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ABSTRACT

General properties of statistics of multiplicative systems
sre 6lscussed together with the study of fluctuations in the number of
particles in such systems. A genaral method is indicated through which

one may study the fluctuations in the case where one takes into account the
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THEORY OF MULTIPLICATIVE PROCESSES, I»

The statistical theory of mnltiplicative chain processes does
not compare in completeness to date with the corresponding theory of addi.
tive processes. The present paper is intended primarily as an exposition of
& 81mple/thoory of the statistics of multipliication, permitting application
to a variety of special problems,

The simplest (the "Bernmoulliai") case mey be duscribed as
follawe: A particle can produce, with probzbilities p_, py, Pooeneovs
Ppocoes & number O, 1, 2, 3,000, Dyeeo of similar particles in one generation.
We assume that each particle produced hes again the same probabilities of
producing n offspringo. Ve alse assumeo that each particle dies at pro-
areaticn. Required is the probability law Pk(n) for any generstion k.

We remark parenthetically that this formulation makes the
muitiplicative process essentially discrete and finite, The statistics ef
neutron multiplication involves a continuous process as well, nemely a
random dictribution in energy, space and time. We disregard this aspect
initially. later we shell show that the admission of such continuity leada
to a generalization of the methods described below. There are, in the
meantime, twe physically accurate interpretations of a discrete series:

{1) one can represent éhe chain process as a graph; the n particles in
the kth generation are the n 1lines connecting ths kth ~ and the k + iat «
bransh points in a chain or set of chains; (2) the n particles are those

in existence at the kth unit of time, where the probability law p1(n) is the

distribution ome unit ef tiug sfiter. thy | +roductlon of a single partiocle.
EL o e —
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i? a time unit be choaen equal to the averago time betwoeen I:isgi?zﬁe, the

vistinotion i8 in meny cases not crucial. l‘ruokel, and later Feynwan studied
ihe continuous process, We shall show later that their diifcrential equations
"..I' the random process correspond to the infinitesimal transformations of the
xivup in wnich our iteration (sea Th, I) may be imbedded,

“s The first problem to consider is this: We are given an amount and
srrangement of active material, In this system & neutron produces on the aver-

4%¢ 0 aeutrons with probability p (n) s 2 pf®)= 1. p(0) is the average prob-
wbilivy of leakage or absorption, withouzzzubsaquent production of neutrons.
.p(n) nermalized for n> 0 is a nuclear constant, so far purely empirical, known
«8 to its irst moment und less accurately as to its second moment. Required
is the prohability of having n neutrons after k generations {(or units of
vime)o This problem is solved, in principle, by:

’.i‘heorg!‘xﬂ}: Let £(x) be the generating function of the distributi-a of tho nume

sor of offspring, i.6., £{x) =3 p(ll;?-mo’rhen the generating function for the
zth generation fk(x) = fk(x), 2:2 kth iterate of f(x). [The lcth iterate is
defined as follows; fl(x) = £(x), i’k(x) = f(:fk - 1) (x)j} The theorem asserts
that the probability pk(n) is given a5 the coefficient of x* in the ascending

polynomial or power series exnression of fk(x) : The physicel multiplication

of the rendom variable is rsflected in the iterated substitution by whioh

froof: Starting with one neutron in the Oth ‘generation we obtain, with
vrobability pk(n), n neutrons in vhe kth generation. Beginning with »

neutrons, denote the corresponding prebubility by pk(g‘) (n) . Now assume that
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& chain is started by one neutron. e have

o, (m) ”ﬁo P _ 1(F)p, ) (0)

tow if' £(x)} is the generating function of the distribution Py {n), the
generating function of the distribution p, (r) (n) is Lf(x)] Ts This follows
from the assumption that contemporary neutrons are independent in precreative
powers, and from the theorem (of Laplase) that the generating function of

& sum ot independent rendom verisbles is the produot of their generating
funotions. The ubove proposition may also ve vrrified for r = 0, since

pl(o) (n}) =0 for all n>0., Substituting generating function for probebility

i thz above ecuation, we have:

£,®) = Pe _ 1(0)° le=] 9+ P - 11 (eeaf t + P . 1(® fe ] e

+re0= fknl \-_i‘ (x)} = fk(;;) .

