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General properties of statistic~ of mu~tip~icat~ve sY8te~s

gre oisoussed together with the study of fluctuations in the number of

particles in such systems. A general method is indicated through which

one may study the f’luotuationsin the case whe~e one takes into account the
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THEORY OF ?dULTIPLICATIVE PROCESSES. Ia

The statistical theory of multiplicative chain processes does

not compare in completeness to date with the corresponding theory of addi-

Live proces8e6.. ‘l’hepre8ent paper is intended primarily as an exposition of’
t

e.simple theory of the statistics of multiplications permitting application

to a variety of special problems.

f91 lows:

pn00090 a

Vieassume

produoing

Qreaticn.

The simplest (the’‘Bernoullia~:”)case me.ybe dascribed a8
t

A particle can produceU with prob::bilitiespe~ pl$ p20...,G9

number 00 Is 2$ ~,OGO, nDo.o of similar particles in one generation.

that each particle produced has again the same probabilities of

n offspring. ?’uealse a6sume thnt each parkicle dies at pro=
/

Required is

‘Seremark

r,l~ltip].~cativeprOcesB

neutron multiplication

random distribution in

the probability law pk(n) for any generation k~

parenthetically that this formulation makes the

essentially discrete and finite. The statistics ef

involves a continuous prooesa as wel10 namely a

energy~ space and timeo We disregard this a6poc%

initially. later we shall show that the admission of’such continuity leads

to a generalization of the methods described below. There are, in the

meantime. two physically accurate interpretations of a discrete series:

(1) mm mm represent the chain process as a graph~ the n particles in

the kth generation are the n lines connecting tha kth . and the k + Iat .

branch poj.ntsin a chain or set of clmins~ (2) the n partioles are those

i~texietenoe at the kth unit of times where the probability law pi(n) is the

distribution one unit ei’ti~z c.%+~r.thgjeY6+.rpd.u_ctioriof a single partioleo

~=i:jI:Jj:F= ~~
;:ijf3:/FrE-
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H’atime unit be chosen equal to the averago time between l~sfi~, the

~istinotion is in many cases not crucia16 Fl”M?.kel@and iater Feynmn 6tudied

L+secontinuous processo We shall show later that their dirf’crentialequationa

F !hv random proces6 correspond to the infinitesimal transformations of the>,.

?;~ The first problem toconsidcr ia this: We are givm an amount and

:. ,-ran~~~mencOf active material. In this system a neumon produces on the aver-.——

:* n aeuixons with probability p (n);? p$$= 10 p(0) is che average prob-
7>=0

tibili%yof leakage or absorption* without subsequent production of’neutrons~

p(n) :xxvnalizedfor n>O is a nuclear constant, so far purely empirical~ known

as tQ its first moment and less accurately as te ite Second momentO Required

.

.
~.8the probability of having .n neutrons after k generations (or uI~itsof

Lime)O This problem is solved, in principle, by:

.-.
‘i’heorem12 Let f(x) be the generating function o!?the distribu.tim of the num=....-..—

w
am- of offspring, iee.a i’~x)=2 p(&iOThen the generating function for the

xth generation fk(x) = fk(x)e ~h+ekth iterate of f(x). LThe kth iterate is——

l)(x))] The theorem assertsdefined as follows: f~(x) = f(x), fk(x) = f<fk 0

khat the probability pk(n) is given a6 the coei’ficimt of Xn in the asoending

polynoml.alor power series expression of’fk(x), The physicel multiplication

of the random variablo is reflected in the iterated substitution by whioh

.Proof: Starting with one neutron in the Oth “generationwe obtain. with

urobabililzyp (n)a n neutrons in l;hekth generation. Beginning with r
k

r

.
.
,

(~) (n) ~neutrons9 denote the corresponding prob~lbilityby pk Now asmm tha%

cNcUSSlflED
● O ●6: ●:0

● *

111..j:0 ., . ●

?
●“ “$
● O
9* to;& ●$O

● **.

