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ABSTRACT

The neutron transport equation is solved by a hybrid method that iter-

atively couples regions where deterministic (Sx ) and stochastic (Jlonte Carlo )

methods are applied. ~nlike previous hybrid methods. the Uonte Carlo and S.\

regions are fully coupled in the sense that no assumption is made about geomet ri-

cal separation or decoupling. The hybrid method provides a r.ew means of solving

problems involving both optically thick and optically thin regions that neither

Ifonte Cado nor .S.v is well suited for by themselves.

The fully coupled \Ionte Carlo/S.~ L ‘mique consists of $ning spatial

and/or energy regions of a problem in which either a Monte Carlo calculation or

The Monte Carlo region may comprisean S.V calculation is to be performed.

the entire spat ial region (with vacuum boundary conditions) for selected ener~v

groups, or may consist of a rectangular area that is either completely or partially

embedded in an arbitrary S,V region. The hfonte Carlo and S,V regions are then

connected through the common angular boundary fluxes, which are determined

iteratively using the response matrix techniqlle, and volumetric sources,

The hybrid method has been implemented in the SN code TWOD.4NT by

adding special-purpose Monte Carlo subroutines to calculate the response matri-

ces and volumetric sources, and linkage subroutines to carry out the interface flux
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iterations. The common angular boundary fluxes are included in the S.v code as

interior boundary sources, leaving the logic for the solution of the transport flux

unchanged. while, with minor modifications. the diffusion synthetic accelerator

remains effective in accelerating the SN calculations. The special-purpose Monte

Carlo routines used are essentially analog. with few variance reduction techniques

employed. However, the routines have been successfully vectorized. with approxi-

mately a factor of five increase in speed over the non-vectorized version.

The hybrid met hod is capable of solving forward. inhomcgeneous source

problems in .Y - 1- :.nd R -- Z geometries. This capability includes multigmup

problems involving upscat ter and fission in non-highly multiplying (k, ~J ~ .S)

systems. The hybrid method has been applied to several simple test problems

with good results.
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CHAPTER 1.

INTRODUCTION

Knowledge about the distribution of neutrons in a medium is essential in

many of today “s applications in nuclear science. Most obviously, tbc distribution

of neutrons in a reactor

determining power levels

directly relates to the energy released by fission. thus

and safety margins. \Iany other applications also exist.

however. such as oil well logging. in which the distribution of neutrons emitted from

a source placed in a well can be correlated to the possible presence or absence of

hydrocarbons in the surrounding soil. Both these. as well as other areas. require an

accurate means of evaluating the neutron dist ribut ion.

The distribution of neutrons in a medium is best described by the Bolt zmann

transport equation, which can be derived from the requirements of particle conser-

vation across an element of phase space, ~ If the distribution .Y(r. E. fl) dr dE dl

represents the number of neutrons in volume dr about location r, with energy

in dE about E, and moving in solid angle cf~ about direction 0, then the to-

tal track length per second of the particles in the phase space element dr dE dfl

is V(E) iY( r, E, 0 ) A clE dfl, where V(E) is the neutron speed. In transport

ory, the quantity V(E) .V(r, E, fl ) is commonly defined as the angular neutron

the-

flux
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O(r. E. Q). and the linear. steady state Eoltzmann transport equation is written in

terms of the angular flux as

fZVf2(r.E,f i)+ ST(r.E)o(r.E.f2)=

L=’E’l.dO’XS(r. E’ + E.fl’ “Q)o(r. E’. fl’) (l–1)

+\(E) f=dE’v(E’) Zdr. E’)o(r. E’)+ S(r, E, f2).
JJ

The tot al macroscopic cross section Sr( r. E ) is the number of neutron interactions

of all types per unit track length. the differential macroscopic scattering cross sec-

tion Ss( r. E’ + E. 0’0 fl )dE dfl represents the number of particles per unit track

length scat tered from energy E’ and direction W to dE about E and dfl about f2.

and the fission macroscopic cross section 3 F(r. E ) is the number of fission interac-

tions occuring per unit track length. The average number of neutrons emmitted per

fission is defined as V(E). while the fission spectrum \(E) dE represents the prob-

ability of a fission particle appearing in energy range dE about E. The scalar flux

O(r. E ) is defined as the integral
/

dfl’o( r, E. 0’), and the inhomogeneous source

S( r. E. Q )dr dE dfl is the number~~f neut rons emitted in volume dr about location

r. with energy in dE about E. and moving in solid angle dfl about direction O.

The first term on the left-hand side of Eq. (1-1) is interpreted as the rate

of change of particles in the phase space due to streaming, while the second term

represents the loss of particles from the phase space due to all types of collisions,

The first term on the right-hand side is the rate of gain of particles in the phase

space due to scattering from all phase space elements at r, while the second term

is the gain (Iue to fissions.
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Several physical assun~ptions areinherent in Eq. (l-l). Scattering is assumed

to be dependent only upon the scattering angle Q ofl’, which is valid for isotropic
.

media. The fission spectrum \(E) is assumed independent of the fission energy E’.

and is also assumed to be identical for both prompt and delayed fission neutrons.

The angular distribution of fission neutrons is assumed to be isotropic. which is

reasonable at energies under consideration here ( <20 MeV ).

macroscopic cross sections are assumed to be independent of

To preserv ~linearity.

the neutron flux.

Equation ( 1-1) is an integro-differential in six variables (three spatial. two

angular. and one in energy). and a general solution has not been found. lVhile an-

alyt ic solutions have been obtained for simplified cases. 1 realist ic problems requile

a numerical solution by one of several methods. which can be divided into two gen-

eral classes – deterministic, of which the most popular method is discrete ordinates

(S.Y). and probabilistic (\Ionte Carlo ).

TYhileboth S,\ and Monte Carlo are well suited for specific types of problems.

neither is efficient for all types. The S.v method is difficult to apply to problems

with complicated geometries and encounters numerical difficulties in low scattering

regions. \Vhile. in theory, Monte Carlo can be used to solve any problem, the

computational time required for an accurate solution can be enormous, especially

for problems with highly scattering regions.

Previous efforts at developing hybrid techniques that enable the best features

of discrete ordinates and Monte Carlo to be exploited in a single problem have been

limited. One of the first approaches was to employ the results of a one-dimensional

adjoint S,Y calculation as a biasing function in a three-dimensional h~onte Carlo
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shielding problem. 2 Xote. however. that the Jlonte Carlo and S,v methods were not

directly linked: rather. the S,Vresults provided additional information to the Monte

Carlo. which performed the actual calculation. In the code DOMIXO (Discrete

Ordinates Monte Carlo Interface Operation). 3~ the boundary fluxes resulting from

a discrete ordinates code were used as input to the Monte Carlo code MORSE.

either direct ly a~ a source. or indirectly as an import ante function. However. the

S,Y and llonte Carlo regions were assumed to be decoupled. in that the solution to

the S.v problem was not affected by the Monte Carlo region. Thus. even tbough

the met hods were ccupled. the problem geometry was not. Similarly. \Iont e Car!o

calculations have been used to provide a surface source (forward or adjoint ) for S.y

calculations. s-; again. with a decoupled geometry.

.\nother means of coupling \Ionte Carlo and S,y is the first collision w.mrre

method.a in which source particles from a localized source are tracked to their first

collision via llonte Carlo. then tallied to form a source for the S.y, This removes the

difficult ies encountered in running S.v with singular sources, such as a point source.

while the time involved in the Monte Carlo calculation is minimal. since particies

are only followed until their first collision. However. S.\. is still used to compute

the final fluxes throughout the entire problem geometry, so the first collision source

met hod only part ially alleviates any problems due to the presence of low scattering

regions.

In Ref. 9, Monte Carlo methods are implemented within the S,V method

itself. This is accomplished by choosing the S,v quadrature directions randomly,

which are then used with standard S,v techniques. The use of random angular
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quadrature direct ions helps mitigate ray effect problems. but does not eliminate

errors due to spatial differencing (i.e.. problems due to optically thin regions).

In cent rast. the fully coupled S,v/Monte Carlo technique described here con-

sists of defining spatial regions in which either a llonte Carlo calculation or an S,’,

calculation is to be done. The regions are then connected through the common

boundary fluxes. which are determined iteratively using the response mat rix tech-

nique. This technique is completely consistent in that the solution obtained is not

dependent upon any assumptions of geometric separation or decoupling.

As an example of a configuration suitabie for analysis bj. the fully coupled

hybrid technique. consider a geometrically complicated neutron source located in a

low scattering material. such as air. encased in a large cylinder of highly scattering

material. such as steel. Due to the complex source geometry and streaming in

air. the S.Y technique by itself would be unreliable. On the other hand. \Ionte

Carlo alone would be inefficient because of the significant multiple scattering in

the steel. Even a decoupled linking technique that used a \lonte Carlo calculation

in the source and air regions, followed by an S.Y analysis in the steel. w-ould b~

inadequate if particles were likely to reenter the air region after having entered the

steel region. By using the Monte Carlo technique for the air and source regions. the

S.V technique for the steel region, and the response matrix method to determine

the interface currents between the air and steel regions, we are able to apply both

methods where they are most efficient and still obtain a fully coupled solution.
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The hybrid technique. as originally developed by .~lcouffe and Filippone. 1011

was first implemented for monoenergetic transport in simple .Y - Y geometry prob-

lems. thus demonstrating the feasibility of the method for one-group problems in

two dimensions, (Although three dimensional S,v codes are currently under de-

velopment. past limits in computational resources have restricted development of

practical discrete ordinates codes to two dimensions. ) .Altbough application of the

hybrid method to realistic problems would require the inclusion of multiple energy

groups. a ““brute force’” extension of the method was not possible due to physical

limits on data storage. In addition. numerous other features and capabilities were

needed in order to handle the complexities posed by realistic problems. .41though

the hybrid method showed promise. it was unclear if it could be extended to more

complicated problems.

The goal of this dissertation is to determine the feasibility of the applicatit~n

of the hybrid method to problems of

a. Extending the hybrid method

real world complexities by:

to include multiple energy groups.

b. Generalizing the treatment of neutron scattering to allow anisot ropic scat -

tering.

c. Including the capability for tresting fission and upscat ter.

d. .4110wingthe treatment of more complicated geometries, including cylindri-

cal.



e. Enhancing the efficiency

through vewtorization.

f. Increasing the efficiency

20

of the Monte Carlo portion of the hybrid method

of the S.V portion of the hybrid method through

improved acceleration techniques.

g. Developing a method

stock astic techniques

for estimating the variance of quantities calculated by

in the hybrid method.

Chapters 2 and 3 of this dissertation will provide a brief review

ordinates and lhmt e Carlo techniques, respectively. while Chapter 4

of discrete

will detail

the

the

S.y

theory hehind the response matrix hybrid technique. C’hapter 3 will describe

actual implementation of the hybrid method. i.e.. how the \lonte Carlo and

are coupled toget her, Chapter 6 describes the specifics of the Monte Carlo

techniques used in the hybrid method. while Chapter 7 covers the vectorization

of the hybrid llonte Carlo method. Chapter 8 describes how multigroup cross

sect ions are obtained for the Monte Carlo from the S4y, and explores some of the

related effects of using such derived cross sections. The use of statistics and variance

estimators in the hybrid method is explained in Chapter 9. while the use of diffusion

synthetic acceleration in the S,v with the hybrid method is covered in Chapter 10,

Chapter 11 presents a series of benchmark comparisons between pure S.v and the

hybrid method. Finally, conclusions and recoin -,aendations about the hybrid method

are presented in Chapter 12.
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DISCRETE ORDINATES

The discrete ordinates (S.~ ) method is a deterministic means of solving the

transport equation through discretiziition of the independent ~a.riables. The energy

domain E is subdivided into G groups (i.e., the multigroup method ;.sused), and the

spatial domain r is partitioned into “’rectangular” cells. A set of discrete angular

variables (ordinates ) is then selected and the transport equation evaluated along

these direct io~ls. Becaus~ of the nature of the linear Bolt zmann integro-different ial

equation. its solution is most conveniently developed by a process of von ~;eumann

or source iteration.

Jlany discrete ordinates codes currently exist today, some of which have

teen constructed in a different manner. The following review of discrete ordinates

is tailored to TIVODAXT,12 the SN code within which the hybrid method has been

implemented, and is based upon Refs. 13 and 14.

2.1 Coordinate S}“stems

A two dimensional ~{ - Y geometry consists of a block with finite r and

y dimensions. and an infinite length in the z direction, In the coordinate system

*



shown at Fig, 2-1. p is the direction cosine along e=. q the direction cosine along e ~.

and ( the direction cosine along e ~. The phase space thus consists of five dimensions
.

– x. y. E. p. and q. since we have the constraint p2 + q2 + <2 = 1,

.Atwo dimensional R-Z geometry consists of a finite cylinder with radius R.

height II, and azimuthal symmetry. In the coordinate system shown at Fig. 2-2. p

is the direction cosine alone er. q the direction cosine along e.. and < the direction

cosine along ee. .+gain, the phase space has five dimensions – r. :, E. p. and q.

The energy groups are represented by the group index g. where increasing g

corresponds to decreasing energy. Let O < El < E2 <. , . . < EG_ 1 < EC. where E’G

is the maximum energy of interest in the system. then the definition of the group

flux is

!

&g

og(r. fZ) a dE’o(r. E’. f2).
Eg-,

Similarly. the group source is

I

Eg

Sg(r, f2) s dE’S(r, F. Q).
Eg-,

The group total and fission cross sections are defined so that

(2–1)

1

J

Eg

vXr,g(r, Q) a dE’o(r. E’. fl)v(E’)X~(r. E’), (2-35)
og(r.~) E$-,
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Figure 2-1 Cartesian Coordinate System
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Figure 2-2 Cylindrical Coordinate System



and the group- to-group transfer cross section is

Since the ar~gukr flux O(r. E. O ) is not known a priori. multigroup cross sections are

generally calculated by assuming that the angular flux is separable into functions

f(r. fl)g(E),

function g(E

of r onl}.

group

where j( r, Q ) need not be determined, and the spectral weighting

is estimated. Then, the group macroscopic cross sections are functions

\Vit,i the defini

g results in

ions at Eqns. (‘2-3). integration of Eq. (1-1 ) over he energy

9.

(2–4)

/

Ea

I

‘g

where \ ~ is defined as dE’ t(l?) and o~(r) as dE’ O(r, E’ ).
E~-l E*-I

Note that the first term on the left-hand side is due to neutrons scattering

from higher energy groups to lower energy groups (plus within group scatter), and

is referred to as “downscatter”, while the second term is due to neutrons scattering

from lower energy groups to higher energy groups, and is referred to as “upscatter”.

For problems without upscatter or fission, the multigroup equation may be solved

directly by solving for the flux in group one, calculating its contribution to the sec-

ond and lower groups, solving for the second group’s flux, etc., until all groups have

been solved. Y$’ithupscat ter or fission. an iterative procedure is most conveniently

#
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used. Let t ing p be the iteration index. and using the updated scatter source where

a~tilable. Eq. (2-4) becomes

(2-3)

This iteration procedure is referred te as the ‘“outer””iteration in discrete ordinates

codes.

2.3 The Scat terin~ Cross Section

Before we proceed with the discretization of the angular tariables. the wat-

tering cross section must be further specified. L(r t ing p. = 0’ 0. and expanding

the group-t o-group transfer cross sect ion in Legendre polynomials. we obtain

(2-6)

where P/( PO) is the /th Legendre polynomial and the infinite series represent at ion

has been truncated after L terms. Truncation at L = O corresponds to isotropic

scattering. while truncation at L = 1 is referred to as linearly anisotropic scattering.

Since the Legendre polynomials are orthogonal. the coefficients oft he expansion are



The hh Legendre polynomial can be expressed as

m=+l
P/(go) = * ~ llm(fl)~j~(~’). (~_g)

m=-1

by using the addition theorem for spherical harmonics, with }1,~( Q ) representing

the Ith. rnth spherical harmonic. and }~m( fl ) its complex conjugate. If we now

expand the group angular flux in terms of the spherical harmonics. i.e..

L m=+l

o~(r. 0) ‘~ ~ lim(n)~l~,(r)
1=0 m=-i (2–9)

iifm~(r) =
/

dfll~~(n)o~(r.!l).
41t

The scattering source (including both upscatter and dcmmscatter ) then becomes

G L m==+l

El
~fy v ,_g(r. fl’ .Q)ogl(r.$ l’)= Cx

.
-9 ~l.g~-g(r) ~ ~;m(Q)~/mg’(r).

91=1 4F 9‘=1 /=0 m=-1
(2-10)

Sot e that because of symmetry considerateions for t~vodimensional geometries. the

moments ;/mgJ(r) are zero for m <0.13

Discretization of the Armular I“ariable

In discrete ordinates, the unit directional sphere is represented by a set of

discrete directions SZnwith associated weights W. (see Fig. 2-3). Although there

is no unique quadrature set of directions, all such sets are chosen so as to pre-

serve physical symmetries and properties of the transport equation. 13 The method

of discretization is independent of the actual quadrature set used: however. it is

somewhat dependent upon the specified geometry.
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Beginning with Cartesian geometry. the streaming operator is 0 “V = p ~ +

Xote that there is no angular coupling in the streaming operator in -Y - }-

geometry, i.e., as a particle travels through space its direction cosines ~. q. and <

remain constant until it suffers a collision. Along the quadrature direction on with

direction cosines p. and ~n. therefore. the transport equation is

where 1jm” = Iim(fln). Sng(r) = S9( r. f2n ). and the scalar flux ogl(r) has been
.

rewritten as the zeroth moment 00091(r ) for clarity.

In cylindrical geometry. however. the discretization is not as straightforward.
pdro) la(fo) +,)8(0)

since the streaming operator becomes ——- .—
r 6+ z“

.+lthough the
r f%

first and tbird terms are evaluated at On as before. the second term represents an

angular realistribut ion where the direction cosines p and f change as the particle

stl~ams through the cylinder (see Fig, 2-4). This is reflected in the discret izat ion

process by introducing coupling coefficient s13 such that

~[{dg(r. 0)]
‘[”n+l/24n+l/2,g(r) - Qn-1/20n-1/2,~(r)]oM “ = U1.

(~_l~)

n

The coupling coefficients are e~aluated by requiring Eq. (2-12) to obey the conser-

vation form of the neutron balance equation, and the streaming

when the angular flux is uniform and isotropic, with the results14

01/2 = o: an+l/2 = ~~_l/z - Wn~n,

term go to zero

(2 - 13)



The diamond difference relationship in angle is used to evaluate the additional

angular fluxes. i.e..

On.g(r) = \[on+1,2.g(r) + on-,,2, g(r)]. (Q-1A)

The starting angular flux can be obt ained through use of the “’step-start”’ procedure.

where o,l,~lz = 0,,,1 is used for each starting interval in angle. 13

~.~ s~atial Discretization

Discretization of the spatial variable is performed by partitioning the spatial

dimensions into intervals that form rectangular

convent ion for denoting the mesh cells is shown

the ith, jth mesh cell are Ar, = .rl+112- 1,-1/2.

mesh cells. where the standard

at Fig. 2-5. The dimensions of

&) = Y]+lf2 – U)-112 in -“( – ~-

geometry. and Ar, = r,+112 -r,-112. A:l = :1+112 -:1-1/2 in R-z geometry. cross

sections are assumed to be constant within a cell, e.g.. ~,,~ = Z9( r,) ). z,_ I/2 <:

~ < xI+Ij2. 9J-1/2 < Y < Y1+I/2 in Cartesian coordinates.

In .Y - }- geometry, we integrate the transport equation over the it h. j th

mesh cell for dr = dz dy. l~ith the definitions

1 X*+112

!/

yJ+l/2

d—tjng ~ d.Zdy O.g(r).
Ax, Ay, ,,-,,2 Yj-1/2

and

1 z,+I/~

J/

yJ+l/2
J,,/mg= drdy$hg(r).

Axl~Y] S,-, /a Y,-l/2

s vn9 =
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Figure 2-3 Sample Se Quadrature Setls

.



31

/

,.

.—

Figure 2-4 Angular Redistribution



l-l /2, ]+1/2

1-1 /2, J

1, ]+1 /2

i-1t2, J-1/2~
i, J-1/2

i+l/2, J+l/2

1+1 /2, J

i+l/2, J-l/2

Figure 2-5 Sample Mesh Cell
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the result is

~(Q8+l/2.]ng - ~i-1/2.jng) + &(@i,j+l/21ng - ‘t,J -1/2. ng) + ~T,:jg ~tjng =
1

L m=l G

51
r’

E
~lmn G:jlr.gt + kg x

.
‘I)l, g’-g v~f, #Jg’ @;jOog’ + Sz]ng.

9‘=1 1=0 m=o

The volume element in R - Z

the ith face of a mesh cell be defined

of the ith. jth cell as l;] = ~(rf+l,2

defined as

gl=l
(Q_lfj)

geometry is dr = ‘2m dr ds. Let the area of

as .4tkl/2,J = ‘hrtkljz L:,, and the volume

,-lil )3:). Let the cell-averaged flux be- r2

1 rl+lla
II

:)+i/2
olJng = ~ 2rrdrd~ong(r). (2–17)

t.J ra-tfz ‘J-l/~

with similar definitions for the moments and the fixed source. I--pen integrating

the transport equation over dr for the it h. j th cell. w-eobt aint 3

#n[-4t+l/2,J Q,+l/2,Jng - 4-1/2,J ~t-1/2,]ng
()

1-: ; [Qn+l/20tjn+l/2g
I

- Qn-1/2 Oij,n-1/2, g] + lln ~[r~+l/2 - r~- 11/2 [O1.J+l/? ng - Ok. )-l/2. ng1
CL mal

where the approximation

has been used. The quantity (1/r), is determined by considering the case of the

uniform, isotropic angular flux. from which

(-)1’ “1+1/2. J - .4t-1/2,J
=

r ,1 1;,, ‘
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94 solution of the Discretized TransDort EQuation

.

The discret ized transport equation in .Y-1’ geometry [Eq. (2-16)] constitutes

one equation with five unknowns – ~ijng. @8*1/2,1ng*and c9,,l+li2,n9 for fixed i, j.

n. and g. lYhile two of the unknown cell edge fluxes are determined from either

boundary conditions or the previous cell’s results, auxiliary equations are needed

to determine the remaining unknowns. One standard approach is that of diamond

differencing. where the auxiliary equations

Qtjng = ~[@t+l/2.jng + ~t-1/.2jngl

are used. JYith these. the cell-centered fluxes can be uniquely determined,

The discretized transport equation in R - Z geometry [Eq. (2-18)] has two

additional unknowns due to the angular realist ribut ion term - O,,,n+112, These are

determined thorugh the diamond difference in angle relationship of Eq. (2-14). in

conduction with Eq. (2-13) and the step-start procedure.

Two of the most common boundary conditions used in discrete ordinates

codes are those of vacu urn boundaries and symmetry boundaries. For vacuum

boundaries, the incoming angular flux on the cell edge }Sfixed at zero, while for

symmtery boundaries the value of the

outgoing flux. A typical example of a

in a cylinder,

incoming flux is set equal to the value of the

symmetry boundary is that of the centerline



The solution is obtained by an exact inversion of the discretized transport

operator. then assuming that the source is known. The process is an iterative one,

as. can most clearly be seen by writing the transport equation as

L m=+l

‘+1/2 (r)]n + S7’,g(r)on9[n . Tog
z

k+l/2(r) = ~l,g--9
(r) ~ ~imn dreg(r)

1=(J m=O

+ Qng(r).
(~-w)

with

where k is the iteration index and Qng(r ) represents the source due to upscat ter

and downscat ter. fission. and the fixed source. This iteration process is called the

“-inner””it erat ion. and is cent inued until some convergence criteria has been met.

The cell-edge fluxes calculated using the diamond difference method are not

guaranteed to be positi~”e, and as such can be non-physical (i.e.. negative). One

common means of remedying this is through use of a negative flux fixup where the

negative flux is set to zero. 13 The cell center flux is then recalculated. along with

the remaining cell-edge flux. in order to preserve particle balance. This ensures a

positive solution. although it also introduces nonlinearites into the computational

process. However, negative flux fixup is usually not significant unless the mesh sizing

exceeds approximateely two mean free paths, or has highly asymmt eric dimensions,

~,’j’ Limitations of Discrete Ordinates

One important problem inherent in the use of discrete ordinates is the oc-

currence of ray effects in highly absorping or vacuous mediums. (Xote that a highly
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downscattering group ina multigroup problem is equivalent to a high absorber).

Inthese types ofmedia. pwticles tend toconcentrate along the discrete directions

of travel, causing non-physical maxima and minima in the angular flux. Even the

use of large quadrature sets often only partially alleviates the problem while greatly

increasing computational t irne.

.Another inherent problem is the difficulty in mocking up complicated geome-

tries. since the geometry must be defined in terms of a finite mesh restricted to a

two-dirnensionai slab or cylinder. This often forces the user to simplify the problem

when analyzing such devices as a tool used for oil well logging. Similarly. it may be

difficult to model geometries composed of objects with greatly varying sizes. e.g..

a point source in a slab. or an atmospheric transport problem. where the size of the

atmospheric layer dwarves the size of the ground layer.

It can also be difficult to select an appropriate mesh size, Iyhile a small

mesh size ensures accuracy and provides detailed spat ial information. it also greatly

increases the computational time

mesh size, while reducing the cost

accuracy.

and memory requirements. Conversely. a large

of the calculation. can result in a serious loss of

\Vhile $,v provides an efficient and accurate means

port problems, the limit at ions described above prevent it

for solving many trans-

from being the method

of choice for all problems. More importantly, from our point of view, there exists

a class of problems where SN is an appropriate solution method for part of the

problem geometry. and another met hod (i.e., probabilistic ) is better suited for the
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remainder. It is for these types of problems that the hybrid method subsequently

described is intended for.



.
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CHAPTER 3.

THE MONTE CARLO METHOD

The Monte Carlo method is a stochastic

equation through simulation of a finite number of

means of solving the transport

neutron histories.~GIT lVhile the

neutron distribution in the medium of interest typically corwists of anywhere from

101° to 1020 particles. we can obtain estimates of ‘he distribution by randomly

sampling a few thousand to a few million particles. As we sample more particles,

we obtain better estimates. at a corresponding increase in computational time.

.1 neutron history consists of following a neutron from its crest ion by either

a fixed source or fission until it is lost to the system by capture or leakage. Possible

starting locations, directions, and energies are expressed in terms of probability dis-

tribution functions, which are sampled by drawing random numbers from a pseudo

random number generator in order to determine the exact coordinates in phase

space, Another random number is then drawn to determine the track length. which

is compared with the calculated distance to the next boundary.