14

Two remarks mey te macde at this peint. (a) The simpl.e proof
ebove sustains a more gensral theorem if the distribution generated by
£(x) is not constant, but time- or generation-dependent. Instead of the,
iterute £fff. . o(f(x)), we will have some fgho » o(g(x))o By the mode of
argument estublished, the choin process may be analyzed one step furthers
iet y(y) =ay + b be the goeneruting function for the probabilities b of loss
or absorption of a single neutron and a of producing fission, with
2 +b=1. Let h(x) = 0 x 4 0212 + 03x3 +e+obe the generating function of
distribution of neutrons per f'ission. Then if the two are combined by the
transforvetion y>h(x), wo he.ve that the distribution of neutrons per neutron

¢

18 generated oy f(x) = g[h(x)]o If on the other hend we start from & siugle

e l
fission, aad wish to know ti ..., ’ m‘.. o ,‘ tte number of firstegeneration
:o: '.. . o" ofe '. _ -
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~.solons, tnis is given by ¥(y) = h(g(y)}o Yhe iterates of £(x) und F(y) are
connected by simple and evident relations.

There remains the practical probiem of determining coefiicients and
other properties of fk(x), given £(x)o To this end we first shall establish
some general properties of itcratiom.

€. Let £{x) be a monotone function. Asaume @ogs £{x) increasing, i.e.,

if x<y, f(x)< fly). A& fixed point for 7(r) is a value x, such that
f‘(xo) = Xge The set of fixed points for & continuous function is closed,
i.®., the points which are not fixzed form & collection of disjoint intervals,
sfloee endpoints are fixed points. If we ornr the saquonce fk(x) fo; a glven
% we obtain a sequence of points converging to a fixed point X which forms
the erdpoint of the interval in which x is situated. In fuact, there are two
cuses possible, either £(x)< x or f(x)> xo From the monoten character of
£(r) it follows thet we shall have corrsspondingly either £5(x) < ¥ = l(x)

¥ fkl‘x)‘)fk - 1(J\:) for all ko Unless these sequenses tend %0 weeor +oo,
they w11l kave limit points, If now 1lim f£¥(x) = X » We must have

=0

k
P(x) =» - Infact lim I fk(x )) = f(x,) =x_. In addition, it ic easy
° o k =oo ° °

to seo that x  is the mext fixed point to x{(on the left or right depending
on whether £(x)<=x or £(x) > xo This follows from the fact that if £(x) is
monotone and f(x ) = X0 f(xl) = X; , then for all x such that x < x<%,;, we
have £(x ) =x,<f(x) <f(x1) =x .

In our case f(x) is & power series with all coefiicients non-

negativeo, £(0) 70, £{1) = 1. This function is certainly monotone -and in-

¢reasing for all non-negative x. Let %, be the first (non-nogative) fixed

peint, x, cer tainly existe, &HheeRt, of flxed p01nts bemg closed. From
3 ° P ®
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these conditions it follows that lim fk(omwﬂe in a
z =00

generanting function is set = 0, the 1ilue of the function is the probability
that <the rendom variable tekes the v .jue O. Henceo xo gives us the iimit of
the probability of mortality in the ;ystem. The probability ot immortality
is tharei‘o.re aimply 1 - X o where z_  is the smallest non-negative root of
the ejuation f£(x) = x. It is easy %> see that if, 'as in our cé.se, all the
coefficients in the expansion of f( ) ure non-negative and £(1) = 1, then
from £'(1)> 1 it follows that ther is a root, and only one root x which

(+]

is non-negative and<l. If f'(1) -1, x_, =1 is the smallest positive root.

()
%ie obtain immediately therefore t-3 familiar fact that neutrons in a sub-
critical gadget without source i 1, with probability 1, die out in a finite
timec For the supercritical gad; st the probability of indefinite preduction
can bte obteined by solving the e uation £(x) = x.