::, !;! “j;$
8*9 ● *.. . ..-

;-

:;8 “J
● . .

I::-i!
--: ● ●

✍✍

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



. ..

.

.

.

.-.

●a ●** 9*

● *9 ●98 : ●9. ●
● **9*** ● 0

● 0 ● ● ● OO UIWIASSF!ED.** ●me.a. aa
●* ●om ● mmmm
●““““C”-+”*●:9:**.**

● **9 ●s**
● 0 :0 ● 0● : ‘9 ●

● b: : ●:0 :00

e.chain is started by one neutrons ‘tieIWWI

P~(~) =7 pk - (r)(~)
i’=o

~(r)PI

Now if f’(x)is the generating function of the distribution p,(n), the

‘rJ(n) ia ~(x~r~ This i’ol?owsgenerating function of the distribution p]

i’rom zhe assumption that conteinporaryneutrom are independent in procreative

powers. and from the tk.eorem(of Laplaoe) that the generating function of

a sum ot independent random variables is the produot of their :enerat:ng

fl?notionse The tibovopropositi~n rwzyalso be vwif’ied for r = (). since

PI(~) (n) =0 for all n>Oo Substituting generating function for probability

in tha above equation~ wo hat7e:

Two remarks may Ee’mace at this point. (a) The 6imple proof

ebove 6u6%a”u8 a more general theorum if the distribution geuera%cd by

f(x) is not constants but time or generation-dependent~ Instead of the.,

argumentiestablished, the chain proaess may .ba analyzed one step further.

Let I<(y) = ay + b be the gerwrating funotio~ for the probabilitica b of 10S8

or absorption of a single neutron and a of producing fissioia,with

a+b=le Let h(x) =OL X ~-C#K2 +05X3 +..~be the generating function of

distribution of neutrons per f’iosion= Then if the two are combined by the

tran$formaiciony+h(x)= wo he.vethat the distribution of neutrons per neutrou
,

i6 gemerated by f(x) = g[h(x)] . If on the other hand we start from a slule

ii88ion, &xi wish to how

—.
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,.”imi.one,.tnit=i is given by I“(y)= h[g(y)]. Yhe

conneoted by simple and evident relations

There remains the practicsl problem

other ~ropertie6 of fk(x)~ given f(x). To ttii.s

some general properties of itcraticmo

iterates of f(x) and.F(y) are

of determining coefficient and

end we first shall e6tabli8h

E. Let f(x) be a monotone function.. Asmmm e.g. f(x) increasing, i.e.O

if x<

iOeJ.9

y, f(x)<f{y)o A fixed ~oint for f(r) is a value X. such that

=xo~ The set Of fixed points for a continuous function is closed,

the paints which are not fixed form a c~lleotion oi’disjoint intervals,

endpoints are fixed points. If we ;’oruthe ssquwzoe fk(x) for a riven

obtain a sequence of point8 converging to a fixed point x~ which forms

‘ihoendpoint of the interval in which x i8 6ituated. In fact, there are twu

oti~oeoosei.ble,either f(x)< x or f(x)>xo From the rnonoton ahar~cter of

.?(r)it followo that we shall have correaponditzglyeither f’k(x)<f’k - l(x)

Oj- fk(,x)>fk - l(x) foT all k. Unless the60 8equew3eG tend to .-or +eo

they will have limit pointso If now lin fk(x) =xo, we must have
k =.*

t(xo) =xo, Ini%ictklti= f(fk(xo~ =f(xo) =xo~ In addition, it is easy
=

to aeo that X. is the next fixed point to x(on the left or right depending

on wnether f(x]<x or f(x)>xO This follows from the fact tkt if f(x) i6

monotone and f(xo) =xoD f(xl) = xl ~ then for all x such tkt Xocx<xlo we

have i’(xoj = Xo<f(x)<f(xl) =Xlo

In our ca8e f(x) is a power series with all coefficients non.

negative, f(o)~o,’ f(l) =10 This function is certainly monotone’and in.

