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MAJORANA DEPOLARIZATION OF HYDROGEN, DEUTERIUM, OR TRITIUM ATOMS

by

Gerald G.

Ohlsen

ABSTRACT

The theory required to follow the behavior of a hydrogen, deuterium, or tritium

atom in a time-dependent magnetic field is described.

A computer code is

included, and some numerical results of interest to the design of Lamb-shift

polarized~ion sources are presented.

A brief discussion of depolarization

effects in pick-up or stripping of two electrons is also presented.

1. INTRODUCTION

In all sources of polarized hydrogen or deute-
rium ions which have been proposed, the process in-
volves, first, the production of a beam of atoms
with & net nuclear polarization and, second, the ion-
ization of these polarized atoms. It is frequently
required to change the magnetic field strength or
direction or both from one value to another between
the point at which the polarized atoms are produced
and that at which they are ionized. Thus, one is
required, in the design of such deVices, to estimate
depolarization effects caused by unwanted transitions
between the various hyperfine states when atoms are
(Such

transitions are usually referred to as Majorana

subjected to time-varying magnetic fields.
transitions.) In most cases one wishes to design
magnetic field shapes in a way which eliminates or
reduces these effects. Problems of this type are
particularly important in “Lamb~shift" sources,
where the atomic beam velocities are large (~30
cm/usec).

A related problem, which we will also consider,
"

is the "zero field crossing

In this method it 1s required to

technique of polariza-
tion enhancement.
reverse the direction of the magnetic field in a way
such that a certain transition is made with high

probability while the remaining transitions occur

with low probability. We will also briefly discuss
the depolarization of ions that may occur when two
electrons are stripped or picked up, es in a tandem

accelerator stripper or a cesium adding canal.

2. THEORY
The Schroedinger equation for a one-electron

atom may be written

wjw
ct e

+ =i

(H +H))Y =i . (1)
where Ho is that part of the Hamiltonian which does
not depend on electronic or on nuclear spin and

where
Hl = (“08J34”Nglf) - B+ a(f'j) . (2)

In the above expression uo = eh/2mc (the Bohr mag-
neton); uy = eh/2mpc (the nuclear magneton); g; and
gy are the electronic and nuclear g-factors, respec-
tively; and a is related as follows to the zero

field hyperfine energy separation (AW):

a = AW/I(2F + 1) if T < J
= AW/J(2T + 1) if J < I .

(3)

For hydrogen atoms I = J
deuterium atoms I =1, J
2 AW/3.

1/2 and thus a = AW; for
1/2, and therefore a =

(]



If we assume a complete set of functions u
which satisfy Houn = Eoun, we may write the general
wave function as

-iE t/a
¥=1Ibue .
nn

(%)

We consider the u, to be the four strong field
states W(mI,mJ) for hydrogen atoms (six states for
deuterium atoms), where the quantization axis is
gpecified and stationary and vhere my and m; are the
nuclear and electronic magnetic quantum numbers,
respectively. All of these states have the same
space wave function and, hence, the same eigenvalue
Substituting Eq. 4 into Eq. 1,
multiplying from the left by u;, and integrating

over the space variables, we obtain the equations of

of the operator Ho.

motion of the probability emplitudes:

(5)

ih b = Ib_ <u [H ]u >.
.4 n m'l'n

If we put explicit values of the matrix elements in-
to the sbove expression and use the quantum numbers

mp and oy to label the states, Eq. S becomesl

im.)m m = [(uongJ+uNgImI)Bz+°mImJ]b (6)

m.+1

+i31 g(B,~1B ) [(J-n;) (J+mp+1) f’bml, '

i1 g1 (B, +18.) [ (J4m)) (3-m+1) I

mI,mJ—l

+auygy (B, ~1B ) [ (I-mp ) (T+mp+1) ])“‘bmfl‘mJ

#auge; (B, +B ) [(Tmy) (T-my=1) 1”bm1_1 a
el (1) (Tt ) (Fm) () T, 4y
I kl

ol (Trmp ) (Tonp+1) (J-mg ) (J+m p+1) ];somI—l,mJ*'l ,

where &g is the nuclear and 8; igs the electronic g-
factor (see Table I). We define the following

parameters:
i
k =
1836.1 85
(n
B, =
uogJ

With these definitions Eq. 6 reduces, for hydrogen
or tritium atoms, to the following four coupled

differential equations:

1°0 myafy

M. - a -

5, 35(l+k)Bz+1¢B° KB 0 B, b,

Bl g 3B 3(1-k)B %8 WB, B b,

=% ) (&
by 0 XB_ —4(1+k)B_+XB 3kB_ b,
By, ] XB_ B kB ~%5(1-k)B, B | L‘bh
TABLE I
HYPERFINE STRUCTURE PARAMETERS
State 81 81 € Bl AW k Bo

1S Hydrogen 5.585486  2.00229 1.522x10'3 507.591  1k20.406 1.520x10'3 506.820
2S Hydrogen 5.585486  2.00229 1.522x1073 63.450 177.557 1.520x103 63.354
18 Deuterium 0.85T40O7  2.00229 0.233x:Lo‘3 116.842 327.38% 0.233x10‘3 T7.877 -
28 Deuterium 0.857T407 2.00229 0.233:‘:10‘3 14.605 ko.924 0.233x10'3 9.735
16 Tritium 5.957680 2.00229 1.623x10”3 542,059 1516.702 1.620x1073  541.181
25 Tritium 5.957680 2.00229 1.623x10™>  67.759  189.59% 1.620x1073  67.650



where Bx’ By, and Bz are the components of the ap-
plied B field (arbitrary time variation), B, =3B,

+ iBy, B=B - iBy, and states 1-4 are the strong
field states W(mI,mJ) ordered according to their
energy in a megnetic field (as indicated in Fig. 1).
For deuterium atoms Eq. 6 reduces to six coupled

differential equetions:

where the states 1-6 are the strong field states
ordered as described above (as indicated in Fig. 2).
The parameter k is a small number (NlO_3) and thus
could be neglected for most purposes, although this
assumption has not been made in the numerical cal-
culations to be described in subsequent sections.

We note in passing that the parameters k and Bo
are different from those which arise in the descrip-
Specifically,
the "Breit-Rabi formula" for hydrogen or tritium

tion of the energy levels of the atom.

atoms is

T T ! T
m, mp
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Fig. 1. Schematic Breit-Rebi diagram for 18 or 28

hydrogen or tritium atoms.

5, E%+R)Bz+%Bo kB, !
5, kB_ B kB,
By kg 0 kB_ (3-x)B 3B
T ih
B, 0 0 B
b 0 WB_ B_/V2
Be %B_ B //2 0
- o L.

W= -—kAWﬁAW(1+2n%‘x+x2)%+cAWmEgc , (10)

where mp =g + my end where the plus sign applies
to states 1, 2, and 3 while the minus sign applies
to state 4. The quantity x = B/Bl, with B; =
AW/[(l—k)uogJ] = Bo/(l-k) and € = k/(1-k). For

0 0 B, by

0 1B, B /V/2 b,

B, B /2 0 b,

» (9)

~(%+k)B_+B kB_ 0 b),
KB, 4B, kB_ by

0 kB,  -(sk)B 8 | Io
. L

deuterium atoms we have
1,...1 L 2%
= +=,

W a-6-AW_2AW(1+—3mFx+x ) FretWmx . (11}
The definitions of x and of ¢ remain the same, but
in this case we have B, = 3‘Bo/[2(1—k)]. The plus
sign applies to states 1-4 while the minus sign
applies to states 5-6. The numerical values of the
perameters used in Eqs. 8-11 are given in Table I.

The solution of the above differential equa-

T ! 1 !

