. I
is clear from its definition thet wu{r) must be odd in r. Thus the solu~
sions of the spherical problem are in ono-to-one correspondence with the cdd
solntions in the corresponding slab problem. For this reason the independent-~
boundary-condition approximation gives much moroe accurate results for the
<undemental mode of & spherical problem than for the fundemental mode of a
slab of the same o© value, In the ocase that has besn most extonsively
studied the error irn the radius of the untoamped sphere ie completely unde-
Hsetuble for all ressoneble values of c¢. It is to be expceted that the
seae will be true feor all of the various kernels which are of interest in

“his work.
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CHAPTER IXL.  EXAMPLES

4’1. THE YUKAWA KERNEL

-

The yukawa kernel,
(=) = osiz=xl 4| -z

is the Green's function of a simple differential operator, 1 = A, and

therefore the integral equation with this kernel has a simplc solution.

BEguivalence to Thoermal Diffusion Equastion

he differential ecuation to which tha the Yukawa kernel is the
Green's function describes the diffusion of neutrons aftor thermalization in
a honogeneous hydrogenous material. If neutrons ars thormalized at a rete

g(r), have a diffusion constant D (so that the flux of thormal neutrons is
- w

= b gred n(g_)), and are absorbed gt a rate a n{r); thon the steady-state

distribution of therwal neutrons, n(r), 3is determined by the differential
equation
panr) =an(r) = - glg)
Tha solution of thia eguation is
. : .E. E .E. E.. E.:
it i e
APPROVED FCOR PUBLI C RELEASE
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(1/49m) g de' g(r)
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Ypcanse of this simplicity of the solutions and the ease of

svaluating the integrals involved, this

goneral featuros of the preaent theory.

integral equation

alr)

-

j'd;' F{c’) n(r') o

kernel is useful in illustrating the

If n{(r) is a solution of the

thon it is alse a solution of the differential eauation

& alx) 1oF@ﬂn@)

=

e e

it is not, howover, true that any solution of (3.2) satisfies (3.1),

for example,
integrel equation requires that n(r)

region.

r- Y

= = /aw|r ~ Y (z.1)
{3.2)
1,

F(r) differs from gerc only in a definite region then the

fell off exponentially away from this

Thus the integral equation requires that itz solution satisfy the

diffarential equation and a boundary condition.

it F(r) ond n{r) depend only on x,

n{x) K dx® n{x*) Kl(’x -
J

equation (3.1) reduces to

x'|) ¥(=") (3.3)
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The characteristic equaetion of this kernel is

Co
(c/2) | ax o7 ==l /(2 -%xR) = 1

-0

We may now solve by the msthods of Chapter I the integral egquation (3.3) for

the c¢ease

F(x) 0 for x<O

o for x20, ':)>1-H32

i

The Laplace transform of the kernel is of(1 = k%), hence In P(k) is
P [c/(l - k%) = 1] = 9/7»[(02 +x2)/(1 = ka)] which has branch points
st 1 end *i¢. The appropriate strip of regularity will lie between 41 and

the imeginary axis. Then

Ino(k) = Q(Vzﬁ)J i h(M)

k' =k 1~ K2
(W

-

a oot 1 dk* h("aw'z)

1-x* 2%i k' = k 1~%°2
JR
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The contour of the R integrif rir.;,' fnom et aefotned so as to lie slong the
real axis, encircling the branch point at +1. The real part of the loga-
rithm thea makes no contribution to the integral. The difference in phase
of the argument of the logarithm on the upper and lowor path is +427d. The
integral is then Swdk"/(k' = k). This is -lm.(l = ) plus an infinite
oonstant which we d‘iscard. (This removal of the infinite constant csn be

done more rigorously. Cf. Chapter I.)

fng(x) = - (0?2 +¥2) + In@@ = ¥8) = In(2 - K)

e(x) = (1 «r)/{c +x?) (3.5)
o + O

glz) = (/2m) dk &% (1 + k)/(C® + xR)
~jne ¢+ &

For negative x, ekx vanishes at oo, +thus the contour caa bs extonded
to the right and as no singularities are encleosed the integral vanishes. For

positive x the ocontour can bs extended to the left and the value of the

integral is given by the two residues at *iC.

glx) = (1/z2ic) [eicx (1 +4¢) <« o"ilx (1 .o icik

= (1/0) sin Cx + cos Cx = [l + 0%/¢ sin Clx + ¢-! tan~! c)

(3.8)
This solution exhibits two interesting properties. g(0)=g’(0) =1, thus

the boundary condition on the differential equation is very simple, just the

-n......
®
[

APPROVED



APPROVED FOR PUBLI C RELEASE

requirement that the logarithnic derivetive of g(x) be 1 at the surface.
&lso the sinusoidal behavior holds right up to the surface, i.e. h(x) is
sverywhere zoere. Both of these propertios can be seen directly from the
integiral equation. As pointed out above the solution to the intepral egue-
tion must satisfy thoe differential equation (3.2) throughout. *Thus the
sinusoidel behavior must continue to the surfece. Sinco the integral equa-
tion (3.4) requires that n(x) decay for negative x just es eelxl, the
ltogerithmic derivative must be one at the surface. For this integral
oguation the "middle region" in which the asymptotic behavior of the solution
it well eatablished exitonds rigorously +o the surface. Thus the independent
application of the boundary condition to two surfaces is perfoctly accurate.
This example serves Lo give us confidence that in other equations with
lernels differing slightly from this one the indepeondent application of the
houndary oondition may give fairly accurate results., As shown by the solu-
t:ion (3.6) the extrapolatod end-point is 0~ ten"l C. This can be verified

by the use of the formula (1019).

awt g G ex®?

kiz <+ 02 lmk‘a
R

xo = (1/2m)

Again ths contour may be deoformed so as to lie along the real axis end

enclesas the point 41 giving

@
dk'o o0 tan::_j; : °

L] L L4 L
30 = CRvmrugagud @ a9 T rETITE: o o
2 42 o o o, o ° o
R ALt g e Ereotd
ee 060 cce ceo oas o0
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It will be shown in Section 4 of this chapter that this kernel and the
agsociated diffuaien equation are of use in the treatment of the water-boiler

problen.

»”

© 2. THE MILNE KERNEL

Depivation of Integral Equation

In the problems of primary interest in this work the koernol Is
- \{
3{(]?- - 1_'_“]) - e"‘?. E\/érﬂ(g - !_9)2

This is the kernel in the integral equation of E. A. Milne dsscribing the
Plox of radiation in the outer layers of a star. We use this kernel in the
integral equations descoribing the multiplication snd diffusion of neutrons

in fissionable and soattering material. We treat primerily problems in which
the total mean free path of noutrons is the same in all of the materials in-
volved. We here treat the noutrons as monochromatic and the fission and
soattering processes as lisotropic. We donote by o the total collision pro-
bability per unit path length. o is the sum of {he scattering, fission

snd ebsorption probabilities, o5z, og, and Gg. We donote by P(r)=1+f(r)
the quantity (vop + og)/c where v is the meen number of neutrons emerging

from & fission process. J .='$' % ¥ ‘:'ss' m%?*. the mean number of nsutrons

gmovging per colla.s:.ov i‘rdxﬁ ctﬂns:omrm'&ll types. In the fisaionzble
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mafaviel £ 1is positive. o s&Ferbing :‘ﬁ!ﬂ?f.s ¥ is negative. We snerk

of » "perfect tamper"™ as one in whioh £ is zere. The densityv of neutrons
at the point r et time t we denote by n(r,t). These neutrons suffer
collisions at & r&té ov per unit time. Weo may consider that 1 «+ f
neutrons omerge from each of these collisions and proceed uniformly in ail
directions. The density of neutrons at r and +t is determined by the
nunber of neutrons emsrging from ccllisions et all pointe, r', at earlier
times t < |p- g‘_"!/v which arrive at r without suflering another collision.
The probability of their arrivel is given by e~ole-r'l maltiplied by the

inverse square factor, 1/4-1Lig= | 2, Thus the rate at which neutrong arrive

ia & unit volume at r, va(r,t), is

9
wm(r,t) = j ac’ ov F(z') n(z’,t = {r~r'/v) ol El/‘*ﬁﬁf_" rf|?
{3.7)

This equation will have solutions in which the timo dependence is exponential,

n{r,t) = n(r) o¥"
hence

n(e'st = oo /) = n(e'e) o ¥ SN

taen n(r,t) hence alse n(r)., setisfies the intesral equation

n{x) = GX dc’ F(z') n(c’) o ST ‘/'ml.x: =% (3.8)
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It is convenient now to measure distances in t.erms of the nean attenuation
distance, 1/(a + ’a’/v). With this unit of length the equation takes the

form

() = (V@ *‘Mrv]g ar' Flz') o(’) K(Jz = £°)) (3.9)

where K now repreosents the Milno kernel.

Phe one~dimensional form of this kernel is

K, (\x = x"l) = (1/ax) 21{&;&5: eb\sz *‘Pz/(zz +},2)
(o]

e

(Va)g %ﬁ e~? (3-10)

Ix}

(v/2) B(|x})

Sinc2 we have frequent occasion to use this function wo use this simplificd
notation for the exponential integrel instead of the customary ~E(~|x}).

For ‘the characteristic equation we have

o0 co
o&dxe“kx%-E(lx\) = cgde(x) cosh kx

- 00 [~
T gE 3 1 +k
©
= (c/k)& dx = pinh kx = -é*(c/k)Qﬂ‘vl -z =
x
o
e = k/takl k (3.121)
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Tho charactoristic equation has two real roots if o<1, two imaginery
roots if e>1. ¢ is here {1 ¢ £)/(1 +¥/ov). o will be greater
than 3 in the core and will be (in a parfect tamper, i.c. £ =0) less than
or greater than 1 in the tampor ns the gadget is hyper- or hypo-critical.

For ¢ pgreater than 1 the roots will lie at 2ik,, wiwes
¢ = Eyftan~t kg ' (3.12)

Graphs of the functions ccourring in (2.11) and (3.12) and their reciprosals

are given in Fig. V.

Evaluation of the Extrapolated ¥nd~Point

Applying to this kernel the extrapolated end-point formula (1.19)

for an untamped surface, wo have

x'2 4 x & 2k' " 1 - k!

x, = (:/zm)j ——i‘:"-'-;@w(" %1*k'=1>
R

doforming the cont..r as before and performing a few simple trensformations

gives

1=—°—-(!2m1"k'-»m)

)
- - l ‘g dk' 21{' k' =l
= - ¥
21 ) k%« k8 - O S
‘ 0o 1l > Q'r\ e i
... .:. E.. .:. :.. :..
o0 [ X X} [ ] eo0® o O [ ]
c e e o°'F s’
(iR
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i .
1 ds =1 1 /f = ..
- 231 4{t - 3,
T-j T tan [(f, }/{tenh™* 8 1/s6)} (3.13)
where as before

e = (1 4 f)/(l + %av) = kotan? k,

The integral for X, hes been evaluated for a number of values of o. It

is found that to a very good approximation ox, is constant. Since the
accuracy with which x, was evaluated is considerably greater than the
accuracy of most graphs, it is oxg; rather than xg iteélf which is pressntied
in Pigs VI. The value of %, for ¢ =1 is of special iuterest for two
roasons. Since ox, 1is sensibly constant over a long rangs (rising by lees
than one percent at o 32) a useful approximation to =xo is xo(ll/c. Ths
untamped integral squation for this kernel with o =1, the "equation of

I~ A, Milne™, has bsen the subject of considerable study in the past. E. Hopf
gives for the value of xp(1), .710. This is in egreement with our determi~ '
rntion which gives the velue .T10%, (This rnumber has bsen more accurately
evaluated by G. Blanch at the request of Placzek and Seidel. The valne com-
puted was .71044509).
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Extrapolated End-Peint at Tamped Boundary

For a tamped boundary the extreapolated end-point is

$
. , 2k’ 1 - kt
= (em)\ g v T
o 1e=5a b o

where ¢ = (1 + £)/(1 +%¥/ov) = ko/fan°1 k,

[}

o' = (1 +£.)/Q1 + ¥ ov), fy = £ of tampor.

