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Bethe-Salpeter Equation: Numerical Experience with a Hydrogenlike Atom*

J. L. Gammel and M. T. Menzel

Los Alamos Scientific Laboratory, University of California

Los Alamos, New Mexico 87544
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Abstract

The eigenvalue ~ of the Bethe-Salpeter equation,

~+GS$ ,

7T
with the value of ~ calculated from the Sommerfeld expression,

w

(%+’2 1-

aubstituted into the propagator
1

{l + ($~137.03802)2/

S, and only the one-photon-exchangeterm

included in G, is, for the ‘SO state,

.

~ ~ 133,9963 f 0.0003.

The difference between ~ and 137.038C2 is due to the appearance of a

logarithmic term in

%-+~’2u2(+En:+J ‘

1
which ie valid for tha Bethc-Salp~tar●quation~ So ●tat9, ona photon

●xchanga. ‘RM crornaocltwo photon axchangc contribution brinsa A up to

A = 136.5 t (0.1?) o

so that thie cwtrikut.iun conc~lrntl)alo~arithmic tazn, but not •xactly~
,
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I. INTRODUCTION

1
In a paper in Physical Review with this same title, we reported

that the binding energy 1% of an equal mass m hydrogen atom resulting

from the Bethe-Salpeter equation with

v
%

resulting from the Dirac equation

logarithmic terms occur:

one photon exchange differs from the

with a Coulomb potential in that
.

The numerical results substantiating the anaiy*ic work were expressed in

the following way. The Bethe-Salpeter equation Is

(1)

(2)

where $ is the Bethe-Salpeter amplitude, G the sum of all two particle

irreducible graphs (in these calculations only the one photm exchange term

is included), S the

2~ - 4r/e w ~/~ ~~ a

(for mre details see

value calculated from

.’

direct product of the fermion propaga~ors, and

factor removed from the one photon exchange graph

reference 1). S contains
%

, and wu put in the
.

the Sommerfeld expression

~m+md’”$)‘
(3)

tith tha ●cceptad value a M 11137.03802. Ware thma no difference batweon

tha Bathe-!hlpatcr
%

●nd the Dirac
%

wa ohould then find the ●igan-

vdua A - 137.03802. We do not find qrament baca~ae of tho logarithmic

tarm in Eq. (l).

In raf. 1 we raported ~ - 134.18 i 0.01, and In this work wo find

~ = 133.9963 + 0.00fi3 by the use of improvod numerical tachniquan. Our
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motivation for making this improvement is the fact that should we want to

calculate the Lamb shift by these techniques~ such accuracy is required.

Our general method, which is a straightforward solution of the Bethe-

2
Salpeter equation, is conceptually simpler than the usual method~, br~t

not yet nearly so accurate or complete.

We would like to explain a little more our motivation. We have

calculated ~ with the crossed two photon exchange graph included in G.

We find
3

~i= 136.5.
4

Thus our results underscore Salpeter’s remark that

the calculation done in a straightforwardmanner converges very slowly as

more and more graphs are included in G. In calculating the Lamb shift it

is not necessary to include the crossed two photon exchange graph and similar

graphs because the ladder approximation yields a spectrum with the same

degeneracy as the Dirac equation with a Coulomb potential.
5

Only the level

splitting resulting from the self energy graph shown in Fig. 1 is desired,

and this splitting may be calculated by,including in G the one photon

●xchange graph and the self energy graph. The matrix elements of the self

6
ener~y graph may be read fxom the book by Jauch and Rohrlich since they

give the full off-shell matrix elements ~equired (Jauch and Rohrlich give

the part arising from the bubble in the fermion line and this has to be

wltiplied by the one photon

the methods of reference 1).

exchange part

Our interest

which is waily calculated by

in doing the calculation in thi}

way ●risea from our beliuf that the infrared problem does not arise. We

believe this becauae the bound ntate problem 10 off-shell and it way be

oboarved that Jauch and Rohrlich’a result haa ne divergence off shall. As

thg binding energy sees to zero, the problcm movca toward the on-shall casr,

#o tarma like log (l/a) s},~uldoccur. We wonder how theaa logarithmic t~rn~l

cancal agaimt the one shown in Eq. (1), which according to tha result

~ = 136.5 is only partially cmcclled by tha crossad two photou tixclm~~
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part, and it is hard to see how the crossed three photon exchange parts will

make up the difference* Perhaps it is precisely the self energy graph which
.

makes up the difference (the photon self energy graph also has a part to

play). We hasten to add in conclusion that we have not yet done the cal-

culations, but the calculatims are possible (Jochem Fleischer has done

7,8
similar calculations in ‘~estrong interaction case ). We may hope not

to remain forever ignorant of the fucts.
9

Many are aware of just how awkward

the usual treatment of the infrared problem is, and if it is true that it

does not really arise in a full but straightforward approach, it would be a

matter of interest.