[ ] |

(4] [ 2 3 4
x = B/B,
Fig. 2. Schematic Breit-Rabi diagram for 1S or 28

deuterium atoms.



tions (Egqs. 8 or 9) for the field variation of in-
terest, then, is a straightforwerd computational
problem. However, the states we have used in the
description are the strong field states with respect
to a fixed z-axis. Since, in general, the airection
of the magnetic field varies, it is somewhat easier
to interpret the results if the coordinate system is
rotated, so that the new z-axis lies along the (time-
varying) magnetic field direction. The rotation
transformation for composite states may be derived
from the spin-1/2 and spin-1 rotation matrices. For
a spin-1/2 particle, the rotation transformation may

be represented by the matrix equation

1
b+ a a b

» s (12)
b! 8 a b

where the subscript refers to the sign of the mag-
netic quantum number m(=#%). Explicitly, the coef-

ficients are

a,, = cos (38) exp [-%i(a+y)]

++

a = cos (¥8) exp [%i(a+y)]

- (13)

a_, = -sin (38) exp [“i(a-v)]

a,_ = sin (48) exp [i(a-y)] ,
-biw ;4+c++ Balho Bl
bé 8,04 2% 8 Co.
bé _ a,.c . a, ¢ &.,c
bL B a_.c . a;+c_o &_,c__
bé 8_,Cos &_,C. o a_.c _
fé‘ f;+°++ & 4% 84S

where o, B, and v are the positive Euler angles2
which rotate the initial coordinate system (unprimed)
into the final coordinate system (primed). For hy-
drogen or tritium atoms (in strong field representa-
tion), the rotation matrix is essentially a direct
product of the electronic and nucleer rotation. The

complete rotation metrix may be written

1 - T r 1

]

1 8.2, e .8, _ a, 8, a 8., bl

! a, . a a .8 a, e a, & b

2 c 4 -t G S - e — S 2 (1)
]

3 48,  B_.8 & _  B__& . b3

1

iy 48 BBy B8 B By ] Ph_ ?

. product notation were to be applicable.)

(Note
that the states 3 and 4 are interchanged in relation

where states 1-4 are ordered as in Fig. 1.

to the notation one would choose if a true direct
For a
spin~1 particle, the rotation matrix is

]
by C++ o C4- e,

(15)

b!'| = |c c ¢ b
o) o+ co o- o

bl c_, c_g c__ b_

in an obvious notation. In this case the coeffi-

cients are given by

0
i}

+4 = (s¥iscos 8) exp [-i(a+y)]
(sin B/V2) exp [-iy]

o
i

e, = (s¥cos B) exp (i(a-y)]

¢y, = -(sin 8/v2) exp [-1ia]

¢o = COS B (16)
e ,_ = (sin 8//2) exp [ta]

c_, = (%%cos B) exp [~i(o~y)]

c_, = -(sin B//2) exp [iv]

[¢]
]

(%+scos B) exp [1(a+y)].

The complete rotation metrix for & deuterium atom

may be written

a,.% 8, %0 8 St bl
e, ¢ a, ¢ a, ¢ b
4= O +-"00 +-"o+ 2
a, c a, c ° e, c_, b3
s (17)
a ¢ a ¢ a ¢ b
——— --"-0 — 4
a ¢ a ¢ a ¢ b
—-"0- --"00 - Ot 5
a_c, _ a__c+° a_c.. b6
— e

where the states 1-6 are ordered as in Fig. 2.
Finally, it is usually more convenient to de-
scribe the final system in terms of eigenstates of
the particular magnetic field strength rather than
in terms of the strong field eigenstates. If the
fields are changed slowly enough, the system will
remein in a particular state{ that is, the energy of
the system will remain on one of the lines 1-4 for
hydrogen atoms or 1-6 for deuterium atoms (provided
that, initially, the system was in such an eigen-
state).
combinations of the strong field basis states used
in Eqs. 8 and 9.

These eigenstates are, in general, linear

In terms of these "intermediate




field" states, fallures of adisbaticity will appear
in the form of transitions from the initial state

(or the state to which it would have been transformed

if the process were adiabatic) to one or more of the
other states. In terms of the strong field state
amplitudes (primed), the amplitudes of the hydrogen
or tritium atom intermediate-field eigenstates

(double-primed) may be written, for arbitrary B, as

1 - - -
b; 1 o] 0 0 i
o) 0 1+6 0 1-6 !
2f _ 2 , (18)
bg 0 0 1 0 é
" - _ ]
L 0 1-8 0 1+8 L
h Jd - b -

where § = x/{1 + x2)8 and x = B/Bl. For deuterium
atoms we have

"
b} 1 0 0
b; 0 148, 0
b'3' ) 0 0 1+6_
"
by, 0 0 0
" - —
b5 0 0 1-8_
bg 0 -A5(1-6 +5 0
where
6, = (x+1/3)/(142x/3+x2)
8§ = (x—l/3)/(1-2x/3+x2);2

and again x = B/Bl. From these eigenfunctions one
can easily calculate the nuclear and electronic po-
larization of a beam whose atoms are in a particular
pure state (see Table II).

The nuclear polarization parameters may be
written in terms of the strong field amplitudes by
means of the asppropriate projection operstors. For
reference we write the expressions for the quanti-

ties of principal interest:

a) Hydrogen or Tritium Atoms

2 2 2 2
<0,> = lbll +|b)4l 'lbgl '|b3|
<0 > = 2Re(bl*b2+bh*b3) (20)
<o > =

* *
2 Im(bl b,+b), b3)

b) Deuterium Atoms

2 2 2 2
<8,> = Py= [b | [og] - og |-, |
2 2 2 2 2
'3<sz> -2 = Pay = |b1| +|b6| +|b3| "lbﬂ
2 2
-2b, [2-2[vg (21)
<S > =

n /2 Re(bl“b2+b2*b3+b S*b ,*e 6*b5)

Y2 Im(b,*b +b, *b_+b *‘nh-f-bs*bs)

<8,> PR AL UL

where all expectation velues refer to nuclear polar-
ization. Similar expressions may be written for
electronic polarization. It is clear that we may
use these expressions to celculate the polarization
parameters in either the initiel coordinate system
(unprimed amplitudes), or in the rotated coordinate
system (primed amplitudes), depending on the desired
reference axes.

-

] 1-5, b},
1-§_ 0 by
s (19)
0 0 o
A(1+6)) 0 by
0 1+6+ bé
TABLE II

POLARIZATION IN INTERMEDIATE FIELDS

Hydrogen or Tritium Atoms

State P{nuclear) P{electronic)

1 1 1

2 -8 [

3 -1 -1

4 [ -6

Deuterium Atoms
State P3(nuclear) P33(nuc1ear) P(electronic)

1 1 1 1
e W1-8)  1s3,) s,
3 35(1+5_) 35(1-35_) 5_
ly -1 1 -1
5 -3(1-6_) -%(1+35) -8 _
6 (1+8,) =35( 1-3<s+)‘ -5,




The equations of motion of the probability am-
plitudes (Eqs. 8 and 9) may be solved in a straight-
forward way if the field is assumed to be constant
and if the (negligible) nuclear terms are amitted.
We present these solutions here primarily because
they are useful in understanding and describing the
nature of the more general solutions.

If we neglect the nuclear term in the Hamil-
tonian, the differential equations for the hydrogen

or tritium atom become
16, = ¥(x+s)ud,
iﬁz = 8(x—k)mb2+%mbh
i63 = %(—x+%)wb3
16) = dub (dtx)udy

(22)

where the z axis is defined by the (constant) mag-
netic field direction, x = B/Bo, end w = AW/, If

the initial conditions are bl =€y, b2 = €, b3 =

53, and bh = €y the general solution may be written
by = e expl-i(sx)iput]
by = 3{ep(1-x/8)-c)(1/8)) expl 1(3e+8 hsut
Ha (e ,(1+x/8)+e,,(1/8)} expl 4 (3-8 )igut ] (23)
by = €q exp{-1(3%-x)3uwt]
by = {-cp(1/8)+e, (14x/8)) expl1(35+8 it ]
#5{e,(1/8)+e) (1-x/8)} expl 105-8)30t]
where B = /1+xZ.
2 2 2

€ + £, + c3 + :i = 1 correspond to physical initiel

states.

