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DYNAMICS OF FISSION AND FUSION
WITH APPLICATIONS TO THE FORMATION OF SUPERHEAVY NUCLEI*

A. J. SIERK and J. R. NIX
Los Alamos Scientific Laboratory, University of California

Los Alamos, New Mexico, United States of America

ABSTRACT f

Within the framework of the liquid-drop model we study various aspects
of the dynamical evolution ~f nuclei: the effects of viscosity on the sepa-
ration of fission fragments, the fission of very large nuclei, and the fu-
sion of two heavy ions. The effect of viscosity on the post-scission motion
of fission fragments is calculated by assuming an Irrotational flow pattern
in spheroidal fragments. Ae the viscosity increases from O to ~ , the fie-
eion fragments remain prolate for a longer the, which +.ncreasesthe pc)st-
ecission fragment kinetic energy. This increase is about 13 W! fo: the
symetric fission of 2S6U.

We calculate the dynamical path from an Initially spherical configura-
tion to scission for nuclei with fissility parameter x between 1.0 and
106 by use of the three-quadratic-surfaceshape parametrization. Tho iner-
tias are calculated by means of the Werner-Wheeler approximation for irrota-
tional flow. The motion IS assumed nondissipative. As the Coulomb energy
increases, the scission configuration becomes more and more elongated. As a
s ecific example, we calculate the evolution of an initially spherical

2a8U nucleio“YG184 nuc.1.eus,formed from two It has been aug$ested that
this system might form a euperheavy nucleus by aoymetric fission. At 8cla-
sion the calculated length of this nucleus is about 14 tfmee the diameter of
the initial sphere. This result indicates that the nucleus would probably
fission into thr~e or more fragments if this were allowed by the ●hapa pa-
rametrization, To complement this calculation, we compute the ●~aticpoten--

478184 nuclaue cor-tial energy of two tangent spheroidal fragments of the
responding to $00116 and 176Ero Configuration titableagainet fission of
the ‘OOJ.16nucleus have an energy over 100 MW higher than the minimum
anergy of two tangent spheroidu and the energy of the eciasion point in th

dynamical calculation, Single-particle effects lead to a ●all local mini-
mum in the potential energy near the ephorical haavy fra~ont with a barriar

*
ThiE work woo performad under th~ auapicea of the United Stataa Atomic
EncirgyCommission.
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of about 4 MeV against prolate distortions. We conclude from these results
that the fusion-fission reaction of very heavy ions is not likely to produce
superheavy nuclei.

We study the fusion reactions of two initially spherical tangent nuclei
at various incident energies above the interaction-barrierheight. These
calculations also do not contain viscosity and use the same shape parame-
trization as the fission study. This parametrization is deficient in that
for most cases we are unable to follow the evolution to the point where the
nuclei refission. We calculate as a function of fissility parameter x the
anumnt of incident energy necessary for symmetric systems to fuse to a con-
figuration more compact than the liquid-drop-modelsaddle-point shape. As

llopd + llOpd and
!
s ecific examples we consider the symmetric reactions
2 flu + qJ*

1. INTRODUCTION

We have already seen in this symposim that dynamics plays an important
role in many phenomena in fission and heavy-ion reactions. These ‘.nclude
the division of the total energy released in fission into fission-fragment
kinetic energy and internal excitation energy, and the amount of incident
kinetic energy needed to cause fusion in a heavy-ion reaction.

The most fundamental way to study nuclear dynamics is of course to use
a microscopic approach, as discussed earlier by Pauli [1] and others. How-
evex, because of the large amount of computing that is required, it is not
yet feasible with such approaches to solve the equatiorzgof motion for the
time evolution of the system. We therefore use a much simpler macroscopic
approach, where the dynamics is treated in termsof classical hydrodynamical
flow. Previous studies of this type [2-4] have been limited primarily to
nonviscous irrotational flow and have been applied only to the fissio .of
nuclei with fissility Parameter x lees than 1.0. (The fissility parameter
is defined as the ratio of the Coulomb energy of a spherical sharp-eurface
drop to twice the apharical eurface energy.) Natural.extensions of this
earlier work include the introduction of nuclear viscosity, the fission of
heavier nuclei, and the study of fusion reactions. Certain aspects of these
three extensions are considered in Sees. 2, 3, and 4, respectively.