If the sampled track length is greater then the dist ante to the boundary, and

the boundary is an exterior boundary, than the particle has leaked from the system

and its history is terminated. If the boundary is an internal boundary, such as one

separating regions wit h differing material compositions, the dist ante to the next

boundary is calculated and compared with the remaining track length as above.
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\\”hen the sampled track length is less than the distance to the next bound-

ary, the particle undergoes a collision. The type of collision (e.g., radiative capture,

fission. elastic scattering, etc. ) is determined by random sampling. If the result

is a capture-type reaction, the particle history is terminated. Otherwise, the neu-

tron is continued on in a new direction and energy determined both by sampiing

from cross section data and from physical laws governing particle interactions (e.g..

conservation of momentum). The track length is again randomly sampled. and the

tracking process ccntinued as above.

In analog Monte Carlo. the probability distributions are formulated so as

to correspond to the analogous physical behavior of a neutron. This can lead to

gross inefficiencies. as in the classic example of a shielding problem consisting of an

absorbing slab with a source on one side and a detector on the other. If the slab

is optically thick. the probability of an individual neutron reaching the detector

is small and a large number of histories must be run in order to obtain an accu-

rate estimate of the flux at the detector. Fortunately, numerous biasing procedures

have been developed to enhance tbe efficiency of Monte Carlo methods in this and

16-l* In general, a biasing procedure modifies the appropriate eother problem areas.

probability distribution to increase the chance of a score, while the particle’s im-

portance (weight ) is adjusted so as to maintain a “fair game”. Introduction of these

procedures is referred to as “ncn-analog” kfonte Carlo.

lVhile several sophisticated, general-purpose Monte Carlo codes currently

exist. it was considered more advantageous to develop our own code for implemen-

tation with the hybrid method. Existing Monte Carlo codes are designed to accept
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input from. and return output to. a user, while the hybrid method requires interac-

tion with a discrete ordinates code (TIYOD.NT ). posing some unique problems as
●

described in subsequent chapters. In addition. the relatively simple geometries and

scoring techniques ccmsidered in the hybrid method enable the use of a semi-analog

code whose efficiency can be improved through the use of vectorizat ion (reference

Chapter S). Therefore, the remainder oft his chapter is limited to a review of proba-

bility functions and error estimates basic to all Monte Carlo methods. while details

of the actual method implemented will be described in later chapters.

3.1 Sarncdimz Probabilityv Functions

.A probability density function (PDF) p(r) is defined such that p(r) dr is

the probability that a random event will take on the value z’ between r and r +

dr. 16Probabihty density functions are ncm-negat ive functions normalized such that

the integral ifor a cent inucms function ) or sum (for a discrete function) over the

applicable range is one. The cumulative distribution function (CDF ) P( r ) is defined

as the probability that a random number r’ is less than or equal to r. Therefore.

the CDF is a non-negative, non-decreasing function with a range of zero to one. If

~(z) is the function tha; we wish to sample over a range of a < r < b. then the

PDFisp(r J= ~(~)/
J /

r
~(=’)~=’ ~d the CDF is p(r) = p(.r’ ) dx’.

a a

Let g(~) represent a uniform distribution between zero and one such that

g(i) = 1. Since both g(<) and p(z) are distributions. they satisfy g(old~l =

p(r){ cfrl. or. since g(() = 1,

(3-1)
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By integrating from a to r, we obtain

P(r) = {. (3-Q)

where ~ is a random number uniformly distributed between zero and one. Given a

random number <. the value of the dist riburion we wish to sample is thus

r= P-l((). (3-3)

This inversion may be performed either analytically. if simple, or by rejection

techniques. 1G

.% an example. consider the distribution ~(r) = Zz which we wish to uni-

formly sample over the range O < x < 1. The PDF for this distribution is

p(r) = 3rz. while the CDF is P(r) = r3, Thus. from Eq. (3–3 ). we could sample

j(r) directly by r = ~. If we wished to avoid calculating the cube root. we could

instead use a rejection technique as follows. Choose <1and (2 uniformly distributed

between zero and one. If {2 < ~~. then let r = <1. If not. then choose another

pair of random numbers and test again. Xote that the efficiency of a reject ‘cn tech-

nique is proportional to the area under the integral of the sampled funi.t ion over the

range sampled. which in this case is only 1/3, so out of every three random number

pairs selected. only one would meet the rejection criteria. Thus, the use of a direct

inversion as opposed to rejection techniques must be e~ Iuat ed on a case-to-case

basis.

Since the information provided by the \lonte Carlo method is obtained by

stochastic processes. it has an associated uncertainty with it. Some estimate of this



associated uncertainty must be provided if the user is to have any confidence in his

data.

Let p(z) represent the probability density function (PDF ) (i.e.. neutron dis-

tribut ion function) we are sampling, where r represents some property of the PDF.

rhen the expected value of r is equal to the true mean. or

/

b

i = E(r) = rp(.r)d~,
a

while the sample mean. wit h .Y trials z”. is

(3-4)

(3-3)

Xote that the expectation value of the sample mean is equal to the true mean. so

the sample mean is said to be an unbiased estimator of the true mean. lY

The variance of p( r ) is defined as

I

b

U2 = E[(r - 7)2] = (.r-f)2p(r)d~. (3-6)
a

where ~ is the standard de~ation, It can be then be shown that the standard

deviation of the sample distribution is rtiated to the standard de~-iation of the true

distribution by~7

z.%. (3-6)

The standard deviation of the sample about the true mean thus decreases as the

square root of the number of histories run, and is directly proportional to the true
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standard deviation. However, neither P(x) or u is known. so Eq. (3-6) cannot be

directly evaluated. Instead. let us define the sample wwiance S2 as

- 1
.\’

=2=_
.Y x x:,.

n=l

(3–7)

It can then be shownly that the expectation value of the sample variance E[SZ] is

equal to the true variance Uz. so Eq. (3-6) becomes

(3-s)

The approximate ion sign is used in Eq. (3-8) because it is the expected value of the

sample variance which is equal to the true variance, not the samp!e variance itself.

This approximation holds as long as .Y is large enough to adequately sample the

problem and provide a good estimate of the true variance and mean.

Since the PDF we are sampling is highly unlikely to be a normal distribution.

we cannot associate the standard deviation with the typical cwliidence limits used

with a normal distribution. However, if we run K batches of .Y histories per batch.

then the distribution of means p,v( F) resulting from those batches will assume a

normal distribution if .}’ is large enough. This is formally stated by the central

limit theorem. ]e

(3-9)
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From Eqs. (3-6) through (3-9). we can then state that the probability of ~ -6 ~

$ s ~ + 5 is 68,3Yc. while the probabilityies for two and three standard deviations
.

are 95.4% md 99.77c. respect ively, where

-2 = 1
u

A-(K – 1’)

The unanswered quest ion from the discussion above is how big must .\. be

in order to be big enough ? Since the necessary value of .Y is obviously problem

dependent, no fixed value can be given. However. the concept oft he figure of merit

(FOM) can be used as a guide, ‘2 behaves as 1/.Y.le From Eq, (3-8), the variance o

while the CPU time T used in a Monte Carlo calculation is directly proportional

to the number of histories run. If we define the FO\I as l/(~~T). then the FOlf

should remain approximately constant for a given problem. regardless of the number

of trials run. Howm-er. if the FO\l continues to fluctuate \videly after the first fmv

trials. then the value of -Y is probably too low to adequately sample the problem.

The figure of merit also provides a means of comparing the relative efficiency

between two different \Ionte Carlo methods. For a given problem, the method with

the largest FO\f is considered to be the best overall, since it combines measures of

both how accurate and how expensive a method is,

3,3 .4dvant ages and Disadvantages of the \lonte ~arlo \lethod

The >Ionte Carlo method has some significant ad~antagm over deterministic

methods. Since the \Ionte Carlo method is continuous in energy, space, and angle,



it avoids the discret izat ion errors inherent in the deterministic method. Thus.

llonte

no ray

Carlo met hod is well-suited for mocking up complicated geomt cries. and

effect problems in low scattering regions.
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the

has

Although the llonte Cario method has no discretization errors. it is subject

[o stochastic uncertainties. Since the standard deviation only decreases as the

square root of the number of histories run. this can be very expensive to reduce.

If only integral information is desired about the problem. such as the total leakage

from a cylinder. then oftentimes a low number of histories will suffice for an ans~ver

within the desired error bounds. If. however. detailed spatiai information about the

flux distribution in the cylinder is desired, then the required number of histories

for the same error bounds is much greater. This is due to the fact that \vhile every

neutron which passes through the cylinder provides information to the integral

leakage tally. only those neutrons which pass through a given spatial subsection

of the cylinder will provide information about the flux in that area. In cent rast,

deterministic methods provide information for each and every cell in the problem.

and although deterministic computational times do increase as the number of cells

is increased. it is usually much less significant than the computational incraases

required with Monte Carlo for similarly detailed spatial information,

Also, although the llonte Carlo method is clearly better suited than deter-

ministic methods for problems with low scattering regions, the converse is true in

problems containing highly scattering regions. Consider again a cylinder composed

of graphite with a point source in the center for which we wish to determine the in-

tegral leakage. If the cylinder is optically thick, than a neutron will have to undergo
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many scat tering collisions before it escapes from the surface, and the computational

time per history will be large.

Thus. neither deterministic methods nor probabilistic methods provide a

panacea for all possible computational problems involved in solving the transport

equation. It is then natural to ask if the two methods could be combined to solve

problems that neither method alone is well suited for. Our answer to that question

will be the subject of the remainder of this dissertation.



●
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CHAPTER 4.

THEORY OF THE RESPONSE MATRIX HYBRID METHOD

Consider a \lonte Carlo region embedded in a S.~ region (Fig, 4-I). where

*‘n and ~“ut represent the boundary fluxes entering and leaving the llont e Carlo

region, and n is the outward directed normal. The elements of 11””t are the incom-

ing angular fluxes to the S.v region. where each element corresponds to a unique

combination of spatial mesh cell. energy group. and quadrature direction O”, with

fln “ n >0. The interface angular fluxes for Sln ~n < 0 are the elements of ~’n.

The outgoing flux from the \fonte Carlo region is related to the incoming flux from

the S,y region by

~“”~ = B*’” + cJ””~, (4-1)

where SOut is the exiting flux from the \fonte Carlo region under vacuum boundary

conditions (*’n = O). The element rkk.j of the response matrix ~ represents the

angular flux leaving the Monte Carlo region in S.V state k due to a unit incident

angular flux in S,Vstate k’, Because Y’n is generally not known, Eq. (4-1) is solved

iteratively by

~o”t(r+l) = ~~tn(r) + SOut, (~_Q)

where, for example, we can set

qpt(l) = CJout, (4-3)
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W’n

and

‘) is obtained using an S.V solver

the response matrix ~ has been

The llonte Carlo method is also used to sample the fixed source in the” \lonte
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with the prescribed boundary flux Wou”’),

precalculated by the Monte Carlo method.

Carlo region, determining Sour. For subcritical problems, Eq. (4-2) is expected

to be unconditionally convergent on a physical basis. Note also that the above

equations may be extended to partially embedded Monte Carlo regions by replacing

the appropriate elements of ~ ‘n with the specified S,\ boundary conditions.

it is more advantageous to perform a separate S.~

r. as opposed to precalculating a response matrix

precalculate a S.y response matrix. a separate S.y

.% explained in Ref. 10.

calculation with each it erat ion

for the S.v region. In order to

calculation would be required for each state in the S.v/\ Ionte Carlo interface. while

experience has shown that the number of iterations required for Eq. (4-2) to con-

verge is much less than the total number of states in the interface, Since the time

required per S.Y calculation is approximately the same. regardless of whether the

calculation is done for a single state or all states in the interface, it is clearly more

efficient to perform separate S,ir calculations at every iteration r. This also reduces

storage requirements.

Conversely, the exact opposite situation occurs in the case of the llonte

Carlo response matrix. There, the calculation time required for the response mat rix

is approximately equivalent to the calculation time of the entire boundary value

problem at an iteration r. Thus, it is more advantageous to precalculate and store

the Monte Carlo r~sponse matrix.
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Figure4-1 Boundary Fluxes at an S,y/\fonte Ca.rlo Interface
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evaluation of Eq. (4–Z) would require a response matrix

~G-dimensional vectors ~“”t, V’n, and S“u:, where

IiG =ICXG,

and

~ = IL X .\f/?,

with G defined as the number of energy groups, IL

(4-4)

(4-5)

as the number of spatial mesh

cells along the S.y/\Ionte Carlo interface. and .\l as the total number of directions

in the S,\ quadrature set. The factor of two appears in Eq. (4-5) because, in

two dimensions. we require only two out of four directional quadrants since we are

concerned only with outgoing directions,

For typical S.V mesh grids, the memory requirements of Eq. (4-2) are too

large for practical implementation. As an example, with a total of 60 spatial cells

along the S,v/\lonte Carlo interface, an S6 quadrature set (.11 = 24). and 30

energy groups. over 463 million words of memory would be needed for storage of the

response mat rix & exceeding the capacities of most of today ’s machines. However,

significant reductions in storage requirements are possible. Let the h--dimensional

subvect ors V;” ~,Y~, and S~ut denote the group g portions of V“ut, V’n, and S“”t.

Equation (4-2 ) may then be replaced by the equations

~;ut(r+l] = F& VT(’) +Q;”t, g =

out =
Q, E I&, Wy + S;”(,

9’*9

and

1 G,. . . . . (4 – 6)

(4-7)
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where &~, is the 1{ x K submatrix of ~ representing transfer from group g’ to

group g.

For problems without upscatter or fission, Eq. (4-7) reduces to

(4-8)

Equations (4-6 ) and (4-S) can be implemented as follows:

1. L-sing Monte Carlo, calculate the S~”’ by sampling the fixed source in the

\ Ionte Carlo region.

2. Forg=l . . . ..G.

a. determine Egg using \fonte Carlo.

b. using EgQ and Q~ut. determine W~ut and W~nfrom Eq. (4-6). with

one S.v calculation per iteration step r,

c. calculate directly (without first determining the ~~~, ) the contribu-

tions to Q~?t, g’ > g, by samphng *;”.

d. discard I&g to make room for ~g+l ,9+1.

with this algorithm, only the submatrix R.g9 is used for calculations at any

given time, reducing the storage requirements by a factor of G*. However, this

method also introduces a penalty in efficiency. since it is more efficient to calculate

the entire response matrix at one time, versus calculating the Egg and Q~”’ sep-

arately. In a calculation of ~. all particles eventually score by leaving the Monte



Carlo region. In calculating &~, however, particles that down scatter are not

scored. Instead, the downscatter contribution to Q~?t is determined in a separate

Monte Carlo calculation by sampling ~~. In this calculation, particles escaping

from the Monte Carlo region in group g are not scored. The inefficiency in the

calculation of & is easily removed by rep!acing explicit downscatter with an ap-

propriate reduction in particle weight (reference Section 6,4), while the inefficiency

in the computation of the Q~~t can be minimized by using forced collisions (refer-

ence Chapter !3). Xote also that the S,y calculation in step 2.b is itself an iterative

process, involving inner iterations as per Eq. (2-22).

\Vith upscatter and/or fission. additional iterations over energy are required

(i.e.. an outer iteration). .+ccordingly. we include an energy iteration index p on

~tn(p.r}. ~out(p, r’) and Q out(p)< and iterate over step Z above until convergence

occurs. In effect. we are determining Eqs. (4--6) and (4-i’ ) by the it erat ion process

(4-9)

and

Out(p, x)where ~ ~ In, (p+l ,x)and ~~ represent the converged fluxes from Eq. (4-9).

Since the Egg are independent of p, step ?.d is eliminated so that the response

matrices can be saved and reused at each value of p. The storage requirements for

thell~~. Gi l,?,,.., G of G1i2 words is still a factor of G less than those needed

for the full matrix ~, Since only one submatrix is needed at a time, the rest are

stored on a mass storage device, reducing the core memory requirements to 1(2



words. the same as required for the pure

that the ~~~, are not act u flly calculated.
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dmvnscatter case. .~gain. we emphasize

Instead. the contributions to Q~Ut(’) are

determined by sampling the ~~’p’=) directly.

In calculating the R.~~with upscatter and/or fission. we again replace explicit

out scatter (up and down) and fission with appropriate modifications in particle

weight to improve efficiency. ~ith pure downscatter. however, once a particle

scat tered out of a group there was no possibilityy of it scattering back into that

group and scoring. This is not the case with upscatter and fission. Thus. we are

no longer calculating the true group-to-group response matrix ~~~. but a group-

within-group response r~atrix which we denote by ~~~. \Ve correct for this when

sampling the ~~( P-x) for contributions to Q~~t(p), g’ # g. by scoring in Q~uf’p)

particles that exit the Monte Carlo region in group g after having entered, at some

point. a group g’. Thus. Eqs. (4-9) and (4-10) are replaced with

~;uf(p+l. r+l) = & *tn(p+l. r)
9 + Q;uf(”).

and
Q;u@ = ~ &, * tn(p, x);(P+H + ~ Flgg/ *91 +

g’<g g’>g

(Bgg - Rgg)wyp’=) + S;”t.

(4-11)

(4-12)

Note that the outer iteration process for the Monte Carlo region differs from

the outt, iteration process for the S,v region (reference Section 2.2) in that both

the updated fission source and scatter source, where available, are used in Eq. (4-

12), whereas S,V uses only the updated scattering source. However, S,v also uses

acceleration techniques 13to improve convergence of its outer iteration. whereas the

Monte Carlo does not. The effects of this will be examined in Section 5.7 and

Chapter 11.



CHAPTER !5.

IMPLEMENTATION OF THE HYBRID METHOD

Our primary goal in this dissertation is solving problems with Monte Carlo

regions either completely or partially embedded in S.~ regions. Thus. it is natural to

implement the hybrid method by modifiing the internal structure of an S.y code to

accept information from Mont e Carlo routines. Since the S.v code TII”OD.+XT. 12

developed by the Los .Mamos Xational Laboratory. is a reliable. state of the art

discrete ordinates code capable of solving varying and complex transport problems

for neutral particles in two dimensions, it was selected as the basis for the hybrid

method. \Vhile the entire TITOD.4XT source code is somewhat large (approxi-

mately 50.000 lines ), the portion of the solver requiring changes is less than 10.000

lines. a,ld is written in relat ively well-structured FORTR.+X amenable to modifica-

tion. Thus, the hybrid method is implemented by modifying the discrete ordinates

code. where necessary, and adding special purpose rout ines to perform the Monte

Carlo functions and link them to the SN. As explained in Chapter 3. it was de-

cided to develop our own unique Monte Carlo subroutines, both because of special

problems posed by the hybrid method, and for ease of debugging and efficiency.

This chapter describes the physical interface between the S,v and \lonte

Carlo regions. the process of transferring information between the two, the com-

putational structure of the hybrid method’s implementation in TFVOD.\XT. and



necessary modifications to the S,v method, while Chapter 6 will describe the details

of the Monte Carlo method.

5.1 Phvsical Description of the \lonte Carlo Region

\Yhile the theory developed in the preceding chapter was for an arbitrarily

shaped \lont e Carlo region. including possibly multiple \Iont e Carlo regions in tht=

same problem. we consider only a singIe. rectangularly shaped region here, either

part ially or completely embedded in an S.v region as shown at Fig. 5-1. This

enables considerable simplification in the details of tracking particles through the

\lonte Carlo region. and in the development of an interface between the \lonte

Carlo and the Sir. with lit tle loss of generality,

In T\YOD.+XT. the problem geometry is broken up into rectangular coarse

mesh cells. each of which is in turn composed of a varying number of fine mesh

cells 12The coarse mesh cells are homogeneous in composition. and thus represent a

convenient met hod of specifying the location of differing materials for het erogenous

problems. The actual discrete ordinates calculation is performed upon the fine

mesh cell structure. however, since smaller spatial dimensions than those typically

provided by the coarse mesh structure are required for accurate results in the S,V

met hod.

Since there is I1Ospatial discretization process involved in llonte Carlo cal-

culations, and since the speed of a Monte Carlo calculation decreases aa the number

of internal boundaries increases, we choose to base the physical description of the
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Ylonte Carlo region upon the coarse mesh cell structure provided by the S.v. Thus.

all necessary cell boundaries and compositions are already available from the S.v,

without the extensive user input and calculations commonly required by pure Ilonte

Carlo codes. Instead. the desired Monte Carlo region for the hybrid method is de-

scribed by sI,ecifying just four boundaries !ocated along S,v mesh cell edges - top,

bottom. left. and right.

5.2 The Boundarv Lavers

Typically. the \lonte Carlo/ S,\ boundaries will be located along material

discontinuities in the problem, However. the angular flux at such a boundary is

usually highly anisotropic. requiring a large number of quadrature angles for an

adequate description, From Eq, (4-5), we see that the size of the respouse matrix is

proportional to the square of the number of quadrature directions, so that memory

requirements would increase dramatically if the actual S.y/\ Ionte Carlo interface

were located along a boundary between optically thin and thick materials, 1°

Instead. we add an additional “boundary layer-” by extending the Jlonte

Carlo region from the previously specified boundary into the S.v region. This then

presumably places the SN/\lonte Carlo interface in a highly scattering region where

ihe flux is more nearly isotropic. enabling a lower quadrature order to be used. The

distance required is determined by calculating the number of fine mesh cells needed

to meet or exceed a user specified number of mean free paths in distance for tiLe

material aloxlg the appropriate. boundary. Previous vwrkl 0 has shown that a one

mean free pat h thick boundary is usually sufficient. It is desirable to keep the
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boundary layer as small as possible, since it will usually consist of highly scattering

materiais for which Monte Carlo calculations are inefficient.

Note that since cross sections are energy dependent. the mean free pat h

in a material will change with ihe energy group. Thus, the size of the boundary

layer is also group dependent. often resulting in an “inverted wedding cake”” type

of structure as shown at Fig. 5-2. If the mean free path for a given energy is large

enough, the \lont e Carlo region may constitute the entire problem geometry for

some groups. as is also shown in the sample figure. \Ve also provide the capability

to entirely eliminate the Monte Carlo region alt oget her for energy groups where S.w

is sufficient throughout the entire problem geometry.

The type of structure shown at Fig, 5-2 provides further interface possibilities

between the Monte Carlo and the S.y. in addition to the boundary type fluxes

described in Chapter 4. since upscattering. downscattering. or fission may now

result in particles transferring from the Sty region into the llonte Carlo region,

and vice versa. Since this transference occurs over an entire mesh cell, it results in

volumetric sources which are handled as specified in Section 5.4.

5.3 Interfacing Phase S~ace Coordinates

One of the most fundamental differences between the Monte Carlo method

and the discrete ordinates method is in their treatment of the variables in phase

space. \Vhile \!onte Carlo treats these variables as continuous, Sty discretizes them.

T us. when transferring particles from the \lonte Carlo region to the S,y region,
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we must discretize the phase space coordinates. and when going from the S,v region

to the \lonte Carlo region we must assign continuous values to the given discrete
●

variables used by the S,v.

Since the hybrid method employs multigroup cross sections (see Chapter 8),

the energy variable has already been discret ized for both the \lont e Carlo and

S,y regions. so no conversion is necessary. Conversion of spatial coordinates is

straightforward - when passing from the \lonte Carlo region into the S.Y region.

a particle is scored into the appropriate fine mesh cell. while particles entering the

\fonte Carlo region from the S,v region are assumed to be uniformly distributed

over the area (or volume, for volumetric sources ) of the fine mesh cell. The details

of the spatial conversion process are described in the succeeding chapter.

The conversion of angular coordinates is not as clear-cut. however. lllile

discrete ordinates represents the unit sphere of directions \vith a set of (iiscrete

directions, each of which is assigned an angular weight proportional to the area

subtended on the unit sphere by that direction. the shape of the area associated with

a discrete direction is not specified, Thus, there is no unique method of determining

angular bins Afln for assigning a set of continuous \lonte Carlo directions to the

discrete S,v direction fln.

The system we have chosen to use is depicted at Fig, 5-3. The dots represent

the intersections of the fln with the unit sphere for an Sb quadrature set, The Afln

are defined by lines of constant azimuthal angle O@ and constant O., The lines

of constant fle form levels of constant width Aq, where Aq is equal to the sum of

the weights of the discrete directions along that level divided by the total weight
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of all discrete directions in the

Ad, where the Ao for each bin

quadrant. Each level is in turn divided into bins of

is proportional to the weight of its assigned discrete

ordinate divided by the sum of the weights for all discrete ordinates along that level.

The bin structure for an Se quadrature set. along with the corresponding discrete

ordinates. is shown at Fig, 5–4. Note that the quadrature set actually used in the

hybrid method is the level symmetric set that has been built-in to TIVOD.4XT. *3

\Vith this bin arrangement. particles are easily scored when crossing into the

S.S region. The discrete directional level the particle enters is simply determined

by comparing its direction cosine along O@. q. with the values of the levels as

determined above. while the bin that it enters is determined

projection of the direction cosine along flo. p/ ~~. with

azimuthal angle of the bin edge. Particles entering the \fonte

the Sty region are assumed to be uniformly distributed in q and

corresponding to the discrete direction on,

by comparing the

the cosine of the

Carlo region from

o across the 30.

f~hile the bin arrangement described above conserves the unit area of the

sphere, i.e.. it preserves the zeroth moment of the flux, there is no guarantee that

higher orders will be preserved. That is. quadrature sets are sometimes chosen so

as to exactly integrate the highest order Legendre polynomial possible,lA so that

if an angular flux consists of only a small number of Legendre moments (in one

dimension), those moments will be preserved. However. if we uniformly distribute

the particles resulting from that angular flux over the finite bin areas associated

with the discrete directions, and then sum the moments of the individual particles,

we no longer will preserve higher order moments.
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The bin structure at Fig, 5--3 does present an advantage. however, in that

it preserves an important physical property of cylindrical geometry. As previously

stated. wher. a particle streams in R - Z geometry its direction cosine along flo will

change, as represented by the arrows in Fig. 5-3, while the direction cosine along f2e

will remain constant. The bin configuration of Fig. 5-3 preserves this property since

streaming particles can only flow into bins whose quadrature

same O$. This is not the case for the alternative bin structure

directions have the

shown at Fig. 5-5,

There is an additional minor advantage to the bin structure of Fig. 5-3. To

represent an isotropic point source, particles should be assigned to bins in proportion

to the bin weights, except when the source is located at r = 0 for cylindrical

geometry. The uncollided particles emanating from a point source at r = O travel

exclusively in the R - Z plane. that is, flo = O. As r -0. flo becomes meaningless

and the distinction between discrete directions on the same Z-1evel (flo value)

disappears. For this case it would be best to assign all of the particles to the bins

along the R - Z plane in proportion to the Z-1evel weights (the sum of the \veights

for all bins along the same Z-1evel). This is true for the bin structure of Fig, 3-3,

but not the the alternative bin structure of Fig, 5-5. The reason becomes evident

upon examining the two figures. Assume that bin n is the one that intersects the

R - Z p!ane, and let ~~+1’2 and fl~-l’z represent the largest and smallest fle

values

equals

R-Z

of this intersection, fVith the arrangement of Fig, 5-3, fl~+l’2 - fl~-’ ‘z

the Z-level weight, Thus, for particles uniformly distributed in fle in the

plane (as would result from an isotropic point source at r = 0), the number
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between flj+l/2 and fzJ-1/2 would be proportional to the Z-level weight. This

would not be true for the arrangement of Fig. 5-5.