Only velues of € " gy for which

Again neglecting the nuclear term in the Hamil-
tonian, the differential equations for the deuterium

atom become

1‘61 = 3§(x+l)m‘bl

o 1
ib2=§5wa2+/§wb6

1B, = d(x-1)ub, + —= wb
3 37 =%
2 (2b)

iﬁh = ;ﬁ(—X'*'l)u)bh

16, =

5 wb3 -3 x wb

5

1‘66 = b, - g(x+1)mb6 .

Sl & -

where x = B/Bo’ w = 2AW/(3h), and again the z axis

is defined by the magnetic field. The solutions
may be written in terms of the initial vector € as

follows:

b

156 exp{-1i(1l+x)kwt]

0 = 35(52(1-[x*‘3§]/8+)—€6(\/5/8+)} exp[1(%+8, )hswt]
Pse(1+0x5)/8, ) +e (V2/8, )} expli(r-8, Yot

by = %{ey(1-[x-31/8_)-e(/2/8_)) expl1(3+8_)t]
#a{e (14 [x41/8_)+e(V2/8_)) expl1-8_Yut] (25)

= ¢), exp[-1(1-x)¥ut]

5 = t{-e (/378 )+eg(1+[x-%1/8_)} expl1(is+8_)gut]
+ 63(/5/8_)+55(1—[X-35]/8_))exp[i(k«-B_)%wt]

b = d{-e (V2/B,)+eg(1+(x+51/8, )} expl1 (g8, Yisut]

#5{e, (278, ) ve (1-(xk]/8, )} expli (-8, aut]

b

o
&=
|

o'
n

where B, = sztx+9/5. Only those values of €. - ¢
* 1 6

2 2 2 2 2 2 _
for which € + €5 + 53 + € + cs + €6 = 1 corre-

spond to physical initial states.

3. APPLICATIONS

We will consider several applications of the
theory Just described, ell of which ere of interest
in the design and utilization of polarized-ion
sources. For the most part, where numerical results
are presented, we will have in mind polarized-ion
sources of the Lamb-shift type. We will consider

the following problems:

a) "Adiabatic reduction" of a large (lcngi-
tudinal) to a small {longitudinal) magnetic field;

b) Adiabatic reduction of a large (longitu-
dinal) to a smell (transverse) magnetic field;

c¢) The sudden zero field crossing technique
of polarization enhancement;

d) Depolarization effects associated with the
addition of two electrons to & polarized H+ or D+
ion bean.

We first meke some general observations about
the conditions required for adiabaticity. At low
fields a one-electron atom in a pure state will be- *
have like en elementary particle which has the mag-
netic moment of the electron but the totel spin
angular momentum of the atom. 8ince a free elec-
tron precesses sbout & field at the rate of uogJ/h

= 2,8 MHz/G, a hydrogen atom in the F = 1 state



will precess at a rate of 1.h MHz/G. (The pure F =
0 state has no polarization; thus, its precession
rate, which would be infinite from this point of
view, has no physical interpretation.) A deuterium
atom in the F = 3/2 state will precess at 0.93 MHz/G
while one in an F = 1/2 state will precess at 2.8
MHz/G. Thus, for low fields, transitions will be
induced only if the field direction changes rapidly
with respect to the appropriste one of these pre-

We will adopt the term "eriti-

cal frequency" to denote the particular precession

cession frequencies.

frequency which serves as the boundary between the
zero transition (adiabatic) region and the complete
transition (diabatic) region.

At high fields the critical frequency is di-
To il-

lustrate the connection, we consider a hydrogen atom

rectly related to the hyperfine splitting.

which has, at zero time, its electron spin aligned
with the megnetic field (+z-axis) and its proton
spin aligned with the +x-axis. In terms of the so-
lutions given in Section 2, the initial conditions
L=e, =1
From Eqs. 20 and 23, we find that

which represent thie situation are €
and €3 =€, = 0.

X+

<0 > = 2Re(b1*b +bh*b3) + cos(aW/an)t. (26)

2

Thus, if the field is sufficiently strong to main-
tain the elignment of the electron, i.e., for x >> 1,
the component of the proton spin angular momentum
which is not parallel to B will precess around the
magnetic field at one-half of the hyperfine fre-
quency. The classical picture that is involved is
as fcllows. Neglecting, as in Egs. 22 and 24, the
pN-B term in the Hamiltonian, we may say that the
electron precesses about the applied magnetic field
with & frequency corresponding to the free-electron
precession rate, while the nucleus precesses sbout
the electron with a frequency closely related to the
normal hyperfine splitting. If the external field
is to be cherged in an adiabatic marner, it must be
changed slowly with respect to both frequencies. At
low fields the critical frequency therefore ap-
proaches the electron precession frequency (modified
by the total engular momentum of the atcm) while at
high fields it approaches one-half of the normal hy-
perfine frequency.

For both the low- and high-field regions, the
critical freguencies arrived at, in this semiclassi-

cal picture, correspond exactly to the energy sepa-

100 T T T T Y
25 TRITIUM ATOMS 94.8MHz
88.8MHz
~ 75F 2S HYDROGEN ATOMS A
T
=
S sof ]
-4
w
D
[}
w
@x 25| SLOPE 140 MHz/G ]
2S DEUTERIUM ATOMS |3.6MHz
o SLOP% 093 MHz/lG L \ \
[o] 100 200 300 400 500 600
B (GAUSS)
Fig. 3. Plot of the critical frequency for 25 trit-

ium, hydrogen, and deuterium atoms versus magnetic
field strength. For 15 atoms both the horizontal
and vertical scales should be multiplied by &.

ration between the initiel state and the nearest
neighboring state. For intermediste field strengths
the motion is complicated; the electrcn and proton

may be seid to "tumble" atout each other. However,

from the form of Eq. 26 it is clear that the sepa-

ration between the initial and the adjacent state
still corresponds to the critical frequency (see
Fig. 3).

For deuterium atoms we obtain similar results.
For an atom which hes, at zero time, the electron
aligned with the field (+z-axis) and the deuteron
in an my = 1 state with respect to the +x-axis, the
appropriate initial conditions are € = c3 =1/2,
€, = 1//5, and €y = cs =eg = 0. From Eqs. 21 and
25, we find that

<S> = /2 Re(bl*b2+b2*b3+b5*b yog*os)

X+

+ cos{AW/34)t . (27)

In this case the high-field criticel frequency is
one-~third of the hyperfine frequency. However, we
note that the critical frequency again corresponds
to the energy separation between the initiel and

the adjacent state (see Fig. 3).

Adiabatic Reduction of & Large (Longitudinal) to a
Small {Longitudinal) Magnetic Field

Maxwell's equations imply tbhe following (first
order) relatlion between the radial and exial compo-

nents of a cylindrically symmetric magnetic field:

Br=—§§_ : (28)



Thus, except at r = 0, a changing magnetic fiela
strength Bz is always accompanied by a radial field
component. The angle between the field direction

and the z-sxis is therefore given by

B . 9B,
B T 2B 9z ° (29)
Z Z

tan 6 =
For example, if we have a uniformly falling field
(Bz = -~ cz), Eq. 29 becomes

=X 2 X
tan 0 57 = Bvt (30)

where z = vt for a beam moving with velocity v. The
same result holds for an exponentially falling field

(Bz = ce_z/z)

. Thus, except at r = 0, for any kind
of declining field, there will be a changing field
direction; it is this rate of change that must be
kept small with respect to the relevant critical

precession frequency. For a linearly falling field,

this angular rate of change is

o= d (tan T o =(m/2v) (31)

2vt (r/2v)2+t2

Except at small t (and therefore small B) the rate
of rotation is inversely proportional to r. Thus,
the outer region of a large beam will be less sub-
Ject to depolarization than the inner region.