Evalueting This integral in the same way as sbove gives for the extrapolated
endepoint, if the interior solution behaves ss sin ko(x + x,) and the

oxterior solution as eklx,

-1 de ~1 7/2 -1 W2
= 3 ko ¢ t - ta
P an™t (k¢/) Iy Mko (/) - k%sz an Tl L n o 3‘
[+ ¢s © 5‘
= tan™t (ko/k Mo = & %o (3.14)

the extrapolated end-point is thus expreésed as the difference between two
tarms, one of which is simple, the other small. The first torm is just the

value of the extrapolated end-point which would be obtained by assuming the
. .0. . ... 00. ..
aaymptobvic solutions to‘hdﬁ~ U? fe ﬂhé boundary on each side and roquiring

.Q ... ... ... ... ..

eontinuity of the 1ng;ithm.1 c.oprivqf.we, i.e. just the d1f'ms10n-theorot1c
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interesting range of wvalues of k , espsentially congtant. As may ba cgeen
in Figs., YII and VII. a reasonably good spproximation is aiforded by taking
cf, &H Xo Lo be about .045. This quentity is the deoreass of the extrapolated -
end=point as compared with ito diffusion-theoretic value measured in units
of the wean free path divided by 1 + fy. This constancy is good, in the
finel resulis of most problems, to about one percent. It is most seriously

in error for a very largs core (hence smnll ) end a nearly perfect tamper.

Accuracy of the End=-Point Hethod

Since the Milne kornel differs only slightly from the Yukawa
kernol it is to b2 expected that the application of the end-point method to
6labs and spheres should give fairly accurate results. The endepoint results
for the untemped slab have been comm red with the results of & parabolic
variation calculation performed by H. Bethe and with an asymptotic formula
correct in the limit of small thicknecss. lthe result of this comparison is
presonted in Fig. IX. The end-point method is seen to be good to within one
percont in the interesting range. A parabolic variation calculation for the
untamped sphere was carried out by Pryce and by R. Feynmen. The effeot of
the inclusion of a quartic term was investigated by Pryce showing tho quad-
ratic result good to one part in 50,000. No difference between these results
and those of the end=point method was detectable except for the limiting
velue of aF (a = radius) for smell a for which the end-point method gives
o result incorrect by about one percont. e therefore believe that for un-

tamped and infinitely tamped spheres the end-point method cen be used with

—
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perfect confidence. The s.égm Ewigf'. 'b? ‘«:v.‘uei ¢’ slabs if an error of one per-
[ oe® o oo oo :..
cent is not considerod serious. It will be seen in subsequent soctions that
the end-point method gives very ascurate results in problems far bsyond the

range of problems for which it wes designed or for which any obviocus thecro~

tical resason for its accuracy exists.

End~Point Mothod for Finitely Tamped Spheres

In particular the extonsion of the end-point method to spheres of
finite tamper proves to be quite accurate, as verified by a numerical itera-
tion solution. The technique of applying the end~point method to finitely
tomped spheres is as {ollows:! The integral equation giveg a relationship
connecting the radius of the core, the temper thickness, the multiplicaticn
rate, and the values of f in core and tamper. Any four of these five quanti-
ties may be specified, the equation then determines the value of the fifth.
The most convenient of those t0 leave unspecified is the radius of the core.
As shown in Chapter I the sphorical problem is equivalent to the determinstion
of tho odd solutionm in a corresponding slab problem in which a slab of core
material of thickness equal to the diameter of the spherical core lies
botwesn two slabs of tamper material of thickness equal to the thickness of
tho spherical shell tamper. If the temper thickness, multiplication rate,
and oore and tampar materiels are specified than the forms of the "“asymptotic"
solutions in the core and tamper are fixed &s follaws: The "solution" in
the core is sin kox, where x is measured from tho center of the slab of
core material and kg, is determined from the specified foorg @nd multipli-

cation rate by equation (3.12). The "solution" in the tamper is
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sinh k(T +a + A Xy = x) a’{!!sriz S E‘ls?ﬁeée}mimd from the tamper pro-

perties hy (3.11), T 1is the tamper thickness, a +the core radius, A x)
the extrapolated end-point'at the outer edge of the tampor as given by Fig.
VI. At the corc-tamper interface, x = a, +the phase of the hypoerbelic sine
is then fixed. Tts logarithmic derivative is <Xy coth k(T +Axy). If a
diffusion~thooretic core radius, ag, is then determined by equating this
logarithmic derivetive to kg otn kgag, the end-point radius is #::ao + Oxg
where Ax, is given by Figs. VII and VIII. Since the numerical solutions
(iterat;ve) which supply the check on the accuracy of this spproximation were
carried out very early in the present study greet accuracy was not required
of thom. They wers good to about one percent in the eigenvalue. The chocx
is therefore less precise than the expeccted accuracy of this approximation.

Evon this check, howevser, is sufficiently precise for all practical purposes.

Value of the Solution at the Surface

In the special case of the nonmultiplying untamped eguation,
(f=0, with neutrons introducoed at infinity) the equation of E. A. Milne,
& study has been made of the charecter of h(x), the difference between the
sctual and asymptotic solutions. In this case the asymptotic solution is
linear in x. The end value, n{0), wes determinod by the method outlined
in Chapter I. If the normalization is euch that the asymptotic solution hes
unit slope, 50 that n(x) -+ x ¢ .710 for large x, then n(0) has the value
.5773. This strongly suggests that n(0) is 1//3. ‘This is actually the

case, as shown by E. Hopf by the following methodz). The integral equation

2) Monthly Notices of the Roy. Astron. Soc. 90, 287 {(1930)
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hore ig - o oo & ese see oo’
alx) = %&dx’ n(x') B(|= = x*]) = L nlx) (5.15)
[»]

where E is defined in (3.10) and I represents the integral operator. If

alx) = x +¢(x) this equation may be written,

0
¢(x) = L¢(x) w% ax* x' BE(|x = x*})

-

= Lp(x) ‘%Ea(x)

Y
where Ep(x) = J dy e V/y"
)

hence formally

4>(x) = (1 i L) -;'-Es(x) (3.186)

Differentiating (3.15) gives

' o
n'{x) = 1 + 4)‘(;:) = =-;-gdx“ n(x*)(a/ax") E(\x - x")
1 1 - T "
= §~n(0) E(x) +-.2~de n(x)E(lxext)

[}

o
?‘(x) = $(0) % B{x) + L 95"(.‘:) - %’-fi\c' E(}x - ='])

-0q
= L@'(x) + % B(x) ¢(0) = -;- Eg (x) : (3.27)
1 1 1
$'(x) = (-;:-,-) (é- B(x) $(0) = & Ez(x))
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The flux equation from uhlch'JS.ls.j ig dczt‘m:ﬂa‘)e is

o x
(dx' n(x") Eg('x - :;."\) =§ ax*® n(x*) Ez(]:: = x'!) = const. (3,18)
x o

The derivative of this equation is (3.15). BEvaluating the constent for
lerge x, where n(x') is well represented by x' + constant, gives for

the value of the constant in equation (3.18)

2§ xéx Ba(x) = 2/3

Then (3.18) for z =0 becomes

© e
f dx [x +¢(x)] Ealx) = 1/3 -i(dx Sb(x) Eplx) = 2/3

o o

V0 zovr oan evaluate by two different methods the integral

]

o co
J ax ¢"(x) Ez(x) -=7S(o) Eg(O)‘ +jdx ?(x) Ba(x)

=}

W

~~§-¢(o) + 1/3

J dx Lg(x)

Qo

.zif (E(x)7s(o) - E?,(x)> (1 i L) Eg{x)

sinoce tho operator L or any powor of L is symmetric.

J ax ¢’ (x) Ez(x) L)(% B(x) ¢(0) - % Ez(:t))

1
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jaxsﬁ (x) Bg(x) & .f.‘.’p [.{ ('b'zﬂ; = ﬁ»z(x)_‘ f (x)
. sy 1 s
- 240 o) - 3 2500)| - 3/
= 2$2(0) - 7 $(0) = /s

2¢2(0) = 2/s

plo) = V/fs

This number, l/ﬁ, plays an important role in this theory. It
was used for some time for ¢>(0) and for the extrapolated snd-point as a
rasult of the following argument, owing to Fermi: If n(x) is well repreo-

sonted bty a solution of the form
n(x) = a ¢x

then the flux at the surfsce is

%J‘:x(a + x) Eg(x) = %a +1/6

if this is equated to the asymptotic flux, 1/ 3, it gives a = 2/3. Using
the same expression for n(x) in the integral equation (3.15) to compute

a socond epproximant to n(0), one has

R
a(0)2 = %ngE('x)(a +x) = -12:-8. + %_—

]

If thiz is equated to a, the value of n(0) in the first approximation,

APPECVED OB PUBLI'C RELEASE



APPROVED FCR PUBLI C RELEASE
:o‘ ‘o’o .o. :

then @& =1/2. Sinco in each éf these two caloulations some feature of the
ffirst approximant is identified with the corresponding feature of the
necond approximant it is not surprising that the two results are somewhat
different. It seems plesusible to cguate the ratio of the two quantities,

flux/h(o), in frst and gooond approximation. This gives

(1/4)o + /6 U3
(1/2)a +1/4  a

o
fi

Y5

Angular Distribution of ¥lux st tho Joundary

This arugment thus gives correctly the end value of n(x) bui not
its asymptotic linear form. This is presumably because the argument deponds
erimarily on the local linear approximation to the solution rather than on
the character of n(x) for large x. If this is true thon it is to be ex~
pected that an approximate sclution of the form xi-LA/g would givo fairly
accurately the angular distribution of emerging neutrons (radiation). The

distribution in angle-cosine, M of the flux et the boundary is

)
o) = j-dx n(x) e"xé&

O
Tuking alx) = x ¢ /5 gives

L] o0 O o0oF O09 ¢¢
[ 2 ) [ [ J [ ] ® e 9
[ ] [ ] [ ] L] L B ]
[ ] e [ 1] [ ot L N J
[ ] [ ] [ [ ] ® [ 2 J

[ ] oe® >
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(5.19)

£(p) jdx (= + 2/f3) e""/’"‘ =

o

This result, also owing to Formi, was checked by calculating a few values of

= £(1/m).

As may be seon from this graph the angular distribution of emergent nouirons

a{k) The comparison is shown in Fig. X (cf. also G. Plmczek, EP=6).

or radintion is exceedingly well fitted by the Fermi approximation. The
ratio of normal to total flux which is used for calibration is fitted to a

fow tenths of one psrcent.