In calculating the potential energy of the system, we include only thci
eurface and Coulomb energias of the liquid-drop model. Although single-
particle corrections to the potential energy are important In many specific
phenomena, they have a small influence on the average trends of dynamical
cffecte over the broad region of nuclel that we are considering. The equa-
tione of mtion are solved classically because the I)eBrogliewavelength of
tha motion IS ueually much smaller than distanc~~ over which the potential
cnersy changee by an appreciable amount. Furthermore, we do not yet know
how to ir.corporatedietiipativeeffects into a quantum-mechanicalaquation of
motion.

gion
●ral
thin

For ●all deformations, corresponding to the Sround state and the re-
Of tho fission barrier, we know that the true nuclear inertia IS sev-
tlmes the value corresponding to classical hydrodynsmical flow, and in
rugion the treatment of nuclear dynamictiin term of classical hydro-

dynamical flow is eerioualy deficient. Howaver, for larser distortion,
cuch as those in the later otagea of fisajon or near the point of first
touching in heavy-ion reactions, experimental values for inertias ara poorly
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known, and values calculated by use of the cranking model are close to the
irrotational-flowvalues. This suggests that a classical hydrodymmical
treatment may be sufficiently accurate for these larger distortions.

There are two 8eneral methods for computing hydrodynamical flow. One
method is to solve the complete Navier-Stokes equations for a viscous fluid
by means of fznite=differencenumerical techniques. A faster but more lim-
ited approach is to describe a nuclear sha?e by a mall number of coordi-
nates and to follow the time evolution of these coordinates. There huve
been some attempts in nuclear physics to use the fi~st method but no re-
sults have appeared yet. We choose the secc:~dmethod because of it= rela-
tive simplicity.

Because we are interested in both fission and fusion reactions, we
choose a shape parametrization that describes shapes occurring in bcth pro-
cesses. The shapes are restricted to axial symmetry and are formed by con-
necting smoothly two end spheroids with a central quadratic surface, which
may be either a spheroid or a hyperboloid of revolution. This parametriza-
tion contains three symmetric and two asymetric degrees of freedom, but is
limited by not being able to describe either multi-fragment fission or many
shapes encountered in heavy-ion fusion. However, even with these restric-
tions, we are able to learn several interesting properties of fission and
fusion reactions.

2. EFFFKTS OF VISCOSITY ON THE SEPARATION OF FISSION FRAGMENTS
.

One of our primary objectives is to study the effect of viscosity on
nuclear dynamics, We introduce viscosity by means of the RayleZgh dissipa-
tion function

where ~i is the time derivative of the shape coordinate qi and where ~ij
is an element of the viscosity tensor. The viscosity tensor, which ie a
function of the nuclear shape, is calculated by equating a to one-half the
rate of energy dissipation from collective modes to internal ~mergy. The
equations of motion become the generalized Lagrange equations

where the Lagrangian ~ D T - V is also a function of qi ●nd ~i . The ki-
netic energy IS T, and V la the patential energyt The introduction of vie=-
cosltyadds to the equations of motion terms linear in the first time deriv-
atives of 36 Most of the i~ertial effects are included in terms containing
eecond time derivatives of q, while the generalized forcee $ra dsacribed
primarily by terms involving the zeroth time derivative of q.

Eventually wo plan to solve the equatione of motionwith viscosity irA-
cluded for the descent from the eaddla point to aciosion. Than by COUIparLLng
the calculated moat probabla fieeion-frusmentkinetic energies with experi-
❑ental valuas, we should be able to deduce on average value for the coeffi-
cient of nuclear viscosity appropr~ate to large distortions, which is poclrly
known at present [5].



We have not yet computed ~ for our full parametrization but have stud-
ied instead the separation of two viscous fission fragments constrained to
spheroidal shapes. Although we are able to treat a more general case (un-
equal fragments rotating in a plane formed by their symmetry axes), we pre-
sent here results corresponding to the separation of equal coilinear frag-
ments. In this case the coordinates of interest are the center-of-mass
separation r and the semi-symmetry axi8 c of the spheroids. The frag-
ments are taken to be initially at rest in the configuration of tangent sphe-
roids of minimum potential energy. The inertia and viscosity tensors are
calculated by as8uming incompressible, Irrotational hydrodynamical flow.
.Thi8approximation is discussed in the appendix.