creasu3g f’orall non-negative xe Let X. be the first (non-nogativ~fixed

pointj X. ~ f.fi~,ed,pointsbeing c?.06ed~ Fromcertainly exist6n .%be..=g..O

““~—:

jj:; l:j:j:l:; it:
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“““““””LWtibloin.these oondition8 it follows that lim fk(0) = xo~ But if the
k =00

generating function is set = 0, the Alue of

i;hat‘;herandom variable te.ke~ the ~ .1uo O.

the probability of mortality in the ;ystem~

the function ie the probability

Hence X. Eives U8 the limit of

The probability of immortality

is th.3rei’ore8imply 1 _ Xo, where X. i~ the smallest non-negative rook of

the equation f(x) =x. It is easy ta Bee that ifO’a8 in our ca6e, all the

coefficients in the expansion of f( ) are non-negative and f’(l)= 1, then

from f’(ljzl it follows thGt ther in a root, and only one root X. which

i6 non-negative and<l~ Iff’(1) -1,X*= 1 is the mallest positive root.

1;,6obtain immediately therefore t -s familiar faCt that neL2trOr18 in a sub-

critical @dge.t without somce .i Is with probability Is die out in a finite

time. For the aupercritical gad~

can be obtained by solving the e

The kth iterate of e

$oal or mechanical method which

f(x) =xO Thu8 we may for give x replace this argument by f(x), getting

f2(x)graphically,then repeatir: f4(x) and so forth. In the case of the

generating function under

St the probability of indefinite production

uation 3,’(x)=x.

function can be obtained by a simple graph=

.sbased on the fact that along the diagonals

diso ssion this snows that fk{x) very rapidly

fern.rfor the critical or subcritical case the

04xGI is lim f~(x)~l; for the supercritical
k see

41 the asymptote is lim fk(x)s xo~ “fhie

k =00

approached its asymptotic

a6ymptote in the interval

cuse in the interval OSX

implies that for all positive powers of x in fk(x) the coefficients

approach O uniformly, i~e., the mss of probability is either absorbed

altogether into the zero region (subcriticalcase), or is spread out in an
<%..

,:!:;l:,:.,!%-+

infinitely long taij (suFer*O~~fi:~a~.cag~:~;~~rogion of criticality the
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distribution has an infinitely lcng tall wI.thma~~

probability of mortality approaohee one?

j. Ono of t!leimportant properties of generating fl.mctionsis that they

permit the calculation of xoments. Thus if pn is the distribution itself,

f(x) =’5 pn Xn its generating functiou, we h.vee becavse o~~i~~sly f(l) = 10
n=O

the first moment or expeoted value of the random variablo =: n Pn = f’(l)
:=3

= the fir~-;derivativ~ of f(x) at x= lo iiimilarlythe seoond moment of the

num”~erof neutrons car!bo found if we know tho seoond derivative.

In faot

.

.

,-

/
@ound easily frcm the values ofSimilarly the rth moment can be .

the first r deriiutives of f(x) at x=1. (The rth derivtitiveat x = 1 i8

6ornetimescalled the sth combinatorWl moment.).

Our ~:cneratingfunction is the kth iterato fk{x). It turns out

that ita first m derivatives depend only on the first m derivatives of f(x)

itself in a rather simple way. !Vehave, in fact:

Theorem II. (a) [fk(x)]’ ~=1 = f’(l) =7

(i.e. the p;oof of th~ intuitively obvious result that the expected number

of noutroM after n generation is ‘9 )0

(b) [fk(x)]’~=l = f“(x)X=,. [(f::))k +~’(l)k -’’~... ~’(lyk -’l .