We now consider the depolarization effects for
some particular field shapes. (These results were
obtained with the computer code given in the Appen-
dix.)

a field which falls from an initial wvalue of 575 G

Figure 4 presents some numerical results for

to a final value of 5 G with an exponential law:
Bz = 575 e_z/Z + 5. (The particular velocity of
30 cm/usec, which is that used in a Lamb-shift
polarized~ion source, is assumed for all numerical
results presented in this report.) Particles trav-
eling on the axis (r = 0) experience no change in
field direction and hence undergo no transitions.
In each case we plot the reteined fraction of the
atoms; that is, the fraction which does not make a
transition to any other quantum state.

Figure 5 presents curves similar to those of
Fig. 4 for a particular megnetic field configuration
epproximating that which may be obtained by a sole-
noid in an iron cylinder with a small oppositely
directed correction current about one diemeter from
the main solenoid end. (The exact field shape used

is shown in Fig. 6.) The depolarization effects for
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Fig. 4. Retained fraction of hydrogen atoms in
state 1 (I), deuterium atoms in state 1 (II), and
deuterium atoms in state 2 (III) for an exponential-
1y shaped tield which decays from 575 to 5 G. The
abscissa is the "1/e" length Z. The curves marked
1, 2, and 3 correspcnd tc particles which travel
1.25, 2.50, and 3.75 cm from the axis. A velccity
of 30 cm/usec is assumed.
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Fig. 5. Retained fraction of hydrogen atoms in

state 1 (I), deuterium atoms in state 1 (II), and
deuterium atoms in state 2 (III) for a particular
axial field shape which can achieved with a shielded
solenoid (see Fig. 6). Curves are labeled as in

Fig. 4. The ebscissa refers to the diameter of the
solenoid shield. A velocity of 30 cm/usec is
assumed.
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Fig. 6. Field shapes for the calculations whose
results are presented in Figs. 4 and 5.

a field of this general shape are scmewhat larger
than with the exponential field. This points out
that the exponential shape is nearly ideal, since
Bz changes more and more slowly as the (more criti-

cal) lower field levels are reached.

Adiabatic Reduction of a Large (Longitudinal) to a
Small (Transverse) Field

Figure 7 presents the retained fraction for an
exponentially declining axial field and a transverse

final field direction; that is, the field on the

axis, in gauss, is described by B_ = 575 e"2/2,

Bx = 5.

tion in this case than in the case where the final

It is somewhat easier to induce depolariza-

field is longitudinal, because & (= tan~t Br/Bz)
must change by 90°, whereas for a longitudinal final
field, & increases to some maximum value and then
returns to zero. The critical region is where Bx

= Bz’ since the field rotation rate is maximum there.
The meximum allowable w is determined by the total

magnetic field B (= VBi + B§ + Bi). The deteils of
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Fig. T. Retained fraction of hydrogen atoms in

state 1 (I), deuterium atoms in state 1 (II), and
deuterium atoms in state 2 (III) for an exponential-
ly declining exial field and a transverse final
field. The curves and the abscissa are labeled as
in Fig. 4. A velocity of 30 cm/usec is assumed.

the shape‘of the Bx field are apparently unimportant
so long as Bx has risen to its full value before Bz
drops below one or two times the final Bx velue.

Figure 8 shows the retained fraction for a
final transverse field of 5 G (Bx = 5) and for a
longitudinal field 5 G less than that plotted in
Fig. 6. (The axial field approaches zero for large
displacement.) Again the depolarization effects are
more severe in this case than in the exponential
one. This is because the rate of fall of the exial
field in the critical region (near 5 G) is greater
in the present case.

From Figs. 4, 5, 7, and 8, it is seen that, of
the states conslidered, state-1 hydrogen atoms are
deﬁolarized the least, while state-2 deuterium atoms
are depolarized the most. On the basis of the
critical-frequency arguments, we expect hydrogen

atoms to be less subject to depolarization than deu-

terium atoms (in agreement with the calculations).

However, these arguments do not account for the

difference between state-l and state-2 deuterium
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Fig. 8. Retained fraction of hydrogen atoms in

state 1 (I), deuterium atoms in state 1 (II), and

deuterium atoms in state 2 (III) for a particular

axial field shape (see text) and & transverse final

field. The curves and the abscissa are labeled as
in Fig. 5. A velocity of 30 em/usec is assumed.
atoms. Possibly state-2 deuterium atoms are more

readily depolarized than state-l atoms because there

are two nearby states instead of one to which tran-
sitions may occur.

A transverse field destroys cylindrical symme-
try, so that particles at a given radius, but at
different azimuthal engle with respect to the beam
exis, will undergo different field rotations. Thus,
atoms in different parts of a beam will be subject
to different transition probabilities. This is, of
course, not important if the transition probabili-
ties are all kept near zero. The curves presented
in Figs. 7 and 8 assume an average situation; i.e.,
they correspond to & ray in the y-z plane and to a
final transverse field in the x-direction.

Sudden Zero Field Crossing Technigue of Polarization

Enhencenent

It has been suggested by Sona.3 that it should

be possible to enhance the polarization of a meta-
stable H or D beam with the aid of a sudden reversal
of the magnetic field direction. In this scheme

the magnetic field is first reduced adiabatically to
a low level; e.g., V1 G.
~ -1 G takes place.

Then & sudden reversal to
If the reversal is so sudden

that the atoms cannot follow it, the states become,

12

with respect to the new megnetic field direction,

different quantum states as follows:

Hydrogen Deuterium
1-+4 1+4
2+ 2 2-+3
3+1 3+2
R b+ 1

5+6
6+5

Thus, for hydrogen atoms, if one starts at high pos-
itive fields with an equal mixture of states 1 and
2 (0% polarization), after a sudden zero crossing
followed by an adiabatic increase to a high negative
field, one obtains an equal mixture of states 2 and
3 (100% polarization).
high positive fields we have an equal mixture of
states 1, 2, and 3 (P3 =

For deuterium atoms, if at

P33 = 0), a sudden zero
crossing followed by an adiebatic increasse to a
large negative field leads to an equal mixture of
the states 2, 3, and 4 (P3 = -2/3, Py = 0). This
process has been applied with good results at two
labora.tories.h’5

Our concern here is the extent to which one
can achieve these diabatic transitions for practical
beam sizes and magnetic field shapes. Our attention
will be focussed mainly on hydrogen or deuterium
atoms in their l-states. [For hydrogen there is no
difference between state 2 for a very small positive
and a very smell negative field, so it is not mean-
ingful to inquire whether the atom "followed" the
field direction or not. For deuterium atoms in
states 2 and 3, such a question is meaningful, dbut
since equal initial populations of 2 and 3 are in-
volved in the applications we have in mind, symmet-
rical transitions (or the lack thereof) between
them are of no consequence.]