The kth iterate of e function can be obtained by a simple graphe
3ocal or mechanical method which .8 based on the fact that along the diagonal,
£({x) = x. Thus we may for give x replace this argument by f(x), getting
fe(x) graphically, then repeatir ; fl‘(x) and so forths In the case of the
generating function under disc :sgsion this snows that fk(x) very rapidly
approaches its asymptotic forn: for the critical or subcritical case the
ssymptote in the interval 04 x <1 is 1im. f!c(x)-:_-l; for the supercritical
cose in the interval 0Sx €1 the asl;m;::te is lim fk(x) &

k = o0
implies that for all positive powers of x in fk(x) the coefficients

Xge "This

approach O uniformly, i.e., the mass of probability is either absorbed

altogether into the zero reagion (suboritiqal case), or is spreed out in an

P,
.

infinitely long tail (superc- iterade ©

~In.fhw region of criticality the

UNCLASSIHED
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distribution has an infinitely lcng taeil

probability of mortality aporoaches one.
%, Ono of the important properties of generating f'metions is that they

permit the calculatior of roments. Thus if Py is the distribution itself,

£(x) =3 P, xD  its generating funmction, we have, becavse obviously £Q1) =1,
n=0
the first moment or expected value of the random variable =3 n Pp = £:(1)

2
= the firs: derivative of £(x) at x= 1. SZimilarly the second momont of the

number of neutrons car be found if we know the second derivative.
In fact

2 % 3
3z 2%p, =2 min - 1)py +2 np, = £"(1) + £7(1)
p-<0 n=0 n=0

Similarly the rth moment can be found easily from the values of
the first r derivativaes of f(x) at x=l. {Yhe rth derivative at x =1 1is

sometimes called the rth combinatorial moment.)

Our gcnerating function is the kth iterate fk(x). It turns out

that its first m derivatives depend only on the first m derivatives of £(x)

itself in a rather simple vay. We have, in fact:

]
k N
Theorem 1l. (a) |[£7 (= =f£1{(1) =
@ @] =00
(i.e. the proof of thz intuitively obvious result that the expected number

. =R
of neutrons after n penerations is ¥ 7)o

() [fk(")]“x R I [(f'(l))k sler@)E o) 1]

The proof is imnedimte by induction:

ETEN L - k-1, (¢
Le G 1)) = 00 G - 10 ) -[e* 7 L)
But for x =1, gk - l(x) = x = 1; therefore since by assumption

?
Lfk - 1(1)] xs1 = [f’(l)] k=1 e obtein our formula (a) o By differentistirg
00 ooo ...

twice we obtain (b). bome\?! :J, l. : U):v‘
UNCLASSIFIED o gei o iy o
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derivetivea:
Their derivution>is through recursive reclations as follows:
by differeatiazting the identical equation
tk(x) =e(e* - 1(x)>
ropeatedly, ard in all places substituting x, for £k - l(xo), we ¢btain a

sequence of linear fiirst-order difference equutions. Representing

@F kv oy v = e
= vt (x) = Mk,r (Ml,r = Mr) we obtain

Mep =¥ oM 51

"“k,a““’“‘g°”’2k-1+b’1°Mk-1,2

Mz =¥t Wy g T3 el g el 2t s

each is of the form

xk = Ak -1 +M X 1

whose general solution is
k
. kK « 8 k 1
X, =24 M A + - x
k 1 & -
S=2 1 Ml 1

Sclutions, for the first three derivatives are

ok
Y g =My

- .1 k~1]1a
Mk,e - ME ”1 [i_"w];

L] X1
e @

4 CooBmNee
e o
”- o
L]
e N
]
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Since in the funotion under discussion x, =1 is a fixed point, these
derivatives are the combinatorial moments of the distribution. We mey now .
consider the three oases where ul (= V of common use) is »>1,<1, or = 1.
a) In the superoritical case where ¥ >1, it is clear from the
method of der.ving these factorial moments that if the random veriabie n
is measure¢ in units of i, s all moments approach 2 finite asymptotic form.
Computation of moments for this asymptotic distribution may he greatly
o . . 1/ihy
simplified as follows: Let us define a function ES (x) =x ,» the Ikth
AFN
iterate being # k(x) = :(1/ ", The generating funotion fk@ )1f‘ expanded
amt £k
in powers of has the seme coefficients as (x} but these are now
probebilities assoviated with the number of particles measured as fractions
of the expeoted number. This is to say that the distribution is scaled in

units of 1% = V¥, and its first moment = 1. Since for the superoritical

case all moments approach a constant value ee k -»°° when scaled in this way,
and since tho generating function is monotonic in ths region (0,¢2), there

exists & common limiting value, g(x) of both fk[ﬂfk (x)] and £5 - lfﬁk - N« )J

Since fk[ﬂf (x)] [ k - I[dk(gf (x)) J] s Wo mAy write in the limit:
g(x) = fkgzd (x)]]’ ; B(x) = xl/Ml » £(x) given, and from this functional
oquation for g, its moments may be obtained from the second, tuird, etc.