The proof is immediate by induction:

But for x = I, fk-qx) =x= lj therefore sinue by assumption

1
t

L [(j ~mxfk - l(X) ~=~ = f’ 1 we obtein our formula (a). By differentiating

twice we obtain (b).
‘omalj!q~f’:p
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derivativoa;

Their derivation is through recursive relatims a6 follows:

by clifferentiating thg identical equation

~k(x) = f (f~ - l(x) ‘

k-l
;epeatcdl Y. Wd in all ?luce6 sub~tituti w X. for f (xo), we obtwin a

sequenoe of 1inear fii”st-orderdiffercnce equutionse Representin~;

7i,2=ii20&k-1+?41”*1k-1.2

----

----

‘k
= Ak

Solutions, for the

k

‘k=z se

-1
+Idlxk-l

whose general.8olutiorlia

Ml
k.s A

s- 1+%’-1’1

first three

& = Mlk

~~k,2 ‘%?”

derivative are

UNCLASSIFIE
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Sinoe in the funotion under discussion X.

derivati~es tarethe oombimatorial moments

oonsiaer the three o~ses where ~ (=~of

= 1.is a fixed point, these

of the distribution~ We may nom , ‘

oommon use) i8 >1~ <1, or = 1.

a) In the 8uperoritical ca8e where b$>l, it is clear fron the

method of aer~.vingthese faotorial momen~s that if the randou variable n

ie measurec in units of Mli all momeats approaoh a finite asymptotic fo~o

Compu~atioflof moments for this a~ymptotic distz’ibukionmay !]egreatly

simplified as follows: Let.us dei’inea funutionjd (x) =x 1’i4, the lrth

$[~~’1 Theiterate being ffk(x) =; ~ ,kfx
generating funotion f (d ‘~if expanded

in p~rs of’#~”~k has the same coeffioienta as p(x) but these are now

probabilities associated with the number of pmticles neaaured as fraotions

of the axpeoted number~ This is to say that the distribution is sealed in

kV=--kunits of Hq s and its first moment = 1. Sinoe for the superoritioal

ease all moments approach a constant value w k +- when sealed in this way.

and ainoe ‘Ae generating funotion is monotonic in the region (O,*), there

exists a oommon limiting value, g(x) Of both fk’@k (xfi ~d fk - ~r$k - ~(x)l

Since fk[ik(xjj =f

g(~) =qgv (41]

[g(~- ‘[ifk(d (+ ]] .
%8 4

we may write in the limit:

‘~ f(x) given. and from this functionalgb(4 =x ,

oqwition for g, its

d.erivative~of g by

moment8 may km obtained from the second, tiiird”eto.
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b) In the exactly oritioal cases r% =1, the moments are

%+1 = 1

%#=k”%

%3=k~5+3(m’f9

This is a distribution in whioh Pk ~ %Z 1 . Iik , and such that if the system
8

has not died in the kth generation, the expeoted number of noutron8 is

‘%0
o) In the suboritiaal ease all moments wnver%e to zero, but are

approxiuwtely ~roportional to the first moment~

& We may consider here brieflya simple special case, in which the

iteration

family of

problem may be solved exactlyo

Let f(x) = (U +b)/(ox +d)i ~ve have here a thre*Paramete?

funotions (one of the four constants a, b, C$ d$ is irnuterial).~

-.
We oan adjust them

ano~ter condition,

‘true” probability

..

.-l

.

80 that f(1) =1, and f’(l) =~.~ ~qe~an then impose

either on i”(l), or so that f(xo) =xo$ here x. is the

of mortality. $unctions of the

~er ~~bstitutionO This oanbe ’verifieddireotly

form the Eo-odled projective group of the line.)

funotion

above sort form a group

by su.bstituting~(They

A fortiiorithe iterated

fk(x) = (tikX +bk)/$kx +dk)

By expanding fk(x) in a power series in x, we obtain the exaot

$olution of our problem in this fairly general ease. We determine the eon.=

8tants by the following three

(1) Beoause f(l) =1, ~~~ve

ak+bk=ok
+ dk

(2) Sirnikrly, for the second

relations$

for every k: fk(l) = 1 which give6UNCLASSIF
● ●**● ●**●**●9.:*.::

i“f<Aiw N .+*?& ~}~), i.e.. the root
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X. % 1 of f(x) = x, m have f(xo) = Xo, and therefore for all k; &(xo) = %0

or I%yXo + bk ‘c~o+dkandxo=- b/o, from ‘sxo + b = X. (CJXO + d) c

(3) “
From the results of’section ~, we know that

@JJ ‘x=,=[fqljk =Vk

?his givee

a(ox +d)-(u ax +b)