.
II. THE IMPROVED

We restrict the calculation

Eq. (3) of reference 1 becomes

NUMERICAL TECHNIQUES

to the positive energy
..

states, so that

The numerical approach to any such equation is to replace the integrations

by finita ems over a mesh. Symbolically

Jdq Jdq4-Ez +f!-L!+Er-Ez ,

=ZZ+({-E)I+Z(I -Z). (5)
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(~- Z)j may be referred to as a correction for the q integration and

E(f - z) as a correction for the q4 integration. In these corrections,

we do not need to use the exact “$(q,iq4), which is unknuwn anyhow, but we

must keep the equations homogeneous. As proposed in reference 1, we make

use of the fact that $(q,iq4) is nearly independent of q4, and in the

~4 correction we use

O(!WIJ =0(%0) ● (6)

In the q correction,we make use of this fact and the fact that we know

approximately how $(q,O) depends on q; namely, it must depend on q in

the same way that the nonrelativistic $(q) does. Thus in the q correction

we use

In detail, our finite sum approximation to Eq. (4) is

l#A$(p,ip4) - ~ ~ K(p,ip4,q,iq4)-S(q,iq4)$(qDiq4)
q qb

+ T(PDP4) $(P@) + ~ R(p,p4,q) $(q,O) ,
q

(7)

(8)

where

R(P9P&l) = [ Jmdq4 - ~ ] K(p,ip4~qtlq4) S(q,iq4) B
o qh

-R-R
12’

and



(lo)

=s1-s2 ●

The integrals can be done analytically (o~.hemise there would be no point

in writing them down) provided we use some nonrelativistic kinematics in K

and S, namely

(p+q)z+ (p4+qJ2 (p+q)2+ (p4- q4)2

(P- 02+ (P4+c14)2 (P-!l)2+ (P4- q4)2

Of course‘weuse these %onrelativistictfapproximatioilsonly in corrections

‘~hich vanish as the mesh size is refined. We find

.

P P FS1(P9P4) - f(P9i ~ siP~) + f(P9~ =s- iP4) - f(P9 - i =9iP4)

r%-f(p, -i--, -ip4) ,
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f(PsiF~, ip4) 137.03802

. 1

a 1- m)

.

1
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F(x2,x1,z) =
+1O, (~ +(w’r)

.

‘2 -

‘1 -

*
2+2—.. —
2

*
2+2
7

*
2+2

‘2-— 2

+ i arc tan .% *
z-z 2+2.—
2i ‘1 2

- P + iP4) s

P = largest value of p used in the pme~h.
max .-

Methods by which these formulae were derived ar~ outlined in Appendix I.

w,?tranl~formeverything to the U,V meshes f~om the p,p4 meshes

as in reference 1. The various Z need-to have their correct weight

factors and the Jacobians of the transformations as described in reference 1.

Because the corrections are not exact, the results will still depend

on mesh size and the parameters a and b introduced as corrections to

integration schemes in reference 1 (see Eq. (20) of reference 1).

We have, of course, wondered why our error in the calculation

reported in reference 1 is about 20 times larger than we thought. To find

out, we have repeated the calculation of reference 1 with still finer mesh

sizes. We see that all/d(mesh size) = O for the a,b and the finest

mesh sizes used in reference 1, and this led to the illusion that ~ was

-8-



independent of mesh size to the stated accuracy for these meshes. But as

the calculationswith still finer meshes show, it is only an illusion.

This danger always exists and can nev~r be completely eliminated by

numerical means; it still exists for this improved calculation.

III. RESULTS

All results are gather?d in Fig. 2 and Table I. The best extrapolated

value is

).= 133.9963 t 0.0003 .

The danger referred to just above is reduced by the fact ~:hatwe have

results approaching this limit from below and above, as shown in Fig. 2.

IV. CONCLUSION

We believe that we have shown that it is possible to solve the Bethe-

Sal~eter equation by the use of straightforwardnumerical techniques to an

accuracy required by the precision measurement of atomic physics.

.
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APFZNDIX 1.

the argument

.