Consider again the uniformly falling field for
which Bz = - ¢z = - cvt and Br = Xcr. At z = 0 the
(minimum) field is B = ¥cr. The field angular ro-
ration rate is, again,

w = ~-{r/2v)

= (32)
(r/2v)2+t2

Note that this frequency is independent of c, the
rate of fall of the Bz field. However, the minimum
Thus,

increasing the rate of fell of Bz has the net ef-

field, for given r, is proportional to c.

fect of raising the minimum field and thus the
ability of the atom to follow the field reversal is

improved. Larger r increases both the minimum
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Fig. 9. Fraction of the initial state 1 meking the
desired trensition when the field is linearly re-
versed at the indicated rate. The abscissa is the
radius with respect to the (cylindrically symmetric)
field axis. Slightly different results are obtained
for hydrogen state 1 (H) and deuterium state 1 (D),
as indicated. A velocity of 30 cm/usec is assumed.

field and decreases the angular rate with which the
field reverses, and thus also improves the ebility
of the atom to follow the reversal. From this dis-
cussion it appears that 1) the field must reverse
as slowly as possible (contrary to one's first im-
pression) and 2) there exists a meximum beam diame-
ter, for a given rate of fall for Bz, for which the
scheme will be appliceble. As pointed out by Sona,3
the presence of transverse (stray) field components
will place & lower limit on the field parameter c.
Figure 9 shows the fraction of the initiel
state 1 making transitions to state 3 for hydrogen
or to state 4 for deuterium atoms, as a function of
beam radius for several rates of fall for Bz' There
is no appreciable difference between the results for
hydrogen and deuterium. A priori, one would expect
8 larger fraction of the deuterium atoms to make
transitions since the relevant precession frequency
(with respect to which the field must rotate rap-—
idly) is only two-thirds as large for deuterium as
it is for hydrogen. The deviation from expectations
is probably because,at a given (low) magnetic field,
the deuterium atom is less well-described ss a sim-
ple particle (with spin 3/2) than is the hydrogen
atom (with spin 1).

Ko o
"K':\\ T T T T
NSNS
NN
TN N s, /056/em h
\ \\ \/ I(i/c:tn}Pu
G/cm

FINAL B DIRECTION
(=)

POLARIZATION WITH RESPECT TO

5

2 3
RADIUS (cm)
Fig. 10. Results of the calculations presented in
Fig. 9 expressed in terms of P (for hydrogen) end
P3 and P33 (for deuterium). The polarizations are
expressed with respect to the final field direc-
tion. A velocity of 30 cm/usec is assumed.

Figure 10 presents the information given in
Fig. 9 in terms of polarization versus beam radius.
For hydrogen atoms this presentation carries no new
information, but for deuterium atoms, one wishes to
know of the effect on both vector and tensor polar-
ization. It would be equivalent, for our purposes,
to specify the relative population of each of the

final states other than the initial state.

Depolarization Effects Assocliated with the Addition

of Two Electrons to a Polarized H+ or D+ Ion Beam

If a positive B or D ion has two electrons
added to it in a gas or foil, there may be a time
interval during which the system is a neutral atom.
During this time some depolerization will take
place if a) the time interval is long enough and
b) the magnetic field in the stripper region is
small or zero; i.e.,unless x >> 1, Similar argu-
ments apply to the case of the stripping of two
electrons by a negative ion. This point will be
further discussed later.

Let us assume that the magnetic field, if any,
in the "adder" region is constant. We choose our
z-axis to be parallel with the field. The nuclear
polarization may be parallel to the z-axis or in-
clined at some angle with respect to it. (The so-

lutions presented in Section 2 are sufficiently
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general to handle any such orientation.)

First, we consider hydrogen ions with the nu-
clear spin parallel to the stripper field. If we
assume that the first electron is captured into the
ground state, the atom will be in either state 1 or
in state 4 (equal probability), where we refer to
strong field states regardless of the actual field
strength. From the general solutions already given,
atoms which are in state 1 initielly will remain soj;

thus, for these atoms, we have
<g,>=1. (33)

The time dependence of <cz> for an atom initially
in state 4 is obtained from the general solution

(Eq. 23) with e, = ¢, =

1 2 e3 = 0 and g, = 1:

<0,> = L (x2+cosv’l+x2 %E't) 5 (3%)

x2+l

i.e., for x = 0 depolarization occurs with the normal
hyperfine frequency AW/h as the characteristic rate.
If the time interval (t) between the pick-up of the
first and of the second electron is random, and long
compared to h/AW, then, for a beam of particles,
<0,> will have the average value x2/(x2+l). Com-
bining Egs. 33 and 34 we obtain for the overall beam
polarization

P = %[1+x2/(x%+1) ] (h/8W << 1) . (35)

If the time v is sufficiently short, no depolariza-
tion occurs. For zero magnetic field (x = 0), we
see that a maximum overall depolarization of 50%

may occur; for large fields (x >> 1), no depolariza-
tion will occur. Consideration of the case where
the initial nuclear polarization and stripper field
are antiparallel gives, except for overell sign, a
result identical to that given above. That is, for

an atom initially in state 3
<0,> = -1, (36)

vwhile for an atom initially in state 2

¢ > = -
zZ

; (x2+cosr’l+x2 %ﬂ-t) . (37)
x +1

Thus, the overall polarization for an equal mixture

of states 2 and 3 may be written

P = a[14x2/(x%+1) ] (B/0W << 1) . (38)

1k

In summary, if depolerization is to be avoided,
either the time between the first and second colli-

sions must be small compared to h/AW or a large mag-

.netic field must be present.

If the nuclear spin is perpendicular to the
adder magnetic field direction (z-axis), the (equal-
ly probably) initial states are as follows: for the

electron spin parallel to z, <ox> = 1 implies ¢

1

€5 = 1//5 and e3 =g = 0; if the electron spin is
antiparallel to z, <ox> = 1 implies g =, = 0 and
ey =€y = 1/V/2. For the first of these initial con-

ditions we obtain

<0,> = ¥(1-x/8)cos [ (1+xrg)gE ¢]145(14x/8)

xcos[(l+x—8)§¥-t] , (39)

where 8 = (l+x2)%. For the second initieal condition

we obtain

<o, > = 3(1+x/8)cos (1-x+8)5h t]+4(1-x/8)
Xcos[l—x—B)g t] . (%0)

For very large X, Eqa. 39 and 40 each become

X-»co

<o > -+ cos %g-t 3 (k1)
i.e., the polarization precesses at the expected high
field rate. For small fields Eqs. 39 and LO each
become

x>0

<0 > %(1+cos o

ot (42)

i.e. again depolarization occurs with the normal hy-
perfine frequency as the characteristic rate. (The
zero field limit must, of course, be independent of
the direction of the assumed angle between the nu-
clear polarizatioﬁ and the magnetic field.) A more
general orientation of the magnetic field axis mey
be considered with the aid of the solutions given
in Section 2.
For deuterons the situation is similar but

slightly more complicated.
polarization P3 and P

The vector and tensor

33 for each of the (strong

field) initial states 1-6 is as follows:



Initial

State E;

1 1

2 l-z{l—cos(zAw)B t]
87 *

3 - —z[x -x+5/h+cos(

L -1
1 AW

5 - Ez-[l—cos(3h )18_t]

6 —!Tx +x+5/h+cos(2Aw

where Bt = (x2 + x + 9/h)%. We note that, at zero
field, the time dependence becomes of the form
cos(AW/h)t, so once agaln depolarization occurs at
the normel hyperfine frequency.