5.4 Particle Transference

As each particle crosses from the Monte Carlo region into the SN region. its

phase space coordinates are discretized as described above, and it is then placed

into the S,%’state corresponding to the resulting unique combination of spatial mesh

cell, energy group, and quadrature direction. Particles physically streaming across

an S.y/ \Iont e Carlo interface are represented as a boundary flux source into the S,~

region. while part icles which enter the S.~ region through a change in energy group

due to fission or scattering are represented as a volumetric source ~er Section 3.2

above.

.kt the conclusion of a \lonte Carlo calculation. the quantity actually residing

in an S.v state is the total weight of all particles which have entered that state during

the calculation, For boundary flux sources, this number is converted into an S,y

boundary flux by dividing by the quantity Afl. A.-i,, .~n, where Afln is the angular

weight associated with the discrete direction fZn, A.-t,j is the appropriate area of

the mesh cell face entered (Az, or Ay, for Cartesian geometr!~, T(r~+,,2 – r~_,,2 ) or

2rr, *1/2 As, for cylindrical geometry), and .VH is a normalization factor dependent

upon the number of histories run,

Volumetric sources are treated somewhat differently, since, to conserve stor-

age. S,V codes usually store the spherical harmonic moments of the source, not the
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Figure 5-3 The S,v Angular Bin Arrangement for N = 6

.



1,000

0.87s

0,7!50

0.62S

~ 0.500

0,37s

0.250

0.125

0.000

●

●

● ●

I I r

●

o 0.4 1.2
P;

Figure 5-4 The Bin Structure for N=6



66

,Z

\ f

Figure 5-5 Alternative SN Angular Bin Arrangement for IV = 6
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angular source itself. 13Thus. if ll-tjn~ represents the total weight of particles trans-

ferred to cell (i. j ) with discrete direc “-m On in energy group g. the corresponding

Sv moment @ljlmg is found from

where }~~” is the complex conjugate of the Ith. rnth spherical harmonic evaluated

at discrete direction fl ., and Al~l is the volume of the cell (i. j ). Xote that this

conversion is not performed until the

so sufficient storage must be allocated

directly in the angular source states,

\lonte Carlo calculation has been comp!eted.

to allow the the Monte Carlo to score particles

However. since the response matrix is not in

use when volumetric source calculations are active, its storage area may be used for

the angular source states. so no additional memory is required.

5.5

●

Com~utatioI.al Structure of the Hvbrid }Iethod’s ImrJementatio~

SOWthat we have examined in some detail the physical interface between the

Monte Carlo and the S.v regions, we turn to the computational interface. That is,

we now describe how the hybrid theory of Chapter 4 is meshed with the multigroup

discrete ordinates method of Chapter 2,

Figure 5-6 depicts the computational flow of the unmodified discrete or-

dinates code TWOD.WT. Subroutine TIGF20 is the overall driver for the solver

module. which begins by calling a series of input processing and memory allocation

routines represented b~-the block TIXP. Xext, subroutine TGXD25 calculates the
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S.v grid structure. sets up the S.v cross sections. and performs other initialization

functions. The outer iteration loop [reference Eq. (2-5)] begins with subroutine

TR.SSO. where. for energy groups g = 1. . . . . G, TOCTER calculates the to-

tal source to the group g from fixed sources, downscat ter, upscat ter. and fission

[i.e.. the Q.,(r) in Eq. (2-22)]. while SIYXER performs the inner iterations. Sub-

routines DIFFO and DOCTER complete an outer iteration loop by updating the

fission source. Additionally. DOL-TER accelerates convergence oft he fission source

through use of a Chebyshev polynomial-based method.’ 3 (lye note that conver-

gence of both the inner and outer iterations are also accelerated thmugh the use of

diffusion synthetic acceleration. *3 which will be discussed in Chapter 10).

Figure 5-7 presents the computational flow as modified to incorporate the

hybrid method. The additional input required for the h>brid nleth(xl is pr{w~,,sed

in TIXP. while TG>-D25 calls routines \ICXS and SETUP, t~hich define the \lonte

Carlo cross sections and other arrays required for uni(iue \I{mt t=Carlo funrt i(ms,

Jfonte Carlo calculations actually begin \vith SRC\lC. ~vhich samples the fixed

source to determine the S~U’of Eq, (4–12 ), while S\l O\l computes the volumet rlc

sources in the S,~ region resulting from SRC\l C. if any. and stores the moments

in the S.~ inhomogeneous source array, Next, \IC’R\I calculates the within-group

response matrix ~~~ [reference Eq. (4-11 )] for groups g = 1., , . . G, where required.

Note that the calculation of the response matrix is omitted for a group g if the

\Ionte Carlo region or the Stv region comprises the entire problem geometry, The

response matrices are stored on disk for recall during the iteration process.

The basic structure of the outer loop, is unaffected by the hybt-id method,

except. for modifications to allow volumetric sources to be passed from the \fonte
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Carlo region to the S.\ region by SMOM. TOL’TER gets the volumetric source to

group g for both Monte Carlo and S.v regions from S.V regions in groups g’ # g as

before. while the volumetric source from any Monte Carlo regions in groups g’ # g

to the S.v region for group g is obtained from the inhomogeneous S,v source array,

where it has been stored by S\ IO\l. Instead of calling SIXXER to perform the

S.v inner it erat ions. however. TOUTER calls LINK. which peforms the coupled

S,\/\ lonte Carlo iterations of Eq. (4-11 ).

LIXIi begins by calling SST031C. which determines the contribution of the

group g volumetric sources located in the \lonte Carlo region. if any. to the Q;!’.

9’ =1.”’” G, S\lO\I is then called to compute and store any further contributions

to volumetric sources in the S,\ region which arose during the \lonte Carlo calcu-

lation of SXTOllC. Xext. the iteration process of Eq. (4-11) starts by getting the

response matrix ~~~ from disk. The initial outgoing boundary flux used by LIXK

is
q;uf(p+l,l) s jjgg tyln(px)

9
+ Q;u~(P), p>o,

*;ur(I,l) = Q;uf(l), P=o.

In(p, x) ,
where *~ N the converged incoming boundary flux worn the previous outer

iteration, SIXXER is then called to perform the S,v inner iterations, returning

out(p+l!2) o~y(p+lil), ~d ~g 1s calculated from Eq, (4-1 I.), If the maximum relative

Ouf(p+l,l) Ouf(p+l. z) ,error between *9 and *9 1s less than tht S,v error criteria. than

convergence is considered to have been achieved, Otherwise. the iteration proce-

dure continues until convergence is reached, or a user-input maximum number of

iterations has been reached,
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If the iteration process of Eq. (4-11) does not reach convergence. an extrap-

olateion procedure developed by Filipponel”’19
●

is used to improve the convergence of

the outgoing boundary flux. This procedure. referred to as the method of residual

expansion functions. essent idly assumes that. after a sufficient number of itera-

tions. the differences between succesive iterations (residuals) are composed of only

a limited number of eigenvectors (i.e., shape convergence). Alt bough these eigen-

vectors (and corresponding eigenvalues ) are unknown, the residuals themselves can

be used as i basis. and an expression for coefficients of these residuals which min-

imize the remaining error in the iteration process can be derived. -20 Tvpically. five

to eight iterations will usually provide enough residuals to allow the method of

residual expansion functions to extrapolate a solution which is within the S,y error

criteria. The accuracy of the method is checked by performing another set of S v

inner iterations. based on the extrapolated solution. and measuring the largest rel-

ative diference in the extrapolated boundary flux and the resulting boundary flux

as calculated from Eq, (4-11).

The method of residual expansion functions will. hol~.ever. occasionally fail

to project a more accurate solution, This occurs when use of the diffusion synthetic

accelerator, which accelerates convergence of the S,v inner iterations, results in rapid

convergence of the S,V inner iterations, thus not allowing higher order harmonics in

the boundary flux to die out. The presence of these harmonics violates the premises

upon which the residual expansion function method was derived, and so an accurate

extrapolation is not possible. The situation is easily remedied, however. either by

tightening the S,v error criteria, which forces more S,v inner iterations, or allowing

enough iterations on Eq, (4-11 ) for convergence to he met by the iteration process
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itself. This is economical in this situation, since the diffusion synthetic accelerator

itself enables the S.v iterations to be performed very efficiently.

Once the converged boundary fluxes have been calculated, subroutine D\VX-

SRC is called to sample the *T(P”=). .% described in Chapter 4. we do not evaluate

Eq. (4-12) directly. since storage limitations preclude the calculation oft he response

matrices F&g,, Instead. we determine the contribution of *~(P’X) to the Q~y””.

g’ > g. and the Q~;t’p+i). g’ s g. by sampling the incoming boundary flux into

the llonte Carlo region for group g and scoring particles when they cross back into

the S,w region in group g’. Particles that reenter the S.Y region while in group g

are separated into two classes - those that have entered a group g’ # g at some

point during their history. and those that have remained entirely within group g.

The first class of particles. which represent the tbird term cm the left-hand side of

Eq. (4-12). k scored in Q~”~(p+l). while the second class is used as a comparison to

the computed ~~””p ‘) as described in Chapter !3, Finally. S\lO\I is called once

again to update any contributions by the \lonte Carlo calcula

sources in the S,\ region.

ion to volumetric

If no response matrix calculation is required for group g. then LIXK omits

the iteration process of Eq. (4-11). Instead, if the problem geometry is entirely

represented by the S.v. then LINK merely calls SIXXER once to get the S ~ fluxes.

If the problem geometry is entirely in the \lonte Carlo region, then no calculations

(beyond SXTOJIC) are required in LINK at all,
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5.6 Discrete Ordinates Jlodifications

.\s pictured above. the principal requirements for implementation of the hy-

brid method are the addition of Monte Carlo routines, while the modifications nec-

essary to the discrete ordinates code itself are minimal. The primary medications

involved are to the logic of the Soy inner iterations, which are performed in SIX-

XER and other associated subroutines, to allow the inclusion of interior boundary

sources,

.4n S.y inner iteration entails sweeping through the mesh cells. from exterior

boundary to exterior boundary, for a given sweeping direction. \Vhen sweeping

from the \lonte Carlo region into the S.\ region. the S.y-calculated values for these

surfaces are repiaced with the ~~”’’p+] “r’ from Eq. (4 -11). SWeeps from the S.y

region into the \lonte Carlo region are performed normally. except that the con-

verged surface fluxes are used as the !l~(’+ 1”” in Eq. (4 -11 ). .4s implemented by

.Mcouffe,l” the vectorization of the sweeping algorithm is unaffected. so that the

efficiency of a standard S,v calculation is retained, The int roduct ion of these int e-

rior boundary sources does reflect a discontinuity in the solution of the transport

equation. however, which in turn affects the operation of the synthetic diffusion

accelerator previously mentioned, The solutioli to this problem will be disc’lssed in

Chapter 10.

Other necessary changes to the SN logic include modifying the calculations of

scattering and .Ission sources to exclude hlonte Carlo regions, and alteration of the

particle balance tables to include the hlonte Carlo totals. Il%ile somewhat detailed

changes are required, the only one which affects the logic of the S,y computation
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is the treatment of the fission source in DO CTER. .% previously stated. the S.Y

employs Chebyshev acceleration to improve convergence of the fission source. Since

the required information (i,e., the fission source per fine mesh cell) is not available

for the 310nte Carlo region, it is excluded from the acceleration procedure.

Finally. the \lonte Carlo region is currently excluded from the outer iteration

convergence checks which the S.y performs. That is.

S,y region implies convergence throughout the entire

w-eassume convergence in the

problem geometry. l~hile this

has been sufficient for the test problems examined so far. it is possible to imagine

problems where it may not hold (e.g.. a highly fissile material in the \lcmte Carlo

regiun, surrounded by a non-multiplying S.Y region).

remedied. if necessary, by adding a mnvmgence check

llonte C’arlo region.

However. this can easily be

on the fission scmrce in the

3.7 Samulinz Boundarv Fluxes and J“olumetric Sources

From Section 5,5 above, we see that the ~~’p”) must be sampled fm each

outer iteration p. Howf’~.w,a complete sampling of the V ~’”=) at each cmter itera-

tion would be rounter-product ive. .4s the outer iterations converge, the differences

between the ~~(p’=) and ~~n(p+”x) decrease, so that sam.)ling each cme from

scratch is a duplication of effort, Xlore irnpmtantly, the resulting statistical devia-

tions in the Qjut(F+l) will introduce fluctatir.ms into the S,v fluxes which hinder the

Chebyshev acceleration of the fission source and preclude convergence.



Instead. wesampleb*~(p’=) =Y~(p’%)–*~(p-l’X). Thus. as the outer

iterations con~-erge. the 4!VT(“=) tend toward zero. the number of histories per
●

sample can be reduced. and the statistical deviations of the Q~”’(’+ 1) are reduced.

Similarly. with SXTOMC. we sample the change in the volumetric source in the

\lonte Carlo region,

If the S.y operator were strictly linear, we would expect the b~~(p’=) to be

non-negative. Due to the use of negative flux fix-up in the S.y. however. this is not

the case. Ivhile it is generally advantageous to avoid tracking negative particles in

\lonte Carlo calculations. since they tend to increase the variance of the results.

we assume that. in this case. the magnitude of any negative residuals will be small

enough so that it will not adversely affect the hybrid results, Thus. \vhen an element

~ftv:lp. xl is negative, we assign negative weights to the particles used to sample

that state in subroutine DJVXSRC. Xegative particles are also used when sampling

the “.’olumetric source in the l[onte Carlo region during subroutine SSTO\[C whrn

the change in the source between outer iterations is negative,

Physically. we expect the ~~ut(p’r) as computed in LIXK to be non- negative.

However. since the sampled b*~’(p-l’=) may be negative, as stated above, we now

have no guarantee that the Q~ut(’) will remain non-negative, and thus the ~~u(’p’r)

may contain negative elements. Since negative interior boundary sources are not

acceptable to the S.Y, we set the ~~”’(p’r) to zero for elements that are negative

and adjust the remaining elements so as to conserve particles,

Similarly, the introduction of negative particles in the llontt= Carlo calcu-

lation results in the possibility of negative volumetric sources in the S,V region.
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To preclude this. after the Monte Carlo particles have been scored in subroutine

SMO\l. the zeroth moments of the resulting volumetric sources in the S,y region

are checked to ensure that they are non-negative. If a negative zeroth moment is

found for a given cell, all moments for that cell are set to zero. In this case, no

adjustment is made to the other cells to conserve particles.

\Yhile the appearance of negative particles in a calculation is worrisome,

experience to date has not shown a significant impact on the viability of the hybrid

method. Since negative residuals cannot possibly appear until the second outer

iteration. negative part icles are of no concern whatsoever in problems involving

only pure downscatter. E\’en with problems with fission and/or upscatter, and thus

multiple outer iterations. the magnitude of the residuals sampled in succeeding outer

iterations has remained small enough in co..lparison to the magnitude of the first

outer iteration so that the total outgoing boundary fluxes and volumetric sources

have remained positive when the problem is adequately sampled.
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CHAPTER 6.

HYBRID MONTE CARLO METHODS

.1s explained m Chapter 3. it was considered more advantageous to develop

our own llonte Carlo subroutines versus attempting to incorporate a more general-

purpose >Ionte Carlo code. Since we consider only a two-dimerisicmal geometry

with rectangular mesh ceils, the algorithms for describing geometries and tracking

particles are considerably simpler than those for a general three-dimensional geom-

etry. reducing the required coding and simplifying vectorization of the \lonte Carlo

portion of the code, .idditionally, the two-dimensional algorithms permit the use

of the standard TIVOD.AXT input file with very iew modifications. as opposed to

the more extensive input files usually required for three-dimensional >lonte Carlo

codes.

The hybrid \lonte Carlo method as implemented is almost entirely analog.

wit h few la “iante reduction techniques used. \Vhile the lack of variance reduction

techniques can lead to problems in obtaining accurate estimates in some situations.

the difficult ies actually encountered are minimized due to two reasons, Since the

Morte Carlo routines used in the hybrid method are vectorized. it is relatively

inexpensi\*e to run a large number of particles. \fore importantly, it is the usual

practice to designate areas where the Monte Carlo method would be expensive as
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regions where the S.V method is to be used. This. in fact, is the entire rationale

behind the hybrid method.

The remainder of this chapter describes the details of tracking particles across

mesh cells. the treatment of collisions (seat tering, capture, and fission), and the

sampling of sources. Chapter 7 describes the methods used in vectorizing the Monte

Carlo. while Chapter 8 describes how the Monte Carlo cross sections are formed.

Chapter 9 covers the implement at ion of error estimates with the hybrid method

and the variance reduction met hods used.

6.1 Tracking Part icles in Phase Space

Let r represent the spatial coordinates. Q the direction, and g the energy

group of a neutron which has just been emitted from a source or undergone a

collision. The coordinates r correspond to a location within a cell (i. j ) as shown at

Fig. 6-la for -Y- }“geometry. and Fig. 6-lb for R-Z, In order to track the particle

history. we must determine whether it has a collision within the cell or crosses its

boundaries, and the coordinates in phase space of those events.

We first determine the length of the flight path, From Chapter 1, the prob-

ability of a particle having an interaction in cfs about s is

(6-1)
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This represents the PDF which we wish to sample uniformly. Fcilowing the methods

outlined in Section 3.1, and realizing that sampling 1-< is equident to samplin&
●

~, the track length of the particle is determined by

= -ln(~)
s ~. (6-2)

-T,t]g

Sew. we determine if s is large enough to reach a cell boundary, and if so. which

one.

In .Y – 1- geometry. the spatial coordinates are r = r;+ y~. where the origin

is located at the lower left-hand corner of the problem geometry. The di .tt ional

coordinates are (reference Fig. 2-1 ) fl = per + r@Y+ ~e:. The appropriate bound-

aries are thus JB = X,+11? fOr p > 0. .rE = Z1-ljz f@r~ < ~. ~i3= y]+lp for v > 0

and ,~B= u~-ljz for q < 0. Let ~} = (YEI- v)/~ and m = (~~ – ~)/IJ’ th~II if

s is less than both s.y and s;” the part icle undergoes a collision in the cell (i. j ).

Otherwise. it crosses the appropriate r-edge boundary if s.l- is less than s},. and the

y-edge boundary if s}, !s less than s.y. with ~E defined as the distance to the closest

boundary (i.e., the minimum of s,y and S}),

Tracking particles in R - Z geometry is not as straightforward as in .S - }‘

geometry, since our coordinate system is now curvilinear, The spatial coordinates

are represented by r = r:+ z$, where the otigin ‘s located on the centerline of the

cylinder where it passes through the lower face. The direct ional coordinates are

(reference Fig. 2-2) O = per + qe: + fee. For a particle located in a cell (i, j )

as shown at Fig. 6-lb, the cell boundaries are r,+1J2 and :JA1J2, As in Cartesian

geometry. “the appropriate bou;dari& are ~B = ‘z)+~;2 for q > 0, SB = :J -i i2 fo; ”

q < 0, aud ‘E = r,+112 for p > 0. The case for p < 0 is not determined simply
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by the sign of the direction cosine, as can be seen by the cros~-sectionai view of a

cylind~ at Fig. 6–2. Instead, the cell boundary is determined by comparing the

angle 3 formed by the projection of Q on a cross section of the cylinder with the

““critical angle-’ ~. From Fig. 6-2, sin I.?= (/~. ad sins = ~t-IIz/r. Thus.

ii sin 3 > sin a, then the appropriate boundary “. rg = r,+ I /2. else. the boundary

iS rB =’l_l/?.

The distance to boundaries in the axial direction is determined by SA =

(:r3- =)/ q. The distance to the radial boundar} is determined from the Law of

Cosines as shown at Fig. 6-2. resulting in

(6–3,

If 3> a. then the only root of Eq. (6-3) resulting in a posi~ive >Rcorresponds to

the positive sign.

intersects the cell

For 3< a. there are two possibilities, since the fligh, path nmv

boundary twice. The first intersection occurs at the iesser value

of ~R,which corresponds to the minus sign in Eq. (6-3).

then determined as in the case of Cartesian coordinates.

collision within the cell.

The fate of the particle is

i,e.. boundary crossing or

6.2 T~ackin~ Particles .4cross Internal Boundaries

t~hen a particle has a track length greater than the distance to the cell

boundary. and thp~ bocundary is an intern~l boundary within the \Ionte Carlo re-. ● ,
gicm. then we must continue t racking the particle. This is accomplished b~”adjusting
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the track length determined by Eq. (6-2) to account for possible differences in ma-

terial composition by
v,
~T,lJgSt = $B +(9 -$B)~! (6-4)
~T,j:jfg

where the identity of the new cell (i’,j’ ) is (i + 1, j ) if the right-hand boundary

was crossed. (i - 1.j ) for the left-hand boundary, (i, j + 1) for the top boundary.

and (i. j -1 ) fox the bottom boundary. The particle history is then continued per

SW ion 6.1 above. using the new cell boundaries.

If the boundary crGssed represents an external boundary of the J[onte Carlo

region. then the particle must be scored in the appropriate boundary flux or response

mat rix element. First. we determine which side of the ;\lonte Carlo region has been

reached by examining the distance to cell boundaries computed above and the sign

of the appropriate direction cosine (e.g., in Cartesian coordinates, if s.y is less than

s}. and p is negative. then the left boundary of the \fonte Carlo region has been

crossed ). The sign of the remaining free direction cosine is used to determine which

SN quadrant the particle is to be placed into (e.g., with p negatit~e, q negative

corresponds to the ‘-down and in going” quadrant, q positive to the ‘“up and in

going” quadrant ), The specific quadrature direction the particle is assigned to is

determined by the methods described in Section 5.3.

If the particle has exited the left or right sides of the \lonte Carlo region. . .
in .Y – }“ geometry, then the vertical position at which it enters the S.V region is



determined by

Y’= y +~B~. (6-5)

For a top or bottom edge crossing, the horizontal position is found from

r’ =x+.$B~. (6-6)

The crossing position is then compared with the appropriate S.Yfine mesh cell edges

to determine which cell has been entered.

In R - Z geometry. the axial position of a left or right edge crossing is found

(6-7)

while the radiai position of a top or bottom edge crossing is

Also. since the direction cosines p and f change as a particle streams in curvilinear

geometry, the direction cosine along the radial direction must be recalculated prior

to the quadrature direction being scored. The updated direction cosine is

p’= [p(r+w?)+~’,> B]/;. (6-9)

where F = r’ for a top or bottom edge crossing. and rE for a left or right edge

crossing.

Regardless of whether the boundary crossed is external or internal, or if the
●

“event consists of a colli~on &ithin ~ cell, t hd tracklerigth ;f the particle (modified by “

the particle weight ) within the cell is scored. Since our tracking algorithm measures
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.

distances from the starting point of the particle. and thus a track may cross several

cells before terminating, we retain the distance to the last boundary crossed (s~ ) for

each particle. This distance is set to zero at the start of each particle. and updated

to SB after an internal boundary is crossed, JVith this information. the tracklength

in the last cell entered is ~B- s~ for a boundary crossing, and s - s~ for a collision,

6.4 Collision Events \Vithout Fission

\Vhen a particle undergoes a collision within a cell. we must determine its new

coordinates in phase space which result from the collision. \Ye make the standard

assumption that collision times are small enough so that the position of the colliding

particle is unchanged. while the new direction and energy of the scattered particle

are determined bv sampling from appropriate probability density functions..

In .Y - Y geometry. the collision position is found from

z’ =X+81 (6-10)

and

v’ =y-tsq, (6-11)

where the unprimed direction cosines refer to the pre-collision directional coordi-

nates of the particle, and the unprimed spatial coordinates to the starting location

of the particle. In R - Z geometry, the collision postion is

. . . .,.. . . . . . .

r’ = J(r+/Js)~+(<s)~ (6- 1?)
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and

z’ = : + S1l. (6 - 13)
.

Since neutron do not lose energy as they stream, the particle enters the collision in

energy group g, the energy group in which it was located when it started streaming.

The collsion process itself is described by the set of mult igroup. macroscopic

cross sect ions generated from the mult igrol Ip S.l- cross sections as described in

Chapter S. From Eq. (2-7). the zeroth moment group-to-group transfer cross section

from group g to group g’ for cell (i, j ) is defined as

I

+1
v-I)o. g-g’ = ~~ ~po S,),g–g’(po )F’o(po). (c - 14)

-1

From this definition. the probability of a neutron scattering from group g to group

g’ is then

P v
9-9 ( = -I)o, g-g ~ /(sn,g - Z.4,,), ) (6-15)

where S .A,,,g is the macroscopic absorption cross section. The Pg_g/ are then used

to form a cumulative distribution function, which is sampled to determine the group

g’ in which the scattered neutron emerges,

terial,

Xote that to conserve storage, cross sections are actually referenced by ma-

not cell identifier, since the number of materials in a problem is typically

much less than the number of mesh cells. Xrote also that whale a cell’s material may

consist of a number of different at omit element s/isot opm, the hybrid llont e Carlo

met hod uses the mixed S,v macroscopic cross sections,

● . . ..
6&e ;he energ~ group of ;he scatt&e~ neutron h;s been found. we mu’”:next

determine its direction, As described in Chapter 8, we generate 32 equally probable
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directional bins with respective widths Ape,, i = 1., .. ,32. from the group-to-group

‘(t ransfcr cross sect Ion Zij,~e~ p. ) of Eq. (2–6 ). The number 32 was chosen because,

historically, 18 it seems to accurately reproduce the angular cross sections wit bout

requiring large amounts of storage. Xote that ~. (i.e.. ~’ .0 ) is measured in the

laboratory frame of reference.

\Ve then compute the bin i the neutron is scattered into by drawing a randonl

number ~ and setting i = Int ( 1 + 32(). where Int is the integer function, The

scattered particle is assumed to be uniformly located in bin i. with the actual

scattering angle computed from

/0 = pol.~ + (i - 32C)AP0,. (6–16)

\vhere pol,~ denotes the angle corresponding to the left-hand edge of the Ith bin.

once the scattering angle PO has been determined. the direction cosines of

the scat tered particle may be calculated, assuming that the scattered neutrons are

uniformly distributed throughout the azimuthal scattering angle o. in Cartesian

coordinates. the new direction coordinates p’, q’, and f’ arele

and

.*O.

(6-17a)

(6 - lib)

{’={Po- j(l-#:)(1-t2)cosd. (6 - 17c)
... ●

●. . . .
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Instead of actually calculating the cosine and sine of the azimuthal scattering angle,

they are determined through rejection sampling, where, given random numbers <1

and (2 uniformly distributed on the interwd [-1, 1] with rejection criteria <f+(; s 1.