‘-l‘
expand in Eq. (11) thusly:

- 4P4L ~4
2

((P + q)2 + i42 + q42)2

((P -02+ P42+q42)2- @42 ~42

n

s

(q4L- rl)(q4& - r2)

2 9
(q4 -

#

~n (AB/CD)and r
4

-lnD

depend on p, q, and p4. Using

form

r, r , rt
123

A+

~
m

R n B- En C integrals of the

dq4
J ~- Q’m4

22
+C)= ~gn(a+

oa+q42
c)

of

●

evaluationevaluation of S1 requires theThe

(k++%‘J+p?
hz++~+”lp=ql)2+p2\2m 4

+p

)
2

q“+p2
4%

+p -

n

J%+vb+p+q)z+%’
2 2

~+L 2’
2%+ q-p ‘P4



r112P
J-2%

[

(
-T

~++.b+P+q)(:+l)

oq+m

%(

2 2
~+L

)

2
2%

+p+q +p4

*

.(:+i%+p-q()s-l
m

!

+ P4
2

1

ln2 m

+=#2

[

d, (:++%+p+q)(:+l)
‘q ‘m% (:++~+P+q)2+P42

(
qz++~+q
z -p)(~+l)

2

1

#

)
+ p42q-P

.*

where the last equality results from an integration by parts. We then

proceed by breakLng various expressions into partial fractions; for example,

in the first term on the right of the pr~ceclingequation,

1 1

1

1 1 1~m ziii=—Tii——x+i B 9
x+B

x-q 9

9
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and in this way we arrive at the expression for
‘1

given in the text in

terms of four f functions, where
.

P
f
o 1

:+1

2
~+L

2%
+p+q+ip4

P

‘[

!l+l
+ \ ‘ax d m

o q- 2
idq 9-+L

2%
+p+q + ip4

9+1
m

Q 1}●2m 2%+q -p+ip4

l’hefour denominator quadratic in q have roots which dapand on p, p4t

‘1 - ‘3 =[-lt~”]m ,

‘2
=[lt~]m ,

%
.[-ltm]m ,

whoro ~ ●nd ~ .r. *Iv.. in th. t.xt. Furth.r r.ducticm by partial

fractions Iaado to
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1 11

()3mdm-.

‘b

[

‘b
i y+l:-+’ s+

m
1

(

11 1

[

%
1 =-11

Pmax
m

+r
E
❑

1

(i

1

1 1
A

Jnj

+ ● ~imilar axprOsaion with -m , which ●xplaina th~ oourcoand - m
taxto ‘rhoof tha sixtaan F functiono in the

.

D

A

parts 1.●nd tho raault brokon into obviously ra~l ●nd

Siven in tha text.
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APPEmIx H

In this ●ppendix we document the very complicated calculations

including the crossod two photon exchange graph.

Th@croaaed two pion exchange graph for nucleon-nucleon scattering

has baan evaluated independently by at leaet two groups, 10
and the algebra

haa been checked by use of the algebraic manipulating code REDUCE.8The

racult is that the poaitiva energy-positive energy part of G is

.

On@fs.ctor of U hae baon removed to include in the eiganvalue ~. We have

1- 10;2 ‘1 + 11,2 ‘2 + 10,1 T3 D

2Ti a E+ (m + P1P2) + E-Z12 - 2+E(p)(m P+ q2b-) - E(q)(~2~++ p2a-)
● “

22*+m(p +q)+pq~3 B
2T2 _ pq(- m + P1P2 +R + 2m2

12 - E(q)b- - E(p)a- + Z3 E- ,

.

pl.g(~-xl= q+(x2+x3)qo+(l- xl- x3)Pf) D

P2-E(l-X- %2)-(1-X -X)q
1 2 30 - (xl +X3)P0 ,

B-- B(p)E(q) - rn2 ,

B+- E(p)C(q) +m2 ,

p+=p1+p2 ,

J ● Is(l- x - X2) -
1 (1 - xl - X2- 21t3)qo D

-14-



b- m E(3, - X1 - X2) + (1 - Xl - x2 - 2x3)Po s

’12 m (X1+X3)(1- X1- X3)P2+ (x2 +x3)(l-x2-x3)q2 ,
●

‘3 m Pq [(X1+X3)(X2+X3) + (1- X2-X3)(1-X1-X3)1 s

$,1
=-+Q,(s) for A~O~j=O,l

I
1

0,1
m .-,

1
5,2- I

I
1,1 ‘O for A=O *

.
4

a

SJ
~-~Qo(s)82

for A + O,

9

j m 0,1

~

10,2 -B2’ 1A,2-0 ‘or ‘-0 ‘

A = Zpq [X3(1 - xl - X2- x3) - X1x21 ,

B = %1(1 - xl) {(E + pO)2 - p2} + X2(1 - X2) {(E - qo)2 - q2]

2 2 “2
+X3(1 - X3)UP0- qo) - p - q 1 - 2[X1X2(E+P())(E - qo)

2 2
+x~x~ {(E+ PO)(PO- qo) - P } +Xzxp qo)(P~- qo) - q 1

.
J(1+XI+X2) 9

QO(S)‘~
S+l

1 log—
8-1 s

Q,(0 m s QA(s)- 1 ,
v

farmion maoo~

bouon maas .