derivatives of g by solving on1¥ li

:.:E..:.. ::’l \:
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b) In the exactly critical case, M, =1, the moments are

=1
.1
Yo SF
k 2
Moy =%V ¥ 3 () g
This is a distribution in which P o,; 1 -1 kMZ’ and such that if the system
14

nas not died in the kth generation, the expected number of noutrons is
= kMo
c) In the suboritical oass all moments converge to zero, but are
approximately croportionsal to the first moment.
Lo .We may consider here briefly & simple special case, in which the
jteration problem may be solved exactlyo
Let £(x) = (ax + b) / (cx + d) ; we have here a three-parameter
family of functions (one of the four constants a, b, ¢, a4, is imuaterial) .
We can adjust them 8o that £(1) =1, and £'(1) =V » We can then impose
another condition, either on f"(l), or so thet r(xo) =X, where x_ is the
"grue™ probability of mortality. Punctions of the above sort form & group
under substitution. This ocan be verified directly by substituting. (They
form the so-celled projective group of the lines) A fortiori the iterated
funotion
fk(x) = (akx + bk)/@kx + dk)
By expanding £¥(x) in a power series in x, we obtain the exact
golution of our problem in this fairly general case. We determine the con-
stants by the following three relations:

(1) Because £(1) =1, we have for every k: fk(l) = 1 which gives
UNCLASSIFIED

B‘k+bk=°k+dk o o

. .
.‘Oi..p.'b oie E":"; so(;:) » i°e°n the root

.
°
.
.
.
s

(2) Similarly, for the second fijed,
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x, 21 of £(x) = x, we have f(xo) =X, and therefore for &1l k: i‘k(xo) =X,

or ayx, + by Tcyx, +d, and x =~ b/o, from ‘ex, +b = xo(oxo +4d)e
(3). From the results of section 3, we know that
IR I - E_ =k
[efGd) L o, =Lera)* =%
This gives

a{cx + d)=(c ax + b)

, =V
(ox +a)2 <=1

or taking account of (1)
(& - c)/(o +4d) =¥
ané therefore for all k '

(o, - Ok)/ (o = 4 = vk

From the above three relatlons it is easy to calculate the cone
stants LI bys Ok dk in terms of Vv and one'arbitrary paramoter, By
eliminating a,, by and developing into a power series, we get, noting that

‘k/dk =1/ % . 1, assuming e.go v>1, the result in the form

£K (x) =[(Ax +B)/Sk* 1]{1 +(1-1/Yx + (1 - /552 4
0oaofl = l/vk)nxn+ooo

This constitutes a complete solution of our probleme. It is interesting to

note that the probability of having n neutrons decrcases geomstrically

with nj the ratio of the successive terms i8 in the case ¥>1, k large

extremely close to 1o The distribution has the form of an exponential,

decreasingly very slowly. Asymptotically the probability of having

exactly n neutrons is independent of nl This result shows also the possibility

of enmormous fluctuations in mulitpRitidiicti%agildis. The "law of large numbers”

UNCLASSIFIED -, - B ——
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in its ordinary formulatior is not true for multiplicative procasses. In
fnot the probability of having moro (or less) than 2 times the expected value
of neutrone tends to a positive constant (dependent on £ )., The following
form of the law of large numbers is valid, &6 the examipation of the dis-
tribution ehows at once:
Theorem III. Given an &> 0, there exists an N such tha: for all k>N, the
probebility of the number n of neutrons in the kth generation being such
that (V - )%cn <« (v + ) is greater than 1 - &3
P{(Va s)k< n<(v + e)k}>1 - e
It remeins to discuss the most general form of the distribution. We hope
to do this in part II of the paper through two methods, one consisting of the
consideration of functions of the foxm h f h"l (x), where f is of the pro=
jeotive linear form discussed above, and h(x) is an arbitrary monotonic Function.
The kth iterate then is siwply h g€ p-1 (x)o The funotion h(x) will give us
more arbitrary parameters for our real distribution. The second method con.
sists in developing f(x) into a series of functions whose terms have the
"pro jective” formo
Finally it mey be remarked that the limiting distribution obtained

above is formally identical to those obtained by Frankel (ILAMS=36) and
Feynman who used @ continuous time parameter instead of our discrete-generations
model. Their physical model is somewhat different and leads to the finding of
the infinitesimal trensformation of the continuous, ebelian, one-parameter
group into whioch the group of iterates of a function can be imbeddedo