Sharsoter of Solution Near the Boundary

The values of @(k) ocalculated for the purpose of this comparison

wore used to obtein an estimate of the discrepancy term, h(x). This dis-

crepancy seems to bs fairly well fitted for most of its range by an exponential,

109 R4 X apg approximate eccuracy of this fit is indicated by comparing

the integral of this approximation to h(x)

m .
gdx L1090 @245 X o

[~

with the true value of the integrsl which can be gotten directly from the

expansion of G{(k) about k=0. The correet velue of the integral is

+O04766 which differs from the above value for the integral by 7 percent. This
given in Fig. XI.
209 069 ..

lﬂ)i, ,a.p vary encouraging resvlf in that it

approximate fit to nlx) is
[ ] oo .
The rapid c'ipca; or.

indicatos that the “middle reg; 9 )n u.hlch the asymptotic behavior of the
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solution is well established will ectually exist in most broblems of
interest. The decay of the discrepancy term is undoubtedly still more
repid for a sinuscoidal solution as evidenced by the great sccuracy of the

snd=point solution for spheres of wvery omall radius,

§3. THE GAUSS KERNEL

Qlevlre. tion of Gauss Kerncl by Compounding Meny Elementary Distributions

Zhe kernel of an integral equation for the diffusion of nsutrons
represents the distribution function of the displacement suffered by a
neutron between successive ovents. Theso ovents nsed not bo collisiona of
any type but may be more widely spaced events. If the displacoment cocurring
tetween the two significant evonis is the vector sum of any displacemsnts
smell compared with the overall displecement, the distribution function will
te approximately Gaussian. This moy be seen from the {act that the Fourier
transfénm of tho distribution function of the resultant of many displacements
is the product of the Fourigr transforms of the distribution functions of
the individual displacements {these distributions boing assumed indepondent).
These individual distribution functions cover a small range in x and thore-
fore fall off slowly with X in Fourier transform. The product of many
of those will fell off rapidly with k so that the individual transforns

are well represented JBy 'Yoiteris S gheir power series, 1 apk? - ca.. .
. o oo e oo o o

{¥or o normnlized daiserititeien “the Wohbtant must be unity.) %he product of

[ | C RELEASE
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sany such binomials is apprfoxilfalely in the range of k for whish

ax¥? is amall for every r. The exponent of the (Jsuss function is large

compared with any one of thesa; 8o the Gauss function is essentially dead
beyond this range. This Gauss function ia the Fourier transform of the over-
s1l distribution function, which is therefore also Gauvssian. In this deriva-~
tion it is essumed that the successive displacemonts are indepsndent, which
oan e true only if tho distribution of displacements is indepondent of
position. This treatmont will therefore be applicable to neutron diffusion
prablems only if the core and tamper materials are identical es rogards the
clementary displacements and if the oorrelaéion in direotion and lengths
botwaen successive paths may be neglected. For the water-boilcr problem with
a wator tamper, the first of these conditions will bas approximately catisfied.
Ths second condition and the requiremsnt that no ome of the elementary dis~
igcomonts be comparable with the ovorall displacemont is not vell satisfied.
The effect of this change is discussed In the next sectién. The value of
the study of the Gauss kernol lies in the fact that it is a ressonably good

approximntion in meny problems and has no froc paramoters excopt for the

scale of size.

Extrapolated End=Point Treatment

In the extrapolated snd~point treatment of the Gauses kernel a

foature is met which doos not cccur in the preceding examples.
ck?

The Laplece

transform has tho form e which is egquated to a constant in the

charsctoristic equation. Thus ck2 is the logarithm of this constant, which

heg o denumsrable infinity of values. The characteristic eguation has an

\
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infinity of roots distribhuted’Hidng 'a’hia‘petbola in the k-plane. This
distribution of roots still permits a vertical strip of regularity; so no
diffioulty aerises in the end~-point determination.

The nommalized threc-dimensional Gauss function is

{31{/2?: 2

where ro2 is the mean square displacement of this distribution. If the
distribution function of the resultant of meny olementary displacements is

to bYe represented by a Geuss functionm, roz must ba the sum of the element-

ary mean square displacements.

In the calculetions which were carried ocut with the Gauss function
the unit of length wes taken to be (2ro%/3)l/éo In these units the distri-

bution is

1/(11)5/2 e°l‘2
Its one~dimensional form, in which y =and 2z are integrated out, is
VinYe o=

which has for its laplace transform

2
R
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The characteristic equation is

% . 1 = px) = 0 (3.20)
The roots of this equation occur at

k = 2(=fwo +2nm) n=0, *1, £2, veveu..

I

=
]

s+ it, then
=‘2 Ine = 2 - ¢2

80 the roots lie on a rectangular hyperbola in the keplane with axes along
the real and imeginary axes. If c is greater than 1 there will be two
solutions on the imaginary axis, =ik,, hence there will exist a sinusoidel
asymptotic solution. If ¢ is less than 1 there will be real roots, *k,,
which determine tho asymptotic solution.

The case of primary interest, for example in an approximatae treat~
meny of the water-boiler, is that for which ¢ >1. Here the strip of regu-
larity used in defining F(k) and G(k) is that lying to the right of the
roots on the imaginary axis and to the left of the next roots in the right

half plane. Where o0=0 for x<O0, the extrapolated end~point is

biup(k)
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P pP(k) may bs written as %n(e(kz + ko? )/ - 1). Since the contour runs

Lo the right of the roots at % iky, we may add to Inw P(k) sny term which

iz 9nalytic in the right half plane without changing the value of the

integral. It is convenient to replace In P(k) by im {?(k)/(l/@)(kz 4 kozi .
2his makes no change in the value of the intogral which now may be evaluated..
convéniently by mumericel integration up the imaginery axis. x, has boen
avalunted roughly flor a number of vulues of ¢. The results are presented

in BPig. XIX. Several numerical selutions for sphorical problems have Been

obtained (of. Chaptor IV), and give radii in agreement with those of the end-

point eslculation within half e percent.

¥alue of the Solution at the Surface

The end value, n(0), bas been computed for the linear solution,
e=l, n{x)==x ¢ .410 + h(x). It has the value /2. Thus the character
of the devimtion, h(xz), differs markedly from that for the Miln; kernel.
in perticular, the two are of opposike sisn. This change in sign of h{x)
is not surpriéiug sinca the meneral appearance of the Yukawa kernel (for which

h(x)s=0) is intermediatae bebtween that of the Milno and Gauss kernels.
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4. THE CHRISTY KERNEL

Dopivation of tho Yukawsn Kernel as the Distribution Function of Overall
Displacemonts Compounded from Elementary Displacements
Exponentially Distributed in KNumbsr

A reascnably accurate treatment of the weter~boller probler must
take into account ths fact that the elementary displacements are not negli-
gible in comparison with the overall displacement. In particular, the mean
squere displagement in the first moan froee path is of the arder of half of
the total mean square displacemant in cooling neutrons to thermal energy.
Since most of the collisions are with hydrogen the correlstion in direction
and megnitvde of successive elementary displacemsnts will be signifiocant.
The diffusion of neutrons after thermalization will not be Gaussian sinoe
tho nunber of elementary displacemonts as well as their megnitudea is stetis-
tiecally distributed. The distribution of displacements in the diffusion
after thermelization has been shovm 4o be that of the Yukswa kernsl (cf.
Section l)o A demonstration of this fact by statistical arguments is es
fellows:

For a definite number of elementary displacements tho diatribution
function of the overall displecement is (4ﬁa)‘3/é e"rz/éa with the Laplace
transform, e&kz. Here a is proportional to the numbsr of elemontary dis-
placements before capture. ‘This number of elementary displacements will be

exponentially distributed since tho probability of capture is the same at

each step. Averaging the Laplace itransform of the Gauss cdistribution with
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the weighting function ™% gives

o
g da 0°8 o9kKZ /(2 = %)

[}
which is the Iaplsce transform of the jukews kerncl.

In ths simplest typs of the water~boiler problem we have s
spherical core of a water solution of fissionable matorisl surrounded by.a
pure water tamper. The fissiocnable meterial in the core absorbé thermol
neutrons and emite fast neutrons. Tho fissgionable material of the core is
present in sufficiently low concentration that the absorption of neutrons
baf'ore thermalization 38 negligible. The faslt neutrons produced by fission
are scattered in the water of the core and tamper and siowed to thermal energy.
Once thermnlized the neutrons diffuse in the water until captured, either
by hydrogen or the fissicnable material. Since the diffusion distance is
different in the core and tamper, owing to. the absorption by the fissioneble
meterial, it would appear thet the distribution of displacements between
thermallization and capture could not be described by a displacement kernal.
The problem can, however, bo formulated as a displacement integral aquation

by the following device, owing to R. Christy and R. Feynman:

Derivation of the Christy Xernel f{cr the Water-Boiler

Derote by m(x)} the rate at which noutrons are thermalized per
unit volume st x andé by n{x) the density of thermsl neutrons, Take for

the unit of time the mean lifetime of thermol neubrons in the core material.
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Then the rate of production of faat neutrons in the core is n(x) v c,

where o is the fraction of 211 thermal neutrons ebsorbed in the core
material which are absorbed in the fissionable maﬁerial, hence produce
fisgsion, and v is tho number of fast neutrons produced per fission. Lat
K(l_x_'_ S !) be the distribution function of the displacement oacurring
botween the production of a fast neutron and its thermelization. Then the

rate of production of thermal neutrons will be

alr) = ve ng“ n(r®) K(lg_ - g_'l)

whore the integration is carried over the core. Denoting by g(r) as
before that part of the thermal-neutron distribution, n(r), which lies in

the core, we may write this equation as

m(r) = wo Sdz_" g(x’) K(‘g - 5")) (3.21)

where the integration may now be carried over all spsce. The diffusien
distance is smmaller in the core than in the water tamper because of the addi-
tional absorption of the fissionable material. The moon square diffusion
distance is diminished in proportion to the absorption rate, i.e. by a factor
l ¢ where ¢ is a5 before the ratio of the absorption rste for the
{iusionable material to the total absorption rate. Thms 1 - ¢ 4is the
fraction abaorﬁed by hydrogen. The distribution function of tho displacement

by thermal diffusion in the wabter tamper bhafore capbure, normalized to
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363 2.3 v,
unity, is
' s 'eajg\r«r'}/ ro
- = Y(\r - r'l)
a2 |r - o)

where roz is the three-dimensional mean square displacemont. If for the

moment we neglecoct the additionel ebsorption Yy the fissionablie matorial in

the core then

n(c) = o 505.' w(e') Y|z = 2')) V(2 - o)

whore the Yukawg kernel is defined for a value of r, appropriete for

pure water. The factor 1/(1 - ¢) arises from tho fact that the mean 1life-
time in the core material was taken as the unit of time., Therefore the mean
lifetime in water is 1/(1 = ¢), henco also the ratio of n(z) to m(r) if
both are constant. The additional aebsorption by the fissionable material in
the cors results in the disappearance of neutrons at a rate o n(xr) in the
cors, hence at & rate o g(r). This disappearance of neoutrons may be treated
as o negétive source of neutrons corresponding to the positive source m(g),

hence results in a diminution of the neutron demsity, n(r), by an amount

= dn(r) where

=da(x) = /(- c)S de' Y(lr -~ 2°)) ¢ glz")

Thus the true neutron density is

ar) = V0 =..°.>.(\ agt Yl o) o) - o g(x:n] (3.22)

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE

e ® 9 ® (L X ] [ ]
e o ¢ L ® & o o
[ 2] o0e L] o®oe o o L]
9e ..' o000 000 o000 oo
e 9 eog o e o o
o a o, oo e 00 o o
- @ [ ] L ] [ [ e o
e o o o e o e o
L] oo o o0 o0 oo

If we now substitute in this equation the expression for m(r) given by

cquation (3.21) we get a displacement integral equation for n(r)

() = /(1 -¢) Sdz‘ ¥z - e [vo gdz"’ k(e = £*]) sl - cg(l;')}
(3.23)

which we may write as

n{r) = (.dz‘ H(Iz - a*l) glc") (3.24)

J

whers

H(]zug"!) = 1/(1-0) vogdr;" Y(‘zﬂ_‘"‘) K(ls:"mr.']) = Y(\pg']ﬂ
4

(3.25)

The "slowing kernel" qu" x_‘_") will presumably heve somewhat
the character of the Milne kernol and somewhat the character of a Gauss
kerne) since the first paths arc compareble with the total displacement. Tle
value of the kernsel for large argument will be determined primarily by the
first paths giving the kernel an exponential tail as in the Milne kernel.
The quadratic singularity of the Milne kernsl of the Pirst path will, however,
bo smoothed over by the later small displacements. A very plausible appro-
ximetion which combines these features is the result of compounding a Milne

with a Gauss kernel,

° o ® eo e :00 ;0

K(‘ I 4 'l) * ‘S.Ed‘l'f. EETER 135 = ’5"‘) Kgauss (l?_" = ’l"!) (3.26)

L ]

[ ]
¢ o o
20 83 s23¢ o006 oed °
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The ¥ilne and Gauss kernels are debtermined by & specification of their
mean square displacements. The total nean square displacement is the sum
of these two. The total mean square displacement can be determined in a
number of different ways. It has been measured experimentally and cen be

caloulated by o varlety of simple argumenta. One such simple argument will

bz given below in this socotion.