Cos~ = c1 / ~-g
(6-18)

sin 6 = C2/ J-.

In R - Z geometry. we first calculate post-collision direction cosines p’. ~’.

and <’ per Eqs. (6-1 i’) a.ld (6–18 ) above. Since the direction cosines vary with the

position of the particle. which is updated during the collision process, the radial

direction cosine corresponding to the revised particle position is

; = [,&J’(l’+p,) + <’<s]/ r’, (G- 1!3)

The axial direction cosine q’ is, of course, unchanged. Instead of directly calculating

the azimuthal direction cosine f, we first find the cosine and sine of the angle 3 (see

Fig. 6-2 ). which are reqllired for tracking in cylindrical

Cos3 = /-F m

and

1$’ethen calculate

geometry. from

(6- ~o~)

(6 - 20b)

~ = sin,3 ~-. (6-21)

● ✎✌ ✌✎ ✎✎
✎ ✎

Once the new energy group and directional coordin~tes” ~f the particle hav;
● .

been calculated, the updated spatial coordinates are examined to see if the particle
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is now located outside the group g’ Monte Carlo boundaries. If so. the fine mesh

cell the particle is located in is determin( ‘d and the particle is scored per Section 5.4.

In analog Monte Cario, the weight of a particle would remain a constant

v-hen undergoing a collision, with absorption being modeled through the cornplet e

elimination of a particle based on a sampling of the probability of suiviwd

c = -.~,t]~ I ~T,i,gl-~ (6–2?)

Instead. we choose to implement a standard variance reduction technique known as

““implicitcapture”’ or “absorption suppression””, where explicit absorption is replaced

by reducing the particle weight by the factor c.

If c << 1. or if the \lonte Carlo region is large and the particles undergo

many collisions before escaping, the use of implicit capture may res~’lt in very small

particle weights. Since the time required to track a particle is independent of its

weight. this results in the expenditure of large amounts of computational resources

on particles whose weights are too small to affect the calculation’s results. This

is remedied by imposing a weight cutoff known as -Russian Roulet ten”.18 Part icles

with a weight w below a user-input weight cutoff of W2are assigned a probability

of survival u’/wl, where W1is also a user-input number. The survi~al probability is

then sampled by drawing a random number ~ cm the interval [0,1]. If ( > uI/ wl, the

particle is eliminated, otherwise, it is assigned the weight Utl.

particle conservation on an individual basis, on the average

. ;enough” hist orit% are r~m. . ●

JVhile this violates

it will still hold if

.



As discussed in Chapter 4, explicit outscatter is replaced with a reduction

in particle weight during the response matrix calculation. This is implemented by

replacing the value of c normally used with

C~&( = 2~jQg_g / ~T,i,g*

where XIJo,g_~ is as defined in Eq. (6-14), All particles remain

a collision ~tiring the response matrix calculation for B99,

(6 - 23)

within group g after

1.5 Collision Events with Fis~ion

Typically, Ilonte Carlo codes model the fission process by sampling the prob-

ability that a collision results in a fission. and. if one occurs. sampling appropriate

distribution functions to determine the number of fission neutrons emitted and their

energies. All of the resulting particles are then tracked separately,

\Yith the hybrid method, wc chose to model fission in a manner analogous to

implcit capture. which we denote by “implicit fission”, That is,

fission event, the number of fission neutrons emitted, and their

are modeled by adjustments in particle weight a:ld outscatter

the probability of a

energy distribution

probabilities of the

colliding particle, without the creation of additional particles. This is done fo: two

reasons:

The cross section” data from the ,$N as tiotained by the Alonte Carlo is giv~ ●

in terms of the quantity v~~,ljg. Thus, tables of v (the number of neutrons

emitted per fission ) are not readily available for sampling,
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2. Generation of separate fission particles would entail increased storage re-

quirements for vectorization, since excess fission particles must be stored

until they can be included in the appropriate event stack (see Chapter 7).

In implicit fission, the particle weight modifier becomes

c’ = C + V~F,n]g/~T,ilg,

and, for response matrix calculations.

(6 - 24)

where 1g is as defined at in Eq. (2-4). Note that c’, and even c~.ll. may now

be greater than one. The probability of ‘“scattering” to group g’ from group g

[Eq, (6-15)] becomes

(6-26)

.41s0. since we assume fission neutrons are emitted isotropic ally, we revise

the zeroth moment of the angular scattering cross section to include the fission

neutrons, i.e.,

VI
‘lj O,g~gt = ~ljo,g-yt + vZF,:~g\g#. (6 - 27)

The revised angular scattering cross section is used in calculating the angular bins

APO, (see Chapter 8).

., ,.
Since”fission neutrons &e n&winkli~tihguishablefrom normally sc’htterdd neu-

trons, but we wish to include separate categories for the two when forming integral
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balance tables, v,e calculate the probability that a ‘-scattered’” neutron is actually

a fission neutron. This probability is
●

PF.V,g-g’ = ~,
lJ~F,ljgkg#

W]o,g-g’ + ‘~F,:Jg~g’ “

This probability is used to divide the weight w of a particle between the fission

and inscatter entries of the balance table, where the fission weight entering a group

g’ after a collision in group g is u’PFN,g-g’, and the inscatter weight is u’(1 -

pF.v,g-g’ ).

The impiicit fission method is disadvantageous in regions where C’(or C~.l~)

is greater than one, since if a part i.le undergoes multiple collisions within such a

region, than its weight can grow wit bout limit. The creation of such ‘“hea~’y”par

titles increases the variance of a problem. as wiil be seen in some of the benchmark

problems of Chapter 11. Thus. consideration should be given towards reverting to

a more traditional treatment of fission neutrons in the future. since none of the

reasons listed above for using implicit fission pose insurmountable barriers to an

analog t rest ment of fission.

1.6 Samdimz the Fixed Source

.% explained in Chapter 4, we sample the fixed source in order to determine

the S~ut. We assume at present that the fixed source is entirely locate,l within the

\lonte Carlo region, although nothing in the hybrid method inherently precludes
. b . ,.

a fixed source split between the Nlonte Carlo and S,v regions, or even one entirely

located within the S,v region. We also assume a normalization of the fixed source
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intensity to one neutron per second. Provisions are currently included wit hiu the

hybrid met hod for four types of fixed sources:

1. An isotropic

2. An isotropic

3. .+n isotropic

distributed source,

point source,

surface flux source, and

4. .Amonodirectional beam source (.Y - }- geometry only).

In .Y – }- geometry, the isotropic distributed scurce is implemented with

input parameters rl. X2. yl. and y2. which refer to the left. right. bottom. and

top limits of the distributed source, respectively. To determine the starting spatial

coordinates (r. y) of a particle. we define Ar = rz – 11 and Au = 32 - yl, then

draw random numixws ( to get r = xl + (Ar and y = yl + ~Jy. The initial coarse

mesh cell is found b;’ comparing the starting spatial position with arrays conta~.ning

the S,%’coarse mesh cei! edge positions. Since an isotropic source is uniform in the

azimuthal angle @and the sine of the polar angle 8, and dq = sin 6 dtl (reference

Fig. 2-1 ), the initial direction cosines of the particle are found from q = ‘2<-1 and

@= r~, with p = ~w cos & and { = ~-i.

In 1? - Z geometry, the input

the inner, outer, bottom, and top

parameters are rl, r2, :1, and :2, whic,l denote

limits of the distributed source, respectively,

The initial axial coordinate is computed as above, with A: = C2- ZI, and z =
.*

ZI + (;Az. In cylindrical geo;tery, since we assume”the source is ~istributed ;venly

throughout the volume of the cylinder within the limits of the input parameters.
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the distribution along the radial direction is uniform in r2, not r. In terms of the

method described at Section 3.1, our probabilityy density function (PDF) is related

to a uniform distribution by

d<’ =
2r’dri

(rj – r;)
(6-29)

Integrating d(’ from O to <, and dr’ from rl to r, and solving for r, we obtain

The direct ion cosines p and q are determined as in .Y - }- geometry above. \vhile

Eqs. (6-20) and (6-21) are used to determine ( and sin J (required for tracking in

cylindrical geometry as discussed in Section 6.1).

For all source options and geometries, the initial energy group of a particle is

determined from a user-input array cent aining the source spect rum S~. The discrete

PDF describing the source spectrum is thus

Pg=sg/ fsg),

9
#--1

(6-31)

This PDF is used to form a cumulative distribution function, which in turn is

uniformly sampled to obtain the initial energy group of a particle.

The point source options are handled similarly to the

options, except that the starting spatial position, and thus the

cell, are fixed, and the only input parameters required are r ~ (rl

distributed source

initial coarse mesh

) and yl (:l). Note

that for R - Z geometry, the “point source” option actually represents a circular

ring when rl >0.
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The isotropic surface flux option in -Y- Y geometry consists of an isotropic

flux impinging on the left surface of the Monte Carlo region with top and bottom

boundaries y2 and VI, respectively. Thus, the z coordinate is fixed at zero, while

the y coordinate is determined as in the case of a distributed source. The initial

directional coordinates are determined by sampling the incoming current which,

since the flux is l’-otropic, is proportional to p. Thus. the PDF is related to the

uniform distribution by

?p’dp’ = d<’. (6-32)

Integrating p’ over the limits O to p. since it is an incoming current from the

left, and solving for p, we obtain p = K. Since the surface flux is isotropic. the

current is azimuthally symmetric a“bout the p, and the remaining direction cosines

are determined by q = ~coso and<= ~-, where o. 2T<.

In R - Z geometry. the isotropic surface flux option represents an isotropic

flux impinging on the outer face of the cylinder, with top and bottom boundaries

:2 and :1. Thus, the option is entirely analogous to the .Y - }“ surface flux option.

except that p = -fi, The sine of the angle 3 required for tracking in R - Z

geometry is computed from d = - arctan(f/p ).

Finally, the monodirectional beam

initial spatial coordinates z 1 and yl, with

source in -Y - Y geometry consists of

fixed directional coor~~nates q. and ~.,

J---
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1.7 %.rmdinx the Response 31atrix

From Chapter 4, we sample the group-within-group response matrix &,

where the element rij represents the angular flux leaving the Monte Carlo region in

S}: state i due to a unit incident angular flux in S.v state j, The sampling is per-

formed by assigning +VJhistories to the jth column of&, which are ther, followed

through the Monte Carlo region to determine the it h state (row) in which they reen-

ter the S.Wregion. -Asdescribed in Section 6,4 above. outscatter is not allowed. so

each history can terminate only by physically crossing a Ilonte Carlo/ S,v interface

or an outer boundary surface. (If a weight cutoff is in effect, then histories may also

be terminated through particle elimination. ) Thus. each particle contributes to its

respective column’s score. ensuring maximum efficiency.

Currently, the same value of .\-). which we denote by .YR.\f. is used for

each column, regardless of its actual importance. The efficiency of the response

mat rix calculation could be increased by performing a single S.v iteration. using the

boundary fluxes from the sampling ~fthe fixed source, to determine the approximatee

incoming boundary fluxes from the S,V into the Monte Car. , region. The incoming

angular boundary fluxes would then be used as a weight to determine the relative

size of the iVJ. Alternatively, the entire problem could first be solved by a low order

S,Ycalculation, with the appropriate cell edge fluxes saved to be used as a weighting

function. The latter approach would be preferable in problems with large fission

or upscatter cross sections, since it would allow the use of outer iterations. The

determination of the relative merits of the two approaches, or of other methods, is

left as a future problem.
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In sampling the reponse matrix, each incoming S,v state (column) corre-

sponds to the edge of a unique fine mesh cell, located along the S,v/ 310nte \C’ario

interface. Since the Monte Carlo region is rectangular, there are a maximum of four

different locations along the interface for a given state - top, bottom, left, or right.

The actual number may be less than four, since a boundary of the Monte Carlo

region may be located along a vacuum or reflective (1? - Z geometry) boundary

condition. in which case the corresponding columns of the 1?sponse matrix are not

needed.

In .Y -1- geometry, if a state is located along

particles used to sample that state have their initial y

the top boundary. then the

coordinate fixed at UT. .%-

suming that the state corresponds to the ith fine mesh cell. with width Jr, and

left edge z ~,,. the initial .r coordinate is found from r = XL,, + (Ax,, Since the

initial fine mesh cell location is already known, the starting

ily determined from previously calculated S.v arrays. For

coarse mesh cell is eas-

cells along the bottom

interface, the identical procedure is used. except that y is fixed at ~B. Similarly, for

the left and right edges. z is fixed at .r~ and r R, respectively, while y is found from

U= !/B,, +c~!h.

In R - Z geometry, the left and right edges are sampled as above, with r

fixed at r~ or rR, and z found from z = ZB,, + (A:,. Along the top and bottom

edges, however, the distribution is uniform in r2, not r. as in the case of the isotropic

distributed source in the preceding section. Th~s, the initial radial coordinate is



100

.+longeach edge, there metwodifferent quadrants of directions. Forexample.

the directian cosine q is always negative ( ‘bdowngoing”) along the top edge. while.

- the direction cosine p may be negative ( “incoming”’) or positive ( “outgoing”). The

allowable combinations are shown at Table 6.1 below. Each quadrant consists of

a set of S.Y directions fln as shown at Fig. 5-3, with an associated solid angle

Af2n as described in Section 5.3. For a given state j with associated direction !2J.

the incoming particles are assumed to be uniformly distributed over the surface of

the solid angle Afll. Thus, if ~E is the cosine of the polar angle 6B associated

with the ‘-bottom” edge of the flj bin, then the direction cosine q is determined

byq= ~E + ( ~q. where Aq is as defined in Section 5.3. The sign of q is found

from Table 6-1. The azimuthal angle is determined in a similar manner, with Ao

representing the bin width. and o~ the bin’s .-left’”edge. The azimuthal angle of

the incoming particle is then found from o = o~ + ( Jo. where the r~sulting value

of o is in the range [0. n/2]. Depending upon the required sign of p from Table 6–1,

the constant R/2 is then added, and the direction cosines p and f are calculated as

described above.

Table 6-1

Allowable Directional Quadrants

Edge Q
Top 1 :1 -1
Top 2 +1 -1
Right 1 -1 -1
Right 2 -1 +1
Bottom 1 -1 +1
Bottom 2 +1 +1
Left 1 +1 -1
Left 2 +1 +1
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1.8 %rndirm the Incoming Boundary Fluxes

As described in sections 5.5 and 5.7, subroutine DIVXSRC samples the

residual incoming boundary fluxes 6??~(p’=) to determine their contribution to the

Out(p+l)Q,, .The mechanics for sampling the incoming boundary fluxes are identical

to those of the response matrix described above, with the exceptions that particles

are allowed to scatter to a different group upon collision (reference Section 6.4). and

the number of histories per state (.VJ) is weighted to reflect the residual number of

particles entering the Monte Carlo region from the S4Vregion in state j.

To begin. we calculate the total residual leakage Lp into the Monte Carlo

region for outer iteration p from

(6-33)

where A~J is the solid angle associated with state j, A.4J the surface area, am

Jg k the total number of states in the group g ~lonte Carlo/S.v interface. The

absolute value sign is used shce tnere is no guarantee that the residuals will be

non-negative. For the first outer iteration (p

be run for group g (,V~) is determined from

= 1), the total number of histories to

N; = Jg X .~RM, (6-34)

so that approximately the same amount of effort is used in sampling the incoming

boundary fluxes as was

residuals, the decreasing

used in sampling the response matrix. For subsequent

importance of the residuals is reflected by using

(6 - 35)
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To prevent arbitrary increases in JV~ when L; > Lg-l, as can sometimes occur

for large p, the maximum allowable value of L~/L~-i is fixed at one. The actual

number of histories run for an individual state j is

v=1) ‘n(p’m)!Ail] AA, I L:.N: Iwg,, (6 - 36)

TO correct for roundoff error in .Y,, since only an integral number of histories can

be run, and to incorporate the possibility of negative residuals, the weight assigned

to the

where

state j particles is

tn(p,*~) ,Vj / Int(-V~)~
Wj = Sgn(6@g,J

Sgn is the sign function.

(6–37)

1.9 Samdirm the Volumetric Sources

From Section 5.4. subre!~tine SNTOMC determines the contribution of the

group g volumetric sources located in the Monte Carlo region to the Q~~t. Since the

S,v stores only the moments of the volumetric source fi)(~~ and. from Section ~.7.

we wish to sample the residual volumetric source, subroutine SXTO\IC begins by

computing the residual moments for outer iteration p from

(6 - 38)

where ij denotes the fine mesh cell (i, j ), and /m the /th, rnth spherical harmonic

(reference Section 2.3). The total residual volumetric source in the Monte Carlo

region is then determined from

(6 - 39)
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where AVi,j is the volume of cell (i, j ), and the sum is over all fine mesh cells located

within the group g Monte Carlo region. The absolute value signs are used since the

~p;oog may be negative. Since we wish to assign approximately equal weight to the

sampling of the fixed source w.J ~he sampling of the volumetric sources, the total

number of histories to be run for the group g volumetric source is calculated from

N; = Int(.V x T;), (6-40)

where .V is the number of histories used in sampling the fixed source.

To actually sample the volumetric source in cell (i, j ), we first reconstruct

the residual angular flux 64,, ~g from

L +1

‘%., =x x ‘~mn’%m9*
1=0 m=O

(6-41)

where I;rn. represents the Ith, rnt h spherical harmonic evaluated at the discrete

direction On.

Once the residual angular flux has been reconstructed,

ries assigned to it is found from

N;ng = N; l~df,~gl AK] Afln / T~.

the number of histo-

(6-42)

.4s in the outscatter calculation, since only an integral number oi histories may be

run, and 6@~Jng

of the spherical

may be negative due to not only the use of residuals, but the use

harmonic representation, the weight assigned is

(6-43)



.

104

The sampling of the angular phase space coordinates is identical to that of the

response mat rix, with the addlt ion that since we have a volumetric source there

are now a total of four possible directional quadrants per cell. The spatial phase

space coordinates are also sampled in a similar manner, except that both spatial

coordinates are sampled for each history, of course.
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CKAPTER 7.

VECTORIZATION OF TEE HYBRID MONTE CARLO METHOD

Ilonte Carlo is inherently a sequential process. where the natural flow of

computation is to follow a single history until it terminates. and only then initiate

the next history. \Vhile this method of processing histories is perfectly acceptable for

machines with sequential processors. it fails to fully use the capabilities of machines

with vector processors. Essentially. a vector processor is capable of performing

the same operation. or series of operations, on numerous sets of data (64 on Cray

machines ) at the same time. Ideally. then (neglecting overhead). a vector machine

could process 64 particles in the same amount of time it would take a sequential

machine to process just one. The catch is the requirement that the vector processor

perform an identical set of operat ions on a given set of dat a. l~hile it is fairly easy

to adapt the logic of S.v codes to form arrays that can be processed vectorially.

the numerous possible logical pat hs available to individual \lont e Carlo particles

(e.g.. collision, internal boundary crossing. etc. ) inhibit t~.~vectorization of \Ionte

Carlo codes. Thus, the key to vectorizing Jlonte Carlo codes is to somehow group

histories into sets which require identical processing actions.

Since Monte Carlo calculations are typically much more CPV-intensive than

S.v calculations. it is crucial to minimize the amount of time spent in tracking

part lcles wherever possible. This requirement also applies equally as well to the
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hybrid method. where the time spent in the \lonte Ca.rio portion of the code usually

far outweighs the time spent in the S.Wportion of the code. Thus, to maximize the
●

etliciency of the hybrid method. it is desirable to vectorize the hybrid \lonte Carlo

met hod.

7.1 The Event-B ased Vectorization Jlethod

The met hod we

involves the formation

have chosen to vectorize the hybrid \lonte Carlo method

of event-based stacks,2* ’23 where each stack consists of a

group of particles undergoing an identical event. such as a collision. To maximize

efficiency. since a \-ector processor requires roughly the same time to process a stack

cent aining one particle as one cent aining sixty-four, a stack is only processed. if pos-

sible. when it is full. .4fter a stack has been processed. the particles are distributed

to other stacks for further processing. if required. >-ote that ~“e do not physically

transfer a partic!e. of

and other information

boundary. As soon as

in turn redistributed.

course. but rather its attributes. such as phase coordinates.

required for stack processing. such as the distance to the next

another stack fills up. it to is processed. and its particles are

Because a particle can undergo numerous events before its history is ter-

minated, and these events have no set sequence. the event stacks necessarily have

multiple connections to one arm” ,er. That is, a stack can typically receive particles

from more than one other stack. and can, in turn. transfer particles to multiple

stacks. Thus, more than one stack may fill up at the ‘-same’”time, and, as a result
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there may be an attempt to transfer more particles to a given stack than it has

sp~ .e available. ‘

To solve these problems, a dynamic stack control system with individual

stack reservoirs is used: For each type of Monte Carlo calculation in the hybrid

method. there is a specific driver subroutine which controls the overall movement

of particles into and within the system. .4 driver subroutine begins by

sou;ce particles into the system. which are then sorted according tc

of Section 6.1 and placed into the appropriate event stack, .% an

int reducing

the cri’.rria

event stack

fills up with these source particles. its associated subroutine assumes temporary

cent rol. processing its stack and realistribut ing its particles as required, If the

redistribution of particles results in additional stacks filling up. control is passed

down to their associated subroutines. in a prioritized order, for their execution. If

necessary. these subroutines can also pass cent rol down to yet another subroutine(s).

if their execution results in additional s, ks fi!ling up. .% soon as a subroutine

has finished execution.

to, it in turn releases

including the execution of any subroutine .;assed control

cent rol ~, ck to the subroutine which originally passed it

cent rol. Once control has been returned all the way back to the driver subrout inc.

it introduces more particles into the system. either from the sotlrce or an individual

stack reservoir.

Individual stack reservoirs are required since there exists the possibility that

a subroutine may need to transfer particles to a stack in which there is no more

room, In this case, the excess particles are temporarily placed in a holding stack.

from which they will be transferred to their original dest inat ion when space is

available. The term “individual” stack reservoir is used since, unlike most other
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vectorized Monte Carlo codes. 21’23 there is no single master reservoir into which

all excess particles are placed. Rather. the stacks where lo~ams may occur have

an additional stack(s) to act as a reservoir for excess particles. Individual. stack

reservoirs are felt to be more efficient than a single master reservoir, since particles

in an individual stack reservoir have their destination and all necessary information

already available. whereas particles in a master reservoir must be resorted. Howe’:er.

the use of individual stack reservoirs does present difficulties in problems when

part icles are created through fission. since a master reservoir is easily enlarged to

hold the additional particles. while the creation of additional reservoirs is not as

straight forward. \Vhile the use of implicit fission (reference Section 6.5) renders the

problem moot. the individual stack reservoirs should probably be replaced with a

master reservoir if analog fission is used.

.% previously stated. a stack contains all of the particle attributes necessary

for the execution of its associated subrout inc. lVhen a particle is transferred from

one stack to another. these attributes must he moved from their location in the

controlling stack to locations in the receiving stack. Since a single history will typi-

cally undergo several stack transfers, the overhead involved in transferring particles

can easily form a subst ant ial port ion of the computational time. Two actions have

been taken to minimize this overhead.

First, a set of Cray .4ssembly Language (C.4L ) utility routines are used to

transfer particle attributes, 21’23 CAL masking routines are first used to encode

pa;ticle destination words for each stack, where a bit value of one corresponds to a

particle to be transferred. Xext, the C.4L routine JIOVXTOB is used to actually
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into open slots in the destination stack. A parti-

vectorially, while each particle itself is transferred

sequentially. .4s a particle is moved, MOVXTOB resets the appropriate bit in the

particle destination word to zero, thus maintaining a record of which particles have

been transferred. This is important in the event the destination stack fills up. and

particle transference must be suspended while it is executed,

Second. the number of attributes that need to be transferred are kept to a

minimum. since not all stacks require all attributes. Because the utility routine

MOJ”XTOB requires a transferred particles attributes to be arranged sequentially

in memory. the attribute lists are structured so that the minimum number of at-

tributes required to meet the needs of the target subroutine. or its chain of pos-

sible subsequent target subroutines. are act ually moved, within the limits of the

sequent ial memory requirement of MO1-XTOB. Furthermore. some attributes are

calculated only as needed. and not saved for transferrance, if the time required for

their computation is minimal,

The vectorization scheme employed in the hybrid method is shown at Fig. 7-

1. The names in the boxes refer to the vecto-ized Monte Carlo subroutines. while

the associated event stack a subroutine executes is listed below. The stacks in

dashed boxes without subroutines are individual stack reservoirs. The lines and

arrows represent possible particle transfer paths between the subroutines, whi!e the

numbers adjacent to the lines refer to the number of particle attributes transferred

between stacks. lVhere there are two numbers, the first refers to -Y - Y geometry,

while the second. in parenthesis, is for R - Z geometry. Xote that there are eight

event stacks. with three individual stack reservoirs (Stack i’ is not currently used).
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The number of attributes required to be transferred between stacks ranges from 9

to 20. The stack attributes are listed at Table 7-1 below, where the symbols are as

defined at in Chapter 6, with the exception that xM, U,W.r,tf, and ZMrefer to the

appropriate Monte Carlo region boundary for a given direction and energy ~ioup.

The attributes CONST, XCOSB, SIX13, and YSIX are used only for cylindrical

geometry calculations.

Table 7-1

Stack .\ttributes

Same Symbol so S1 s? S3 S4 !% S6 Sll
COXST r2(cos23 -1) ● c ● ● ●

XCOSB r cos 3 ● ● ● ● ●

SIS’B sin 3 ● ● ● ● ●

YSIX ~1 -72 ● ● ● ● ●

x z (r) ● ● ● ● ● ● ● ●

Y’ y(:) ● ● ● ● ● ● ● ●

u P ● ● ● ● ● ● ● ●

ET.A ● ● ● ● ● ● s ●

TSI -: ● ● ● ● ● ● ● ●

;VT u’ ● ● ● ● ● ● ● ●

s $ ● ● ● ● ● ● ● ●

IR (i. j) ● ● ● ● ● ● ● ●

IG* 9 ● ● ● ● o ● 4 ●

SL 5L ● ● ● ● ● ● o
SBX s.~ ($R) ● ● ● ● ● ●

SBY sy (s2) ● ● ● ● ● ●

XMAX Z&f(~~) ● ● ● ● ●

YMAX vhf (%) ● ● ● 8

BOL3DX ZEJ(r~) ● ● ● ●

BOUNDY t4B (:B) ● ● ● ●

* For resp~mse mat rix calculations, IG cent ains the part icle’s start ing column

The vectorization scheme begins with the determination of the starting coordinates

in phase space for 64 particles located in Stack O, which is performed by subroutine
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Figure 7-1 The Hybrid Monte Cmlo Vectorization Scheme



SRCGET for fixed source Yfonte Carlo calculations (Section 6.6). and RMGET

for all others (Sections 6.7 through 6.9). The remaining attributes in Stack Oare
*
then calculated by a call to subroutine CALCO, which determines the path length

s and performs the distance to boundary calculations described in Section 6.1.