For a deuteron beam initially in the m =
state with respect to the adder field direction,
strong field states 1 and 6 are populated with equal
probability; the time-averaged polarization param-

eters become

P3 = ;2(1... __xﬂL
x“+x+9/4

= %(l* £_i§:_L_

x“+x+9 /L

Similarly, for m =

I'\.)I\)

(h/aW << 1) . (Lb)

I’\)I‘\)

0 we obtain

P, = y[—L -5
3 x2+x+9/‘4 x2-X+9/h (h/8W << 1) » (85)
P = [x +x+3/h 2'X+3/l‘]
337 T 2 o/l xPxro/h
and, for m; = -1
2
P, = gf1e E2X00[Y
3 2—x+9/h
. (a/8W << 1) . (46)
P33 = L[1+ _?_X;L
-x+9 /4

For h/AW >> 1 no depolarization occurs.
field Eqs. 44-L6 reduce to

For zero

1 3 i<
1 /9 1/3
0 0 -2/3

-1 -1/9 1/3

That is, the initial vector polarization is reduced

24, g _t]

8. t]

REE]
1
%2{2x +2x+3/2+3cos(2Aw)B +t]
+

%y{xz—x—B/h+3cos(%%E)B_t]

(43)

—

- grlex -2x+3/2+3cos(2Aw)B _t]

2AW

_z{x +x_3/h+3cos( 8.t

to seven-ninths of its initiasl value while the ini-
tial tensor polarization is reduced to one-third of
its initial value. We may summarize the zero field

results as follows:

Characteristic Maximum Depolarization

gz;g;:;izazgzn Vector Tensor
Protons 1420 MHz 1/2 -
Deuterons 327 MHz 2/9 2/3
Tritons 1517 MHz 1/2 -

In the above it is assumed that the intermediate
At higher
fields the depolarization is smaller; however, note

atoms are formed in the ground state.

that the characteristic frequency for depolarization
becomes larger.
In the above discussion, it has been assumed

thet the first electron is added in the 1S state.

However, the theory holds for capture intoléiy J =
1/2 state, so long as the atom remsins in this state
until the second electron is added and provided that
the appropriate hyperfine splitting is used in the
description. If radiative decay occurs, some addi-
On the other

hand, relatively small magnetic fields will be suf-

tional depolarization will result.

ficient to produce a strong field with respect to
the higher hydrogen-atom excited states, and radia-
tive decay in the presence of a strong field will
Thus, a field

strength which is sufficient to prevent depolariza-

result in no nuclear depolarization.

tion of a 181/2 state is also sufficient to prevent

depolarization while an atom is in an excited state
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and during the decay of the atom (eventually to the
18 state).
For a "thick" adder, as required for a large

1/2

negative ion yield, electrons may be added and sub-
tracted several times before the particle escapes
as e negative ion. The considerations above will
apply to each time interval during which the parti-
cle exists as a neutral atom. For example, consi-
der a proton which is converted to an H ion via
the process H' + H° + H' + H® + H™. If we assume
zero magnetic field and that both of the time in-
tervals during which the particle is neutral are
large compared to £/AW, & depolarization of T5%
(L.e. 1 - (%)2) would be expected. For deuterons
the vector depolarization would be 1 - (%)2 and the
tensor depolarization would be 1 - (%pz. In prac-
tice, of course, both the number of charge exchange
events and the interval between them will be random.
The stripping of two electrons from a negative
ion presents a somewhat similer problem. However,
a hydrogen negative ion has a diffuse wave function
Thus, if one of the

electrons is suddenly removed, the remaining elec-

compared to a hydrogen atom.

tron will tend to be spread over a relatively large
Stated differently, the atom will have a

high probability of being produced in a state other
Therefore, the effects dis-

region.

than the ground state.
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cussed in the previous paragraph are expected to be
more important in the stripping case than in the

adding case. It is possible that studies of depo-

~ larization versus magnetic field could yield infor-

mation about 1) the wave function of the hydrogen
negative ion and 2) the neture of the collisions
which induce radietive decay of the higher hydrogen
atom states that are produced in the partial strip-

ping of an H ion.
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A COMPUTER CODE FOR SOLVING THE ONE-ELECTRON SCHROE-

APPENDIX

DINGER EQUATION

This code solves the time-dependent Schroedinger

equation for a Hamiltonian of the form

M= krtue; Frue Donraltd)

where the notation is defined in the preceding pages.

An arbitrary time dependence of the external magnetic

field B is allowed. A numerical integration of the

resulting set of linear first-order differential

equations is carried out with automatic error con-

trol.

The input for the code is as follows:

Card 1
NZ

Card 2 to Card (NZ + 1)

2z2(1)
B2Z(I)
BRR(I)

CARD NZ + 2
M

NSTATE

MODE

FORMAT (I6)
number of points at which axial and
radial field table is to be speci-
fied

= 0 if no table to be specified
FORMAT (3F12.6)
axial position (cm)
axial field strength (G)
raedial field strength 1 cm off

axis (G)

FORMAT (3I6)
type of atom

1l: for hydrogen atoms

2: for deuterium atoms
= 3: for tritium atoms

initial state
=1 to 4 if hydrogen or tritium
etoms intermediate field states
1toh
= 1 to 6 if deuterium atom inter-
mediate field states 1 to 6
= 11 to 1k if hydrogen or tritium
strong field states 1 to 4
= 11 to 16 if deuterium atom
strong field states 1 to 6

option for defining magnetic field

(see comments in BFIELD)
= 1: axial and radial fields as
specified in table
= 2: axial field varies as a
sine-squared function
= 3: axial field varies as an

exponential function

Card NZ + 3 FORMAT (3F12.6)
TT initial time (usec)
TTF final time (usec)
HHP time interval between output steps
(usee)
Card N2 + &4 FORMAT (6F12.6)
BZ1 initial axial field (G)
BZ2 final axiel field (G)
BRMAX final transverse field (G)
ol distance off axis (em)
PHI azimuthal angle transverse field
makes with respect to x axis (deg)
VELOC velocity of particle beam (cm/usec)
Card NZ + 5
21 position at which axial field be-
gins to decline or to be defined by
table {cm)
z2 position at which axial field as-
sumes & constant final velue (cm)
z3 position at which transverse com-
ponent begins to rise as sine-
squared function (cm)
bAN position at which transverse com-

ponent assumes a constant final
value (cm)

The code renormalizes the state vector to
unity total probability before each print to remove
accumulated normalization errors (via subroutine
RENORM). If this error exceeds 1%, an error mes-
sage is printed.

The time, field components and total field,

nuclear polarization, electron polarization, and
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squared amplitudes of the four (or six) strong field

states are printed with reference to the coordinsate
system as defined by the user. These results are
then printed a second time in terms of the inter-
mediate field states with respect to e z axis de-
fined by the instantaneous direction of the total
field. In the second set of output the field is
specified in terms of azimuthal and polar angles,
and beam displacement is given instead of elapséd
time.

The program consists of a main program MJRANA
The function
of each of the subroutines is briefly described be-

together with a number of subroutines.

low.

SUBROUTINE SETUPB
This subroutine réads in parameters necessary
to specify the B field as described above.
Certain often-used combinations of the input
paremeters are computed here.

SUBROUTINE BFIELD (T, BX, BY, BZ)
This subroutine computes the field components
BX, BY, BZ at the time T, assuming Z = VELOC*T,
X=0, and Y = Y1.

SUBROUTINE DERIV (T, V, FD)
This subroutine computes the values of the
first derivatives FD(I) (I =1 to 8 or I =1 to
12) given the value of T (time) and of the
variables V(I) (I = 1 to 8 or I = 1 to 12).
[Note that four (six) complex first-order dif-
ferential equations result in eight (twelve)
real first-order differential equations. ]

PROGRAM ™M JRANA (INPUT 4OUTRUTIFILMs TAPE 12aF ILM)

C WUNITg MICROSFCONDS
COMMON/BLNCK]/414,829A39A44Cl 4RO

COMMON/RLNCK?/RSQ (69201) ,TIME (201) «BRX(201) 4BRY (2013 sBBZ1201) 4

1P3(201)9P33(201) yPEL(201)9NITIME
COMMON/BLACK3/M NN

SUBROUTINE PRINT (T, VS)
This subroutine prints the first type of out-
put described above at the specified times and
also stores the second type of output for later
printing.
SUBROUTINE ROT (M, ALPHA, RETA, GAMMA, V)
This subroutine rotates the state vector V
through the Euler angles a, 8, and v.
SUBROUTINE RENORM (N, V, VV)
This subroutine renormalizes the state vector
V so that it has unity total length.
FUNCTION ARCTAN (Y, X)
This function computes arctangents, in de-
grees, for all zero and nonzero values of Y
and X.
SUBROUTINE TABLE (%, ZZ, NZ, I, MFLAG)
This subroutine performs a table look-up in
the ordered table ZZ.
SUBROUTINE INTEG (NN, TI, TTF, HH, HHP, MM, VVM,
IP, X0, TT, XXP)
" This subroutire integrates an arbitrary sys-
tem of real linear differential equations.
The arguménts of this subroutine are defined
by comments in the main program listing. The
monitoring feature (a periodic test of a
specified variable ageinst some limit) is not
INTEG together with the subroutines
START, RNGA, ACCRY, TEST, DIODE, ADAMS, and
DOUBLE constitute the complete integration
package.

used.