Permi Formula for Mean r> in Bydrogencus Natorial

Tho best calculation is that by Fermi which takes into eccount
sorrectly the eorrelation in direction end magnitude boeiween successive
peths and the effeot of nonhydrogenous scetterers. The Fermi formula is

correctly as follows:

? = 2x3% (0) [:1 +Jo(0)} + 228 (a)EL *P(a)]
.,[a/z +ga:dx p(x)/(l 4;9(::))}

+ 20{0) A(a) @

+2 Sa G (:;)[1 + )p(x)}dx

/2 -\ ole)at/ (1 +
v 22(0) a}\m R So o(4)db, (1 p(é)) .

O
2 ded] e oo *Si"(”’ /(1 + 0],
oo ese oo 00J°°"

. g;)\(x)ngz\e; .;%g';&[? ‘5 Sdéo(x +&)/ (1 + plx + é))ldgax
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This formule was incorrectly given in the original articlos), preswwably

by ronson of typographical errors, and cited in the incorrect form in tha

zirsicle of G- Horvay*’. The difference between the two forms of the

[a%

foymule deoes not lead to a great differcnce in the msan r%.
Two different methods have been used to determine the propsr dis-
tribution of the total mean square displacement betwesen the Milne snd Geuss
parts of the kernel. The first method, used by Christy, is to take from the
experimental measurements the decsy rate of the tail of the slowing distri-
bution at large distances. This givzzthe coefficient entering in the Milne
vzt of tho kernel. The secoud method is to disgribute the mean r* between
the two parts so as to fit correctly both the moan square end mean fourth
powor displacements. These two moments can be calculated by the following

simple thsory:

Noments of tho Distribution for Slowing in Hydrogen

Tha'soattering cross section of hydrogen follows o fairly good
1/~ law from a few tens of kilovolts up to two or three million volta. The
failure of the /v law at smell snorgy is easily taken into escoount since
there the paths are short, hence contribute only to the Gauss part of the

kornel. The angular distribution of hydrogen scattering follows a cosine

3) E. Permi, Ric. Ycient., 7, (2), 13 (1936).

%) G Horveys Ihys. Rev. 505,437 103803
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law for forwerd scattering. The fraction scattered into a range du of

the cosine, u, of the scattering angle is Z/uéﬂ, for O<p=l. 4If the
cosine of the scattering angle is M, then the energy is reduced by a

factor /&2 and the volocity by a factor e If we assumo that this angle
and energy distribution and the 1/v law hold down to zero energy, then tha
distribution of displacements in slowing ta zerc energy is convergent.
Moreover, because of the L/v law, this distribution will vary with initial
energy only by a scale factor. ‘The linear scale of the distribution will

bs proportional to the initial velocity. This fact psrmits the deternination
of the first few moments of the distribution by a recursion argument. Ve
choose for tho unit of length the initial mean free path. 1In each stage of
the argument the total displacement will be represented as the sum of the
first path and the resultant of all successive paths, denoted by r; and

ry fospectivelyo The various moments of this resultant of the second and
sacoeoding paths, Ip, are related to the corresponding moments of the dis-
tribution of the total displacement, r = r, ¢ Egs by tho scaling relation-
ship. The direction of the first pnth will be taken to be along the =x-axis «
Thoe mean displacement, ?i, (the bar hero represents the average velue) is
the sum of the mean length of the first path ~~ by definition unity ~~ and
meen x-component, ?éx’ of the remaining displacement, Las, the first path

of which has the mean length . The mean remeining displacement, is

EY
orionted at an engle of cosine w +to the x-axis and is of magnitude M

times the overall mesn displaosngn :-qg; E’gnce has an x-component of /E%E_.
[ ] L.
- -- A -
Zvaraging over the probaba.h«5--“-9‘,1'2!,&»:0??10? M pives
eae ooo .O. :" : : ...
s 3 N
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{3.28)
o°- .x: = 2 7 = 1
x ! 2x

in the same way we onlculate the mesan square displacemont,

——— —————

re = ory + 2r1r2x + rp

Since the length of the first path is exponentially distributed, its mean

square is 2. In the cross term the averaging over the lengths ol the first

vath and the x~component of the remaining paths can be done separately

)ince they arc independently distributed. This isrm has therefore the mcan

value 2. ©T,2 hes. for an angle cosine M, a meen valua of uerz,
v . : ra

4

"3
€

fl

N

+2 ;‘Ezgz,us Ap = 4 452

]
]
#
o)

N
™
)

th

{3.29)

% is seen from this that aftor one collision the remaining mean square
dinplacement ig reduced by half. The effect of tho first path is therefore
clsarly not negligible. The series of contributions to the mean squarae dise
nlicement is rapidly convergent, thus in replacing the part of the slowing
balow, say, 30 &Xv. by an appropriete Gaussian spread the subtiraction of the
°ai‘.i'ec‘c of this part of the slowing is relatively unimportent.

The mean squere x-component, and the fourthepowor displrcemont arc
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aaloulated in tho sume waye s 2 3 8 3 83
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Fem = 0y *zrlr.".x M Tox

1:;;3 is, for a definite _u, equal to ;:,2 timas the mean square r~component
in a direction with an angle-cosine M with respect to the x~axis. Take

this dirsction in the x~y plana.

(2l = pF (e 42 = p xy)?

= u? 'L}"Zr:"—z + (1 ﬂﬂ?)(.‘f_.‘é_"ﬁ)]

= 7 (W2 ut) R eg (But <p?) 12

1 -
(12 = pf) +5 (But < u2) r?

i

!

I

; { r -1
) Q
-3 2 2 5) 1\
rx = 4 @ Z - 'é' 4+ -6-‘ - 2-' rx(o
> 56 > _ 20
xT % Ty fex” T F
rprd = (ry + rpx)(r® + 2ryrag + rp2)

= .3 n 2p e 2 o er e 2 er o2
| L R e T AP IO P PUB g PR

i

t
20
6 4+ 3+24] 4 2'1°-§- + 1°4 *S 2/u<i/~ //10'5 * rer
0

rescaling xe-component

e
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2 = 184

Homents of Digtribution for Slowing in Hydrogen Plus Heavy Malorial

This oslculation of the second and fourth moments doss not take
into account the effect of scattering by nuclei other than those of hydrogen.
Ths e¢ffect of the inclusion of heavy slements will be taken into account in
two successive approximations. In both cases the heavy nuclei will be con-
aidered infinitely heavy compared with the neutron, the scatitering elastic
and isotropic. In the first approximation the effect of the heavy meterial
will not be taken inbo account after the first hydrogen collision. In this
approximation we have caloulated the mean squarc and fourth power displece-~
ments. The result of this calculation shows the ratio of the fourth moment
to the square of ths second moment {which ratio determines the distribution
of the mean square diasplacemont betweon the Milne and Gauss kernels) to be
very insensitive to the concentretion of heoavy material assumed.

The second approximation used assuwes a acattering cross section

for the heavy material which is independent of the energy. The heavy

FOR*PUBLY C
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~56~

matorial acattering is then taken into sccount in all stages of the slowing.
The trestment in this approximation iz considerably more laborious than the
preceding epproximetion and has therefore been carried uvnly as far as the
evaluation of the second moment. '‘Since the dependence of the moment ratio
on the concentration of heavy material is so slight in the firet approxime~
tion it was considered sufficient to use this first epproximation in evalua~
ting the momant ratio while using the result of the second epproximation
method in determining the mean square displacemont. The second moment is
pors accuratoly determined by the Fermi formula, but thiz formula is very
inconveniont to use as it involves a number of mumerical integrals over eox~
perimental curves. The mean square displacement in slowing in water has been
clculated by P. Morriaons) using the Yermi forpula. However we do not now

know whether the correct form of the Ferni formmla or the incorrect published

fors wes used. In the abrenos of this knownledge the result of the sacond-

approximation method is the most convonient formula which is of sufficient
£OCUTGOY «

in the first approximstion the scattering probability for h;drogen
is egain taken to be one por unit length for the initial energy and varying
as /v 88 beforo.

The socattering probubility for the heavy material is a

per unit length for the initial energy and zero for smallex emergies. As

before we divide the overall displacoment into the firat path and subsequent

?) (o8-651) LR R e—
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The mean length of tho first path ieg now L/(l + a). The first collision
can either be a hydrogen collision, with probability L/(l +8), or a heavy
matorial collision, with probability a/(l +a). If the first cocllision is
with heavy material, then, since this collislon is isotropic, the meen
x~componont of the remaining paths is zero. If the first collision is with
hydrogen, then since the heavy-material cross seotion is to be neglected

thereafter the mean x-component of the remaining paths is juat that given

by the preceding celculation (3.28), i.e. 1.

i

i 2/(1 +a)
similarly

]
N
"

] ezl 1 72
(1 +a) 14a 1+a

552 mpy be divided into two parts. If the first collision is with heavy
materiel, with probebility a/(l 4+ a), then ;52 = rl. If the collision

i6 with hydrogen, with probability 1/(1 #+ &), then x'-'z'.? iz, as vefore, 4.

2 = 4 a_ 2 o 4
1 +a)* 1l +a l+a
;E',_ 8 + 44
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The rest of the calculatien sgrcvovdss Saeids’ some way. The result obtained
is
= 1656 + 3176a + 22648% + 552a3
9(1 + a)3
The ratio, ;27;—% varies only slightly with a as seen in the following
tabls.
e T5/72%
0 2.875
2 2.853
b 2.862
.6 2.887
’ .8 2.917
1.0 2.951

in the socond approximation the effect of the heavy material

scattoring is taken into account in all

the energy is reduced, hence the hydrogen cross section is increased.

the heavy material cross section is not

no Aonger holds in thc original cimple form.

stages. After a hydrogen collision

Since

increased the scale-factor recursion

If the velocity is reduced by

e factor 4 we may consider the distribution of remaining pathe scaled

dovn by a factor /d, if also the heavy m

reduced by the same factor. Yhus

&
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r2(a) = — = ai(az x dx)
3a as da 1 +x
(o]
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2
3a°

3a (1 +a)3

A graph of this function is presented in Pig. XIIX.

The compounding of the Milne and Gaues perts of +he Christy kernel

is test done with tho three-dimensional Fourier transfori.

(k)

)

S dg o EL K{r)

Since K(r) is normalized and symmetric

=
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Mindex Theory

In compounding two kornels as in (3.26) we find the distribution

of the resultent of two indepondently distributed displacements. The

Fourier transform of the distribution of this resultent is the product of

the Fourier transforms of the distributions of the two independaent displece-~

ments. Denoting the sedond and fourth mements of the first distribution by

a and b, of the second by a' and b', and of the resultant distribution by
A pnd B,

6 120

1 o KA i _ ( ke kb  iRa! o E2b’
6 120

A = a +8’

B = b ¢+ b! + 3'9. aal
Thus 3
(B-282) = (bo2a2)+ (b -Saw)
3 3 3
Dafine
M = 3B

SAZ ~ 1, &and similarly m and m°.