5. There are many other problems besides the juestion of the probable

number of neutrons after k genentyililelwnrdh &HH.
o o e o
... .:. [ X X ] .:.
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The first wo shall consider is that of a suboritical system
(V<1) with a source. We suppose that the distribution of neutrons entering
the system in a given generation has the generating function B(x). £(x) being
the generating function of the system itself as before, we shall have

Theorem IV, The generating functions in the zero, first, second generations are

the funotions:

B(x), B(x) d[f(x)], g(x) - ﬁ‘[f(xﬂ - g L’t‘a(x)J

Proof is completely analogous to that of theorem I,

In general, letting 1" (x) represont the distribution in the kth

generation

a) Fx) =6 @ - F _, [2®]

If the system is subecritical, but sustained at a definite level by the sourcs,
we shall have the limiting distribution - or its limiting generating funotion -

a8 a nomnsipgular function of x: lim F (x) = F(x), F{(1) = 1. Passing ‘to the

ko0 £
limit on both sides of our equation a) we get
b) F(x) =8 (x) °F [_f(x)] vihere 2{(;), £(x) are giveno

One has to determine F(x) from this functional equation. BEven without doing

it one can obtain at once useful statistical information, for example the
moments of F(x), by differentiating (b). Thus:
F Q) =87 (1-¢)
4]
F" 1 = 5 (2#'1“ + f"),f.{' .
(1) T+ Gy a—r

giving us e way to compute standard deviations , and similarly, more

complicated expressions for the higher derivatives and momenis. The first

derivative -= tho expected valuo-nen!, mva;.zz,ej.y__mi_portional to the degree

.. ... oot l l.

03 OO. L
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of suboriticality becomes infinite if f£'(1) approaches 1.

6. Ve come now to the probability distribution of the sum of all neutrons
in the system from the first to the kth generation. We have established
previously that if f£(x) =% p, X* is the generating function for the
probabilities of n partx;:ges in the first generation then the generating
function of the kth generation is given by the kth iterate £¥(x).

If we want the generating function for probabilities of having the
total of n particles from the first to the kth generatiorn, we shall proceed
as follows.

The total of n particled can be obtained by any one of the
following mutually exclusive cases: we can have 1 in the first generation and
n - 1 in the remaining k - 1, or 2 in the first generation and n - 2 in the
remnining k -~ 1, in general we can have r in the first and n - r in the re-
naining k = 1 generations. The required probability is therefore the sum of

a(n) =2 p. c p5 1 (n)

. r

Here pg - }.(n) denotes the probability that, starting from r
in the first generation, we shall attain from these r a total of n - 2 in
k = 1 generations. But the r particles are independent of each other. The
probability of getting the total of n - r from them is therefore the
probability of n « r in the sum of these r variables. The generating
function for the sum of the independent variables is the product of the
generating functions corresponding to each of themo In our case it is the
rth power of £(x). We are looking for the coefficient of x* = T in

[f‘k - l(x)] ¥. Our required probability 9 equals therwfore the sum with

reapect to r of coefficients of x=& ¥ ﬁi}[fg" ‘5_3
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coefficients of x® in 3 p, x¥ o [fk - l(x)]ro
But the col;fi'ioient of x® in % p, =¥ [_fk - 1(x)] ¥ is the same

as this coefficient e}lTG o £k - l(x))o rThis }s true for all x}o Therefore
the generating function forgn is £ xfk - 1(::))o Since n here is arbitrary
wo got:
Theorem V. The generating function for the time sum is:

uk(x) = i‘[xuk - 1(xﬂ
If wo "cownt™ the originmal particle, this multiplies the generating
funetion by xj expressing this slightly modified form recursively, we
obtain the more convenient expressiones

uf(x) = xfﬁ.uk = 1(x)]
As we know we have, in general, i»3. relation between nmoments of the nth order
of e distribution function and ti_:é nth derivative of the generating function.
We shall now show how one can compute the derivatives of uk(x) for any
k in an expllicit manner.