The equations of motion for the symmetric spheroids are

and
pc2 dMc

w
4wROg~c

#c--~+——- 2M 2 dc Mc C2
c

s

where the two conjugate momenta are p = Mr f and pc = Mc 6 and where
the two elements of the diagonal inert~a tensor are

M=-LM40
and

M= ‘$Motl++(Ro/c)*] ●

The quantity MO is the was of the original.spherical nucleus, RO is ita
radius, and v is the coefficient of nuclea~ viscosity.

We show in Fig. 1 the center-ofxss reparation r and the fragment
elongation u of two eymmetric fragments resulting from the fission of a
nucleus with fis8ility parameter x = 0.7. The points are given at equal
time intervals for varying values of visco8ity. The coordinates r and u
[6] are generalizations of r and c which are useful for the more complex
shapes that we consider latecs. If we bi8ect 8 reflection-symmetric8hape at
its center and define {f ) ad the werage value of the function f over
one-half the mass distribution, then r-2{z) and a= ((22) - (da)?
For two eeparated spheroide, a is exactly c/G .

In Figs. 1 and 2 the viscosity is given in termB of the natural unit
[2,3]

[1
%

q)
~(o) -2 ,

-Moe ‘o

When the secund set of liquid-drop-modelconstants of Myers and Swlatecki
[7] is used for a nucleus with fissility paramter x = 0.7 along Green’s
●pproximation 19 the line o~abeta stabilif~ [8], :~e resylting value is
lJn_ 6.73x 10 MeV sec cm D 1,08 x 10 Bm cm sec- (poi8e). It 18
m“rth noting that a direct comparison of the-
with that of familiar macroscopic systams is
●ffects.

“m-

agnitude of nuclear viscosity
misleading because of scaling



The effect of viscosity on this system, as shown in Fig. 1, is qualita-
tively similar to that on a one-dimensional harmonic oscillator. For small
values of viscosity, the shape oscillations continue with damped amplitude.
As the viscosity increases to a critical value, the fragments approach
spherical shape nearly exponentially. For very large values of viscosity
the fragments approach the spherical shape much more slowly.

We show in Fig. 2 the change in post-scission kinetic energy relative
to nondissipativemotion for fragments wi~h different amounts of viscosity.
Because two prolate spheroids have a higher Coulomb interaction energy than
two spheres with the same center-of-mass separation, the kinetic energy for
very viscous fragments is larger than that for no dissipation. For small
values of viscosity, the fragment energy is lees than that for no viscosity
because of the increased time the system spends with a significant oblate
deformation relative to the time with a prolate shape.

3. FISSION OF VERY LARGE hWCLEI

Ihwy-ion reactions that might ptoduce superheavy nuclei lead to sys-
tems with fissility parameter x greater than 1. It is therefore important
to know the fission properties of such ay~tems, which are already being pro-
duced in heavy-ion reactions.

We calculate the dynamical evolution of nuclei with x 2reater than
1.0 by use of the three-quadratic-surfaceshape parametrization. The ef-
fective masses for irrotational flow are calculated by means of the Werner-
Wheeler method, where the flow is approximated by circular layers of fluid
which move along the symmetry axie and change their radii but do not lose
their disk-like shape [2,3]. Viscosity is not included. The initial condi-
tions correspond to starting at a spherical shape with zero kinetic ener8y
(at t=-=), In Fig. 3 we show the division of the energy released in fis-
sion as a function of x. The energy is divided into translational kinetic
energy (acquiredbefore and after sclesion) and deformation energy of the
fragments at infinite reparation. The Coulomb forces cause an increase in
deformation energy at ecisaion for lsrge values of x, with more than half
of the energy release going into deformation energy for x greater than
1.42. However, this large deformation energy is partly a result of our
method of parametrizing the nuclear shape. Since we restrict the system to
binary fission, it cannot reduce ita large deformation energy by flesionlng
into thzee or more fragments.