Tho expression M, known as tho mindexs) » dopends only on the character of

“he distribution and not on the scale of size.

6) Terminology owing to R. Jfayhiing.
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()% = (ma)? + (m'a’)? (3.31)

For a Goues function, M=07). For a Milpe kernel, X =1.61245, for a
Fukswe kornel, M =1.0000. Taking m/h?::z.s, ag indicated by the result

of the first approximation mothod for slowing in water, gives M =.860.

Writing (3.31) in the form

202 4 p'2g12
(a +a")?

=

shows that the magnitude of ¥ is diminished by the process of compounding
Gistributions. This is consistent with the fact that the limiting form of

compounded distributions is Gauasian, with zero mindeox.

Constants in the Christy Kernel

In the prosent case one of the two Punctions is Geussian, honoce
P

m' =90,
¥2/m? = [a/a +a‘)}2

o/(a +a') = .860/1.612 = .534

One-sixth of the sccond moment is known as the "age" of a neutron distribution,

thus the age, A/6, muet be distributod sbout equally between the Milne and

¥) This is s partial statempnt.o‘“ thes a.gry ‘:g wral property of stadbility
of Geuss distributions &nﬁlev c.t}-noclwnou H

e - S \———
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tfoausg parts of the kernuf.,,,ﬁzs:}a»f&:u% 14 indicate that the Gauss arge

should bo about 13 percent less than the Milne age:. BHowaver this tresatment
underestimatos the Gauss age because of the use of the L/v lew below 30 Kv.
Since in the low-energy range the paths are small, this region contributes
oinly to the Gauss part of the kernsl. The incresse in the total age produccd
by correcting the low~energy cross sections must be added only to the Gauss
age. The offect of this correction is to make the Gause age ton or fifteen

porcent greater than the age of Milne.

Cr1t*cal Mass of Water-~ Boiler

Tha cheracteristic equetion curve has been calculated for the
water~boiler kernel, (3.25), for two sets of coefficients: ono used by
Ro Christy in his celculation of the criticel mass of the water-tamped water-
poiler, the other corrocted by the use of the results of this calculation
{ape Pig. XIV). Christy's coefficients give the Gauss nge abou: 10 percent
lesa than the Milne ape in the slowing kernel. Corrcecting this ratio mekes
3 nogligibla change in tho charescteristic equation curve in the neighborhoed
of the concentration giving the minimum mass. The extrapolated end~point
was calenlated with tho Christy coefficients in this neighborhood and the
vesults are shown in Fig. XV. The minimum criticel mass,.580 Xg (calculated,
nhowever, with v =2.2), agrees with Christy's result. This mases will pro-
tebly be increased by about 30 percent if v =2.0.

The chenge in the coefficients in the slowing kernel produces a

emall but appreciable change in the charasoctseristic equation curve sway from

the optimum rogion. This would praduce some change in tho extrapolated end-
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point. However, it is belisved that “he rosulting change in the oritical

nass would not bs eppreciasble in comparison with the uscertaints in the
constents.
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CHAPTER 1V.

OTHER METHODS OF SOLUTION AND RELATED PROBLEMS

In this chapter we propose to discuss the varicus methods of

treating integral eguations, other than the end-point method, which have

proved of value in the present work. The two most important of these are

“he varistion method and tho iterativo numerical solutiom. The variation

method is for most problems the most accurate method of tresiment now in

uee. It is quite flexible and can be applied to tamped end urbauped probless

of almoct any shape. However, the difficulty of eveluating the integrals

involved increases rapidly with increasing complexity of shape. f{'or this
reason it has boon appliod to only a few examples of each of soveral types

af goomelry, spheras, slabs, cylindors, and roctengular solids. For this

reason it does not secm varticularly promising for the solution of problems

of greater complexity than those already troated.

Munerical Method

The nmumerical method is the simplest and probebly the most flexible

rehkod used to date. Although it is the first mothod used which £aVe reason~

ably accurate raeults it is tho least well devoloped mothod of solution in
wee. In its present rudimentery form it con be applied to problems of ocon-

sidersbls geometric complexity only with an enormous expenditure of computa-
tional labor. It is hoped that further refinement of the techniques of

epplication of this mothod will meke practiéable the solution of integral

——

APPROVED FORUBE|'C RELEASE




APPROVED FOR PUBLI C RELEASE

[
o o [ ] [ ] [ d .
squakions of types alreddy®*?ratdd’ Yor much wmore complicated seometrr.

In applying this method to ths solution of an integral equation of tha
form (1.1) a plausible guess is made as to the shape of tha function n{x),
say ng{x). This guessed function is inserted in the right side of the equa-

tion and the integration carried out numerically. The resulting function,

nl(g), is agnoin intcgrated numericslly to give a next spproximntion. na(g}.

This iteration process is continued until the successive approximants differ

only by o mulbiplicative factor. f{his factor is the highest eigenvelus o.

Since n,{x) ocan be represented &s & superposition of the solutions of the

integral cquation for wvarious eigenvalues the rapidity of convergenco will

be determined primarily by the ratio of the highest tco the second highest

cigenvalue. In tho problems so far treated this ratio has been of the order

of 1.5 or 2. Four or five iterations are usually sufficient to give a value

o7 o which is stable to e few tenths of one percent. If the numerical

integrstions have beon corried out properly this will be the accurncy of the
soiution. This method has so far teen applied only %o slabs and spheres
where the integral equation cun be reduced to one in one dimension with a
Gisplacement kernel. The lteration process can thon be set up in o very
simple form and can be carried out by relatively untrained computers.
The‘itarative numerical solution is of partioular value when not
only the oigenvalue but alsc the eigenfunction is desirec. A numbes of
solutions of sphsrical problems for the Milne kernel have been obtained,

however, with fairly crude integration techniques. (Trapezoidaml integration

ig used except for the asingularity of the kernol which is treated to give
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the correct integral witl!,? ghnliunleckeelsone corfactor.) A few of the

oo oo
curves obtained are given in Flg. XVI. A more careful solution for a
Gaussian kernel was obtained for three sizes of'untempsd” Bpheres, a=1l,
1.6 and 2. Tho resulting curves are presonted in Fig. XVIZI.

In the numorical treqtmont of sphorical and slab problams tho
displacemont character of the one dimensional kerns) permits a very simule
integration technique. The set of numorical entries representing the kerael
is written on a strip of paper. The numorical ontries of the suscessive
trial funotions are written on a parallel strip. The inteprstion is then
performed by summing the products of edjacent pairs of numbers, the value of
#z beinpg determined by the position of the center point of the kernel. A
diflerent valug of x 1s gotten merely by displacing the strips. The
nunerical treatment of problems for which the one dimensionsl form of the
kornel has not this displacement property, e@.g. +he infinite cylinder,
would reguiroe meking a soparabte kornel strip for cech value of x. The ite~
ration method is, of course, not restricted to problems which can be reduced
to one~dimensionnl integral eguations. However, the application of the
method would botome prohibitively laborious if the number of entries for
integration were large. It is hbped that the use of powerful invegration
mothods and the judicious choice of representative repions will give reason-
ably socurate results for a moderate number of entries. Preliminary in-
vestigations are now being carried out. These indicate that it will he
possiblo to use this methed for a limited numbzr of problems of complicated
geometry. The results of these may be used to validate simpler recipes

which can bs applied to many caces.

* This describes approximately a water tamped water boiler. It is "untamped"
in the sense that the integretion is carried only over the core.
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Variation Methed

The variation method of solution of integral equations here dealt

with is essentially an sppliocation of the familiar Ritz method of solution

of differential cquations. The kernel is hore a fairly smooth function ex-

tonding over tho entire region of integration, thus small errors in the
gshape of the trinl function are much less importent then if the kernel

involved only a delta function and its derivatives. Thus, for example, in

the treatment of the untampoed sphere a parabolic trial function (one free

parameter) proved far more sccurate than necessary. The constant trial

funotion, however, is not sufficiently accurats for the sphere, and presuwmably

would be atill more unsatisfactory for more complicated shapes,

In the variation .othod the integral equation

n(z) = egdr_" K(]x = £']) P(e*) n(z')

is oxpressed by the veriation equation

’(i/m) = o, ¥y = i/fe (401)

where

I~
i

S ar dz' K(le - £']) F(e) F(e') n(r) nlc')

1]

H

de; P(c) n?(z)

and & denotes variation of 'n(z). Usually only the smallest eigenvaluou,

¢, 1is of interest, hence the greatest unximum of I/ﬁ.

This method has
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oon most extensivoly ug-&d,:;gzin ’g%oe ?.2%1?..0. kernel. Some of the results so

obteined and a comparieon with the end~point method results are given in
Pigs. XVIiI, A, B and €. For the simplest shapss the ocaloulation was

usuelly made with & constant ond with & parabolic trial function. The con-

stant trial funotion result is given and also the minimum obtained by vary-
ing the one effactive free parameter in tho parabolic trial function. The
non-cubical rectangular solids were caloulated with two free parameters

and the finite cylinders with three. 1In all cases the end-point methed was

uged to extend the few variation results to othesr sizes.

Integral Boundary Condition Mothod

Ancther analytic approximation method which was used in the

early stages of this investigation, the integral~boundary-condition methed,

gives reagonably acourate results. In this method the asymptotic interior

solution is used throughouﬁ each region of constant F. The phases of these

interior solutions are determined by the requirement that £t the boundseries

the intogral equation be satisfisd (cf. LA-5). Here also the approximation

of assuming the several rogions infinitely thick is of valwe. For example,

it we apply this boundary condition to an untamped surface with the Milns

kernel wa have,

alx) = sin ky{(x + x;)
. o | ) :
sin XoXq = 3 \dx B(x) sin ky{x + x,)
o 8in koze ten~} ko o1+ koz)
= + ¢ co8 kgko
2 o 4k,

eee @ e®s 009 03
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... 006 008 000 000 oo
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This, with the characteristic equation (c/ko) tan~1 kg =1, gives

Iy (l 4 koz)
tan=l Xk,

3
Z z
tan k. x, = >

A comparison of the velue of x, 5o obtained with the oxtrapolated end-

point solution is prosented in this table

LN X0
Integral Extrapolated
Bound. (ond. End-~Point
0 w58 « 7304
-5 472 .8590
100 u‘}:ls -5584
1.5 <360 4668
2.0 314 «3954%

#né shows this solution.to be reasonebly aocurate for the interesting range
of ¥k, and most inaccurate for smell kg, ifor which such inaccuracy is
luss significant. This method is more accurate in tsmped problems where
the devistions from the asymptotic solution are smaller. The only advantage
ot this method over the extrepolated end~point method is the gase with which‘

it can be applicd to new kernels. The integrals involved can usually he

svalucted anslytically or bty an easy numerical solution.
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Albsdo of an Isohropic Surface Source

A problem closely related to thet of the one-boundary solution
of the integral equation is ths albedo problem. Here the inhomogeneous
sclution of the same integral equation ig sovght, the inhomogeneous term
being a surface flux of incident neutrons distributed in angle in ; speci~
fiod way. The general case, i.e. for an arbitrary anguler distribution of
incident neutrons, has been treated exactly by Halporn, luenseburg and Clarka).
Their treatment uses much the eeme method of.analysis as the present extra-
poliated end-point method. It was their treatment which suggested to us
whis lino of attack on problems of this type. Thore is one speciel case of
the albsdo problem which can be solved exactly by a much simpler method than
this. As this method may prove of walue in rclated problems we present it
here. This gpecial case is that for which tho number of incident neutrons
is uniform in angle. (This distribution is to be distinguished from that
celled isotropic by lialpern, Lueneburg and Clark, which has its flux uniform
in solid angle.) The incidont distribution tremated here might be realized
by irradiating with thermal neutrons a thin leyer of fissionable material
on the surfece of the half-infinite medium whose s&lbedo is considered. W®Hzlf
of the fissibn neutrons produced will enter the scattering medium uniformly

in angle. The scattering material is assumed to produce only isotropic

e eeeo O o‘f :
3) Phys. Rev. 53, *%73s 1058 &,
P [ ] L4 b4 . °
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olastic scattering and absorption.