Once all necessary attributes have been determined, the particles are transferred

to Stack 1. and ;ileir destination (i.e.,

subroutine TRCK as also described in

Carlo region are transferred to XSCORE

(reference Section 6.3). those crossing an

their next event stack ) is determined by

Section 6.1. Part icles exiting the lfonte

(Stack 4) or YSCORE (Stack 5) for scoring

internal Jfonte Carlo boundary are sent to

XRTV(Stack 6) or YRIV (Stack 3) (reference Section 6.2). while those undergoing

a collision are sent to subroutine COLL (Stack 2) (reference Sections 6.4 and 6.5).

For response matrix calculations. subroutine COLL is replaced with subroutine

R\f COLL. which uses the modified cross sections required for group-wit bin-group

only scattering.

If a stack or stacks fill up during the transfer process from TRCK, the particle

transferrance process is suspended while the target stack is executed, For Stacks 4

and 5 this presents no problem, since a part icle”s history is terminated when it leaves

the Monte Carlo region. Execution of Stacks 2, 3. and 6 is not as straightforward,

however, since they attempt to feed back into Stack 1, which may still contain

particles. This conflict is resolved by having the target stack fill the a~ailable slots

in Stack 1, thus partially emptying the target stack and enabling the transferrance

process from TRCK to resume. As more slots in Stack 1 open up, the remaining

particles in the target stack are transferred into them. The process is very similar

to juggling, where, instead of balls, we are using particles.



113

The juggling process breaks down, however, when two. or even all three, of

Stacks 2.3. or 6 fill up and attempt to feed back into Stack 1 simultaneously. To

resolve this conflict, priority is given to one of the stacks, which places a lock on

Stack 1, forcing the remaining stacks to transfer their particles to the individual

particle reservoir. Stack 3 (YRW) is assigned the highest priority, followed by

Stack 6 (XRW). and then Stack 2 (COLL). This scheme is used since less memory

is required to store the particle attributes of Stack 2. Because of the above priority

scheme and control structure. one individual stack reservoir is sufficient for XRIV

and YRIY. while two are required for COLL.

Subroutine COLL generates new phase space coordinates and weights for

ail scattered particles. and performs the “Russian Roulette’” weight cutoff process

described in Section 6.4. COLL then checks to see if the new phase space coordinates

place a particle outside the \lonte Carlo region. If so. it is tagged for transfer to

Stack 11. \Vhen (and if) subroutine COLL has filled up Stack 11. it passes control to

subroutine IICTOSX. which scores the volumetric source in the S.Vregion resulting

from part icles scattering out of the \fonte Carlo region (reference Section 5.4).

Subroutine \lCTOSX returns control to COLL once it finishes execution.

If there are slots available for COLL to transfer its remaining particles to

Stack 1, it does so, and then calls subroutine CALC (identica! to subroutine CALCO)

to calculate the remaining attributes required by subroutine TRCK. If Stack 1 is

already being used by another subroutine, COLL instead transfers its particles to

an individual stack reservoir = described above. Control is then relinquished to the

subroutine which called COLL.
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When subroutines XR}V or YRVVare executed and transfer their contents

back into Stack 1, Stack 1 should ccmtain 64 particles, since particles are not lost

(hopefully) inanintemal boundary crossing. This is not thecase with subroutine

COLL, where p=ticle histories may beterrninated through eithera weight cutoff

or by scattering into the S,v region. To ensure that only full stacks are executed,

when possible. the driver routine transfers enough particles from Stack O to fill up

Stack 1. If there are not enough particles remaining in Stack O to fill up Stack 1.

the driver routine introduces another set of 64 particles into Stack O. Other than

this “topping off” of Stack 1. the driver routine only releases source particles into

the system when all event stacks contain less than 64 particles, and all individual

reservoir stacks have been emptied. This ensures that the capacity of the system

will not be exceeded.

Once all the source particles have been exhausted. the driver routine proceeds

to ‘-flush out”’ the collision and internal boundary crossing stacks, The stack with

the largest number of particles is executed first, then the next largest. etc.. until all

I ~xticles have been forced into a scoring stack. Note that the collision and internal

boundary crossing stacks may have to be executed more than once apiece, since a

particle can undergo more than one collision or boundary collision before scoring.

The driver routine then concludes by cleani.ig up the scoring stacks, which, since

they do not feed particles back into the vectorization scheme. need only be executed

once apiece.
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7.2 Comparison of Sequential and Vectorized Code Execution Times

Ideally. the vectorization of a code would result in a 64-fold increase in speed,

since we can track 64 particles in the time it previously took to track just one. How-

ever. not all portions of a code are vectorizable. and vectorization itself is subject to

a considerable amount of overhead (e.g.. the movement of particles between stacks).

Thus. a 64-fold increase in speed is not achievable in practice.

To measure the actual increase in speed. we compare two versions oft he hy-

brid Monte Carlo/S,y code which are identical. except that one has had its \Ionte

Carlo tracking routines vectorized. while the other retains sequential methods. lVe

choose four represent at ive sample problems for comparison. since the increases in

speed will vary from problem to problem, .411comparisons are performed on \Ia-

chine 6, a Cray Y\lP. at Los .41amos. and all times are measured in CPU seconds.

The results obtained with the sequential and vectorized versions agree within sta-

tistical uncertainties.

The first problem consists of a one group. homogeneous 11 by 11 cm block

in .Y–}- geometry. where the Monte Carlo region (including boundary l,ayers) runs

che entire width of the block between y = 4 and y = 7 cm, The fixed source consists

of an isotropic distributed source with 1 cm dimensions at the center of the block,

The (fictitous) cross sections are defined so thz~ ST = 1 cm. and Y,s = .95 cm with

isotropic scattering. The CPU times required to sample the fixed source (subroutine

SRCMC ) and tht .esponse matrix (subroutine R\l) are shown at Table 7-2 for both

the sequent ial and vectorized versions of the code, along with relative increase in

speed, The identical number of histories were used in both versions (approximately



455.000 for the fixed source. and 1.3 million

source and response matrix calculations show
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for the response matrix ). Both the

approximately a factor of four and a

half increase in speed with the vectorized version.

Table 7-2

Sequential vs. l~ector Comparison.
Problem # 1

Type SRC’MC RM
SEQ 57.;3 sec 114.7 Sec
VEC 12.55 Sec 24.16 sec

SEQ/l-EC 4.6 4.7

The second sample problem is a three group. !-ioxnogeneous 10 by 21 CIXI

block in -Y - }- geometry with isotropic scattering. where the \lonte Carlo region

(including boundary layers) runs the width of the block between y = 9 and y = 12

cm. The boundaries of the Monte Carlo region are group-independent. since S r = 1

cm for all three groups. Downscattering only is allowed. with Ss,l _2 = Ss, 1_, =

.025 cm, ZS,Z-3 = .05 cm, and Xs,~-~ = .95 cm. There is a small amount of

absorption present in the tbird group. with X,4,3 = .05 cm, The fixed source

consists of an isotropic distributed source located along the width of the block

between y = 10 and y = 11 cm. .Approximately 710,000 histories were used to

sample the fixed source, and 160.000 for each response matrix.

A comparison of the source and response matrix calculation times is shown

below at Table 7-3. lVhile the response matrices again show about a factor of four

and a half increase in speed with the vectorized version, the source calculation’s in-

crease is ‘-only” a factor of four. This reduction in efficiency is due to the presence of
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two loops in subroutine COLL which could not be vectorized for multigroup prob-

lems. These two loops, of which one determines a scattered particle’s new group,

and the other the group a particle is to be scored within for the integral balance

tables, require multiple passes for multigroup problems. Since the response matrix

calculations do not :’se subroutine COLL, but rather subroutine RMCOLL. which

requires group- witbin-group scat tering only (reference Section 6.4), they are not

subject to this fixed overhead and subsequent reduction in efficiency for multigroup

problems. Xote also that since the size of the Monte Carlo region is identical for

each group. as are the response matrix cross sections. the calculation times are also

aimost identical betwen groups.

Table 7-3

Sequential vs. T-ector Comparison.
Problem # 2

Type Sl?c\lc Rlll R\12 R\f3
SEQ 77.35 sec 13.91 sec 13.91 sec 13.96 sec
VEC 19.23 sec 3.05 sec 3.05 sec 3.05 sec
SEQ/l-EC 4.0 4.6 4.6 4.6

The third sample problem is a one group, homogeneous cylinder with a radius

and height of 11 cm, and a isotropic distributed source located between r = ,5 to 6

cm, z = 5 to 6 cm. The Monte Carlo region consists of the area from J = 4 cm to

z = 7 cm. Linearly anisotropic scattering is used, with XT = 1 cm and 25 = .95

cm. .4pproximately 85,000 histories were used to sample the source, and 190,000

for the response matrix. The respective computation times for the sequential and

vectorized codes are shown below at Table 7-4. For R - Z geometry, the increase

in speed with the vect orized version is between a factor of five and five and a half.

This increase is greater than that for .Y - Y geometry. since more calculations are
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tracking a particle in cylindrical geometry. and thus more benefit is

vectorization.

Table 7-4

Sequential vs. Vector Comparison.
Problem # 3

Type SRCMC RM
SEQ 12.5 sec ~4.8 sec

I-EC 2.29 se~ ~.~~ s@

SEQ/l-EC 5.5 5.1L d

The final sample problem is a two group, i~etrogeneous cylinder with a radius

of”10cm and a height of 25 cm. The designated >lonte Carlo region is composed of a

strong absorper with cross sections ST = .1 cm. Ss.l_l = .005 cm. S.S.1-2 = .005

cm. ~s,2--2 = .01 cm. and S.4 = .09 cm. The boundary layer and S.Y regions

consist of a pure scattering region with ST = 1 cm. ~s,l—l = ~.s.l_z = .5 cm.

and E.s,2._2 = 1 cm. The 310nte Carlo region (including boundary layers) is the

area between z = 10 and s = 15 cm. and the fixed source corLsists of an isotropic

point source located along the axis at r = 12.5 cm. Approximately 730.00 histories

were used to sample the fixed source, and 265.000 for each response matrix. The

increase in speed of the vectorized version over .ile sequential version (Table 7–5) is

again between a factor of five and five and a half, with the source calculation being

slightly less efficient since it is a multigroup problem. Since the total cross sections

are group independent, the Mont e Carlo region is also group independent, and the
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response mat rices require similar comput at ionai times.

s Table 7-5

Sequential vs. Vector Comparison.
Problem # 4

( Type SRCMC RM1 Rll?
SEQ 71.78 sec 24.<’.6sec 13.96 sec
I-EC 14.Ok sec 4.34 sec 3.05 sec
SEQ/l-EC 5.1 5.5 5.5 ,

The percent age oft he total computational time used in transferring particles

between stacks (subroutine MO\-XTOB ) in the sample problems varied between

6X to 12%, with the other vectorized Jlonte Carlo routines (e.g.. XSCORE. COLL.

‘TRCK. etc. ) using from less than 3X to almost 15% each. and totaling between

33X and 532 of the total execution time. .4bout 5X to 10% of the time was spent

in routines for intrinsic FORTR.\X functions (square roots. logs. cosines. etc.). with

another 5’Z to 10% used in specialized Cray functions (random number generators.

vector mask functions. etc. ). Of the remaining time. the ‘outer”’ \lonte Carlo

routines (SRCMC, MCRM ) used less than 57c. while the S.v required between 8%

and 17%.

M’bile the proportion of execution time required for the S,v is highly depen-

dent upon such factors as the relative sizes of the Monte Carlo and S,v regions.

the S,V quadrature order, and the number of particle histories, it is clear from the

above sample problems that, even with vectorizat ion, the time required for the

Xlonte Carlo calculations will generally outweigh that used in the S,v. Also. the

overhead involved in vectorization, such as transferring particles between stacks

and const rutting particle destination words, is significant, and must be minimized
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when developing a vectorization scheme as described above, lVhen the FORTR.\X

eqllivalent of the subroutine MOVXTOB was used in place of the C.\L utility rou-

tine, the Monte Carlo calculation times for the vectorized version approximately

doubled.



CHAPTER 8.

CROSS SECTIONS AND THE HYBRID METHOD

The process of neutron interactions with nuclei in the medium of interest is

quantified through the concept of cross sections. where the microscopic cross section

u is defined as the number of interactions per unit atom density per unit tracklength.

and is commonly measured in units of barns. where 1 barn is equal to 10-z~ cm~.

\Yit h this definition. the macroscopic cross section S as defined in Chapter 1 can

be calculated from the relationship S = .Y1al + . . . + .\-~&J. where .Y, represents

the atom density of the type j th nuclei in the medium. SIicroscopic neutron cross

sect ion data is obtained through both theot et i(al and experimental means. \vith

the data being stored in computer-based files mch as the Evaluated \-uclear Data

File (EXDF ). In essence, all the “physics””oft he problem is contained in the set of

cross sections used when solving the transport equation. Applying identical solution

methods to identical problems ,W’ithdifferent cross section data will thus result in

different solutions, since the physical basis of the problem has been altered.

Both discrete ordinates and Monte Carlo codeq require some processing of the

primary EXDF cross sections prior to their use, since the primary data is not in a

format appropriate e for use by eit her technique. The processing requirements vary for

each technique, howe~’er. int reducing differences into the cross section sets actually

used. Thus. care must be used when comparing S,V and Monte Carlo results, since



even if thev are based on the same set of primary cross section data. the data sets.

actually used in the codes differ due to the processing. More importantly (from our

viewpoint ). integration of the hybrid Monte Carlo algorithm with the S.v requires

the generation of a set of Monte Carlo cross sections that is consistent with the

cross sect ions used in the S.Y.

S.1 Baclwround

The EXDF files contain extensive amounts of data on neutron reactions for

most isotopes. including cross section values for a large number of “
.

distributions of scattered neutrons for both elastic and inelastic

spectrums. etc. .\lt bough there are a large number of possible

24 Chapter 2). for our purposes wereact ions (reference Lamarsh.

set of all possible interactions to be divided into just ten types:

energies, angular

collisions. fission

types of neutron

will consider the

a. Radiative capture (cry),

b. Fission (at),

c. Elastic scattering (as),

d. Inelastic scattering (a,),

e. (n,2n) and (n,3n) interactions (~2n and cr3n),

f. ‘bSecondchance” fissions (U,,f and az~,f ). and



g. (n. p) and (n. a) reactions (aP and cO).

The use of cross sectional data by standard Monte Carlo methods is straight-

forward in principle. 18Random numbers are drawn to determine the species of nu-

cleus struck (if more than one isotope is present in a given region). and the type

of resulting reaction. Typically, the processed data has been tabulated at suffi-

cient energy wdues so that linear interpolation for non-tabulated energy values is

within required accuracy bounds (i.e.. ‘-centinuous-energy’” data ). The scattering

angle for elastic and inelastic reactions is determined by sampling from 32 equally

probable angular bins formed when the primary nuclear data is processed. The

exiting neutron’s energy for elastic and some inelastic scattering is then calculated

from physical laws for conservation of energy and momentum. while energy distri-

bution tables are provided for most inelastic scattering. The number of neutrons

resulting from a fission reaction is determined by sampling a distribution function.

while the direction and energy of emitted neutrons are sampled from fission angu!ar

distribution and fission spectrum tables. respectively.

The use of cross section sets in discrete ordinates codes is somewhat more

convoluted, since the Boltzmann transport equation is formulated in terms of a

particle balance, and energy is now a discrete variable (see Chapters 1 and 2). The

primary data set is first processed to generate multigmup reaction cross sections by

1

E,
09 = dE’g(E’)&(E’), (8-1)

E,- I

where g(E) represents the spectral weight ing function discussed in Section 2.2.

Scattering cross sections are also processed to generate scattering matrices for each
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Legendre order (reference Sections 2.3 and 2.4). where

I

+1

U1.g-g’
= ~~

-1 d~p’’~’/tdEdL:,dEd’E’a’E~)~) ‘8-’)

.Ilt bough we have now generated group reaction cross sections for each spe-

cific interact ion. the S.v requires cross sections that provide overall interaction rates.

i.e.. total. scattering (elastic

croscopic cross secticms must

generated by processing the

and inelastic ). fission, and absorption. These S,v mi-

be defined in terms of the group reac*ion cross sections

primary data. These definitions. dropping the group

and

(and Legendre order) indices for simplicity. are25

~T -O~+O$+Ot+af+&zn +fl~”+~~,f+fllfl,f+~a +flp. (s-3fJ)

~s = o, + c?,+ ‘2u2n?-3u)n + fl,,f + ?U?n.f. ls–3h)

OF ~ .5J +0,, / +Ozn.f. (S–3C)

0,4 9u3nS07+aO+u~+Of-U~It- - - O~n,~. (s-3d)

where uT. as. 6F. and O@Aare the total. scattering, fission. and absorption cross

sections, respectively. The integer multiplier signs are used in Eqs. (8-3b ) and (8-

3d ) since some reactions result in the crest ion, or loss, of more than one neutron,

while the minus signs are required in Eq. (8-3d) in order to preserve the total

particle balance. Note that although dA is not explicitly required for solution of

the transport equation, it is needed when calculating integral balance tables, and

that the integral absorption in a problem can be negative when materials with

large (n.?n ) cross sections (e.g., beryllium) are present, Once the Sly microscopic

cross sections have been formed, the macroscopic cross sections actually used in the
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S.v code are easily constructed as above, given the densities and locations of the

isotopes comprising the problem.
*

Thus. even though the cross sections used by a Slonte Carlo code and an

S.Y code may have been derived from

longer equiwdent. but rather more like

sect ions reproduce each react ion type

the same primary set of data. they are no

apples and oranges. The Xlonte Carlo cross

for each isotope. and are ‘“continuou<’ in

energy. while the SAYcross sect ions are in terms of overall reaction rates, represent

a mixture of isotopes. and are averaged over an energy group. \Iore importantly.

angular dist ribut ions for scattering events in Ilonte Carlo codes are given in terms

of tables of equiprobable cosine bins. while angular distributions in S,Y codes are

repsented by tables of Legendre moments. The effects on rhe hybrid method of this

dichotomy in cross sections is the subject of the remainder of this chapter.

The hybrid }lonte Carlo method has been implemented in the solver portion

of the discrete ordinates code TIYODANT. as described in Chapter 5. .~t this

point in the code, the material types and densities specified in the input file have

already been used to form macroscopic cross sections for each region in the problem,

Thus. the cross sectional information available to the hybrid \lonte Carlo method

from the S,v consists of the total cross section (~~,~ ), the absorption cross section

(SA,9 ), the average number of neutrons per fission times the total fission cross

section (v~r,~ ), the discrete fission spectrum ( \ ~), and tables of Legendre scattering

moments (S .I,9-9’ ). The individual microscopic cross sections are no longer a~”ailable
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in the S.Y solver. and the original angular distribution data for scattered particles

was never available,’ since it was lost when the primary EXDF file was processed to

generate the S.v cross sections. Thus. it is cleariy impossible to employ standard

Monte Carlo methods with the available S,Y cross section data.

One obvious solution is to use a separate set of continuous-energy cross sec-

tions within the \lonte Carlo region. This would enable the use of standard \fonte

Carlo methods. and presumably an increase in accuracy as well. since energy would

now be t rested in a more realistic (i.e., continuous) fashion. Jyit h appropriate e def-

initions. neutrcn interactions could be grouped into the categories required for the

S,y integral balance tables, and particles entering the S,l region from the 1Ionte

Carlo could easily be scored into the appropriate energy group. lYhile the basis f.)r

formation of a probability density function (PDF) in energy for particles entt=rinq

the }Ionte Carlo region from the S,~ is not as clear-cut [e.g.. uniform. g( E j. etc.].

it would not appear to present insurrnontable difficulties.

selected for two reasons. First. it w(>ldd requireThis approach was not

the user to undergo the not inconsequential effort of preparing two separate and

distinct sets of cross sections for each problem. not to mention the additional code

necessary for processing two cross sect ion sets with diRerent formats. Second. it

would inhibit the benchmarking of the hybrid code. Since the hybrid method is

implemented as an enhancement to the discrete ordinates code TIVOD.4XT. the

simplest. and most effective, means of validating the hybrid code is to bench it

against the S,v only version of TkYODAXT (reference Chapter 11), If the hybrid

code used an additional set of cross sections entirely different from those used in

the standard version of TTVOD.$ST, it would present another potential source of



difference between the discrete ordinates and the hybrid method. which might mask

subtle errors in the hybrid code. Thus, it was decided to use the already available

S.v cross sections in the Monte Carlo region of the hybrid code. at least as an initial

effort.

Since we are employing implicit fission in the hybrid method (reference Sec-

t ion 6.5). we do not require explicit values of ~ F,~. and the vaiues of c’, c~.tl, P~-~l.

~1-o,9_9t. and p~.\..g–g~ are readily computed from Eqs. (6-23) through (6-27), The

determination of a scattered neutron’s scattering angle presents difficulties, how-

ever.

The S.~ furnishes tables of Legendre moments ~l,~–g, for 1

L is the order at which the series representation is terminated.

=0 . . . .. L.wime

From Eq, (2-6).

the distribution

(where we have

in angle w for neutrons scattering from group g to group g’ is then

included a factor of ?r in the definition of S/,~_91 )

Thus. for L >0, there is

negative, and so it does

(reference Section 3.1 ).

nc guarantee that the scattering function ~g-gf is non-

not constitute a PDF which may be directly sampled

It is possible to generate a PDF from the scattering function of Eq. (8-4) by

employing absolute values with an appropriate normalization. i.e.,

(8-5)



The scattering angle w is determined by sampling ~~.9_91(j~ ). while the particle

weight is multiplied by the factor

F
-L.9-9’(M)/[fL! 9-9’(w) ~L,g-g’l (8-6)

to conserve the total particle weight (on average).

However. this method has several disadvantages, the most important of which

is the introduction of negative particle weights into the calculation. 26 Although

we already allow the possibilityy of negative residuals. and subsequently negative

particle weights. for multiple outer iteration problems as discussed in Section 5.7.

the residuals are presumed to be small enough so that the overall boundary fluxes

and volumetric sources will remain positive. and the increase in statistical errors due

to the negative weights will be minimal. If we use Eqs. (S–3) and (S-6 j to sample

the dist ribut ion of scattered neutrons. ho~vever. not only will we have int reduced

the possibility of negative particle weights into the first outer iteration. but into the

sampling of the fixed source as well. Thus, negative weight particles will have a place

of much greater importance in the calculation. and the problems associated with

their use will be correspondingly magnified. Therefore. an alt ernat ive approach.

which we will refer to as the equiprobable bin (EPB ) method. is selected.

we divide the scattering function XL,g_gl(~ ) of Eq. (8-4) into 32 equiprob-

able bins Aw,, by determining ~t,L and ~,,~ such that

ml R
1/32 = ,r, 1

I
d~’~@gd~’), (8-7)

-+o, g-g’ h, L

where ~t,~ and WI,R represent the angles corresponding to the left and right-hand

edges of the ith bin. respect i}’ely, and AI~,, = MI.R - ~o,,~. To determine the



mt.L and m R. Ire USethe follo~”ing

contiguous, so that for the ith bin.

iterative process. lYe assume that the bins are

we set ~,.L = Mt-i.lt, with %l,L = -1. We

know that /@,.Rmust lie within the range ~L = ~,.L to ~R =

/4)1. R W ; = (PR +- ~L )/~. ~ve then begin an iterative process

the value of the integral

.i = ~r, 1
J

‘ld&g-gdp’)
--o. g-g’ ;

+1. so we estimate

on ~ by computing

(s-s)

via a simple recursive procedure. z~ and comparing it with the exact value if ~ =

141. R.

3Q-1
.4= —.3? (s–9)

If .~ >.4. we set p L = ~. otherwise we set p R = ~. lye then re-estirnate ji from the

new values of p L and p R. and perform another iteration. The iterative process is

terminated after ~~ iterations. ensUring an absolute error in the placemt’nt Of~~,,R

of less than 10-T.

S.3 Benchmark Problems for Hvbrid llethod Cross $kwtions

Now that we have developed an algorithm for constructing \lonte Carlo cross

sections from the available S,V cross sections, we examine it for possible discreptm-

cies or limitations in actual use. To do this, we choose four sample problems and

compare the results obtained with the hybrid method to those obtained with pure

discrete ordinates. The geometry for all four problems is identical, consisting of a

homogeneous four by five cm cylinder with an isotropic distributed source located

between z = 2 to z = 3 cm. and extending from r = O to r = 1 cm. The coarse mesh



130

size in both the S.v and hybrid method geometries is set at 1 cm by 1 cm. with a

varying number of fine mesh cells per coarse mesh used in the S.v. The boundary

layers for the designated Monte Carlo region are defined so as to encompass the

entire problem: thus. the hybrid >Ionte Carlo method is used throughout the entire

proble n geometry. maximizing any differences with the S.%.

The first benchmark is a one group problem with a parabolic scattering

function defined by :(w) = 3~2/2. so that ~~(~ ) represents ~(k) exactly for L = 2

[reference Eq. (S-3)]. lYe let ST = 1.0 cm and S.4 = .05 cm. so that SO,I-I = .95

cm. and Xz,l_l = .38 cm, Table S-1 presents a comparison of the integral self-

scat tering (SS) and net leakage (XL) results between the hybrid \lonte Carlo 1H\IC )

and S,y methods. along with the associated absolute error (one standard deviation )

in the hybrid \lonte Carlo self-scattering. The S,y entries reflect the number of

fine meshes per coarse mesh. which

on the S,\, as was the quadrature

was varied to examine the effects of mesh sizing

order. Both S,y and hybrid \lonte Carlo runs

\vere performed with isotropic scattering (Z’.) for comparison

The total execution time (in CPC seconds) is also shown for

?50.000 histories were used to sample the fixed source in both

with the Pz results.

all runs. Xote that

hybrid \lonte Carlo

runs, and that since the \lonte Carlo region comprises the entire problem geometry.

no response matrix or boundary flux sampling was required. The exact scattering

function j(w) and the equiprobable bin (EPB) approximation to it for L = 2 are
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shown at Fig. S-1.

Table 8-1
●

Cross Section Benchmark Problem #1
r

Type PL Ss XL Time
SzO/8 X 8 PI) 6.582 .6536 7.3 sec
HMC PO 6.576 * .009 .6539 31.0 sec
slj/2 x 2 Pz 6.701 .6473 2.5 sec
S21J/2 x 2 Fj 6.729 .6459 4.3 sec
s20/4 x 4 P2 6.666 .649!2 6.3 sec
s20/8 x s P2 6.64i .6501 11.7 see
HIIC P~ 6.641 * .007 .6505 31.5 sec1

From Table 8-1, it can be seen that the use of the EPB method with hybrid

\lonte Carlo cross sections results in excellent agreement with the S,y. especially

for small S.y mesh sizes and large quadrature orders. which better approximate

the Mont e Carlo’s cent inuous t rest ment of spatial and angular phase coordinates.