Ae a specific example, we consj.derthe 47G184 ayetem, which can be
formed from the fusion of two 2~eu ~l~cleio We investigate this problem from
two complementary points of view: the dynamical evolution of an initially
epLarical 476184 nucleue, and the static potential energy ae a function of
fragment deformation for tw tangent spheroidal fission fragments from the
same nucleus.

In Fi
!

;64 we present the sequence of ehapea followed by an initially
spherical 184 nuc.leuewith 1 MeV of energy in the fission degree of fre@-
dom at time intervals of 10-21 sec. The Coulomb forces cause a very large
frasment elongation, to a maximum length of more than 14 times the initial
diameter of the sphere. This fact euggqata thnt multi-body fission would
occur In a leas restricted shape parametrization. The fission of a 236U

nuclaue, startad from the liquid-drop-modelsaddle point with 1 MeV of
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kinetic energy in the fission direction is also shown in Fig. 4 for compari-
son with the result for “76184. The inclusion of viscosity in these cal-
culations could cause the results to change significantly. In particular,
large viscosity might cause the fragments to be much less elongated at
scission.

In Fig. 5 we show a potential-energymap for two tangent spheroids,
where the coordinates are the ratios c/a of the semi-symmetry to the semi-
transverse axes for the two fragments. The energies are calculated by use
of the droplet model [9]~ which contains primarily surface and Coulomb ener-
gies, but also includes higher-order corrections in A-L’9 and [(N-Z)/A]2
than are retained in the liqu~d-drop model; the constants are taken from the
January 1973 analysis of Myers and Swiatecki [10]. The two fragments are
taken to be ‘00116 and 17GEr, a division which approximately conserves the

476184 parent system,charge density of the The minimum energy of the sys-
tem with the heavy nucleus spherical corresponds to a light-fragment semi-
axis ratio c/a = 12.6 and Is 126 MeV higher than the absolute minimum-
energy configuratlofi. fi,ialatter configuration corresponds to a light-
fragment semi-axis ratio c/a = 2.1 and a heavy-fragment semi-axis ratio
s/a= 11.9. Both of these minima are artifacts of the spheroidal shapes
chosen, as the fragments would undergo fission if allowed to form a neck.

In Fig. 6 we show the potential energy of the tangent spheroids as’a
function of deformation of the superheavy fragment with the light fragment
held fixed at the semi-axis ratio c/a = 12.6. To the droplet energy we add

‘00116 nucleus isolatedthe single-particle corrections calculated for the
from external interactions [11], which gives nn estimate of the maximum ef-
fect of shell and pairing corrections. The eingle-particle effects lead to
a local minimum in the potential energy, but the energy at this minimum is
still more than 100 MeV higher than the energy of the configuration with the
very elongated superheavy fragment and the energy of the sciseion configura-
tion for the dyttamic~lfission calculation described above. Because of this
large energy difference, the probability for the large fragment to be formed
with a semi-axis ratio leas
small.

In private discussions
the Coulomb forces from the

than the saddle-point value of

Vandenbosch has suggested that
second fragment could possibly

1.2 is extremely

the presence of
prevent the heavy

fragment from undergoing fission by driving it toward a spherical shape. We
estimate the Importmce of this effect by calculating the maximum elongation
of the euperheavy nucleus which could be driven to a spherical shape by a
spherical light fragment initially in contact. This maximum elongation oc-

‘00116 fragment ofcum at a semi-axis ratio for the c/a = 2.0. This value
repreaenta an upper limit because in this estimate the positions of the cen-
ters of mass of the fragments are held constant instead of being allowed to
separate, and the light fragment is spherical iustead of a more probable
prolata aphcroid.