We first neglect the absorption of neutrons in the scattering
m2dium snd compute the fraction of ths incident neutrons returning across
the boundary after any spscified number of collisions. Ry summing this
sayias with the appropriate powers of tho reflected fraction in each colli-
rion the total slbsdo is obtained as & function of the ratio of scattering
nnd absorption cross scction;. T.a first compute the fraction returning
after n cellisions for the first few integers. Tho series suggested by
this result is then verified by mathemetical induction.

The fraction of the incident neutrons returning afiter one collision
s one fourth. This follows from the fact that the incident neutrons are
distributed uniformly in (the cosine of the) angle betwesn O ond ﬂ/z.
Aftoer bolng, once isotropically scattered, the neutrons are divided into two
«qual parts, thosec still going forward and those returning. The returning
hali of the neutrons ere distributed in angle about the outward normal
oxecily as tho incident neutrons were about the imvard normsl. Thus their
distribution of x~component path lsngth before collision (x parallel to the
- normnl)} is exuctly that of the incident noutrons: i.e. their distribution
in distance from the boundary after the first collision is tho same as the
distribution of {x~-component) displacement before having another collision.

0f the half of the incident neutrons returning toward the boundary after the

tirst collision, half will oross thc boundary without suffsring a further

colllisione.
COU S SO TR D B
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Fig. 1I

The fractlon returning after two collisions we divide into two
perts: those, f}’ still going forword after their first colliision which
2ome beck after their second oollision and cross the boundary without

further collisions, and those, f,, which are returning aftor their first

sollisions, have anothor collision bofore rsaching tho boundary and then

croas the boundary without another collision.
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The first frection, £, is the praﬁg%glié;, l/k, thet & neutron is still
going forward after its first collision, times the probability, 1/2, that

it go backward after the second collision, times the probability that the ‘
backward displacement be greater than the sum of the two forward displace-
ments. The fraction, fa, is tho probability, I/%, of going backward after
the first collision, timss tﬁe probebility, l/é, of moing backward after the
second collision, timss the probability that the forward displacement be
less than the sum of the two backward displacements but not less than the
fivst of them. Tho sum of these is

r
!

i

—

P(L +2<3) + p(1>2, 1<2 +3)}

where the first P represents the probability that the sum of two displace~
wents be greater than a third, the second P tho probability that one
displaoemeﬁt ba greoater than & second but less then this second plus a third.
The first P msy equally well be written P{(3> 2, 3 > 1 +2), the pro-
bability that one displacement be greater than another and also greater than
this other plus still another (since if it is greater than both it is greater
then either one). Since the indices, 1, 2, 3, have no spocial significance
boyond labeling the several paths all of which have theo same probability

distribution in length, ths sum becomes

%LP{1>2, 1>2 +3) + P(Q>2, 1-<z¢s)j

s1paas2) = L
&

.:0 OEO E:O 0:0 g:o Eo:
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Figo Iy

Similarly the fraction of noutrons returning after three collisions is

0 fi-2

%p(4>1+24 3) + P(B3<142, 3+443142)

+ P(2<1, 4+42>143) + P(1>2+3, 1<2«93-’4)}

o

= .1[?(4>2+3,4>1»2—:3) + P(1>2 +3, 1<2+:5-e4'.~);',

s P(3<1+2, 3+443142) + P(2<1,%+2>1+3)}

:%{[}?(1>2+3)] + P{3<142, 3+4>142) 3 P(3<1:4"2>1'}3)}‘
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$3: 8.3 el
Hore
P{(1>2+3) = P(3>142) = ) = P(3<1+2)

= 1 =P{3<1+42, 344>142) - P(B3<142, 344<142)

i}

P(1>2+3) +P(3<1+2, 3+4>142) = 1 = P(3<1+2, 3+4<1+2)

!
)
0

P(3+4<142)

!

)

1
vof

t
o

it

Pl2<l, 4+2>143) P(2<l, 4>5,4-3>1~2)

ki

viz <1) P(4>3) P(|4-3|>]1-2])

s

1
8
The total fraction returning after threo oollisions is then

8 64

11 1) _ s
AT

Similorly calculated, the fraction returning after four collisions is 7/128.

The aseries of gsoefficients, 1/4., 1/8, 5/64, ’.'/128000 cea be writien as

1 13 135 313557
&’ 46" 468 46810

suggesting that the fraction returning after n collisions, F,, is cin *1/22n

where cg is the number of combirizﬁ:igns of a things taken b at a time,
tl!/?b: (a. = b):) - o' E E. . Eo ]
L .oo eeo o see o
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The frection romaining i

Thus after n paths (at the nth collision) the fraction remaining is

cz’l//zan ~1 .

" We show that this is {truo for all n as follows: The series

~

o' n paths joined by the n=1 collisions can bs represented as a series

of cycles, each being an oxcursion into the scattering medium and e turning
backe Each of the n paths except the first is equelly likely to be
directed into the medium or out. Similarly esch except the first is as
1ikely to be direoted in the same sense as the preceding as in the opposite
scnaso., Thus at each collision there may or may not be, with equal probabi-~
Yiky, an inversion of direction. The {irst, third, fifth, etec., such
inversions determine successive cyclea. If n is 28 oy 2841 thers
mey be at most = cycles. The number of cycles is half of the numbsr of
inversions or half of one plus the number of inversions, whichever is
irtegral. Thus for n-~1 collisions saparating n paths, the probability
that there be o cycles is the probability that there be among the n-~1

sollisions 28~1 or 2s inversions. This probability is

1 Inal n-1 1 n
zn..j]_ (6213'-1 * Cgq ) - -3 c"}

The totel displecement in each cycle may be either positive or negative

with a symnetric probability law just as in oach path. Tho probsbility

APPROED FOR PUBL1°C REL EASE
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e is the seme for each of the s cycles so long as the number of paths

in the various cycles is not specified. The probability that nowhere in

+he s ecycles does the path cross the boundary is just one half of the

provability thet efter 8 seperate patha there be no recrossing of the

ooundary. The factor 1/2 arises from the fact that in the original probliem

i, vms speoifiod that the first path is directed into the medium. This will

79 true only half of the time for the first cycle.

%o oke the ansatz that ths frection of neutrons remaining after

N puaths is czn/22u=»1 ac suggested by the first fow terms. Then since
n

“he Tirst line of argument used to find this probability applies egually well

booa series of n cyclas {excapt for the factor l/ﬁ) it must be true thst

whe probability of remaining after n cycles is ciﬁ(zan. Since, however,

end

the probabllity that in n paths there be s cycles is C: /én"l
&

the probability of remaining in the medium in these 8 cycles ia CZ§/223
B

the total probability of romaining after n paths is

{ - 2
\I/Zn 1) 5 cn 023/2 s
s

25 B

whare the summation is carried over all integers, s, for which tho two

conbinatorial symbols do not venish. This expression will bs recognized as

tho constant term in the double binomial expanaion of

-

.:. OE. E:O .:0 :oo :.’
APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

of which the constant term is . Thus if the ansatz is true for

cin/ZZn -3
integers up o n, it must also be true for integers up to 2n. Since it
is true for the first few values of n it is therefore trus for &1l n.

fieving now the fraction of incident neutrons returning after n
coliipgions in the abaence of any absorption, we compute the albsdo as a
function of the amount of absorption by wultiplying each such fraction by
tho apﬁropriate pover of the re?lectivity, 8, 1i.e. the fraction scabtefed
ot each collihion, and summing on n. This gives for the albedo as a func~
tion of the reflectivity, A(s),

2 =2Vl « 3

A{s) = -
‘ 1)

This result is consistent with the asymptotic formula derived by Fermi for
the cnse, 1 - s¢<l, Als) =1 - 21 = 8. A graph of tho albedc for

"isotropic"incidence is given in Fig. XIX.
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Detcnation Probability for' pleleri¥ich? Bistribuiions

Another related problem is that of the detonation prohability
for slightly hyperoritical distributions. For such a distribution of
mwatorial an initial distributicn of neutrons is certain %o inerease in
number exponentially to the point of explosive expansion only if the
initial numbor is 8o great that statistical fluctuation can be neglecied.

A question of intorest, therefore, ig the probability that a single neutror
introduced into the distribution of material ccmposing the padget in some
rendon way lead to "ipgnition". FPFor simplicity we essume bthat the “random
wey" in which the singlo neutron is introduced have a probability distribu~
tion which is of the same shape as the spatial depondence of the hyper-
eritiosl solution of the integral equation. The extent t2 which the distri-
bution of mnterial is hypereritical will be defirned by the assumption thet
the probability that a noutron in the gadget produce e fission process
{thus giving two neutrons) is p, the probability that it sscaps or be
saplured without.produoing figsion is q = 1 = p. Then in oach genoration,
80 defined, the number of noutrons incroeases in the mean by & factor

2p =1 » ¢&. This excess, &, 1is tokon as £he measure of hypercriticality.
¥i» denote by P, the probability that on initiel distribution of n
noutrons lead to ipganition. Since the time scale is of no significance in
this problem, we disregard tho actual order of the procosses involved and
considaer that first one,  then snother, etc., of the seutrons makes the choice

botwern death and multiplication. With this view it becomes clear that
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with the condition

We look for a solution of the form P, = a®, or a linear combination of

two such solutions (the difference equation is linear and homegencous).

Inserting this form for P, gives

a pa% +q

11 -4pq  1%t/1 -4p +4p?

2p 2p

12 (2p~1) ltg
2p 1 43

5"6
{

-

=
T
fn

!a

L4
|
=

“hus the ignition probability is small for slightly hypercriticel distribu-

tions and increases somowhat slower than linearly for increasingly hyper-

critical distributions.

At a time considarably after the introduction of the single

rneutran the erxpectation value of tho number of neutrons present is just ths

rwmbsr of neutrons that would be present if the distribution had grown
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exponontially without statistical fluotuation. Since this fluctuation
gives only a small probebility that there be any neutrons present (for
smell €), then the mean number present if this number is other than zero,
i.ae. 4if ignition has occurred, must bo greater by a factor (1 + e)/2e

than the number which would be produced by a smooth non~-statistical growth.