.+ltbough th~ differences in integral results between the PO and Pj represent at ions

are small. as expected due to the parabolic (even) shape of the scattering function.

they are real. and show up quite clearly in both the S.y and hybrid \lonte Carlo

calculations. It is interesting to note that the calculation times for the PO and

P2 hybrid llonte Carlo runs are almost identical, as expected for the EPB method.

while the comparable S.v runs show over a 60% increase in execution time for L = 2

over L = O, due to the increased number of moments,

The second benchmark problem is identical to the first, except that the

parabolic scattering function is replaced with the step function ~(w) = E)(~).

where El represents the Heaviside step function. For this function. a Legendre

expansion requires L = m for an exact representation. Figures 8-2 and S-3 present
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comparisons of the exact step function (E.X) with P1 and F’s approximate ions. and

the EPB met hods”s representations U! the Legendre approximations. The first four

non-zero moments of the scattering function are S.,l -1 = .95 cm. S 1,1-1 = .475

cm, S3,1-1 = -.11873 cm, and X5,1+1 = .059375 cm, Results for the discrete

ordinates and hybrid Monte Carlo methods are shown below at Table 8-2. For

the final hybrid Monte Carlo run listed. the EPB scattering function was replaced

with the exact scattering function, .41though the hybrid Monte Carlo results using

the exact scat tering function are in good agreement with the S20 results. even for

S,Y values of L = 1, the hybrid Monte Carlo fails to reproduce the correct integral

values when using the EPB approximation of the scattering function, even with

‘L =3.

Table 8-2

Cross Section Benchmark Problem #2

Type PL Ss XL Time
sfj/s x 8 PI 4.880 .i43? S.i sec
s2fJ/8 x 8 PI 4.868 .7438 16.8 sec
H\IC P, 4.974 + ,006 .7382 23.6 Sec

s20/8 x 8 P3 4.~66 .7439 1S.!3sec
H\IC’ P3 4.933 * .005 .7404 22.5 sec
S20/8 x 8 P~ 4.866 .7439 22.9 sec
HJIC Ps 4.9X? * .007 .7404 ‘))ej Sec

H\lC EX 4.8’56A .006 .7444 ~~.1 se~

To provide a more realistic test, the remaining two benchmark problems use

a set of sixteen-group Hansen-Roach cross sections. The Hansen-Roach cross section

set provides multigroup cross sections for energies ranging from 10 \IeV down to

the thermal range (x.025 eV), and includes transport -correctedl values for ~~, a.~,

vaP, and aO,g-gI (downscattering and self-scattering only ). IE. addition, tables of
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~1,9-91 are provided for hydrogen and deuterium. The problem geometry rernair.s

identical to the previous problems. with the fixed source located in the first group.

For the third

mixture of OIG (.16

benchmark problem, the cylinder material is composed of a

at ems/b-cm) and hydrogen ( .02 atoms/b-cm). Once again.

the S.y mesh size and quadrature order was varied. and the problem was run with

both L = O(isotropic) and L = 1 (linearly anisot ropic ) scattering. From Table 8-3

below. we see that that the hybrid Monte Carlo method is in good agreement with

S.~ for both isotropic and linearly anisotropic scattering.

Table 8-3

Cross Sect ion Benchmark Problem #3

Type P1. Ss XL Time
s6/2 x 2 P“ 1.002 .9776 3,s ~~c I

s2~/2 x 2 PO 1.002 .3ii4 14,s Sec
s~~/4 x 4 PO 1.000 ,9775 29,4 Sec

s~l-J/8x 8 PO 0.!39S6 .977; 64.6 Sec
HIIC Po 0.9989 + .0030 .9775 14.6 sec
slj/2 x 2 PI 0.93?8 .9ii6 3.9 sec
S20,2 x 2 P, 0.9326 .9774 16,9 sec
s20/4 x 4 P, 0.9306 ,9775 39.9 SW
.$20/8 x 8 PI 0,9Q91 .977? 7Z,3 sec
HIIC PI 0,9XJ6 + ,0()~6 .9775 13,9 sec

L J

Finally. to examine the effects of increasing the L = 1 L ~ment, the composition

of the fourth benchmark problem consists of hydrogen only. with a density of .18

atoms/b-cm. .41though excellent agreement is still obtained for L = 0, as can be

seen from Table 8–4 below, the hybrid Monte Ca: 10and S,~ results do not agree for

L = 1, with the divergence clearly being outside the limits of reasonable statistical
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deviation. (The iast entry will be discussed subsequently. )

Table 8-4,
Cross Section Benchmark Problem #4

Type PL Ss XL Time
s(j/2 x 2 PO 31.12 .8(p6 3.4 sec
s2f)/2 x 2 Po 31.34 .8042 1~.8 ~ec

s21)/4 x 4 Po 30.77 .8049 W6 see

S20/8 x 8 PI) 30.72 ,8052 44.56 sec
HJIC PO 30.77 + .08 .8049 304.1 sec
s6/~ ~ ~ PI ~3.3~ .9167 4.0 sec
s?o/2 x 2 P, 13.04 .91s3 19.0 sec
s20/4 x 4 PI 13.01 .9186 39.0 sec
S20/8 x 8 PI 13.00 9187 88.7 sec
H31C’ PI 15,73 * .07 .9012 145.0 Sec
H\IC’ P; 13.77 * .10 “ .9139 109.9 sec

S.4 Discussion

The hybrid \fonte Carlo method. when using multigroup cross sections based

on the available S,V cross sections, provides results in agreement }vith the discrete

ordinates method, for the selected benchmar!; problems, when isotropic scattering

is used. However, the EPB method of forming a PDF from the existing Legendre

moments fails to accurately reproduce the angular distributions of scattered neu-

trons for L >0 in some cases, and in these cases the ilybrid \Ionte Carlo method

results and the S,V results diverge. Specifically, the EPB method appears to fail

whrn ~~(~ ) is not positive definite. as is the case for cross sections with large P1

compc nents. This failure of the EPB method is exacerbated since the Sy cross



13s

sect ions are in the laboratory frame of reference. so that elements such as hydro-

gen. whch are generally isotropic in the center-of-mass frame of Aeference. appear

as strongly anisotropic.

The failure of the EPB method is due to the requirement that the entire

scattering range (N = -1 to +1) be divided into contigous. non-negative bins.

Thus. a particle has a finite probability of scattering into any given angle in range

-1 to +1 for all events g ~ g’. This violates physical laws of conservation of

moment urn and energy. since. depending upon the value of g’. some angles of w are

impossible.

\Iathematically. we state that the EPB method fails because it does not

conserve the moments of the scattering cross section. other than the zerot h moment.

while. in fact. conservation of at least the first several moments is important for

an accurate representation of the scattering function.2G The S.Y cross sections do

conserve moments, and thus its succes in approximating the step function of the

second benchmark problem with just two moments (L = 1). The EPB method fails

to pro~ide accurate results for the same problem. however. eve:~ with i = 3. since

its approximation of the S(Nscattering function ~-~.g-g’ (M ) does not conserve the

moments of ~~,g-gj(w).

The EPB method does not fail in all cases, just those in which the scattering

function XL,g-gl (w ) is negative for some range of w. For isotropic scattering, or for

cross sections in which the scattering function is anisotropic but positive definite,

as in the first and third benchmark problems. the EPB method will provide a good
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rt?prt?S?ntZitiOIIOf ~c ,9-9’ (w). and thus implicitly conserve moments. at least ap-

proximately. However. this severely limits the problems to which the EPB method.

and hence the hybrid Monte Carlo/S.v method. can successfully be applied. since

most mult igroup cross section sets cannot be guaranteed to be positive definite for

a finite order L, Since it is impossible to reconstruct the (presumably) positive

definite original scattering function X I(g_9 w ) from the finite order Legendre repre-

sent at ion v-~,g-g~ (~ ). and we do not wish to sample ~~,g-g~ (~~) directly because

it might entail a large numb~r of histories with negative particle weights. we are

left wit h two alternatives.

The first is. of course. to use continuous-energy cross sections in the \lonte

Carlo region. as described above, .Although this has the disadvantages of requiring

t~t’osets of cross sections for every calculation. and integration of conti[~uolls-enf>rgy

\lonte Carlo data with mult,igroup S,v data, as \vell as requiring an additional

calculation in the collision subroutine (conversion of center-of-mass w~t terix~gco-

ordinates to the laboratory frame). the approach is reliable and well established,

Furthermore. the EPB method can be retained as an available code option for

benchmarking isotropic or weakly anisotropic scattering problems.

The second is to use a method which forms a PDF from the Legendre series

I

+1

representation which conserves the polynomial moments cfpji’ a(p). at least
-1

approximately, Two examples of such a method are the discrete angle represen-

tation, and the equally probable step function representation, which are described

in Ref. 26, Although each representation has its advantages and disadvantages. we

note that the processing required to generate th~ discrete angles or equally probable



step functions is not negligible. but

continuous-energy cross sections.
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is instead probably comparable to that of using

.% an example 01 the effect of conserving moments. we replace the EPB

method of generating bins with a derivative of the equally pl.obable step function

for the fourth benchmark problem (Table 8-4 ). where we now generate a single bin

with one boundary fixed at -1 or +1. depending upon the sign of ml.~-~l, and the

other boundary chosen at the due of p which preserves the first moment. The

results of this

more accurate

method are shown at the last entry in Table 8–4, and are clearly

than those of the EPB method.

In conclusion. the EPB method is sufficient for the henchrnarking of the

hybrid llonte Carlo/S.\ code. and the investigation of problems with simplified

scattering functions (i.e.. isotropic scattering. or scattering with small aniso~rnpic

components ), but is not robust enough for general use. For general use of the hybrid

Monte Carlo/S,N method, consideration should be given towards use of one of the

alternative approaches discussed above.
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CHAPTER 9.

VARIANCE MEASURES AND REDUCTION

.% discussed in Section 3.2,

ods has an associated uncertainty

information obtained using \fonte Carlo meth-

(lariancr ). \Iost \lonte Carlo codes provide a

variance estimate for all calculated results, as well as numerous methods of reducing

the variance. In addition. a figure of merit (FO\l ). as defined at Chapter 3. is also

provided for selected results as a measure of the reliability of the variance estimates.

\Vith standard \lonte Carlo methods. one runs a single calculation of Ii

batches of -Y histories each. from which an estimate of the variance of the results

is direct Iy obtained from Eq. (3–10), Thus. only a single llonte Carlo calculation

is required to determine the variance. However. with the hybrid method. such a

straightforward evaluation of the variance is not possible due to the coupling of the

Monte Carlo and SN regions, as can be seen by the following argument,

With the hybrid method, we first sample the fixed source using \lonte Carlo.

thus obtaining the boundary flux SOut at the \lonte Carlo/Sjy interface, of which

each element has an associated variance u$,,, which is clearly obtainable, Next, we

calculate the incoming boundary flux for iteration 1 from Eq. (4-2) (assuming a

one-group problem ) by

~ln(l~ s ~SoUt, (9-1)



where ~ represents an S*Vcalculation. .Altbough we do not calculate an S.Yrespor, se

mat rix. for reasons discussed in Chapter 4, consider for the moment that ~ is

represented by such a matrix, where T,, corresponds to the angular flux entering

the \ionte Carlo region in state i due to a unit incident flux upon the S,v region in

state j. The incoming boundary flux for state i is then determined from

.V
an(l)=

L’,
z

T,, S;ut,
J=l

\vhere .Y is the number of states along the llonte C’arlo/S,y interface. and S~”’ is

the jth element of SO”’. Given the u~,j. the variance in t~n( 1) is28

\vhere the prime upon the summation indicates that the

values ~ # k. and Cov represents the covariance of S~”’ and

required because the individual elements of S“”’ are clearly

the covariance of SOU’is not known, nor easily determined, the direct calculation of

the variance in the \lonte Carlo/Sty boundary f!uxes is not feasible.

summation is over the

s:.’, The covariance is

not independent. Since

An alternati~~e solution is to simply run K sets of the entire problem, thus

providing K independent sets of results for both the boundary fluxes. and the

information most likely desired by the user, the cell fluxes, \Vhile. in theory. this is

entirely analogous to the \lonte Carlo procedure of running K batches of histories.

the costs are quite different, For Ylonte Carlo calculations, the time required to run

K batches of .Y histories per batch is approximately the same as the time required

to run one batch of .V x 1{ histories. However, with S,%, the time rwluired per

calculation is fixed. so that running K sets of a calculation would increase the S.S
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calculation time by a factor of K. Since the minimum value of K needed to get a

;alid statistical sample is on the order of 20. the time spent in S,v computations

would be similarly increa..ed by a factor of at least 20. Even though the time spent

in S.v calculations does not usually constitute a majority of the CPU time, it is still

significant. and an increase of this magnitude is not desirable. In addition, since the

number of histories used in the Monte Carlo calculation for each set would now he

.Y. instead of .Y1{,each S.y calculation would now be based on a reduced number

of \lonte Carlo histories. This could result in increased problems with negative flux

fixup in the S.y. and negative residuals at the \lonte Carlo/S.Y interface. Thus. \ve

choose to implement a less rigorous measure of the variance in the hybrid method.

9.1 T“ariance Estimation in the H\.hrid \Iethod

Currently. the user has two separate inputs into the number of histories run

in the \fonte Carlo portions of the hybrid code. the number of histories used in

sampling the fixed source, and the number of histories per column used in samp-

ling the response matrix, The number of histories used in sampling the incoming

boundary fluxes and any volumetric sources located in the Xlonte Carlo regions

are determined from the above values (reference Sections 6.8 and 6.9 ). Thus. what

is needed is not just some measure of the variance of the results, but the relative

merits of increasing the number of histories used in sampling the response matrix,

versus the number of histories used with the fixed source,

To acquire some measure of the variance in the fixed source calculation,

we use the standard technique of dividing the number of histories into K batches
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of .Ys histories each. For each batch. the tracldengt h for each coarse cell in the

Monte Carlo re6ion is calculated. as well as the integral self-scattering. Once the

sampling of the fixed source has been finished. the variance of the tracldengt hs is

calculated from Eqs. (3–7), (3-8), and I3–10). In addition. the FO\l for the integral

self-scattering is printed out for each batch as a measure of the reliability of the

variance est imat ion.

Il%ile the variance in SO”’ is not directly calculated. measuring the variance

of the coarse meshes due to the fixed sol:rce does indicate how well the \arious cells

of the Monte Carlo region are being sampled during the fixed source calculation.

\lore importantly. it is anticipated that oftentimes one of the cells in the \lonte

Carlo region will represent a physical detector for which the flux is desired. in which

case some knowledge of the variance in ~hat cell is important,

lYe do not attempt to directly measure the variance of the individual elements

of the response matrix, both because the variance of the individual elements them-

selves is of little importance. and because storage of the Ufi,l, would approximately

double the memory requirements. Inst cad, when sampling the converged incoming

boundary flux VT(=) during the first outer iteration (reference Section 5.3 ). we

recalculate the out going boundary flux. denoted by y~ut. ~,’~ethen perform an L2

error comparison between the two outgoing boundary fluxes, that is, we calculate

the relative error

(9-4)

.\s the number of histories used to sample the reponse matrix goes to infinity. that

is, as .YRM A W. we expect RE~R ~ 0, For a finite .Y~.\f, RE~R git’es a better
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“’feel””of the variance due to the response matrix than the individual a~.,,, since

the importance of a given column in the response matrix may be zero. if the the

value of the incoming flux for the associated S.v state is also zero.

l~hile the variance measures described cbove are not rigorous in the sense

that they do not provide a variance estimate for each cell, they do provide a means

of determining how well the fixed source calculation samples the individual cells

in the \Ionte Carlo region. and how precise the response matrix calculation is,

Furthermore. by examining the variances in the fixed source calculation. the size

of R~~R. and the relative leakages from the \fonte Carlo region due to SOu~and

W“”t. one has some idea if .~R,\f. .Ys. or both should be increased.

g,? \“arianc. Result5 in Samule pro~lem~

lye now apply the variance est imat ion methods described above to a one

group. sample problem consist ing of a homogeneous, 4 by 5 cm cylinder with XT =

1.0 cm and SS = 0.95 cm. The fixed source consists of an isotropic distributed

source located radially between r = O to r = 1 cm, with axial limits : = 2 to ~ = 3

cm. The problem geometry is divided into coarse mesh cells with 1 cm by I cm

dimensions.

ll~e begin by letting the Monte Carlo region comprise the entire problem

geometry, so that we may examine the effects on the variance estimates of varying

.Ys, lye perform three groups of problems. each with 1{ = 200. but with .Ys values

of 81, 625. end 2401. Each group consists of three separate runs, where each run
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has a different initial random seed. Table 9-1 lists the number of histories per

batch (.Ys ). the integral self-scattering (SS ) with the relative error (one standard

deviation ), the difference (in standard deviations) from the S20 benchmark. and

the resulting FOM, while Table 9-2 presents the coarse mesh fluxes (mdtiplied by

a factor of 10. with a relative error of one standard deviation) for the center cells

(: = 2.5 cm. r = .5. 1.5, 2.5. and 3.5 cm). Table 9-3 shows the differences (in

standard deviations ) in the center coarse mesh cell fluxes between the \Ionte Carlo

runs and the S20 henchrnark. Each table identifies the run by the initial r

seed. For comparison. the results of an S20 calculation with 64 fine meshes

per coarse mesh (C\l ) are also included in Tables 9-1 and 9-2.

Table 9-1

Integral SS and FO\I Results. Monte Carlo Results

mdorr

8X8

[ Seed I .Yq I Ss Diff ~“” FOJI, ,
~~(j Si 6.5865+.0044 +o.li 15.4s5
%0 S1 6.5666*.0046 -0.49 14.642 I
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Tabl~ 9-2

Center Coarse Mesh Cell Fluxes, Monte Carlo Results

‘Seed cM#l cM#2 c\1#3 c\1#4
240 lo.~69+.oo54 S.S777*.0079 4.7323*.0120 9J489* .o164

250 1 10.177*.OO57 8.8137+.0075 4.7442*.0121 2.32i8& .0170
260 10.104*.OO37 S.70S2*.0078 4.6864+.0121 9961(3* .018~
Wo 10.178+.0020 8.8447+.0029 4.6412+.0043 ~e~784& ,()(357
Q30 10.I79*.OO2O 8.8162+.0029 4.6747+.0044 ~,~997A .()()6()

270 10.18O*.OO21 8.8351+.0028 4.6853+.0041 ~.30(34+ .006(’)
~oo 10.197*.OO11 8.8202+.0013 4.6837+.0023 2.2875+ .003’2I
~lo I 10.186+.0011 8.S00S+.0013 4.6s64 * .0022 2.294$* .0031
Qso 10.181*.OO1O 8.7946*.0014 4.6794+.0022 ~.~943* .O(-J3(-Jq

S20 ] 10.1s0 8eS~31 4.6S10 2.2S78

Table 9-3

Center Coarse \Iesh Cell Differences. \lonte Carlo Results

Seed .v~1 cM#l c\I#2 c31#3 cM#4
~~(-j 81 +1,48 +0.78 +0.90 -1.05
HI 81

,
-0.05 -0.14 ( +1.10 +1.01

~6~ 81 –lo3~ -1.69 +0.10 –0.65
~~o -6~3 –0.10 +0.84 -1.95 _o,~~
230 625 -0.05 -ot~7 –0.31 +0.36
270 625 0.00 +0.49 +o.~~ +0.91
Q-JO 2401 +1.52 -o,~~ +ot~~ -0.04
2io ~~ol +0.54 -1.95 +0.32 +0.98
280 ~401 +0.10 _~,31 -0.16 +0.94,

Examining Table 9-1. we see that the integral self-scattering results from the \lonte

Carlo runs. although appearing to be be systematically smaller than the S20 bench-

mark value, are within one to two standard deviations, Note that the error (standard

deviation ) behaves approximately as the ~. The overall Figures of Jlerit appear

to be consistent within a given group (i.e.. the same value of .Ys). while between

groups the FO\l increases with increasing -Ys. This is due to the i’ectorization
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of the Ilonte Carlo. where particles are followed in groups of 64 particles untii all

source particles have ben exhausted, at which time the remaining particles are

YIushed””from the system (reference Section 7.1). Since it requires approximate ely

the same tirrw to execute a stack with 64 particles as to execute a stack with one. the

runs wit h smaller \a.lues of .Ys require proportionally more time to flush particles

from their system. reducing their FOM.

The Figures of Merit for each run as a function of batch number are shown

at Fig. 9–1 for ,Ss = S1. Fig. 9–2 for .Ys = 625. and Fig. 9-3 for .Ys = 2401. where

each curve corresponds to a differing initial random seed. .+lthough the Figures of

\lerit for a specified \alue of -Vs eventually settle upon approximate ely the same

\tiue. as expected. it takes a fairly large number of batches [30-100 ). This implies

a large variance of the variance. which could be reduced by decreasing the batch

size. since the variance of the estimated variance is minimized with a batch size of

one. ’930 Indeed. this can be seen in Figs. 9-1 through 9-3. where the behavior of the

FOM”Sfor .Ys = S1 is much steadier than that for an equivalent number of hist ories

with .Ys = 625 (26 batches ) and .Ys = 2401 (7 batches). However. decreasing the

batch size also reduces the efficiency of the vectorization, as previously stated. and

as is apparent in the respective FOkl’s for the differing batch sizes.

In P. mining the coarse mesh cell fluxes (Tables 9-2 and 9-3). we see that the

llonte Carlo fluxes are within one to two standard deviations of the SZObenchmark

fluxes, and that the error in the fluxes behaves approximately as the m. Xote

also that the error in the fluxes increases with radius, since the source is located

at the centerline cell. Thus. the cells closest to the centerline have more particle
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Figure 9-1 Figure of Merit Comparison, Ns = 81 Particles/Batch
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Figure 9-2 Figure of Merit Comparison, .Vs = 625 Particles/Batch
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Figure 9-3 Figure of Jferit Comparison, XS = 2401 Particles/Batch



tracks than those nearer to the outer edge, and as a result their fluxes have a smaller

wiriance.

JVe now examine a problem where the geometry is composed of both Monte

Carlo and Soyregions. We use the same problem geometry as before, except that the

reg.cn r = O to r = 1 cm, extending the length of the cylinder, is designated as the

Monte Carlo region. .4 one mean-free-path boundary layer is specified. so the total

Monte Carlo region extends out to r = Q cm. .\n S6 solver is used in the S,Vregion.

with 4 fine meshes (2 x 2 ) per coarse mesh. For the \lonte Carlo calculation. we fix

K at 200. while .Y.sand .Y~.v are varied. To obtain estimates of the coarse mesh

cell mriances. we perform l?i runs, with differing initial seeds. for each combination

of .YR,tf and .Ys. Table 9-4 below shows the resulting average ~due of RERR and

associated relative error (one standard deviation ) for each combination of .Y~,ll and

.Ys. along with the average value of the ~%olute particle balance (PB.4 L). Tables 9-

~a and 9-5b list the average coarse mesh cell fluxes (multiplied b! a factor of 10).

with relative errors, for the center cells, along with the flux values in the llonte

Carlo region due to the fixed source alone (i.e.. the flux values for .YR,\[ = O. Xote

that the first two cells are in the \fonte Carlo region, while the last two are located

in the SiY, For comparison, Table 9–5c lists the coarse mesh cell fluxes calculated

from an S20 solution with 64 fine meshes per coarse mesh, and an S6 solution with

16 fine meshes per coarse mesh (8 x 2) in the first two meshes. and four fine meshes

(2 x 2) in the last two. Finally. Tables 9-6 and 9-7 contain the differences, in terms

of standard deviations, between the coarse mesh cell fluxes calculated by the hybrid
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method and those calculated by the pure S.v solutions.