We have ehown that the production of superheavy nuclei from the asym-
metric fission of nuclei with mass number A * 500 is highly ~mprobable.
Thio conclusion has been reached only for nonviscous motion; the rasult
would ba modified if very viscous flow resulted in fragment elongation at
aciosfon with a semi-nxi~ ratio c/a significantly less than 2.0. For ViS-
cous flow the value would nmd to bo leas than 2.0 because the large frag-
ment would not be able to respond quickly to the Coulomb taatoring force of
the lighter fragment before the two nuclei separate.
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4. FUS1ON OF HEAVY IONS

We use the shape parametrization described in Sec. 3 and the dynamical
equations in Ref. [3] to study the fusion of two initially spherical nuclei
with zero relative angular momenttnn. In Fig. 7 we show the evolution of

220U at various energies above thetwo llOPd nuclei interacting to form
liquid-drop interaction barrier. (All energies are in the center-ofmss
system.) Two 23% nuclei are shown in Fig. 8 interacting at various ener-

~TG~84 eystem.gies to form a These two examples are qualitatively differ-
ent: The 220U system has a fission barrier with a liquid-drop-model saddle-
point energy of about 5 MeV and would thus form a compound system for a
si nificant range of collision energies (for nonzero viscosity), whereas the
47f184 nucleus is unstable with respect to small spheroidal distortions and
therefore has no fission harrier. In comparing Figs. 7 and 8 with Fig. 4 we
see that the time scale for fusion reactions is much shorter than for fis-
sion.

These figures show the limitations of our shape parametrization for
describing fusion reactions. For low ener~ies, after the spheres touch the
surface energy causes a rapid filling-in of the neck, which results in a
shape with flattened ends and a high surface energy. This surfaca energy
and the Coulomb forces cause the end bodies to rapidly become prolate and to
intersect in a manner that forms a cusp at the middle of the shape. The in-
clusion of viscosity may slow down the motion to a point where this phenom-
enon does not occur. The situation would also be improved by including the
effects of the finite range of the nuclear force on the macroscopic energy
(instead of representing the energy in terms of surface tenslofi),as dis-
cussed In this symposium by Krappe ~12]. This improvement would greatly
reduce the rapidity with which the nmk grows after first contact. For
higher energies the fusion continues until the system approaches a pure
spheroidal form. Shapes close to a mpheroid are not handled adequately by
our parametrization,and the integration terminates when this condition oc-
curs. For even higher energies, the end-flatteningof the syst~, which ia
apparent at lower energies, proceeds to the point where the ends att-pt to
become concave, a type of shape that is not describable in any parametriza-
tionof the form p = p(z). This end-flattening is a result of the rapid
growth of the neck; the assumption of incompressible and nearly irrotationel
fluid flow requires that the material filling the neck comes primarily from
the ends of the body. We conclude that a complete investigation of fusion
reactions requires an unconstrained shape description.

Even within these limitations imposed by our coordinates, we learn a
significant amount from these calculations. In a two-dimensional apace
described by the coordinates definsd in Sec. 2 for reflection symmetric
ehapes (center-of-massseparation and the second central moment of the frag-
ment shape), we present in Fig. 9 the paths followed by two colliding ‘Solld
nuclei, which is a possible choice for producing the superheavy nucleus
‘00120 by a symmetric collision. We soe that more than 100 MeV of energy
over the interaction barrier (which ICIapproximately 400 MeV high) is needed
to drive the system to a nearly spherical shape, an indication of a lower
limit to the additional energy required to produce a superheavy nucleus from
ouch a collision, if such production is possible. Of course, for viscous
flow even more energy would be required.

A recentpaper by Lefort et al. [13]
for complate fusion when 20gBi nuclei are

-7-
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500-MeV energy, which is (35k9) MeV over the calculated interaction barrier
in the center-of-mass system [12]. We have not yet calculated fusion reac-
tions for such asymmetric systems, but some qualitative comparisons may be
made. The 293119 system resulting from the above reaction is similar to the
‘00120 system considered in our symmetric dynamical calculation. For this
calculation,more than 100 MeV of energy aver the interaction barrier is re-
quired to bring the nuclei close enough for a long enough time tu allow a
significant mass transfer between the interacting nuclei. We expect the
energy required for fusion to be somewhat less for an asymmetric system than
for a symmetric one, but still of the same order of magnitude. The observed
lack of fusion at the 35-MeV energy may be due either to the tendency of the
nuclei to quickly re-fission because of the large Coulomb forces and the
distribution of energy into degrees of freedom other than center-of-mass
motion, as indicated in Fig. 9, or because large nuclear viscosity prevents
mass transfer between the nuclei, or to a combination of these effects. The
disruptive effect of angular momentum appears to be too small to account for
the very small cross sections observed [13].