[ eoe o e®e oo oo

o o e [ [ d ® o o
- @ ° (.4 L e o

(4 - e L4 LX) e o
L J - o L J [ ] e o

0 000 000 000 o0 oo
(X4 (X X ] [ ] o006 6 o [ ]
e 6 ¢ e & o e & & e
o o o L [ ] [ X X4 [ ]
& o oo [ e [ N L 4
o & o e o o e o O
L]

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

o 0 0 L] [ XX ] L]

o o 0 ® o6 .0 0 0 @
‘_ ®e oe0® o eve 0 o o
00 .000 00 o0¢ 000 oo

. o o * o o

. o e o o0 o o

e o o e o o e

o o o o e o o o
e eoo o ooe oee oo

" CEAPTER V. EXTENSION OF THE EXTRAPOLATED END-POINT
' METHOD TO OTHER SHAPES

i
L
! The end-point method gives a rigorous solution to displacenent
ix&egrdl equations where tho range of integration covers all space to one
side oﬁ a plene boundary. It wes shown in.Chapter II that this soluhion
for a galf-infinitb medium can by usged to supply a recipe for the solution
of s;aq and sphere problems which is correct in the limit of lerge thick-
ness orgdiameter and which should be of sufficient eocuracy throughout tho
interesking range of sizes. A comparison with the varialtion-method results
justifibe.this expectation. There are many problems of interest in the
presentzwork involving congiderably more complicated shapes. It will be
shovm i; this chapter that the end-point method can be applied with resson~
- able ac%urecy to many such problems, oven where no Bimpio argument can be
given t§ Justify the accuracy of the epproximation. In a fow problems of
more co#plicated shapc both thae variestion and end-point methods have bzen
appliedL' The close agrecment of the results of the two calcul#tions is
taken a; evidonce that the end-point method cen safely be used in still more
|

complicated cases, for which the variation mathod can be used only with a

|
prohibitive amount of labor.
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$3i. IHE INPINITE CYLINDER

' The radial dependence of the asymptotic soclution in the interior
of an in%initely long cylinder is Jgo(ker). The true solution will drop
below tﬂis asymptotic solution near the surface but will not reach zero.

The edge;of the cylinder 7ill therefore ocar for an r somewhat smaller

i
then the first root of Jo(kor), i-e. 2.4048/ke. The amount by which this
first roéb exceeds the redius may be called the “cylindrical end~-point™. It
has not Fo far proved possible to identify the cylinder problem with some
correspoﬁding plane problem. However, for large radius, where the curvature
is negligible, this end=point must heve Lhe seme FP~dspendence as for a plane
surfaoe.; Moreover it is ssen from the mnalysis of Chapter II that curving

l

the surfhce in both directions, i.e. in replacing the plano by a spherical
|

surfacegéthe end-point distance is not changed. This suggests the hypothesis
|

that in Fntroducing & curvature in one direction, i.e. in replacing the
plane by%a ocylindrical surface, the end-point distance will still not be
greatly Lhanged. e therofore caleulated critical radii for infinite
cylinder% of F~values by :ssking the radius less than the first root of the
Jo by tge same oxtrapolaed end~peint distance as that used for the slab
end sphe}o. The critical radius for a fow values of F has also been cal~
culated %y the varintion methed (D. R. Inglis, 1A-26). Both results are
presantea in Fig. XVIII-A. It may be seen from this figure that the dis-

crepancy, if any, is leas than the accuracy of the variation calculation.
34 y Yy

.

This ver%fication of the aypothesis used in this rocipe for the end-point

Bolutioniof cylindricel problems extends throughout the useful range of radii.

'
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The corresponding';:agfi,pé f‘o,xf.r,%:e. 'ég\mped. infinite cylinder would
be ns foilows: The a symptotic solutions in the core and tampsr are the
Basselefqﬁction solutions for the values of k, fixed by the characteristic
oquation; If the temper is finite the phase of the asymptotic soiution in

the tampér is fixed by putting its first root at the extrapolnted end-poink
|

di.stence beyond the boundary.

If the tamper is infinite, repularity at
infinity;determinea the phase. The boundary condition at the core-tamper

interfacé requires that the logarithmic derivatives for the core and tampor
; OOl
asymptotic 3olutionaAat & radius which is leas than the actual core radius

by the a*ount P S Both the end~point, x,, and the discrepancy term AX,

are to be taken from the graphs celculated for plane problems.
|
. No sufficiently accurste variation solutions have 5o far been por-

i
formed fér tamped infinite cylinders thus no check is available on the
!

accuracyéof this recipe. However, because of the close check for untamped
i

cylinderé we are confident that this recipe is as accurate as is necessary.
!

|
2. FINITE CYLINDERS

Untampedicylindars

| The success of the extension of .he end-point method to infinite

cylinderé encouraged the attempt to find e similar recipe for untamped

finite oylinders. The following recipe was tried: For a definite value of

P the interior solution is taken as cos klz Jo(kzr) whera £ 1is distance
i

k32 + k5% = k2 k

o is

from the center, paraliel to the sxis. where
i

determined by the characteristic equation. The half-length of the cylinder

| U——
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i taken less than tho flrst root
!

the radius
|

ka by the amount x,, similarly

is taken less than the first root of J (k,r) by the emount x,
where #Q is the extraopolated end-~point distance calculatced for plane

boundaries

by F).

radius énd half~-length exceod those of the actual cylinder by x,.

in the absence of transverse wavss {i.e. x, is determincd only

|
' Thus the asymptotic solution vanishes everywher< on a cylinder whose
It is

not cle%r how well this solution treats the neutron distribution near the

‘It might equally well have been assumed that the surface on which the

aaymptoéio solution vanishes
: .

sdgzes.
is that surfece, all points of which are at

a distaﬁce x, Zfrom the nearest point of the nctual cylinder of material.

This surface is a cylinder with its edges rounded off to the shape of a

|
toroid. | The solution of the wave equation with this boundary condition is

much moﬁe complicated than that first tried. Since this uncertasinty in the

traatmeét of the corners exists it seems unprofiteble to include in the
recipe ﬂho further cowmplication of taking into account the effact of the
tranSVeAse variation of the solution on the end-point. Lxperience with the
cubao (cﬁ. Section 3) indicates that the error made in neglectine the trans-
vorse wAve is of the same order of magnitude as the error in the treatment

of the cbruers and edpges. Since both the transverse~wave effect and the

l
effoct OF the inaccuracy in the treatment of edges.and corners are amall, it

is to beiexpectnd that this recipe for the troatwment of finite oylinders will
|

ha fairl? accurate. A number of spacial cases were treated alszo by the

variatioh method and no discrepancy greater than a few tenths of one psrcent
|

was founh. The deteails

of both troeatments and a comparison of the results

.
i

i

| S
| S

|

|

;
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is given in LA~31. The resulls o188 Extrapolated end-point methed
[

treatmeht are given hero in Fig. XX.
!
!

i
Tamped Cylinders

I

| For the end~point treatment of tamped finite cylinders a recipe
corresp%nding to that of the tamped infinite cylinder can bs stated. The
correspﬁnding rvacipe would be as follows: In oesch medium the asympbotic
solutioh is a solution of the wave oquation in which the scale factér, o,
is dete;minod by the charactoristic equation. At each open boundary the
conditiSn is the vanishing of the asymptotic solution a distance )
dafined?ée before, beyond the boundary. At each interfacs between two
materia#a the boundary condition is the equality of éhe logarithmic deriva~
tives a£ a distance Ax, into the medium of lowér F. If the tamper isa
conoen‘t:ric cylinder of the same length as the core, this recipe can be

i
applisdiwith reasonable ease. If the tamper extends on all sides of the
cylindr?cal core the application of this recipe becomes very difficult since
no simpie solutions of the wave eguations give equal solutions and derive-
tives a& the extended boundariss. For such problems, some sort of numerical
solutioﬁ may prove more uaeful.

|
3 5. RECTANGULAR SOLIDS

i For untamped rscbtangular soclids the same recips as that used
for thoifinite cylinder has been employed. The asymptotic selution is

requireé to vanish at a distance x,, again a function of F alone, beyond

I
'
|
!
.
|
|
!
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sach boundary, or rather on the Yrady® ficed surface so detormined. The

auympt?tic solution has then the form

2 4,2 2 - k2
2 + k2% 4+ kP = k

ees k. x cos kzy cos k o

1 3’

The mo;t convenient prosedure for finding solutions is to fix F and two of

the 1iﬁoar dimensions. F determines k; and =x,. %, and the two linear

dimens%one fix k3 and kp, hence kgz. ks and =x, then determine the

rcmaining linear dimension. Variation calculations have been performed by

Olum and Davis (LA-47) for several cubes and several rectangular solids with

one sq4are cross section. The end-point and variation results for oubes

are gi%en in Fig, XVI. The discrepancleﬁ between the end-point and variation
|

rosulté are of the order of 1/2 to 1 percent for both cubss and rectangular

sulidsJ In an attempt to determine how this error is distributed betwee:u

the va#ious roughnesses in the bGreatment a few of the cubes were recaleculated
|

teking 'into account the effect of the transverse wave. This overcorrects
i
the error by about a factor of twoy thus the error with this correction is

about %s great as before. It would therefore seem that the error arising

£iom tﬁe neglect of the transverse weve is of the same order as that from

the rodghness in the treatment of corners and edges. It is therefore an
|

inconejstency to correct one of these errors without corrocting both.

i For a tampsd rectengular solid the end-point recipes is the seme

as forlthe finite oylinder, the asymptotic Bessel funotion solutions having

bosn réplac@d by tho appropriate cosines (or hyperbolic funcotione in regions

|
where P is less than one). Here too the actual applicotion of the boundary

condition between the core and tamper may be very tedious.

|
5
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64, COMPLICATED SHAPES® °** ¢ o%e fee 3

The exceedingly accurate results of the end-point method in
treating slabs, spheres, cylinders (infinite and finite), and rectangular
solide suggests that it can be extended to more complicated shapes. In
particular, its success in the cases of cylinders and rectangular solids,
wheore we have not found a rigorous thooretical motivation for it, gives cons
siderable suppoert to our assertion that the extrepolated ond-point distance
can be detormined only from F end is independent of the particular sym-
motries of the boundaries; i.e. it is the same function of F for all
shapes ~~ slabs, shperes, cylinders, rectangular solids, ice c¢ream cones, etc.

Hence we enunciate the folloﬁing recipe for the extrapolated end~
point method, which can be applied to sny shapsd solid in which all surfaces
ere exterior surfacesy i.e. no part of a surface can see asnother part:
hollow objects and objects having sawtoothed surfaces are excluded: In
each medium (definite F value) the asymptotic solution, which is & solution
of the weve equation with the magnitude of its propagation vector, kg,
detorminod by the characteristic equstion, is esteblished. (It is assumed
that the thickness of the medium is not smell compared to a mean free path).
&t all open boundaries this asymptotic wave-~oquation solution is taken %o
vapish at an extrapolated end-point distance x, (a function of F alons)
boyond the boundary. At sach interface between two mate-~ials, the boundary
condition is the equality of the logarithmic derivatives of the two solu~
tions at a distance Ax; into the medium of lower F. The values of x,
and Axp 8are ths values belonging o the plane problem of the same F. (Cf.

Pigs. V1, VII, VIII for the Milne kernel, Fig. XV for the Gauss Kernel.)
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One shape to which this recipe is easily appliceble is an untemped chunk
of material bounded by two surfaces, ome plane and onc spherical, so
eituatod that the expanded surface on which the asymptotic solution is %o

vanish is 2 hemisphere. Tho wave-~equation solution with this boundary

d3/2{kor)
e

then ko is 1.261 and x,

condition is E;(cos ). If, for example, we teke F = 1.4

is .5084. The first root of Jz/p occurs at
en argument of 4.4936, hence at a redius of 3.564. Diminishing this by =x
leaves 3.056. The volume of tho resulting "half-loaf" is then 45.0 which

is 38 percent greater than the volume of the critical untamped sphere of the
uamo F-value. If we compare this result with the minimum volume for a
finite oylinder (at a length slightly less than the diameter) or the volume
for a cude, both about 5 or 6 percent greater than tho volume for a sphere,
it is seen that tho excess volume increases first slowly, then more rapidly,
£8 the départura {from spherical shape increases.