Table 9-4

Average R&RR and Particle Balance Values, Hybrid Results

,~s/.~R,~f RERR PBAL
81/16 .0612 + ,0932 9.3526 X 10-J & ,7062
81/81 .0227 & .0936
81/256

4.8715 X 10-q * .8421
.0103 * .0703 ~a~609 X 10-~ * ,fj~87

t3~5/lfj .0605 + .0954 11.7399 X 10-q + .6758
625/81 .oW~ * .0635 5.8763 X 10-~ + .7344
6~5/’?5fj .009s * .0522 1,6033 X 10-~ A .8932

Table 9-5a

Average Coarse Mesh Cell Fluxes, .Ys = 81

.~RJf c\l#l cM#2 cM#3 cM#4
o 9.760+.0054 7.2171+.0076
16 10.169*,OO6O 8.8104*.O1O5 4.7937+,0118 Q.~6f37+,ollQ

81 10.172*.OO55 8.77s7+.0067 4.S120*.0092 ~.~7~8&,oo7~

256 10,16S*. OO.58 8.7S30+.0069 4,8173 A.007!3 2.’2763*.0071

Table 9-3b

Average Coarse Mesh Cell Fluxes, .Ys = 623

ai’R,\fCM#l cM#2 c)l#3 cM#4
o 9.760+.0019 7.1664+.0028
16 10.184+,0038 8.8005+.0073 4,8~15*,o106 ~.~690k.o104

81 10.181*.OO28 8.8080+.0037 4os~40*,()()5,5 ~.2774*.0043

256 10.182+.0019 8.7922+.002S 4.8196+.0036 Q.Q741*.0030°

Table 9-5c

Coarse Lfesh Cell Fluxes, Siv Results

;~R,\f cM#!. cM#2 cM#3 cM#4
S6 10.137 8.;526 4,7636 2.2743

S20 10.1s0 sm8~31 4.6s10 ~,~S78

,



Table 9-6

Coarse \fesh Cell Differences, Hybrid Results vs. Srj

.Y~/.Y~.,, cM#l c\1#2 cM#3 cM#4
81/16 +0.52 +0.62 +0.53 I -0.30
81;S1

,
+0.63 +0.44 +1.09 -0.09

S1/256 +0.53 +0.50 *l,JQ +0.14
62;/16 +1#~1 +0.75 +1.13 _o,~q

623/91 +1.54 +1.70 +~.~s +0.32
(j~5/~5fj +q33 +1.61 +3.23 -0.03

Table 9-7

C’oarse31esh Ct~llDifferences. Hybrid Results vs. S20

.Ys/.YRJf cM#l cM#2 c\l#3 c\1#4
S1/16 -0,1s -0.14 +1!99 -o,~~

81/s1 -0.14 –0.76 +2.96 -o,~~

S1/256 _()+~o -0.66 +3.60 -0.70
625/16 +0.10 -0.35 +2.75 -0.s0 I
6%/S1 +0.04 –0.46 +5.33 -1>06 I

fj~5/~56 +0.10 _lc~6 +7.99 –2.01 I

From Table 9-4. we see that the decrease in RE~R is roughly proportional to ~~.

as expected. and that RERR is a good predictor of the precision of the response

matrix. as indicated by its small relative error values. \Ve note that the average

particle balance also decreases approximately as the ~~, but that the relative

error in the particle balance is much larger, so it cannot be relied upon as an

indication of the response matrix accuracy. Particle balance is affected by the value

of .~R,~fthrough the response matrix calculation and the sampling of the incomirg

boundary fluxes. using & we iterate to find the ~“u~f’} and W’”(=). \Ve then

sample the W - .Ut, since ~OUt(~)lfl(~) and determine *9 # ~~”t, there will be a

discrepancy in the particle balance, because the particle balance in the S.y region is
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based upon V ‘“f’ ‘), while that of the Monte Carlo region is based upon @~ut. As

.YR,jf * X, $;”l + W0“’(~), and the discrepancy in the particle balance decreases.
8

From Tables 9-5 through 9–7, it is clear that the behavior of the coarse

mesh cell ~ariauces is quite different in the hybrid case than that of the pure Monte

Carlo case. Examining the first coarse mesh cell. we see that the variance is almost

completely independent of the value of .VR.lf. Since the source is located in this cell,

almost all of the flux is due to particles emanating directly from the source, with

very little attributable to particles which reenter the \Ionte Carlo region from the

S.v. In fact. if we examine the values in Tables 9-5a and 9-5b for .~R.\f = O, we see

that over 95X oft he flux in the first cell is directly due to the calculation of SO”’. so

that the error in this cell is insensitive to the value of .YR.\f, For the second coarse

mesh Cell. a value of .YR.\f = 16 results in an error somewhat greater than that due

solely to S0ut. while values of .YR,~f= 81 and 256 give errors approximately equal to

that of the fixed source calculation. Since the second coarse mesh is adjacent to the

5,Y region. it sees a higher flux from the S,v region, as can be seen in Tables 9-5a

and 9-5b, and thus is more strongly affected by a poorly defined response matrix

(.~R,, = 16) than the first coarse mesh is,

The third and fourth coarse meshes are in

distance from the fixed source, so their variances

the response matrix and SN transport operator.

the S,v region, and at a greater

are more strongly influenced by

Comparing Tables 9-2 and 9-5,

we see that while in the pure Monte Carlo problem the \ariance increases mono-

tonically with distance from the fixed source, this is not the case in the hybrid
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problem. There. the variance in the SN region tends to remain constant. or de-

crease sorr.evvhat. as the dist ante from the Monte Carlo/ SN interface decreases. As

.VRA$.fincreases, the error initially decreases. then remains constant,

Consider that we have some variance u~ut in W“”t(‘), due to both the sam-

pling of the fixed source and the response matrix. As we increase .VR4~.we decrease

the response matrix component of a~Ut. but we are still left with the component due

to the sampling of the fixed source. Thus. as .YR.\f + =. a~Ut goes to a constant.

but non-zero, value. Consider also that the S.v transport operator is a deterministic

operator. and as such tends to average out the statistical fluctuations in the prob-

lem. Thus. as we proceed away from the \lonte Carlc/Sx interface into the Sy.

the variance tends towards a constant value. However. the sampling of the fixed

source introduces a certain inherent variance into the problem. which no amount of

increase in .YR,\f, or distance from the Jlonte Carlo/S.\~ interface, can reduce.

Examining Tables 9-6 and !3-7, we see that the coarse mesh fluxes calculated

by the hybrid method are generally within one to two standard deviations of both

the S6 and S20 results, with the exception of the third coarse mesh cell. In the

third cell, there appears to be a definite, systematic difference with the S,v results,

Hcwever, this is not completely unexpected, as the third mesh cell lies just beyond

the border of the S,v/\lonte Carlo interface, Thus, while the fluxes in the first

two mesh cells are determined principally by the Llonte Carlo method, those in the

last two are determined by the S,Wmethod, using an & quadrature order with 4

fine meshes (2 x 2) per coarse mesh. In contrast, Table 9-7 is based on an SQO

oper,~tor with 64 fine meshes per coarse mesh, so it has a much more detailed fine

mesh structure in the last two coarse mesh cells than the hybrid method, as well
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structure by using 16 fine meshes per coarse mesh in the first two coarse meshes,

and four fine meshes per coarse mesh in the last two (Table 9-6), we see that we

do obtain a somewhat better agreement between the fluxes in the third and fourth

coarse mesh cells.

This illustrates an important point to be considered when employing the

hybrid method. lVhile the the fluxes in the Ylonte Carlo region are effectively

determined by an S= quadrature order with a fine mesh structure of size zero

(neglecting the effects of any coupling with the .$,v region), the fluxes in the S.Y

are determined by a low quadrature order with a finite mesh size. Thus, when

we employ the hybrid method in order to extend the benefits of a more accurate

\fonte Carlo solution in one region to a lower order S*Vsolution in another, we

also, to some extent, extend the less accurate Sty solution into the Jfonte Carlo

problem. The importance of this effect will depend upon the amount of coupling

between the \lonte Carlo and S,y regions, and the accuracy of the S,lr solution.

However. since we place the S.V/Monte Carlo interface at least one mean-free-path

from the physical material interface, presumably placing it in an area where a low

SN quadrature order solution is sufficient, the effects should be minimal,

AS a final sample problem, we use the same cross sections and definition of

the Monte Carlo region as above, but enlarge the SN region by increasing the radius

of the cylinder to 10 cm. With iVs = 625, A’ = 200, and .V~&f= 256, we once again

perform 15 separate runs with different initial random seeds. In comparison with

Table 9--4. the average particle balance was 2.2847 x 10-4+ .5952, while the average

difference in the computed outgoing boundary fluxes was R&RR = .009!3+ ,0806,
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The average coarse mesh cell fluxes (multiplied by a factor of 10) and relative errors

(one standard deviation) are presented below at Table 9-8, along with the fluxes

from an f& calculation with 4 fine meshes per coarse mesh, and an S20 calculation

with 64 fine meshes per coarse mesh. We see that the error in the fluxes in the

S.v region does remain approximately constant, and that the hybrid flux dues

generally fall between those of a pure & and S20 calculation, with the exception of

the third mesh cell.

Table 9-8

Coarse Mesh Cell Fluxes, 5 Cm by 10 Cm Cylinder

c’M# \lc/s(3 SF3 S2”
1 lo,~~o * J-J(p3 10.Q31 10,Q19
~ 8.9503 + .0025 9,1293 8.9625
3 5.1411 * .0030 4.!3251 3.0062
4 3.0017 + .0026 2,9493 3.0096\
5 1.7S90 + .0024 1.7689 1 ~~sl

6 1.0652 + .0026 1.0540 l.o~lg

i o,6~7Q+ ,oo~5 o,6~17 0.6401
8 0,3621 + .0022 0.3589 0.36S5
9 om~ooo+ ,oo18 0.19s2 0.Q030

1 1

I 10 I 0.0932 * .0022 0.0924 0.0944 1

9.3 Variance Reduction Measures EmDloved in the Hybrid Monte Carlo \lethod

As discussed in Chapters 3 and 6, the Monte Carlo used in the hybrid method

is almost entirely analog, with few variance reduction techniques current 1y em-

ployed. However, this is not as disadvantageous as it may first appear, as can be

seen by the following arguments. Aside from the reasons previously mentioned in
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Chapter 6 (vectorization and designation of SN regions). all particle histories fol-

lowed by the hybrid Monte Carlo method result in a score, where a score is defined

as exiting the Monte Carlo region, since implicit capture is used. The only exception

to this is in the sampling of the incoming boundary fluxes in subroutine DW%SRC.

where particles which enter and remain in the same group for their entire history

are not scored in Q~”~. However. at least for the first

histories are not entirely wasted, since they are used in

outer iteration, even these

the computation of R~R~.

\Yhile almost all particle histories do result in a score. this is not sufficient to

ensure that all areas of the problem geometry are thoroughly sampled. One means

of increasing the sampling rate of a particular area, aside from increasing the overall

number of histories. is through biasing in direction. space. or energy, so that more

particles are directed into the required area. .+t present, the hybrid \lonte Carlo

method does not include any such methods. although they could be included in the

future. perhaps at the expense of some interference with the

The hybrid Monte Carlo method does use stratified

vectorization.

sampling, lS however.

in which the possible initial spatial and angular coordinates of a particle are sub-

divided. with equal numbers of particles forced to start within each subdivision.

Stratified sampling is used when sampling the fixed source, the response matrices,

and the incoming boundary

the Monte Carlo region.

fluxes, but not the S~ volumetric sources located within

Assume that we have m independent spatial and angular coordinates in phase

space, and that we wish to run .Y histories in a given \lonte Carlo calculation. For

an isotropic point source, the spatial coordinates are fixed, so the ~~alueof m is two,
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while for an isotropically distributed source, m = 4. When sampling a column of

the response matrix, we have one independent spatial and two angular m.riables,

so m = 3. Given m, we then let .V~ = Int(.V 1i“ ), and divide each independent

phase space variable into ,V~ equal intervals. Thus, we have now subdivided our

phase space into .\r# ‘“boxes”. By forcing one particle to start somewhere within

each “box”. with the specific location determined by a random number, we can

ensure a more uniform sampling of the initial phase space coordinates. Note that

for the sampling of the fixed source and response matrix. the actual number of

histories run will be ,V~, not the specified value of .V.s~ or .YR.w. When sampling

the incoming boundary fluxes, we run an additional .V - .Y# histories without

st atified sampling, after fist runnning .Y# stratified histories. in order to maintain

the proper weight ing between the individual states.

\Vhen using stratified sampling with the fixed source, we stratify the angular

9/ Y~, except for the isotropic surface fluxcoordinates by Aom = T/.Vm and Aq~ = . .

source. where Ap~ = 1/Nm (reference Section 6.6), and the beam source, where

the starting angular coordinates

where appropriate, using “boxes”

geometr:i, and Ar& = Ar2 /.Vm

spatial coordinates are sampled

are fixed. The spatial coordinates are sampled.

of Axm = &/.V~ and di~~ = Ay/.Y~ for .Y - Y ~

and &l~ = Az/iV~ for R - Z geometry. The

in a similar manner for the incoming boundary

fluxes and the response matrix, and the angular bin AflJ is subdivided into “boxes”

of Ad~ = A~/.V~ and Aqm = Aq/~V~.

Essentially, stratified sampling is “free’”, since the determination of a parti-

cle’s initial coordinates in phase space is performed outside I.lfthe tracking routines,

and is easily vectorized. Thus, the amount of CPU time lequired is negligible, and



stratification is not expected to adversely

,To see how much of a gain we achieve,
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affect the FOM under any circumstances.

if any, we examine our sample problem

(4 by 5 cm cylinder) again from two different perspectives, one in which stratified

sampling is employed in sampling the fixed source, and one in which it is not. For

simplicity. the Monte Carlo region is defined as the entire problem region. wit !I

.Y~ ~00. Thr results, in terms of int egral seif-scat tering an~ FOM,= ~~ol and ~ = -

are shown below at Tables 9-9 au 19-10 for three runs apiece. each with a difkrent

initial random seed. The average FOM for the runs without stratified sampling w-as

23.163, while that for the runs using stratified sampling w-as28.144. an increase of

12%. Thus, the use of stratified sampling results in a clear. if modest. increase in

the FO\l. (\Ve note that the FOM’S in Table 9–10 are slightly higher than those

for the equiavlent runs in Table 9-1 because the runs in Table 9-10 were performed

with a later version of the code, containing improved vectorization of some loops. )

Table 9-9

Sample Problem Without Stratification

Seed Ss FOM
o 6.5805 + .0009 ~~, 162

10 6.5771 + .0009 ~~. 472
~o 6.3640 & .0008 25. S60

Table 9-10

Sample Problem With Stratification
r

Seed Ss FOM
,

30 6.5765 + .0008 ~6, 677

40 6.5699 + .0008 29.448

50 6.5704 & .0008 28. 30~



.\not her applicable variance reduction method is the use of forced collisions, \Vit h

this met hod. the tot al optical d: ante to :he nearest boundary of the Monte Carlo

region is determined. and the probability of a particle reaching that boundary with-

bouta collision is calculated. The particle is then split into two separate particles

with appropriate weights. one of which reaches the boundary without a collision.

and thus scores, and the other which has a collision at some point, determined by

random sampling. along the flight path. Particle histories are now terminated by

the weight cutoff procedure described in Section 6.4, since otherwise they would

continue indefinitely. Each particle history now provides several scores. since it \vill

undergo multiple collsions ~and subsequent \veight reductions ) before being ternli -

nated. .+dditionally. the use of forced collisions increases the probability of a particle

scattering into another group during the sampling of the incoming boundary fluxes.

\vhich in turn increases the number of scores in Q~y’.

However. the implementation of forced collisions is not ““free”.uhlike the ase

of stratified sampling. since it substantially increases the amount of computational

time required to track a particle. This increase occurs beacuse w-enow must trace

the flight path of a particle from its collision point to tlie nearest boundary of

the Monte Carlo region, not just the nearest boundary of its current coarse mesh

cell as described in Chapter 6. Since the flight path to the nearest boundary may

cross sxweral coarse mesh cells. the relevant calculations for the distance to the

nearest cell boundary are correspondingly multiplied, In addition. the calculations

of probability of survivai to the nearest boundary and the collision poi,lt along the

flight path entail the use of exponential and natural log functions,’3 which are in

themselves expensive.
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Some prelimirlary studies on employing forced collisions with the hybrid

Monte Carlo/ S,v method have been performed during the course of this work.

Clearly. the use oi forced collsions as a variance reduction method in the hybrid

method is feasible. and offers the possibility of a reduction in the FOM. However.

the preliminary results indicate that the additional computational time requ;red

precludes any decrease in the FOM, unless a more efficient means of implemet a-

tion is used, Such an implementation would require a redesign of the vectorization

scheme described in Chapter i. in order to allow particles to be followed across

multiple coarse mesh cells. Since this would require a not insubstantial amount of

effort. and the use of forced collisions is not central to the hybrid \lonte Carlo/S.Y

problem. the implement at ion of forced collions has been left as a future problem.
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CHAPTER 10.

DIFFUSION SYNTHETIC ACCELERATION

Consider the discretized representation of the discrete-ordinates form of the

transport equation. where we have assumed a one-group. one-dimensional Cart esian

geometry with isotropic scattering and source for simplicity. In this case. the inner

iteration [Eqs. (2-22). and (2-23)] becomes

ktl/2
‘+1’2Ax, = Y.s, ;:,i Ax, + Q, Ar,,Pn(o~~~’1~2- On,-l/~) + ‘T.l On,, (10-1)

where
.Y

;~:l = E k+lfz
U’n On,, . (lo-2)

n=l

Larsen~l has shown via Fourier stability analysis that the source iterative method

[Eqs. (10-1) and (10-2)], while stable for all mesh sizes A.r,, has a spectral radius

of p = zs/z T* w here p represents the slowest possible reduction in error from one

iteration to the next, Thus, for optically thick, highly scattering regions, the source

iterative method will have a slow rate of convergence. Since these are the very types

of regions we desire to use S,V in with the hybrid method. we require some means

of accelerating the rate of convergence,

The Fourier stability analysis by Larsen also sho~vs that the most slowly

converging modes of the angular flux are those that are nearly linear functions of

p. Thus. if we could generate the exact scalar flux ~o,l in one iteration, given an
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angular flux d,(~) which is linear in p. we will have devised an effective acceleration

met hod for the source iterative met hod. Since the assumption that the angular
●

flux is linear in ~ corresponds to the PI, or diffusion theory, approximate ion of the

transport equation,: the essential idea behind diffusion synthetic acceleration is to

‘k+ 1 \$’euse the term diffusion-replace Eq. (10-2) with a diffusion-like solution for 00,, .

like. since the diffusion equation itself is often a poor approximation to the transport

equation. so an appropriate correction term must be included.

The diltusion synthetic acceleration (DS.4 ) equation for Eq. (10-1), i.e., the

‘~+] that replaces Eq. (10–2). isequation for O.,

where the correction term R is

R
1

(G;;;f,2
‘k+i/z 1

(;k+”z
‘k+l/2= .——

3sr,,+l A.r,+l - 90,,+ 1/2) - 3s~,, AJl 0,1+1/2- ~ofl-1/2’

* ;k+l/2 ‘k+i/2
! 1,1+1 -01,, ,

(10-4)

F-R,, is defined as the removal cross section ST,, - S.S,,, and

(10–3)

Eqs. ( 10-3) and (10-4) are obtained from Eq. (10-1) by taking the zeroth and

first moments, as defined at Eq, ( 10-5), then defining acceleration equations by
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;~+l/2 ‘k+l -k+i/2
- ;;:’.

-k+l/2 .
and 01,1

-k’&l/2
U.4 + Qo.1 and eliminating 02,t m terms of oo,t and

‘k+ l‘2 Yote also that the diamond difference relationship01,, . .

On,t = ~(O”,,+l/z + 0“,-1/2) (10-6)

is used.

32for the left-hand edge. consider that weTo construct boundary conditions .

have an incident boundary flux Jn, t i2 (p,, > O) ~~hichis linear in angle. i.e..

from which we obtain. by multiplying by p. and summing over pn >0.

(10-7)

( 10 -s)

For vacuum boundary conditions. .~l,2 = O. and we have the constraint ~~~~, =>.

-~~~~z /2, Thus, the DS.4 equation at the left boundary becomes

-1 Iv(732 -k+l 1 ‘k+l

3sr,l Jrl -’%)2)+~-~.1 ~~l@:;2 +%/2)+ ~oo,l/2
(lo–!l~

= :Ql Arl - R’.

where the modified correct ion term R’ is

1 -k+l/2
RI= 1 (;;:;;2 ‘k+l/2 ‘k+l/2

-;:j;j2 )+91,1 -01,1/2 - ;00$1/2 ‘
3ST,1 Arl

(lo-lo)

Similar conditions can be derived for the right boundary.

The method of diffusion synthetic acceleration was first successfully imple-

mented by Alcouffe.33 who determined that stability \vas dependent upon a consis-

tent spatial differencing scheme between the transport and diffusion-like equations.
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Later. Larsen31 showed that the use of diffusion synthetic acceleration results in a re-

duction of the spectral radius to p = .?247 ~s/~T. Diffusion svnthetic acceleration

schemes have been developed for two-dimensional geometries, including spherical

and cylindrical, as well as the outer iteration,13’33 and are f~dly implemented into

TWOD.4XT.3q

10.1 Incorrmratimz DS.\ with the Hvbrid \Iethod

As expained in Section 5.6. the hybrid method is implemented in the code

TIYOD.4XT through the inclusion of interior boundary sources. so that the sweep-

ing algorithms are unaffected. However, the inrlusion of interior boundary sources

does affect the operation of the DS.\. either reducing its effectiveness. {w~linlinatinq

it entirely for some problems.

This loss of effectiveness is essentially due to the int roduct ion of a singularityy

in the transport equation. Consider Fig, 10–1, which represents a one-dimensional

\lonte Carlo/S.v hybrid problem, The interfac~ boundary is located at /.I+ljz.

with the \lonte Carlo region consisting of the left-hand cells, and includes some

fixed source Q, while the SW region consists of the remaining right-hand cells. in

the hybrid method, Eq. ( 10-1) is essentially replaced by

k+lfz k+~/~ &, = ~~,, ;: , ~xl
~n[~~~~’1~2 - @n,, -1/2) + ~T!l@n,l

k+l12
+~n(Bn J+l/2 – 49n+,_~,~)6,$J+l. p. >0.

where h,,~+l represents the delta Kroniker funct io[l, and 13n~+,lZ is

boundary flux determined by Eq. (4-11). Not~ that s~~eepsfrom right

(10-11)

the out going

to left (p” <



O) are unchanged. in this case. and that

region are determined separately from Eq.
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the fluxes for cells in the Ilcmte Carlo

( 10-1) (reference Section 6.3).

Our goal is to derive, starting from Eq. ( 10-11), an equivalent form of the

acceleration equations of (10-3) and ( 10-4), Lye begin by replacing the interior

boundary source with an inhomogeneous source located in cell J, where the inho-

mogeneous source is defined so that it gives the identical boundary flux at r ~~1i2

for each iteration k + 1/2. Thus, we define

1
Q~+~’zAIJ = Bn, J+l/2(~n + <~T,J~~J)–0~+~!~12(~n- $sT,J.hJ). p“ >0.

(lo–lzl)

and

Q~+~’:AJJ = O. p“ <0. ( 10 – 12/))

where \ve have set S s,J = O. Equation ( 10-11) then becomes

k+l/2
~n( ‘~~~J~zlz ~~~”i AX, = 5s,, ~~,t A.r, + Q~~~t:AXJ6,,.J.‘~n,,-1/2) + ~Tl”n,t

(10–13)

Taking the zerot h and first moments of Eq. ( 10-13). Weobtain

;k+l/2 ‘k+l/2
l,i+l/2-Q

‘k+l’2AX, = Ss,lS~,,,.A~, + ~$~1’2AtJ6,J (10 - 14)
1,1-1/2 + ~~J Qo!l

and

~ ‘k+l/2 1 -k+~~z ‘k+l/2
j (;::;{;2 -Q2,, _,,2)+ &’o,,+l/2 -’&,,2)+%c’,,, -k+ ’~2Art = ‘k+”2Ql,J JXJ~l,J

(lo - 15)

where the moments of Q~+~’2 are

d:~’2 = ‘~J~],z - ~~,;~;;; + ~sT,JArJ(~~,+,/2 ‘+ ’k+l/2) (10 - 16,1)+ %,.)-1/2
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Monte Carlo Realon Sn Reaion
w *.. .

1: I -b

n
J-1/2~ ‘J+l/2!

.
n

J

Figure 10-1 One-Dimensional Hybrid Monte Carlo/S~ Geometry
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and the plus sign denotes summation only over the positive g n.

lVe then define acceleration equations

‘k+l ‘k+l
01.1+1/2 - *1. t-l/2

-k+ ’A.r, = s.%, ;:-f ’Ar, + i2p-J’’2&&J (10– 17)+ ST.I 00.,

and

9
1 ‘k+l

;(;;;;;;2
‘k+l/2

- ;;::,,,
--k+l&, = Q;yhlbt.l.

- *2,,.4 + ~@o.1+1/2 ) 4 ~T,l*l$,

(10-1s)

Subtracting Eq. ( 10-17). evaluated at i + 1, from the same equation evaluated at /.

and using the diamond difference relationship. we obtain

‘k+l 1
01,1+1 -k+*+ ;(%,l+l- ~1,1

‘k+l
AJ’,+1 ;$::l + Sl?, ,Arl 00,, ) =

i.
(lo- 19)

; (h+I,J +~,,h~~l’2A~J.

From Eq. (10-18)+ we substitute in for ~Y~~l and ~~~’ tO get
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Finally. substituting in for the second moments from Eq. (10-1.5), we obtain the

acceleration equation
,

-1

lr
- -R.1+1 ~~1+1

‘4

where R is as defined at Eq. (10–4). Thus. by replacing the interior boundary source

with a distributed source in cell J, and setting SS, J = 0, w-eobtain an acceleration

equation almost identical in form to that of Eq. (10-3). The boundary crmdit ions

are identical tti those of Eqs. ( 10-9) and [ 10-10).

\Vhen Eq, f 10-21) is converged. and WY=let Sri+, = ST,, and ~.r,~l = A~,.

it reduces to

l--
01.1+1-01,,+; SRM(OO,, +I + 00,1) = ;(d,+l, J +P1, J) QO,)AL (10–W)

Comparing thi> with the zeroth moment of Eq. (10-13). we see that the diffusion

acceleration equation [Eq, ( 1O-2J )] converges to the transport equation. as requir~d.

10>Q .~~ Dlication of the Hvbrid DS.4 \lethod to a SamDle Problem

We now apply the diffusion synthetic method derived above to an appropri-

ate sample problem, The sample problem consists of a one-dimensional mesh in

Cartesian geometry. 10 ~m in kngth. with isotropic scattering, Zr = 1.0 cm, and
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~s = 0.!35cm. To avoid negative fluxes. we set Lr = .25 cm. so there are a total of

40 meshes. I-acuum boundary conditions are used on the left and right-hand edges.

\Ve begin by studying the single region. pure S.v problem. with a fixed source

located in cell J = 20, and a convergence criteria of 10-4. IYe first apply the

.ource iterative method of Eqs. (10-1 ) and ( 10--’2). which requires 98 iterations for

convergence. Next. \ve apply the DS.A method of Eqs. (10-3) and (10-4). and find

that the number of iterations required for convergence is reduced to 6.

For the hybrid method, we divide the problem geometry into S.\ and ‘“llonte

Carlo’” regions. \vhere the S,y regions consists of cells 21 through 40, The fixed

source in cell 20 is now replaced by knowm boundary fluxes at the \lonte Carlo/ S.\

interface. where the boundary fluxe: used in tb]s case are those determined by the

source iterative method above. \Ve first apply the hybrid equivalent of the sourt e

iterative method. Eqs. (10-11 ) and 110–2), where 2S, J = 0. and fincl that it

73 iterations for convergence. and results in scalar fluxes in the S,Y region

within .l(Z of the standard source iterative method, Xext, \ve implement

re(~lljres

that are

Eq. i 10-

21) with the hvbrid problem, and find that the hybrid DS.4 method reduces the.

number of iterations required for convergence to 8, again with fluxes that are within

.1X of the S,v region values.

Comparing the act ual rates of convergence (i.e.. the ratio of the error in one

iteration to the error in preceding iteration) between the four differe ..t met hods,

we see that the standard source iterative method demonstrates a spectral radius of

P = .93. while the hybrid source iterative method has p = .S9. The maximum ratio

in the standard DSA method is ,20, while that in the hybrid DS.4 method is .2S.
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Thus. we see that Fourier stability analysis accurately predicts the spectral radii for

the source iterate and standard DS.4 methods (.93 versus .95, and .20 versus .21,

respectively ). while the hybrid source iterate method has a spectral radius slightly

lower than the standard source iterate method (.89 versus .93 ). and the hybrid DS.4

method has a higher spectral radius than the comparable standard DS.\ method

(,28 versus ,20),

Since Eq. (10-11) is very similar to Eq. (10-1). the standard source iterate

method. we would expect the two methods to posses similar convergence properties.

Comparing the respective DS.~ equations. howe~~er.[Eqs. (10-3) and ~10-21 )]. we

4k+l/2
see that the hybrid DS.4 method contains the unaccclerated source term QO,~

[Eq. (10-16a)]. so that. depending upon the magnitudes of ~~,’~~f~~and ~~,$~f~~.

the spectral radius of the hybrid DS.+ method is increased. However. by setting

T ‘+. k+ll?
-s.1 = O throughout the entire \lonte Carlo region. 00,J-I, Z axld 01,J_1,2‘h’kb~~z vanish

for our problem geometry. and the source term in Eq. (10-21) goes to a constant,

In this case, we expect the spectral radius to be the same as. or less than (since

we have reduced the overall amount of scattering). the standard DS.4 method.