Since, as was shown above,

¥ (x) = xf[gk = l(x)]
we may obtain the desired results by repeeted differentiations, and by solving
the resulting finite difference equations, But if k is allowed to approach
infinity, and if the system is subcritiocal,

1lim uk(x) = 1im uF "~ 1(x) = u(x)

k>« ) b
Hence for the distribution of the total number produced, we have

u{x) =x o f[u(xﬂ

differentiating, we obtain:
w (1) =1/Q - £ (1))
u'(1) =[£" + £ (L%

CHOLASSIEIER, on i bt
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These examples show how moments of the distributions cen be computed for
vurioue problems in our discrete model. Otto Frisch has shown, how, from
the form of these moments one can write their correct form for the continu-
ous model ,without having to solve the partial differential equations of the
problem. This correspondexco between the two models will be taken up in part
II. It may be sald that a gonerality Af method has been estrnblished by the
foregoling results, which demonstrate that the lterution of sultable operators
corresponds to various physicél observables connected with chain processes.
For example it may be mentioned thet the transformation x3(1/x) £(x) gives
us the probability-distribution for differences between the number of neutrons
in a generation ané the number in the next generation. Thus
£ - 1&!1/%) ° £{x)| gonerates probabilities of this kind. The mathematical
desoription of a multiplicative chaln process is seen to involve the iterse
tion of & funotional operator U. These operators U act on the domain of all
monotone functions g(x), g(l) = 1o To summarize agein just a few examples:
(1). U(g) = £(g), £ here is a given monotone ‘unoction, g
represents any function of the domain on which U operates, i.e., g(x) mono-
tonio, g(1) = Yo This operator U is. the only one that has been studied
extenslvely in literature. Its iteration leads to the simple iteration

process:

g{x), f@(x)), f[f(g (x))]‘ o e o o fk(g(x)) coeso

(2 (g =2(x o g), £ & given function
The domain of the operator, 1.6., the admissible g are the
same, but there seems to be very <iidle knawr.shut the iterates of this

e o .
[ 4 o e _ o
[ <=

operator. This operator is tied.%o.&b;:pnﬁ"' X &;}aw of the total number
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of particles produced.

(3) e =8 (x) g(f‘(x) ) i 8 (), £(x) are giv_enc The iterates
of this operator give us the distribution of the number of particles produced
when a source with given distribution g (x) is aoting constantlye

) e =£[a/x) - &)

This operator relates to the probab‘flity distribution of the
difference of the number of particles in successive generations. The study
of conjugatea, fixed points, etc. for such operators seems8 to be importent.
We hops to undertake this study in part II of this papers

e turn now to & more complex version of the problem. Hitherto
it has been assumed that the gensrating funotion was independent of temporal
and geometrical factors. Howsver, our methods are extensible beyond these
limitations.

{7) The caloulation of the probabillty distributions in the
general case of heterogeneous particles will now be considered. So far we
have assumed that the probability of generating m neutrons is the same in-
dependently of the parent neutrom. If one tekes the real situation where the
system of the active material is of finite extent, then obviously the probability
of leakage and absorption is a function of position of the parent nucleus.

I% is obviocus that in general chemical or nuclear chainm-reaction processvs
one has to deal with several kinds or even & continuous variety of the
elemsentary generating fumtionso

In ordexr to explain our methods of iteration of functional
operators for titis generaul case we shall take the simplest case of two kinds
of particles. If we divide, f'or.'*ihbs‘x“grst'?zpzﬁ’o;p.gation, the sphere of the

.
aotive material into two parts, wa diase sid-the outer shell, we shall
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characterize the neutrons generated in the one part by the subscript x, the
others by subscript yo Ar. Xeparticle can gemerate either x-particles again

or penetrating to the outer shell y-particles, or, of course, leak out or be
absorbed ; the same, though with different probabilities, applies to the
yeparticlas. In reality we should consider a ome-dimensional variety of kinde
of " particles corresponding to all values of their distance r from the center
of tho sphere or even & twoodimensional one if we want to take into account
different velocities, To simplify the presentetion we shall limit ourselves
here to just two kinds (x arnd y).