A‘more generel shaps of which the above is a special case to
which this mothod can be applied with roasonable eass is that of the
untamped "ice cream cone", i.0. & convex mass bounded by & cone and capped
by part of a sphere. The radius of curvature of the spherical cap and the
longth of the cone may not be choson independently but are related through
the angle of the cone and the value of F. The angle of the cons may be any-

thing between O and %/2 in co-latitude. In general the order of the

lependre and Bessol functions will not be simple (e.g. integral or half-

integral).
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In general, eny shape can be treated by this method with reasonable
ease if the surface obtained by expanding in this way by one oxtrapolated
end-point (a function of F) is a surface on which a known wave function first

vanisghes.
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CHAFIER VI. THE EVALUATION OF EQUIVALENT CONSTANTS

In Chapter II, Section 2, we set up the integral equation for
tho multiplication and diffusion of neutrons. It was therco assumed thet
81l processes are isotropic and that the neutrons are monochromatic. In
problems of physical interest these ascumptions are not justified. A4s the
oxaot integral equations, taking into account both the anistropy of secatter-
ing and the spread in energies, is much more difficult to solve, we look
for appropriate average constants to introduce into the simpler integral
equation which will take account of these effects. Since the size is
determined primarily by k,, the root of the characteristic squation, and
nnly secondarily by the extrapolated end-point, we choose ths equivalent
constants to give k, correoctly and disregard any effect on x, other than

thet of kge

The Velocity~ and Angle~Dependent Intepral Equation

The full integral oquation taking both effects into account is
vl

n(tJYDt) - gdl" ds n(}';_ - B'G,E' b = i) e"SC'(hﬂ)

[cso(z'-m + v apligh xw] (6.1)

whero n{r,v,t) is the density of neutrons at point 1, volocity v, and
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at tima t. Here ¥ denmotes a unit vector in the direction of the vector
v, & is tho distance from the point r in the direction v, c(\v\) is
the total probability of scatcering or fission par unit length at velocity
Vo ©Og3{v'—>¥) is the probability per unit length of the scattering of a
noutron of velosity v' into & unit velocity volume olement at v.

or(lv]) is tho fission prcbability per unit length and X(y) the fission

spachrum.

BEquivalence of the Boltzman Equation and the Integral Equation

This full form of the integral equation may be dorivsd from the

Boltzman equation as follows:

on{z,v,t)

ot + (?.‘?_) n(:-!st)

. Sd!' [ olx'—g) ale,n,8) = (v} alz,w.t) olel)  (6.2)

whera

alziay) = oy (¥i>y) + v opliv]) X(@)

deline 8 as before so that 8=0 at r, increasing in the diressction of -v.

o
VeV = olv]
v-¥ Hag
define g :«-s*vi:' "[=m8°vt,
2 2
_ I R
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:e:é-f’l, ‘rb=§=7‘L
3 _ 1 3 = 2
g, ot 26
A}
B% n{r,v,%) +o(v|) nlr,v,5) = S av' \‘%—: o(y-v) n(r,v't)
» Tolwe s(ivl) '
= lf s L) = e % ax" - o(y'>7) n(r,v't)
3%, , v T -
%e integrate in é from 8 = Bpax, t'z t ~ 2m , i.eo from 5, , To = 2sy
v ) 2
¢ .
to ~Z
2 .
' vi/2 .
1 t
90'(? )% n(r,v,t) = dga oo(v )g g "‘Y"’(‘Z""Y) ‘:,rf‘ n(r,v,t)
ieze,+vt)/2
since nfr,v,t) = 0 at sy
i o ] . ]
nir,v,t) = ds® o=V )8 dy' {-.r-. o(v'sv) n(r = ev,7',6- 2. )
: v
o 16.1)

The solutions of eguation (6.1) in full open spacc have Cactorable

opaco, time, and velocity dopendences.

Here n(y) depends only on the magnitude of v and the cosine, Je> of the
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sungle it makes with the direction of k. Thaon (6.1) becomes

n(vye) = j ds e”c’("r)8 ~ iguk= KB/VS dv’ d/.o.' or(v',/u,,'-avy.t) -Y_-f-'* n(v",/u,')
()
) 1
a(v) + v + ik

dv! d}t‘ c(v')u‘,-av./u) 3; n(v',}d) (8.3)

Wo study separately the effect of anisotropy of scattering and

of velocity spread.

L

® 3. ANISOTROPIC SCATTERING

Ve here assume that the neutrons have only one velocity, say

wnity. Then (6.3) becomes

1 ( , ol — '
nlp) = o+'b’+ik/.4.§d/u S__&E_/_“_),n(»)

Fission will still be assumed isotropic, scattering will be assumed to

depond on 4, the cosine nf the scattering angle, as

"so(/w) = dg * %"n Pn(/“')

then

o) = (G0 +we) + B on Ba(p)
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wiere ¢ = op +0p and £ = (v = 1 opflcy + 0p). If the original
diraction mekes en angle cosine, /u., with the polar axis, we expand the
lLogendre polynomials in terme of spherical hermonics in A end s

Avoraging over tho azimuth gives
. - oed
G(/,_t "’/"") = 0(1 + f) + rE.‘ Cn Pn(/A.') Pn(/u.)

Teking n(/-") = :z:o ne Pu( )

!
. /2 i P . w
= P ﬁ; S a/w’ %(] 4 f) + n2=‘| O'nPn(/b)Pn(lﬁ% I‘E:O anr(/w‘)
~\
= C - [o(l + £)n, + of chr(/ﬁ)nr}
¢ ¥+ ikp r=f 2r +1

Multiplying by Pg( /.4.) and integrating over u. gives

i
ngp(l ¢ £Opo) A Pe( )Py ( )
2 + 1 =0 2r + 1 A o + ¥+ ikpv

- 2 § Sp0y (l + fSro) -..}. P (G 4%) Q S+

3G 2y 4+ 3 ik ik
e n,.o 1 c +3 g + Y

+ 2 5 —tlEL e P 6o
rn 2o+ ik S\ ik )\ T (604)

Xf o, mey be nerlected OF L o8 ee?roater than some r,., which will be the
o . 0 .

nrga for any req?.orﬁg'iz.s:.
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heyond ro may be clscmrdm’l. THY fe&fe®fning equations are a finite set
of linear equations which can be solved for ¢ as a function of the remain~

ing variables. Taking ro=2 gives

It e
B Y T Y O B ROy
= LS uZl K 4;("“ & W
£ - =1 ) i
1.4 (1 A I d..?‘ (3 +w2) \.(3 xRy 3] +...4'4.‘ZF «)\)/m Lo
K2 K 48 , I
(6.5)
whare

oz koY), B = of(c +7)

This expression for Xk has been ovaluated for several values of
¥ for 1 =5 with an assumed dependence of cross section on apglo which
is plausible for the scattering of neutrons around 2 Mev by heavy nuclel
(s0o Fig. XXI). The values of k resulting were compared with those
obiained from the simple characteristic equation

1 +7

= tan"! (/o + )/ (o +¥), )

in which o has been taken throughout to be the transport aversge of the
cross gsection, o = (1/3)01. The tranaport average was also used in the
definition of £, (v - 1)0'f/O'. The two values of k agroe to sbout one
parcent throughout the significant range of Y. Since our knowledge of the
various cross gections and their angular dependence is fairly rough, this
would indicate that sufficiently accurate results may be obtained by uﬁing

only the transport eross section throughout the problem.
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$2. VELOCITY DEFENDENCE

To study the effects of volocity spread we take all cross sechions

in (6.3) isotropic, or what is approximately equivalent, the transport

averages are used throughout.

1 .21 'll s 1 ] ]
o(v) +¥/v 4 diky 2 sdv v olv'v) Xd;.. n(v )

v

n{v,p) =

n{v)

~1 i
- _l al ‘_Y:_ v! v
&td}»n(v,,u) h ZX o(v) +¥/v + ik gdv v o(visv) nlv?)
= -1

glv) = % tan=t :(‘v-)‘%m dv' oflvsv) g(v") {6.6)

where g(v) = wn(v)

This equation (6.6) can be solved by iteration accompanied by readjustment

at each stage of tho constants entering. ¥With certain choices of the form

of the oross section, of(v'-yv), it can be solved anaslytically. One such

is the following, owing to R. Feynman:

o(v'—»v) will consist Of three parts, elastic and inelastio

scattering cross sections and + times the fission croas section. The

¢lastic oross section is og(v®) 9(v' = v). The fission cross section is

-4
factorable, (1/%¢) op(v*)X (v) (where 7 is normalized to make X dv X(v) = »)
. ]
Ths inelastic scattering cross seotion will be taken in the form

ci(v?)p(v) for vev', zero elsewhere. In this form the normalization

o o0 o o:. :00 Al
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[ 4
constant has been absorbed in oi{v‘). Thus the total cross section is

v
o(v) = gg(v) +op(v) + a3(v) S dv* A (v)
o
Here the only restrictive assumption is that the velocity spectrum of in-
elastically scattered neutrons deponds on the i}utial velocity only through

a scale factor and the position of the high energy cut-off. Vith this

assumption (6.6) beoomes

k * ] t ] "
san™t &/ (o(v) + ¥/v) B8(v) = oelv) =(v) ~x{v) gdv g(v") oglv")

+ Aw) gm

o
av" g(v') o;(v")

.

Defining

P(v) * — g(v)
Se av' g(v') op(v')

» B(v) o(v) = s
() o( tan"t x/(c (1) + ¥/¥)

= CS(V)

k - P(v) =‘/L(v)+°°' fod .
[tan'l W/ (o(v) + V/v) °°(v)] BGv)  pe) Ld" o3 (v*) F(x*)

G{v) F(v)

differentiating with respect to v

ot s,

¢*{v) F(v) + G(v) F'(v) = (;;‘gi)' -

o;i(v) F(v)

The selution of this first order linear differential equation is

|
;

nii
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v o o r’:{’ \:‘ )
- (d ! G“':r'o" sod coeo_ _ae X t (1] [ .
Pe) = e S“\ v'/a i) K ) (x\) Y (av'/e)(G* + o1)

The definition of P(v) imposes on it the condition

<o

J dv B(v) op(v) = 1

.
~

{6.8)

Any ono of the constents entering into the determination of PF(v),
k

Goffo
or ¥, mey be chosen so as to satisfy this condition.

A very much cruder model than this, but one giving more insight

into the effect of the velocity spread, is the following. We assumo that

the total cross section, 0'(’_7_"—-)!‘), as it occurs in (6.8) is factorable.

o(r'—=v) = ol(e")A(v)(1 +£)

where A(y) is normalized to unity. Thsn

5 = frenl==Fer @ +fm(v)& av' ov') g(v*)

‘ o(v)Aalv) -1 k -
(1 +¢) de =i tan T 1
or
1 « ¢ k k
av Alv) —-———7~ tan=t =1 (6-9)
- g 1+ i/ ofv) *;‘K a{v) “”:o:

l| 'y
e J"s,ﬂ
-
Q
P e Y
2

ST TR I ASSIFIED
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The bracketed expression in the integrand will be recognized as the

function which the characteristio equetion equates to unity if only one

vslocity is represented. A{v) is the velocity spectrum {not as observed

at one instant but as produced in each collision). Thus for this model

the cheracteristic egquation must in this sense bs satisfied in the mean. In

order to see the type of effect produced by this averaging we took ofv)

constant and A(v) uniform in the threo-dimensional velocity space below a

definice erergy and zero above. The integral occurring in {6.9) can then

bz evaluated analytically. This pives a relationship between £ and Y.

For each value of ¥ there will exist an average velocity, say vy, which

makes the bracketed expression unity for these values of ¥ and f. For

very small 7§ this average velocity must be the harmonic aversge. The

rosult of this calculation is presented in Pig. XXII. It is seen there that

for m sizable range in ¥, A differs only slightly from the harmonic mean,
/3.

anerxgies,

This suggests that in problems involving not too great a spread in

e.5. in the metal pgadgset, the time scale is dstermined primarily

hy che harmonic mean veloeity of the neutrons emerging from the various
=5 of collisions. The above srgument is, of courase, exceedingly rough

acad on its result. A good solution to
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