Upon implementing the change, we find that the number of iterations required for

convergence is reduced to 7, with a spectral radius of .16.

10.3 Implementation of the Hvbrid DS.+ \lethod in TIVODANT

The above discussion and sample problem is based on a one-dimensional

geometry. In the two-dimensional geometry actually used by the hybrid method,
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however. the replacement of the interior boundary sources with an exact inhomo-

geneous source [Eq. ( 10-12)] is not feasible. Instead. as implemented by Alcouffe,3s

we construct a fixed source. located inside the Monte Carlo region. from the interior

boundary sources, and zero out all within-group scattering sources. This construc-

tion has proven to be as successful in accelerating the inner iterations as the standard

DS.\ method. i.e.. the i:umber of inner iterations required for an S.v calculation in

the hybrid method is less than or equal to the number of inner iterations required

by the standard Sy method.
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CHAPTER 11.

BENCHMARKS

\Ye now apply the hybrid \lonte Carlo/ S.~ met hod to se~-eral relatively sim-

ple problems. where the results of standard S.y calculations may be used as bench-

marks. .+ltbough we have examined the behavior and validity of the individual

components of the hybrid lIont e Carlo/ S,v theory in the preceding chapters. the

purpose of these comparisons are to assess the overall, performance and accuracy

of the hybrid method in a semi-realistic environment. Thus. we use the set of 16-

group Hansen-Roach cross sect ions previously described in Chapter 8 with problems

of varying geometry and composition. where the selected materials and specified

densities are representative of those encountered in typical calculations. Xote that

these problems have been selected for their ease of comput at ion by the standard S.y

method. and are thus not necessarily typical of the types of problems the hybrid

method was designed for.

11.1 The GraDhite Block Benchmark

We begin by examining a 22 cm by 22 cm homogeneous block (.Y - }- geom-

etry), where the block is composed of graphite with a density of 1.6 gm/cm3. The

block is divided into 121 coarse meshes with dimensions of 2 cm by 2 cm. with an
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isotropic distributed source located in the center of the block between r = 10 to

Iqcm. y= 10 to 12 cm. the source neutrons being emitted in group 1. TiLc mean

free pat h of neutrons in this material ranges from Al = 10,1 cm. for group 1. to

~~d = ~.s cm, for group 16. Since there are no fissionable materials present in the

problem geometry. and the Hansen-Roach cross sections do not include upscat ter.

the calculation is a pure downscat ter problem and requires only one outer it erat ion.

Sote that. for group 1, the source is located only approximate ely 1 mfp from the

block edge. so that transport effects may be expected to be important.

For the hybrid l.fonte Carlo/S.~ code. we designate the region x = 8 to

x =12cm. y=8 toy= 12 cm as the ‘“fi~ed””llonte Carlo region (Fig, 11-1). and

specify a boundary layer thickness of 1 mfp. If we examine a group-dependent cross-

sectional view of the block (Fig. 11--2). we see that the actual \Ionte Carlo portion

of the problem geometry resembles an inverted wedding cake. and that the \Iont e

Carlo region comprises the entire problem geometry for groups 1 and 2. Thus. the

calculations for the first two groups will be done entirely by \lonte Carlo. while all

other groups will require some linkage bet ween the \lont e Carlo regions and S,S

regions via response mat rices. .\n S~ solver is used in the S,\ region. with one fine

mesh per coarse mesh.

W’e use 250,000 histories to sample the fixed source. located in group 1,

l~hile this results in relative errors (one standard deviation) of less th:ln 3% for

the coarse mesh tracklengths in the first two groups, and less than 5% in the fifth

group, the error rapidly increases as we move further down in group structure, since

the number of particles reaching a given group decreases. However, the need for an

accurate determination of the flux due to the source alone also decreases. since most
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of the flux in low*erenergy groups is due to particles that have crossed bet’i’een the

2Iont e Carlo and S v regions, so the large variances in the fixed source calculation

at lower energy groups are not disastrous. In contrast. as can be seen at Table 11-1

below. approximately the same number of histories are used to sample the incoming

boundary fluxes for each group. regardless of their size. This preserves the accuracy

of the solution at lower energy groups,.

Table 11-1

Xumbers of Histories and Particle Balances. Graphite Block Problc m

Group LF.V LBF TR.tf TB F R&RR PB.+L
3 1.5739e-1 3,~717e.~ 8~.944 95.797 .0071

1

4 8.3656e-’2 3,~090e.~ 82,944 95.803 +’=.0069 .- -
5 ~.~l~~(+q 3.~3~~e.~ f5~e~3g 71.S56 .0074 ‘2.4083e-4
6 8.344Ue-3 1.9599e-2

T
Fj~.~’js 71.832 ,0072 9 7063e-4

7 2.6200e-3 1.0462e-2 6~.~os 71,$51 .0074 ?.32i6e-3
s S.1600e-4 5.SO15e-3 6~a~)S 71.S54 .0069 _~.~SJfJe.~

9 2.5600e-4 3,~61&.3 ~~.q)~ 71.S61 ,0072 -l,6513e-3
10 ~,~oooe-~ 1.4992e-3 62,208 71.823 .0071 -7.0129e--4
11 ~.~oooe.~ 9.0443e-4 6Q,90~ 71.s55 .0076 S.6142e-4
12 1.6000e-3 6.3568e-4 6W~oS 71.S63 .007. 2.3851e-4
13 8.0000e-6 3.88i6e-4 62,20$ 71,s53 ,00’76 1.t3S84e-4
14 4.0000e-6 2.3105e-4 6Q,Qo$ 71S61 ,0074 S.l15Se-5
115 4.0000e-6 2.1708e-4 ~~.Qo8 71.850 .0070 5.1439e-4
16 3.9981e-6 3,~~~9e.~ (j~,~jg 71.s46 ,0063 6.0797e-3

L~.y - Particle Source in Monte Carlo Region Due to Sampling of Fixed Source
L~ ~ - Particle Leakage from sN Region into Monte Carl - Region

T~.$f - Total Xumber of Histories Used in Response \lr Calculation

TBF - Total Number of Histories Used to Semple Incoming doundary Fluxes
R~~~ - Relative Error Between Calculated Outgoing Boundary Fluxes

PBAL - Total Particle Bd.mce for G.oup

.For comparison. we pwforrq se~erql standard S7,ycalculations with varying quadr~.-
.

ture order and fine mesh structure, The CPU times required for the various S,S

calculations, as well as the hybrid calculation, are shown below at Table 11-2, where
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the notation 1 x 1 or 2 x 2 refers to

fine mesh per coarse mesh or four

the fine mesh structure

fine meshes per coarse

used in the calculation (1

mesh, respectively ), The

part icle leakage as a function of energy group is shown at Fig. 11-3. while the total

reaction rates for the coarse mesh cells along the left edge of the block are shown

at Fig. 11-4 for grol~p 1. and Fig. 11-3 for group 16.

Table 11-2

Computational Times. Graphite Block Problem

From Fig. 11-3. we see that the leakage calculated

closely matches that calculated by the S,y method over all

by the hybrid method

16 energy groups. even

though there is over a factor of 103 decrease from group 1 to group 16. In Fig. 11-

4. the 56 and 512 calculations cleariy show ray effects, while the 3fC/S(j and S20

calculations do not, Of course. ray effects are no longer a factor by the time group 16

is reached, so that ail S.y calculations are within 5Z of one another, as is the

hybrid calculation. It is somewhat surprising that the hybrid calculation shows little

stat istical variation in Fig. 11-5, even though the reaction rates are two orders of

magnitude less than those in group 1. This may be due to the “smoothing” effects of

the S,Y op .xator in the hybrid code, since the left edge is entirely contained within

the Sty region for group 16 (reference Fig, 11–2). .4n attempt to obtain the same

,, ●
sccurac~ with analog Jfpnte Carlq alotae would require a much \arger num$er of

. ● .
histories to be run than for the hybrid case, since the probability of an individual

particle reaching group 16 without leaking is less than .04%, Thus, for an equal
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number of total hist orim (approximately 2.2 million). less than 900 would even

reach group 16. clearly not enough to provide an adequate sample. The agreement

in Fig, 11-5 also illustrates that the hybrid method is capable of producing accurate

results even after a large amount of coupling has occurred between the Monte Carlo

and S.i- regions.

The next benchmark problem consists of a uranium (I-”02) rod surrounded

by a graphite reflector in 1? - Z geometry, The uranium rod has a radius of 2 cm.

a density of 10 gtn/cm3. and is 10X enriched in C233. while the graphite reflector

is 13 cm thick and has a density of 1,6 gm/cm7. The height of the cylinder is

30 cm (reference Fig. 1l--6). An isotropic source is spatially distributed uniformly

throughout the uranium rod. with an energy spect Lwmidentical to the fission spec-

trum of U235, for which only the first six groups have non-zero values. The mean

free path in uranium ranges from Al = 6.3 cm to A16= ,6 cm. while that in the

graphite varies between J1 = 10.1 cm and ~lfj = 2,8 cm, The problem is divided

into coarse meshes of size 1 cm by 2 cm.

For the hybrid calculation, the region consisting of the uranium oxide rod

is designated as the Ilonte Carlo region, and a 1 mfp boundary layer is specified,

resulting in the lfonte Carlo/S.v structure shown at Fig. 11-7. An S6 solver is used

ir. the S,lI region, with two fine meshes ( 1 x 2) per coarse mesh, 250.000 histori~ are.

lwed to sample the fixed source, resulting in relative errors in the tracklengt hs for the

first five groups of less than 3%, and increasing afterwards as the group sampling

.,
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frequency decreases. The size of each response matrix is identical. with 77.760

histories used to sample each one. The MCnte Carlo region source (including fission

and downscat ter ) due solely to the fixed source. the size Gf the incoming boundary

currents, and the numbers of histories used to sample the incoming boundary fluxes

are shown below for each group and outer iteration. The particle balance ior all

groups was ~ 7 x 10-A.

Table 11-3

Xumbers of Histories, Cranium Rod Problem

Group LF.Y L~Fl TBFI PERR LBFt TBZ

1 ~.l$oge.1 ~.sis~~.s 64.3% .0103 ~.~o~oe-~ 441
~ 4.-i949t=-l ~.$6~~e-~ 61.306 .0093 ~.~ol~e.~ 434
3 ?.SWe-l ~.s9~~e-~ 36.S21 .0104 ~.~g30e.~ 467
4 3.4305e-l 6.8156e-2 55.327 .0089

-----
a.dla~e--l 444 !

5 ~,3938e.~ 1.0609e-1 53.81!3 .0083 8.3TOle-4 439
6 7.1481e-2 i.8222e-2 52.395 .0085 6.0S19e-4 -p-j

i 1.33-k4e-2 ~.~133e.~ 5~,3~4 ,0079 3.20i4e-4 .pz

8 2.5531e-S 2.2454e-2 52.322 .007s 1.6661e-4 411
!3 4,6359e-4 1.1559e-2 5~m316 .0079 8.5007e-5 410
10 3,0839e-5 4.i356e-3 5q.319 .0090 3.4983e-5 414
11 4.6383e-6 2.5691e-3 32.319 .0081 1.SSOOe-5 418
l? 0,000@e-O 1.6111e-3 52.323 .0089 1.1960e-5 QA

13 0,0000e-O 9.~686e.4 52,391 .0083 6,s~99e.6 Q 1 *

14 0.0000e-O ~,~49~e.4 5~q32~ .0083 3.9635e-6 431
15 0.0000e-O 4.5132e-4 5Q,310 ,00S7 3.3694e-6 ~~~

15 0.0000e-O 5,5720e-4 fi~m~l~ I .0074 4.1072e-6 ~~~

Note that the size of the incoming boundary fluxes for the second outer iteration

is approximately a factor of 100 less than the first outer iteration. Since the fissile
● . .. . . .

material is contained entirely within the llonte Carlo region, most of the multipli-

cation within the system is determined when the fixed source is sampled, This is
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confirmed by comparing the fission source (FS ) resulting from the sampling of fixed

source (6.73 x 10-2) with the total fission source (7.67 x 10-2).

The hybrid results were compared with three different S.v calculations. The

comput at ion times. number of outer it erat ions required for convergence. and ctil-

culated fission sources are shown below at Table 11–4. The particle leakage as a

function of energy group is shown at Table 11-5. while the total reaction rates along

the centerline of the cylinder (r = .3 cm) are compared at Figs, 11-7 and 11–S below

for groups 1 and 16, respectively.

Table 11-4

Computational Times and Fission Sources. Cranium hod Pmblern

Type I CPL- Time # Outers I FS
stj/1 x 2 “8.9sec 3 i.~~e:~

s,~/2 x 4 5..6 sec 3 7.70e-2
s12/4 x s 127,0 sec 3 T,69e-2

[ Mc/sfj l~~,s Sec ~ 7.6ie-2 I

.
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Table 11-5

Particle Leakage. Cranium Rod Problem9

Group 5G/1 X ~ s~2/’2 x 4 \lC/SG
1 9.~6e.~ 9.37e-!2 9.36e-2
~ 2.56e-1 ~q~8e-1 2.5ie-l
3 1.05e-l 1.05e- 1 1.06e-1
4 i.61e-l 1.61e-l 1.60e-1
5 1.73e-l 1.i~e. 1 1.y~~-1

6 1.09e-l 1.08e- 1 1.08e-1
i’ 5,96e-2 5.86e-2 5.86e-2
8 3,45e-2 3.38e-2 3.37e-?
9 1.86e-2 l.~~e-~ l.~~e.~

10 i.98e-3 i.7ie-3 i. SOe-3
11 4.49e-3 4,36e-3 4.38e-3
l? ~,~~e.3 2. i5e-3 I 2.ii’e-3

t 13 1.63e-3 1.ZSe-3 1.59e-3I
14 9.09e-4 8.i9e-4 8.S;e-4r
15 i,81e-4 7.5%-4 7.61e-4
16 9.87e-4 9.50e-4 9.61e-4

From Table 11-5. we see that while the hybrid lIC/S6 and S12 particle

leakages are in good agreement with each other, the standard SGcalculation differs

somewhat. not only in the first group. which is not surprising. but in lower energy

groups as well. Thus, the advantage of using the more accurate l~onte Carlo method

in the uranium rod region carries through for all energy groups. Examining Figs. 11-

8 and 11-9, we see that the hybrid SGcalculation. despite some statistical variation

since the cent erline region is cent ained entirely within the Jfont e Carlo region,

agrees well with the S12 calculations, while the the S6 calculation is clearly off. If

we compare the reaction rates at the outer edge of the cy!irider (Fig, 11-10). we see
● . ,- .

that ~he hybrid results have b~n sm~ot hed by the S,v opera{or, “and are in good
.

agreement with the S12 calculation, while the standard & results are slightly larger.
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The hybrid lIonte Carlo/SG calculation clearly provides more accurate results for

all regions of the problem than a standard & calculation. even for this simple

geometry. This is also reflected in the respective fission sources computed by the

respective methods.

11.3 The .M/C”235 Block Problem

lye now examine a more difficult problem for which the hi ‘)rid method is

better suited. The problem geometry consists of an aluminum plate. 10 cm long

and 3 cm high. with a density of 3 gm/cm3. sandwiched between two uranium

(C02 ) blocks. each 10 cm long and 3 cm high. The uranium bloc~s are 100$?

enriched in L-233. and have a density of 10 gm/cm3. The source consists of an

isotropic boundary source on the left edge. located bet~veen y = 6 to y = 7 cm. in

group 1 (reference Fig. 11-11). The mean free path in the aluminum plate ranges

from & = 12.2 Lm to As = 3.9 cm, while that in the uranium blocks ranges from

A* = 6.3 C’n to ~~G= .2 cm. The problem is divided into coaxse meshes of size 1

cm by 1 cm. Since the length of the aluminum plate is approximately 1 rnfp for

the source neutrons, an accurate determination of the fluxes at the right-hand edge

should present problems for the standard Sty met hod.

The aluminum plate is designated as the lIonte Carlo region, and a 1 mfp

boundary layer is once again specified. resulting in the Monte Carlo/S.v structure

shown at Fig. 11-12 below, where the Monte Carlo region comprises the entire

problem geometry for the first two groups, Since the flux decreases rapidly after
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group 7, the calculations for groups 8 through 16 are done entirely by S.v..%pprox-

imately 530.000 histories are used to sample the fixed source. resulting’ in relative
●

errors in the coarse mesh tracklengt hs of less than 2% in group 1, 11C71in group 6.

and 67X in group 7. 103,680 histories apiece are used to sample each response ma-

trix in groups 3 through 7’. The particle balances for the ilonte Carlo/S,v groups

were all less than 5 x 10-~. while the RERR values were between .0058 and .0073.

The group sources and number of histories run are shown below at Table 11-6 for

group 4. where GITXO is the outer iteration number. L s.y represents the fission

source from S.~ regions to the group 4 Monte Carlo region. and TSs is the number

of histories used to sample the S,y fission source. Sote that Ts,y is a constant. and

T~f. goes to a constant, because their respective sources start at or reach a level

where only one history is used to sample each state. .\lthough some of the sampled

residuals for later outer iterations contain negative elements. their magnitudes are

small and do not adversely affect the calculation.

Table 11-6

Source Strengths and Xumbers of Histories, Group 4. .41/L-235 Problem

bITxO LSaV Ts,x LBF TBF

1 - 3.3999e-2 119.767
~ 3.3919e-3 ~,i~o 9.~66~e-3 32.470
3 3.6550e-4 6q7~o 1.4379e-3 4S61
4 5.2505e-5 6.7~() 2.14S5e-4 617
5 i.24i8e-6 6,7~0 2.96Sle-5 480
6 1.0413e-6 6,7~0 4,6696e-6 480
7 1.9434e-7 6,7~~ 9,~~~~e.~ 480

Table 11-7 below lists the run times, number of outer iterations required for con-

vergence. and the calculated fission sources for the hybrid method, various S.~ runs,
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and a Monte Carlo run. The Monte Carlo run was performed by defining the entire

problem geometry as the Monte Carlc region. and increasing the numbel of his-

tories used to sample thc fixed source to approximately 2.1 million. Figure 11-13

presents a comparison of particle lealiage for the Ss case and the hybrid method.

Figs. 11-14 and 11-15 show the group 1 total reaction rates for the left and right

edges. respectivley, while Fig. 11-16 shows the left edge total reaction rates for

group 6. and Fig. 11–17 the same for group 7.

Table 11-7

Computational Times and Fission Sources. .M/C235 Problem

I Type CPU Time # Outers FSI
Mc/s6 144.7 Sec 7 ,9426

MC 135.6 sec .9440
s~/2 x 2 13.6 sec i’ .!367’3
s,~/2 x 2 33.3 sec

.
.9444

s~o/2 x 2 9;.9 sec : .9544
sJ~f2 x 2 ~06.~ sec 6 .9560
s30/4 x 4 458.5 sec 6! .!3462

.\lt bough there are 18 orders of magnitude difference between the particle

leakages between group 1 and group 16 (Fig. 11-13), both the hybrid method and

the S.v (all S.y runs showed similar leakages) are in good agreement over the entire

spectrum. In contrast, the pure IIC calculation (not shown). with an approximately

equivalent amount of computational effort, shows zero leakages past group 8 since.

for analcg lfonte Carlo. the probability of particles reaching group 8 is vanishingly

small for a reasonable number of histories, Thus. the hybrid llonte Carlo/S.y

method is clearly preferable to a standard analog llonte Carlo calculation.
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Surprisingly. all the S.v calculations were within about 13% of one another

when determining the left edge tot al reaction rates for group 1, ah bough thc best

agreement with the llonte Carlo and hybrid Monte Carlo/SG runs was obtained with

the S30/4 x 4 calculation (Fig. 11–14). As expected, however, the S.V calculations

exhibited severe ray effects when trying to determine the reaction rates at the right

edge (Fig. 11-15 ), and a high quadrature order and small mesh size was required to

mat ch the hybrid results. The hybrid method mitigates any ray effects. of course.

since the entire calculation for group 1 is performed by the Monte Carlo method.

By group 6. the S.x no I.onger suffers from ray effects. and all calculations,

including the llonte Carlo and hybrid method. are in good agreement (Fig. 11-

16). Fc- group 7. however (Fig. 11-17). it is evi?ent that statistical variations are

be,. ,lg to severly affect the accuracy of both the analog lionte Carlo and hybrid

Monte Carlo/S.Y methods. It is interesting to note, however. that while both the

lfonte Carlo and the hybrid llonte Carlo/ S.y calculations required approximately

the same amount of computational time ‘ eference Table 11–7 above). the hybrid

method appears to match the S.Y results better. Of couse. if a biased Ilonte Carlo

met hod that increased the number of samples in lower energy groups was employed.

it might reduce the variance of the results for a given computational time,

The advantage oft he hybrid Monte Carlo/ Sw method is most clearly shown

at Table 11–7, where an S30 calculation with reduced mesh size is required to match

the results of a hybrid 56 calculation in determining the fission source. Note that

the standard S4Vmethod requires over three times the amount of computational

time to match the results of the hybrid lIonte C’arlo/S.v method.



CHAPTER 12.

CONCLUSIONS AND FUTURE EFFORTS

The hypothesis of thehybrid Monte Carlo/S4v method is that. by coupling

the two methods together in the same problem. we can solve certain types of prob-

lems more efficiently than either the Monte Carlo method or the S.lr method can by

themselves. ~~hile Alcouffe and Filippone demonstrated the feasibility of the hybrid

approach for one-group problems in simplified .Y - }- geometries with fictitous cross

sections.l”l 1 the abilitv of the hvbrid method to handle the complexities posed by. w

more realist ic problems remained undetermined. The goal of this dissert at ion was

to extend the capabilities of the hybrid method and examine its feasibility when

applied to problems containing such complexities,

To allow the hybrid method to solve more complex problems. the following

significant additions were made:

a, The ability to solve multigroup problems (including upscatter and fission)

using response matrices with reasonable storage requirements and variable

thickness boundary layers.

b. Improved performance of the diffusion synthetic accelerator within the S.v

portion of the method.
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c, .+pproximately a five-fold increase in the speed of the Monte Carlo calcula-

tions through vectorization.

d. Developing Monte Carlo tracking algorithms which. allow the hybrid method

tc solve any problem geometry and material composition which can be input

into TIVOD.+XT for .Y -1- or R - Z geometries.

e. Generalizing the hybrid Monte Carlo method to allow use of the multigroup

S.Y cross sections.

f. Incorporating anisotropic scattering into the llonte Carl~ collision routines.

and

g. Developing limited estimates of the errors in the llonte Carlo calculations,

l~ith these additional capabilities, we were able to appl!; the hybrid llunte

Carlo/S.y method to the benchmark problems of Chapter 11, For the first two

benchmarks (Graphite Block and Cranium Rod ). even tbough not ideal cases for

the hybrid method, we saw that the basic premise of the method held, That is.

we were able to obtain results with a low order S*Vsolver in the hybrid method

that required a higher order (i.e., larger quadrature order and smaller mesh size)

standard S~ solver. With the third benchmark (Alumi,num-C’235 Block), which

was better suited for the hybrid method since it combined both optically thick and

thin regions, we saw that the hybrid method clearly outperformed the S,v method.

Of the hybrid method enhancements listed above, the most important is the

ability to handle multigroup problems. lye have shown that the hybrid method



is capable of solving not just mult igroup problems involving downscat ter only. but

those with upscat ter and/or fission as well. and in reasonable amounts Gftime. lVit h

improved llonte Carlo methods (i.e.. the use of non-analog Monte Carlo). we can

expect orders of magnitude reductions in the computational time required by the

Ilonte Carlo portion of the hybrid method. Since the llonte Carlo method usually

requires the large majority of the computational time. this will further enhance the

practicality of the hybrid method.

The second most important addition to the hybrid method is that we are able

to implement it within TIYOD.+XT without adversely affecting the acceleration of

the S,y inner iterations. Thus. the efficiency of the S.y methods in T\YOD.4XT

are retained for pure downscatter and non-highly multiplying problems. l~hile

this may seem unimportant in relation to the llonte Carlo computational times.

experience has shown that the expense of unaccelera:ed S,y calculations rapidly

becomes prohibitive for complex problems in two dimensions. However. for highly

multiplying problems. some means of accelerating the outer iterations in the hybrid

method is still required, if it is desirable to apply the hybrid method to these types

of problems.

It would also be desirable to use the hybrid method in problems involving

both geometrically complicated and geometrically simple regions, where the llonte

Carlo method would be used in the geometrically complicated region. and the S,Y

method in the geometrically simple. To include geometrically complicated (i.e.,

three dimensional) regions in the hybrid method, additional input to define the

geometry and more extensive tracking routines would be required, in addition to

some averaging algorithm for the transition between the three dimensional lfonte



Carlo region and the two dimensional S.v. In addition. since the Monte Carlo region

is no longer necessarily optically thin, more extensive ~ariance reduction measures
s
would be required. Xone of the above items would appear to require any subst ant ial

revisions in the hybrid met hod’s theory, while the ability to handle geomet ricaly

complicated problems method would greatly increase the number of ‘-real”’problems

the hybrid method could be applied to.

Before the hybrid met hod could be applied to any ‘“real’”problems. however,

the ability to accurately process cross sections including anisotropic scattering must

be added. .\s previously pointed out. however, there are already several relatively

straightforward methods in existence for doing so, any one of which could be em-

ployed with the hybrid method, It might also be noted that use of anisotropic

scattering would enhance the desirability of the hybrid method. since the computa-

tion time for higher order S.y quadrature sets increases with the degree of anisot ropy

due to the increased number of moments that must be computed,

Perhaps the one unresolved issue in the application of the hybrid method

to more complex problems is the ability to provide a rigorous error estimate in the

quantities of int crest, as all standard Jlonte Carlo codes currently do, .\s previously

explained, standard wmiance est imat ion techniques are not practical to implement

in the hybrid technique, and it is currently unclear as to whether some other means

of estimating the variance is even possible, A more fruitful approach may be that

of enhancing and expanding the error estimates already provided which, although

not rigorous, at least provide some indication as to the precision of the llonte Carlo

calculation.
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.\lt bough work in the areas mentioned above is required before the hybrid

method can be applied to more complex problems for which it is better suited,

we have shown that the hybrid method is capable of solving multigroup problems

in .Y - 1“ or R - Z geometries using the S,Y method while mitigating standard

Sty deficiencies such as ray effects and streaming etTects. Those areas requiring

additional work have been delineated and. wit h the possible exception of error

estimates, it seems clear that there are no significant remaining obstacles towards

developinent of a practical hybrid }Iont e Carlo/ S,y code. Since. even with basically

analog llonte Carlo techniques. isotropic scattering. and simplified test problems.’

the hybrid method generates run times of the same order as S,y calculations for

comparable accuracy. we believe that further development of the hybrid JIont e

Carlo/S.y method is warranted. and that it will furnish an attractive alternative to

existing solution methods for certain types of problems.
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