I

=
(Cx + d) ~

Y
x =1

or taking aooount of (1)

{a - C)\(O + d) = ~

aid tharefore for all k ‘

(ak - CK)/ (ok - d~) = ~ k

From the above three relations it is easy to calculate the oon-

‘tants aks bks ‘~e

eliminating ak~ bk

k!
4 dk=l/%k. l,

dk in terms of ~ and one arbitrary parameter, By

and developing into a power scries, we get’,noting that

a~suming e~g~ ~>1, the result in the form

-k+l]rl
\

fk(x) =@x + B)/ v

0.0(1 - I./vk)%n+oo.

This oonatitute8 a conple%e solution

+(2- l/vk)x + (1 - l/’Jq2X2 +

of our problexw It ia interesting to

note that the probability of having n neutrons deoreases geometrically

with n$ the ratio of the 8ucoessive terms i6 in the case ~>1, k large#

extremely close %0 10 The distribution has the form of an exponential.

deorea8ingly very slowly. Asymptotically the probability of having

exnotly n neutrons is independent of’n~ Thi8 result 8how8 also the possibility

of enormous fluotuatione in muM@2W:i~U%3 The ‘law of large numbers”
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multiplicativt3proccmses~ Inin ~t$ o~di~ry formu~ation is not trW3 fOr

i.aotthe probability of having moro (or les8) th%n ~ times the expected value

02 neutrone tends to 8 positive constant (dependent on I ),, Tne following

form of the law of large numbers is validU as the examination of the dis-

tribution chows at once:

Theorem 111. Givenan &>O, there exists an N

probability of the number n of neutrons in the

that (;”- K)ken ~(v+ e)k is greater th= I - ~;

.

suoh tha~ for all Iczl?,the

kth generation being suah

It remains to discuss the moat general form of the distribution We hope
.

to do”this in part 11 of the paper through two methods, one consisting of the

-1
consideration of functions of the fom h f h (x), here f i6 Of the Pro”

~eotive linear form dlaoussed above, ad h(x) iS an arbitrary monotoni~ f~ctiono

The k%h iterate then is simplyh fk h-l(x)o The funokion

more arbitrary parameters for our real distribution. The

siuts in developing f(x) into a series of functions whose

‘projective”form.

Finally it may be remarked that the limiting

above is formally identical to those obtained by Frankel

h(x) will give us

seoond method co-

terma havo the

distribution obtained

@AMi=36) and

Feynman who used a continuoWJ time parameter instead of our discrete-generations

# modOJ1o Their phyeioal model is somewhat different and leadt$to the finding of’

the infinitesimal transformation of the continuous, abelian~ one-parameter

group into whioh the fyoup of iterates of a function oan be imbedded~

5“ There are many other problem6 besides the question of the probable
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The first W3 shall oonsider ia that of.a euboritiaal system

(~<1) with a souroe~ We suppose that the distribution of neutrons entering

the system in a given generation has tho generating funotion ~(x). f(x) being

the generating function of the system itself as before, we shall heve

Theorem IV. The generating functions in the zero, first, second generation~ are

the funotions:

Proof is completely analogous to that

In gen~ral, letting l~k(x)

generation

of theorem 10

represent the

L ,, ,4

distribution in the kth

a)

If the system is subcritical, but sustained at a definite level by the sourcnss

we shall have tho limitizzgdistribution . or its limiting generating

as a nonsingular funotion of x$ lim Fk(x) = F(x), F(l) = 1. Passing
k~@O

limit on both 6ide$ of our equationa) we get

funotion -

‘tothe

b) F(x) =4(X) OF~f(x)] where $(x)~ f(x) are given.