By use of plots similar to the one in Fig. 9 for different nuclei we
find the minimum-energy collision whose trajectory passes inside the liquid-
drop-model saddle point. This gives an estimate of the lower limit to the
energy needed to cause a complete fusion. In Fig. 10 we show this critical
energy as a function of the fissility parameter. For values of x less
than 0.72 no energy over the interaction barrier is needed. Above this val-
ue, the critical energy rises steeply to about 0.15 Es(0), which is needed
to reach the saddle-point shape for x = 0.9. For a nucleus along the line
of beta stability, this energy is about 110 MeV above the interaction bar-
rier. For larger values of X, we are not able to determine the critical
energy because the calculated paths terminate before reaching the saddle
point. This criterion of passing inside the liquid-drop-model saddle point
Is necessary but not sufficient to form a compound system. This is because
a nonviscous system will ultimately re-fission since its total energy is
higher than ics saddle-point energy. Some dissipation must be present in
order to form compound nuclei from heavy-ion reactions.

5. SUMMARYAND CONCLUSION

We have investigated several aspects of nuclear dynamics on the basis
of the liquid-drop model, including the effect of viscosity on the separ~-
tion of fission fragments, the fission of very large nuclei, and symmetric
fusion reactions involving systems of different masses and interaction ener-
gies. We find that for small viscosities the often-suggested fusion-fission
reaction ❑ethod is highly unlikely to lead to the formation of euperheavy
nuclei. Although our nuclear shape parametrization has deficiencies for
fusion reactions and the fission of large systems, it still provides some
worthwhile information.

A major objective of this type of study is to calculate cross oectlons
for fusion reactions. Ideally, one would like to do this by solving the
full Navier-Stokes equations for unconstrained shapes, but even within our
restricted shape parametrization there are three extensions to be made: the
cocsiderat~on of viscosity, the inclusion of angular momentum, and the cal-
culation of the macroscopic energy by including the finite range of the
nuclear force insteml of by using surface tension. We arc now in the proc-
ess of calculating most-probable fission-frogmcntkinetic energies for vis-
cous flow. By comparing thepe calculations with experimental results we
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hope to deduce an average value for the coefficient of nuclear viscosity
that is appropriate to large distortions. Once the coefficient of viscosity
is known, it should be possible to estimate fusion cross sections for heavy
systems by performing similar dynamical calculations with the inclusion of
vicsocity, angular momentum, and the finite range of the nuclear force in
the macroscopic energy.

APPENDIX. EFFECT OF VISCOSITY ON THE INERTIA AND VISCOSITY TENSORS FOR
THE SMALL OSCILLATIONS OF A CIASSICAL LIQUID DROP

The effect of viscosity on the inertia and viscosity tensors is com-
puted from the exact solution to the Na-rier-Stokesequations for small mo-
tions about a spherical shape. For small values of viscosity the flow re-
mains nearly irrotational, so irrotational flow gives a very good approxima-
tion to the correct inertia and viscosity tensors. The normal modes for
nearly-sphericalshapes for all values of viscosity are the quantities ai,
where the surface of the axially symmetric drop is given by

‘o

[

-

R(e)-~ I1+ 5 qt) Pi(cos e) .i-z d
The diagonal elements ~ii of the viscositytensor are monotonically in-
creasing functions of the coefficient of viscosity P; the ratio ~ii/u de-
creases from the irrotational flow value az v - 0 to a fraction of this
number as u + OD. For the i = 2, 3, and 4 modes, respectively, the ratios
~ii/11 at infinite viscosityare 75%, 69%, and 63% of the values at v - 0.
The elements of the inertia tensor are also monotonically increasing func-
tions of !J;the i = 2, 3, and 4 elements reach 105%, 111%, and 11.7%of
their nonviscous values as M + 00. We see that the Irrotational-flow
values pr~tiidea good estimate for the inertia and viscosity tensors for the
small oscillations of classical liquid drops. The fragment distortions con- “
sidered in Sec. 2 are somewhat larger than the small oscillations studied
here, but the inaccuracies introduced by the larger distortions are no larger
er than those caused by viscosity. We rc-emphasize that we are considering
the effect of classical viscosity on the intrtia and viscosity censors, and
not the potentially large changes caused by single-particle effects.
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FIGURE CAPTIONS