MJRNOO10
MJRNOO11
MJRNQO01?
MJRNOO 1
MJRNOO14
MJRNOO 1S

COMMON/BFID/T] ¢T2¢T30The 54 TEBZ19RZ2+BRMAXyCPRI(SPHIPISeY2?,MONF +MJRNOD16

1velOC

COMMON/BF I DP/2Z1100)¢BZ2Z2(100) ¢BRR(100) ¢NZ
DIMENSION XO0(3n)+xXP(30),BPLOT(201)

COMPLEX C)

FORMAT(1016)

FARMAT (1H1)

FARMAT (# pROTONS  ®6F14,8)

FNARMAT (# NEUTERONS #6F14 8)

FORMAT (# TRITONS #6F14 8)

FARMAT (12F6,13)

FARMAT (# TIME ax
1 P33 PEL 1 2
2 A%}

8 FARMAT(14F9,.4)

~NOoO U & WN -

18

MJRNOO1 7
MJRNOO 1R
MJRNOO19Q
MJRNOO 21
MJRNOO21 .
MJRNOO2?
MJRN0O23
MJRNOO26
MJRNQO2R .
MJRNOO?24&
MJRNOO?7
MJRNOO 28R
MJRNOO29
MJRNOO3N

B2 8 P3



aonnNn

9 FARMAT (6F12,6) MJRNOO31
10 FARMAT(# STRANG FTELD STAaTE COEFFICIENTSs INITIAL COORDINATE SYSTEMJRNOO3?

1Me) MJRNO023

11 FARMAT (# INTERMEDIATE FIELD SYATE COEFFICIENTS, COORDINAYE SyYSTEM MJRNOO34
1RATATED Sn NFW 2 AX1IS POYNTS ALONG FIFLD DIRECTINN #) MJRNO OIS

12 FORMAT (# p3wgQUARF, P33apUiS, MAG FIFLD PARAMS & 12F7,.1) MJRNOO3A
13 FARMAT (® DARTICLE #]2¢% STATF #12,# INITIAL STYRANG FIELP COFFFS #MJURN0OO037
112F6,3) MJRNOO3R

1S FaRMAT(® Z(CM) THETA PHT B2 8 e3 MJRN0O039
1 P33 PFL 1 2 3 [ 5 MJRNOO&4N

2 A%) MJRNOO4
RFAD 14N2Z MJRNG 04?2
IF(NZ2eEG,n) GO TH 100 MJRNOO043

un 90 I=},NZ MJRNO0O44
RFAD 9422 (1) «BZ2Z({1)sRRR(T) MJRNOO4S

90 PRINT94ZZ(1)4B2Z(1)sBRR(T) MJIRNOOG 6
100 ITIME=n MJRNOOGT?
PRINT 2 MJRNOOGR
RFAD 1eMenSTATESMODE MJRNO0O4O
PPINT 1+M,NSTATEMODE MJRNOOS 0
Mals>y OR 3 FOR PROTONS.DEUTERONSGy OR TRTTONS MJRNOOS ]
NSTAYE= 1=64 AR 1~ FNR INTEnMEDIATE FIELD INITIA; STATES MJRNDOS?
NSTATE= 1le16 OR J1w16 FOR STRONG FIELD STATES MJRNOO053
MODEz192¢ OR 3 NEPENPING ON HBFIELD OPTION (SEE CAMMENTS IN aFIFLD) MJRNO0S4
RFAD S¢T1,TTFeHHP MJRNOOSS
POINT “eTTeTTF oHMHD MJRNOOSE
CaLl SETUmB MJRNOOS?
CaLL BFIE; D(TI.BRXx(1)9BBv (1) ARBZ (1)) MJRNOOSA
HTOT=SQRT (RBX (1) #a2eHBY (1) #®2,BB2 (1) #¢2) MJRNOOS9

A) PHA=D,0 MJRNQOO&N
HETA==(3,14158927/180,0)#aARCTAN(SQRT(RRX(1)##2,RBy(1)##2) ,ABZ2(1)) MJIRNOOGR]
GAMMA==(3 1415027 /1R0.0) 2ARCTAN(BRY (1) +BBX (1)) MJRNOO6?

Dn 99 tei,l12 MJRNOO&T

99 xn(Il)=0,.0 MJRNOOG& G
IF{M=2)101e102,10x . MJRNOO&R

101 Hn363.448,1e001527 MJRNQOOGGE
A1=0,5%(1_0en,001522/1,0n1522) MJRNOO6T
a>z0,5#(]1,0«0,001522/1.0n1522) MJRNOOGR
A1=0,5#0.n01522/1,001522 MJRNO069
ne=0,0 MJRNOOT70

Nz MJRNOOT)
PRINT 3¢A1442,03,84980 MJRNQO72
X=RTOT/63_44R . MJRNOO T2

98 1F(NSTATE _GE,11) GO TO le&é4 MJRNOO74
DPLUS=SORT(0,540.5%X/SORT(1e0eX##2)) MJRNOO75
DMINUS=SHNT (NeS5=01,5%#X/SQRT (Ll neXwu2)) MJRNOOTA

GA 10 (150915141529183) 9nSTATFE MJRNOO77

150 xn(ly=le: MJRNOO7R
Gn T 104 MJRNOO 79

151 Xa(3)y=DPLUS MJRNODRN
XA (T)y=nM(wUS MJRNOOB1

Gn TO 104 MJRNNOB2

162 xn(S)=1. MJRNOOR]
3n TO 1064 MJRNOORG

153 xn{(3)==DMINUS MJRNOOBR
Xn(7)=DPL 1S MJRNOOSA

60 TO 10a MJRNDOBY

154 NQTATESENSTATF=10 MJRNOORR
XN (2#¥NSTTEwy)al.n MJRNOORY9

G TO 104 MJRNO OSSN

102 Hn=z=14,605/1,000233 MJURNO09]
Rnz=(2.0/3,0)68n MJRNO0O09?
A1=0,540.n00233/1,000233 MJRNOO913
A2m0 ,5-0,n007233/1,000233 MJRNOO094
A3=0,000233/1,000233 MJRNQO9S
a4=SQRT (0 %) MJRNOO9A

N=6 MJRNDOST?
POINT G49A19A2443,404¢R0 MJRNOOSR
x=RTnT/14,60% MJRNOOS9
IF(NSTATE GE_ 11) 6O TO 146 MJRNO10ON
NELUSS(X¢160/3,0) /SART(1,042,08X/3,0ex8%2) MJRNOLOD}
DMINUSS(AaleN/3e0)/SORT{1.0%2,0¢X/3,0+X%%2) MJRNO102