One has to determine F(x)

it one oan obtain at once

moments of F(x)e by differentiating

from this functional equation. I%nwithout doing—

useful statistical information, for example the

F’(l) =&/(1-f’)

giving us a

oomplioated

Fw(l) = b“
~+

way to oompute standkrd deviations, and similarly, more

expres6ion8 for tho higher derivatives and moments. The i’ir8t
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of suboritiualitybeoomcm infinite if f’(1) approache6 10

6. We come ncwto the probability distribution

in the system from the first to the kth generation.

previously that if f(x) n is the generating=$ pnx
n=O

of the sum of all neutrons

We have established

function for the

probabilities OX n particle6 in the first generation then the generating

function of

total of n

as followeo

the kth generation is given by the kth iterate fk(x).

If we want the generating function for probabilities of having the

particles from

The total Of n

the first to the kth generation we shall proceed

particle6 canbe obtained by any one of the

following mutually exclusive cases: we oan have 1 in the first generation and

n - 1 in the remaining k - 1, or 2 in the first generation and n . 2 in the

remaining k .

maifiing k - 1

19 in general we oan have r in the first andn - r in the re-

generations. The required probability is therefore the sum of

in the first generation, we

k - 1 generations. But the

denote8 the probability tkit, starting from r

shall attain from these r a total of n . 8 in

r parkicle8 are independent of eaoh other. The

probability of getting the total of n - r from them is therefore the

probability of n - r in the sum of these r variables. The generating

funotion for the sum of the independent variable8 is the product of the

generating functions corresponding to eaoh of thcuao In ou;’case it is the

rth power of f(x). We are looking for the coeffi.oientof J# - = in

Lfk - l(xjjr. Our required probability qk equals therefore the sum with

respect to r of ooeffioients of #1~”~
&~~?

●
●* ●:0 ● D*●:*

● ☛☛ ● ☛:00 ● ●** ●
● ***

● ,90*
● ** ● 0:
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coei’fioientsof Xn in 2 pn X= o fk - ~(xjJ=.[

But the co~ffioient of Xn in Z pn XrElk - 1(x)lr i6 the same

8(au this ooefi’icienti t x 0 # - 1(X))9 rThis in true for all n. Therefore

(the generating funotion for qn is f xfk - 1(x))o Shoe n hero is arbitrary

we get:

Theorem V. The generating funotion for the time sum is:

Uk(x) = f~xuk - 1(X]

m w ‘mtmtn the original partiole~ this mu~~iplies the generati%

funwtion by X5 expressing thi8 slightly ~difi~ form r~ursi~lYs ~

.

.

.

#
.

.
.
.

. .
obtain the more convenient expres6iond

As we knowwe haves in general$ ~ relation between m_of the nth ord-

Of a distribution funotion and the nti derimtive of the generating f~ctiono _

We shall now show how one oan compute the derivatives of Uk(x) for any

k in an explioit manner.

Sinoe, as was shown above~

Uk(x) = X@ - 1(XJ

we may obtain

the resulting

iniiinity,and

Henoe for the

the desired resulte by repeated differeniAa%ione@ and by solving

finite difference oqwationso But if k is allowed,to approaoh

if the systen is subcritioa~~

Mm Uk(x) =Iim Uk- l(X) =U(x) ~
k+w k~~
distribution of the total number producedO we have

u(x) =x “ f[u(xj

differentiating,we obtaint
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These cuamplerishow how moments of the distributions oan be oomputed for

various problems in our discrete model. Otto Frisch has showne how, from

the form of these momouts one can write their correct form for the con~inu-

ous modelswithout having to solve the partial differential equations of the

problem This oorrespondenoo between the two models will be taken up in part

II. It may be said that a generality of method has been established by the

foregoing results, whioh demonstrate that the iteration of suitable operatora

oorrespoads to various physical observable oonnected with ohain prooe8se8~

For example it maybe mentioned that the transfornwtionx~(l/x) f(x) gives
.