FIG. 1. Calculated fragment elongation u and center-of-mass separation r
for spheroidal fission fragments for a nucleus with fis~llity
parameter x = 0.7. The coordinate U is c/& , where c is the
semi-symmetry axis of the spheroidal fragments. The ~ths are
plotted at equal time intervals of 0.4 TO* 1.8 x 10-! sec for
five values of the viscosity V . The natural unit of viscosity is

(o)]% RO-2 .
PO E [MoEa The shapes corresponding to selected values

of these coordinates, indicated by the plus signs, are shown in the
top part of the figure. The sloping lines give the configurations
of two tangent spheroids, and the horizontal lines give the con- ,
figurations of two separated spheres.

FIG. 20 Calculated change in fragment kinetic energy due to viscosity as a
function of the fissility parameter x for spheroidal fisaio~
fragments, The energy change is plotted as [E(p) - E(0)]/E(O)

E(o) is the surface energy of the original sphericalanucle-where *

US. The natural unit of viscosity is ~0 = [MO E~O)]% R-2o’

FIG. 30 Calculated division of the energy in fission for idealized nonvis-
cous nuclei aa a function of the fissility parameter x. The total
energy available is the sum of the energy release ~el and the
fission-barrierheight Bf. This energy is divided into pre-
scission translational kinetic energy, post-scission translational
energy, and fragment vibrational (excitation)energy at infinite
separation. The results for x < 1 are taken from Ref. [3].

FIG. 4a Calculated sequence of sha es at time intervals of 10-21 sec for
Ythe spmetrlc fission of 4 ’184 and 2S6U. The 476184 nucleus is

initially spherical and the 23GU nucleue is initially at the
liquid-drop-modelsaddle point. Both nuclei initially have 1 MeV
of kinetic energy in the fission direction, The viscosity is zero.
The shapes are constrained to binary fission in the three-quadratic-
surface shape parametrization. The scission configurations are
shown dashed.

FIG, 5, Static potential energy of tangent spheroidal fragments calculated
in the droplet model ae a function of the ratios c/a of their semi-
symmctry to semi-transverseaxes. The fragments are ‘00116 and
lvGEr fo~ed from a 238u +298U + 476184 parent 8y8tem.

FIG, 6. Calculated potentiul energy of tangent spheroidal fragments as a
‘00116 fragment.function of the semi-axis ratio c/a of the The

elongation of the 17Glk fragment is held constant at c/a u 12.6.
The macroscopic contribution to tha energy, which ie calculated in
the droplet model, is given by the dashed line. The total energy,
which i~ obtained by adding shell and pairing corrections for a

‘00116 nucleus, id given by tho solid curve.nonintaractins
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FIG. 7. Calculated sequence of sha es at time Intervals of 5 X 10-29 sec
for the fusion of YlioPd+ lord. The energies given are the’in-
cident kinetic energy (in the center-ofmass system) of the ions
above Ehe liquid-drop-model ir.teractionbarrier. The nuclei are
tangent spheres at t = O.

FIG. 8. Calculated sequence of shapes at time intervals of 10-22 sec for
the fusion of

298U + 238U. The energies given are the incident
kinetic energy (in the center-of-mass system) of the ions above
the liquid-drop-model interactionbarrier. The nuclei are tangent
spheres at t-o.

FIG. 9. Calculated dynamical paths in the space of center-of-mass separa-
tion r and fragment elongation u (defined in Sec. 2) for two

150Nd nuclei.colllding The nuclet are initially tangent spheres.
The energies labelling the paths give the initial kinetic energy
(in the center-of-mass system) above the liquid-drop-modelinter-
action barrier. The terminations of the paths are caused by
deficiencies of the shape parametrization.

FIG. 10. Calculated incident kinetic energy (in the center-of-mass system)
above the liquid-drop-model interaction barrier necessary for
complete fusion as a function of the fissility parameter x. The
criterion adopted as necessary (but not #ufficient) for complete
fusion is that the trajectories of the fusing nuclei in the two-
dimensional space defined by r and u pass inside the liquicl-
drop-model saddle point. The center-of-mass coordinate r and
the fragment elongation coordinate u are defined In Sec. 2.
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