When tha Y5’s appropriate to the pseudoucalar case are replac~d by

Ypfo appropriate to the vactor ctise,one would think that the above

-15-



repression is without relevance. However, the main part of the YM “vertex

i, y. (this IS the nonrelativistic limit and constitutes a very accurate

approximation when we restrict ourselves to the positive-energy states).

Now consid~~r a fennion line in the crossed two photon exchange graph (see

Fig. 3). One of the YO’S may be brought through the propagator (as may

2
ona of the Y5’s in the pseudoscalar case), and use made of yO w 1 or

Y~
2

= 1. Since

#- Y~Po-Y”P ,-.

bringing through the YO or y5 is the same except that the sign of pO

ia changed in the Y5 cave and not in the YO case: that is, the two

ca.es differ only in the sign of p . In the calculations in Ref. 7 above,
o

tha ●xternal energy 1s carried by the nucleon line,

P()=ko+E s

,..

4whara k~ is a variable integrated over in the ~ d k required for the

crosoed two photon exchange graph. But the sign of kO does net matter

since it i. integrated over. One concludes that the pseudoscalar and.

vector casoa (restricted to the YO part) are the same except for the sign

of E. Tharefore,

E= -O.511OOO698682 ,

m - 0.51100410 9

v-o.

For the rest, we make a number of transformations of the variables

xl, X2, X3. First,

-16-



‘l-zy ‘

‘2
- Z(l - y) s

‘3
-(1-2)X ,

.
transforms

1 l-x, l-xl -x7 1 1 1
~ dxl ~ ‘dx2 ~ ‘ - dx31 = ~
o 0 0 0

Then we transform

z w
maxz-

1- Zm= - (1 - 2zmx)w

which transforms the integral to

dxJdyjdzz(l-z)I.
o 0

s

1 1 1 Z(J. - z) ZMX(l - Zmax)
!dw Idx{dy I
o 0 0 [1 - z~x - (1 - 2zmax)w]2 ‘

In which z is a function of w of course.

For each p, PO, q, qO we adjusted Zmax so that the maximum value

3 5 -7of the integrand occurred for ~ ~ w < ~ ● z- varied from 2X 10 to

-7
0.5 depending on the values of p, PO, q, qo. Zmx - 2 x 10 reflects how

close to the boundary the peak of the integrand may occur~ We use about 20

mesh points in the w integration and 5 each in the x and y Integration.

This calculation has to be joined to the calculation described In Ref.

1. Everything is quite straightfomard, and we believe that the above details

sl~fficientlydocument the entire calculation leading to ~ m 136.5, Itwa~

only possible to use the crudest q,qo mesh (with a IE1.377, b = 1.168),

which means already that 10,000 integrals of the above form have to be cal-

culated, and the accuracy has to be judged from Fig- 2, plus worries about

-17-



*

the w, x, and y meshes. We believe ~ ~ 136.5 is good to t 0.1,, but

perhaps in the future with still faster computing machines it will be
.

possible to verify this assertion.

.’

.
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x

0.5

1.0

1.5

200

3.0

4.0

600

8-0

1200

Table I.

Data plotted in ‘fig. 2.

(a) (h)

134011473

134-15343 134.15835

134.17475 134.17980

134.17630 134.18721

134.17725 134.19403

134.18707 134.20536

134.19989

134.06512 134.06277

[c)

133.99680

133.99199

133.99961

134.00162

134.00671

134.02835

134.04619

134.08744

(d)

133.99452

133.99214

133.98955

133.98691

133.98180

133.97708

133.96871

133094970

. .
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Figure Captions

1. The self energy graph. “

2. ~ VS. q-mesh size. 192/x = number of points in q-integration.

(a) Results reported in Ref. 1. a = 1.377, b = 1.168, 16 point

Gaussian q4 integration.

(b) q4-correction applied to (a). Eight points used in Gaussian q~

integration.

(c) Both corrections applied. a = 1.5, b = 0, 8 point Gaussian ~~

integration.

(d) Eoth comections applied. a = 1.377, b = 1.168, 8 point Gaussian

qq integration”

3. A portion of the two photon exchange graph.
-.
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