U6 the probability-distributionfor differences between the number of neutrons

,

.

,..

.

I*”.

in a generation and the number in the next generation. Thus

~k - l\@/x) 0 f(xflgenerates probabilities of this kind. The mathematical

description of a multiplicative chain prooess is eeen to involve the itera-

tion of a functional operator U. !i!heseoperatnr8 U act on the domain of all

monotone funotions g(x), g(l) = I. To summarize again just a few examples;

(1). u(g) =f(g)o f here is

represents any function of the domain on

tcmio, g(1) = ~, This operator U ifi.the

a given monotone ~unotiono g
. .

which U operates~ i.e., g(x) mono-

only one that has been studi@

extensively in literature. Its iteration l~ds to the simple iteration

process:

g(x).fk(x~of~(g(xp]’o ● . .fk(g(x) O.*=O

(2) u(g) = f(x o g), f a given function

The dowin of’the operator, i.a., the admissible g are the

aamee but there

operator. Thim

6eem8 to be

is

veryOa~it@e kmw.c.?wut the iterates of Vnie..-. .
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of particles produaedo

(3) u(g) = d b) ● g(f(x) ) j $ (x), f(x) aro given~ The

of thi8 operator giwe us the distribution of the number of particles

iterates

produoed

when a 6ouroe with given distribution ~ (x) is aoting con6tantly0

(4) u(g) = fp/x) “ FJ

This operator relate6 to the probability distribution of’the

difference of the number of particles in swoessive generation8~ The study

of

We

it

oonju~ate8# fkd point8Q &o* for suoh operators seems to be important.

hope to undertake this study in part 11 of this paper.

We turn now to a more complex version of the problem. Hitherto

haa been a6wmed that the generating funotion was indepem%mt of temporal

and geometrical featorso Wwever, our methods are extensible beyond these

limitations.

(7) the calculation of the probability distribution in the

general caoe of heterogeneous partioles will nowbe considered. So far W@

have assumed that the probability of generating mneutrons i6 the 6ame &

dependently o~ the parent neutron. If one

system of the active material is of finite

of leakage and absorption is a funotion of

takes the real situation where the

extente then obviously the probability

posikion of the parent nwleus.

It is obvious that in generai chend.aalor nwlear chain-reaction proce66@

one has to deal with several kind6 or even a continuous variety of the

elementary generating funutionso

& order to explain our methods of iteration of functional

operator6 for tilia general oaso we shall take the siraple6tcase of two kind8

of particlo~e If we divide, for.”~h~%’~rsti~<p:ll’u~?.~tj..on,the 8phere of the
●b...

aotive material into two parts, “&at;aasos$ u~er,shell, we slmll

HJCIASSIFIEb;;::;:<:;
● ●*
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characterize the neutrons generated in the one part by the subscript x, the

other8 by subscript y. Ar.x-particle can generato either x-particles again

or penetrating to the outer 8hell y-prtioless ors of oouree, leak out or bo

absorbed; the same~ though with different probabilities, applies to the

y0partioli3s. In reality we should consider a one-dimensional variety of kinds

of”partioles corresponding to all value8 of their distance r from the ember

of the sphere or even a twin-dimensionalone if we =nt to take into account

different velocities. TO simplify the presentation we shall limit ourselves

here to just two kinds (x and y).

We aseume that the following elementary probabilities are given by

the nuclear constants and by the integrals of the geometry involved.

An x-particleoan produce n(>O), x-particles with the probabilities

pn and n(>O) y-particles with probabilities qn~ Yhe probability of dying

out . absorption or leakage - will be denoted by poo

For the y-partioles tho corresponding probabilities will be

denoted by~ne <* and~oo It i8 beoaufleof the geonetry of the aystem that

F* and p. are cer+ainly difference

We now write the two funotions of two variables each~

f(%y)
n*+*e*oiqly + O*oqny +**?==po +plx + ●*@Pn

g(x,y) = Fo -G+ ‘“=* w.-~nxn+.coo+~,y +oeo...n

The coefficients of f(x,y) give the probabilities of having in the ftist

generation m given’number of x-~y- particles starting with one x-neutron.