Ws assume that the following elementary probabilities are given by
the nuclear constants and by the integrals of the geometry involvedo

An x-psrticle can produce n(> 0), x-particles with the probabilities
p, and n(>0) y-particles with probabilities e The probability of dying
out = absorption or leakage - will be denoted by p,.

For the y-particles the corresponding probabilibics will be
denoted by S;, E;, and S;o It is because of the geometry of the system that
E; and p, ere certainly different.

We now write the two functions of two variables each:

£(x,y) =p, + ppx *+ ..opn§n+...o+q1y + oeoQpy teep
B(X,¥) =Dp + PyX +ees P X tesoot Go¥ oot ¥ soo
The coefficients of £(x,y) give the probabilities of having in the first
generation o given number of x-or y- particles starting with one x-neutron.
Those of g(x,y), if we start with a y-neutrons,
Required are the probabilities of finding in the next generation o

given number of x-end y-particlséy
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Let us form the funotion

£y(x,5) =£[ 2(x,¥), elx,y)
By reasoning exactly as in the proof of Theorem I (or Theorem III}) wo see
that the probabillty of having n x-particles and m ye-particles is given
by the coefficient of x"y" in f e(x,y) o If we started in Oth geueration with
a y-particle we will get these probabilities as the coefficients of xnym in
g[f(x,y) . g(x,y)] o wy an ohvious induction we qbtain:
Theorem VI. The probabilities of having n x-particles end m y-particles in
the kth generation are given by the coefficient of xZy™® in f[Tk - l(r)] =
gtt’k" 1(r)] (dopénding on whether we started from an X- or from a yeparticle).
¥ (p) is & transformation of the plame (x,y) into itself defined as follows:
if p = (x,y) then T*(p) =12(p) = [flx,7), glx3)]; () =1~ 1))

Without going into the details of the proof or actual computations
of moments wo wish to conmelude by the following remarks
(1). In the case of 3 or any fir.l%te pumber r of different kinds of particles,
the formalism necessary to obtain the generating fumotion for the kth genera-

tion is the sams. It consists of iterating a given set of r functions or

& transformation in r dimensions (variebles X;, XgeeoX r) o

(2) o One fairly general case where the coefficlents of the mixed powera of

the variebles xla'l x2°'2oooooxrar can be ocomputed explicitly in a oclosed form

for any number k of generations is when the given transformations is the

r dimensional generalization of our projootive transformations on the line ice.
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fl(xloooxr) =
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e

p' =T(r) = (x x'a.oox'r) whero

(a)1x1 tosoty X+ bl)/(allxl +eeo0q X + dl)

e & & o & @ & o 9 © ¢ @ ¢ © & o o & & o & »

+D )/(o 1::1 toeso X+ d )

111 +'oca x

(3) The computation of moments of the distribution 'in the most peneral case

does not involve the explicit knowledge of Tk(r), but can be obtained tnrough

the knowledge of the moments of the r given elementary functions

fi(xloo . ox.r) oo oofr(xlo oo oxr)

The role of the :umerlcal mmltiplication of moments is here taken

over by matrix multiplication

(L) o

The other operatorE corresponding, ©.g.,

to U(g) = £{x °3)o etc.,

have not been so far investigated in the r-dimensional case.
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JONCLUS f0.8 REGAKDING APPLICATIONS : UNCLASSIHED

The expected value of the number of neutrons per fission "v" is known

with fair accuracy. The critical mass and the expected number of neutrbna
in & gadget depend on this constant alone. Very little seems to be known,
however, about the distribution funotion of the number of neutrons or even
only about its second moment. The great fluctuations in mmltiplicative
systems discussed above eare of some practical interest for the following
reasons :
1o The corroot timing of the initiation of the gadget is vital for high
afficiency. Even with good sources there will be an uncertasinty of several
gencretions time - due to fluctuations in multiplications
2. The fluctuations of multiplication are of interest in all "integral®
experiments.
50 For gadgets large in compariscn with the mean free path for fission, the
spatial fluctuations may destroy the initial spherical symmotryo

In dealing with such problems it is useful to develop a uniform
technique for describing the statistics of multiplicative phenomena. This
papor constitutes a first step consisting essentially in the cbservation
that the iterated substitution (of a function, or more generally of &
functional operation) represents exactly the statistical laws of multiplie
cetive processos. In the sequel, it is hoped to apply this technique to the

study of the problems of geometrical-and time-dependence of the procksso
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