Those of g(x,y), if we start with a y-neutrons.

Required are the probabilities of finding in the next generation a

given number of x-and y-particle~$”~ ~
● . . .

● ✍✍✍
● 0 ●:0 .*.

MJCLASSIFIEW:0” ~.● ::.
● *. ● .
● * . . . ●

● 9* ● *. . .
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Let us form the funotion

f2(% Y) = uf[f(x$y)s @%Y

By rea8~ming exactly as in the proof’of Theorem I (or Theorem 111) we see

that the probability of having n apartiolea and m y-partides is given

by the coeffioient of Xnym in f2(x,y) o If we start+ in Oth generation with

a y.partiole we will get these probabilities as tho coefficients of Xnym in

il6WDY) ,g(x,y 0 2 y an obvious irxhmt ion ‘wo obtain:

Theorem VI. The probabilities of having n x-particles and m y-particles in

the kth generation are given by the coefficient of & in f~Tk - ~(rfi:r ,

~z - l(r~ (depending on whether we started from an x=.or from a y-particle)og.l!

l+(p) ie a transformation of the plane (x,y) tito itself defined as follows:

if p = (X,y) then T’ (p) = T(p)

R’ithowt going into

of moments we wish to oonolude

= [thy). g(%y)]J T%) = T(P- l(P).J.

the details of the proof or actual computations

by the following remarks:

(1) ● In the case of 3 or ar.ayfir.ltenumber r of different kinds of particles~

the formalism necessary to obtain the generating fmotion for the kth genera.

tion is the same. It oonsiats of iterating a given set of r funotiona or

a transformation in r dimensions (variablesxl, ‘x20..xr)Q

(2) . One fairly general case where the coefficients of the mixed powers of

ar can be oomputed explicitly in a olosed formthe variablee xla~ X2a21JOOOOXr

for anyxaumber k of generations is when tho given transformations is the

r dimensional generalization of our projaotive transformations on the line ioo.

P
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Zlr= fr(x%...xr) = (~r2X2 +...arrxr +br)/(Orlxl +...CrrXr +dr)

(~) The computation of momenta of the distribution‘inthe

doee not involve the

the knowledge of the

over

[4) .

have

explioit knowledge of Tk(r), Mt can

most ~eneral ease

be obtained tiuough

moments of tho r given elementary functions

f2(X~e...Xr)..oofr(xl.eo.xr)

of the ~unnericalmultiplication of moments is here taken

by matrix mul%iplioation

The other operator6 corresponding, e.g., to u(g) =f(x Og)e eto.,

not been so far investigated in the r-dimensional case~
-- ~—. -

.y-
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The ~ected value of the number of neutrons per fission ‘fv“ is known

with fair accuracy. The oritical mass and the expected number of neutrons

in & gadget depend on ~fli8constant alone. Very little seems to be known,

however, about the distribution funotion of the number of neutrons or even

only about its second moment. The great fluctuation in multiplicative

systems discussed above are of some praotical intereet for the following

reasons:

1. The corroot timing of the initiation of the &dget is vital for high

efficiency. Even with good sources there will be an uncertainty of several

generations time . due to fluetuationa in multiplication.

20 The fluctuations of multiplication are of interest in all ‘integral”

experiment o

~. For gadgets large in

spatial fluctuations may

comparison with the mean free path for fi8sion$ the

destroy the initial spherical t3p(3tryo

In dealing with such problems it is useful to develop a uniform

technique for describing the statistics of multiplicative phenomena. This

paper constitutes a first 6tep consisting essentially in the observation

that the iterated substitution (of a functions or more generally ofa

f%notional operation) represents exactly the statistical laws of mul’tipli.

CatiVt9proce8ScWa In the sequel, it is hoped to apply this technique to the

study of the problems of geometrical-and tima.dependence of the proc$wso
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