19



20

c

OO0 ODITOO00

c

Go TO (l14nelaleld2y91430144,1645)9NSTATF
l“n XN(I)CI-U ’
Gn TO 104
141 Xn(3)xSQRT(N,5+0,5#DPLUS)
X0 (11)aSAeT(NeS5=0,5*DPLUS)
Ga TD 104
142 X0 (5)=3SORT(0,5+0,5#DMINUR)
XN (9)%SQART(0,5=0,5#DMINUSR)
Gn T0O 104
143 Xn(7)y=1el)
Gn Tno 104
144 XN (51 2=SURT(NeS5=0,5%DMINIS)
XNn(9)=SART(0,5+0,5#0OMINUS)
Gn T0 1064
145 XN{(3)X=SURT(NeS5=0,54NPLUS)
Xn(11)=SURT(n.5+N ,S*NPLUR)
Ga TO 104
146 NSTATE=NSTATF=10
XN (28NSTATE=1)=l,n
Gn TO 104
103 Bneb7,755,1.n01621%3
A1=0,5#(1,0404001623/140n1623)
A>=20,5#(1,0=ne001423/1.0n1623)
A1=0,5%0.n0N1623/1,001623
Aux0,0
Na&
PRINT SeA149AP943,444R0
XesTnT/67,755
60 Tn 9f
104 AnGE2.N#3,14615927#1,401%7,00229
C1aCMPLX{n,04=ARG)

MJRNO1013
MJRNO104
MJRNOL10%
MJRNO106
MJRNO107?
MJRNO10R
MJRND109
MJRNO110
MJRNO111
MJRNO112
MJRNO1113
MJRNOLl14
MJRNUD11%
MJRND11&
MJRNOL117
MJRNO118
MJRNO119
MJRNO12n
MJRNO121
MJRNO122
MJRNQO123
MJRNO124
MJRNN12%
MJRNO126
MJRNO127
MJRND124
MJRNO129
MJRNO13n
MJRNO 131}
MJRNO132
MJRNO133

REFER INITIAl VvECTOR TO PROnLEM NEFINED 7 AXIS via APPROPRIATE ROTATIMJRNOLl34

Call ROT({MyALPHALRETA9GAMMAIXND)
NME28N
PRINT 10
PRINT 7
Cal.L PRINT{(TT9¢X0O)
HH=0,0001
MM=0
VyM=0,40
AnS=] e NE=ng
RFL=] e NE=nS '
Call INTEQR(NNeTIeTTFyHHeWHPIMMyVVM,ARBGIREL X0, TT¢XXP)
NN NUMBER nF FIRST ORDER NIFFERENTIAL FQUATIONS
TI INITIAL VALUE OF INDEPFNDENT VARIABLE
TTF  FINAL vALUF oF INDEPENNENT VARIARLE
HH GUESS AT STEP ST2E
HHP PRINT STEP ST2E
MM INDEX UF VARTABLE TO Bp MONTTORED (n IF NO MANITORING)
VUM VAL UE Tn MONITOR FOR

ABS MAXIMUI ACCEPTARLE ABSALUTE ERROR IN ONE INTFGRATION STEP
REL MAXIMUM ACCEPTARLE RELATIVE ERROR IN ONE INTFGRATION STEP

X0 VECTOR nF STARTING VALuES

17 VALUE OF INDEPENDENT VARIABLE RETURNED AT Emn oF INTEGRATTNNM
XXP VALUES nF NEPENDENT VARIABLES RETURNED AT Enn OF INTEGRATION

PPINT 11

PRINT 1S

NTIME=ITTuE

DN 110 I=y4NTIME

RTOT2SQRT (BEX (1) #u2+RBY (1) a®2,BBZ (1) #e2)
PNSN=TIME (1) #VELOQ

PHIFSARCTAN (RBY (1) 4HBX(I})
THETAF2ARCTAN(SQRT(HBY (1) #82,RBX (1) ##2) ¢BBZ (1))

MJRNO135
MJRNO136
MJRNOL137
MJRNO13R
MJRNO1309
MJRNOl4n
MJRNOl41
MJRNO 142
MJRNO147
MJRNO 144
MJRNOl4%
MJRNOl4n
MJRNO147
MJRNO14R
MJRNO149
MJRNO150n
MJRND151
MJRNO 152
MJRNO163
MJRNO 1 %4
MJRND 158
MJRNO 15K
MJRNO157
MJRNO15R
MJRNO159
MJRND 160
MJRNO 161
MJRNO16&2
MJRNO 167
MJRNO 164

‘MJRNO165

PRINT BePASN4THETAF¢FHIF BBZ (1) eBTOT4P3(I)eP3IA(I)ePEL(1},(BSA(JeTIMJIRNOLEA

ly )mloN)
110 CoNTINUE
THE FOLLOWING 1R CARNS PRODICE A PLOT WITH LASL SUBROUTINES
CaLL Apvt(Y)
CaLL DGA(50095005098009T1sTTFele00nNe0)
CALL DLNLM(1ne10)
CaLL SLLIN (10,4019
Call SRLIM(10en2)

MJRNOL167
MJRNO16R
MJRNO169
MJRNO1 70
MJRNO171
MJRNO172
MJRNO173
MJRNO174



Dn 120 JmyeN
Dn 121 Isp NTIME

121 BeLOT(1)=aSQ(Je])

120 CaLL PLOT(NTIMESTIME (1) o1 oRPLOT(1) ¢19b4s1)
CalLL DGA(50¢950050¢5000TTeTTFele0em2,en)
Catl SRLIN(8,01)

CALL PLOT (NTIMEZTIME (1) 91eP33(1)s141640)

CALL PLOT(NTIMESTIME(1)914P3 (1)41463,0)

CalLlL LINCNT (&0}

PHI=PHI®]1R0,0/3.1415927
WRITE(12912)7)¢22023024075¢264B2Z1+8Z2.BRMAX,YY PHIyVELOC
WRITE(12¢13)MINSTATE» (X0 (I)elmloNN)

caLL ADVI(Y)

PRINT 139MgNSTATE, (XO{(I)oImlyNN)

Gn To 100

Eni

S1JRROUTINFE SETUPR
C KREADe IN FIE{.D PARAMETERS AnD COMPUTES SOME FREQuIFNTLY USED QUAMe
C TITIFS FOR USE AY SURROUTINF BFIFELD

MJRNOL17S
MJRNO176
MJRNO177
MJRNO17R
MJRNO179
MJRNO180
MJRNO181
MJRNO182
MJRNOD183
MJRNO 184
MJRNO18S
MJRNO186
MJRNO187
MJRNO188
MJRNO 189
MJRNO190

SETBOO10
SETR0011
SETR0012

COMMON/BF I D/T1sT24T34T4975,T6¢BZ14B72+BRMAX«COHT(SPHIPI2¢Y2,MODF+SETR0012

lveLOC
C DISTANCES IN CM FOR FIELD PARAMETER ENTRY
2 FARMAT{AF12.4K)
P1223,1415927/2.0
READ 248 14B22¢BRMAX Y1 epHTWVFLOC
PRINTZ2¢821¢872:BRMAX Y1 epHT9VFLOC
RFAD 2.21.22.23'2"25'26
PRINTZ24621422423024425+26
Ti1=xZ1l/VELNC
T2=22/VELNC
Ta=Z3/VELNC
Tasla/VELNC
Tex25/VELANC
T«sZ6/VELNC
C Y1 I~ CMy Pr71 In DEGREES

CrHI=COS(PHI®P12/90,0)
SPHI=SIN(PHI#PTI2/00.0)
Gn TO(100,200¢3009) yMODE

100 y»=Y1
RETURN

200 YYo=~ (Y1/2,0)#P12# (BZ1=8Z5)/(VELOC#(T2=T1}))
R& TURN

300 Y2=(RZ1=-872)8Y1/(2.08VELAC#(T2=T]))
RETURM
Enb)

SHBROUTINF RFIELD (TeBXeBvyeRZ)
C COMPILITES FIEID cOMPONENTS AT POSITION Z=VELOCH#Ty v=yYlse X=0

SETR0014
SETBO01S
SETB001 &
SETR0017
SETB0018
SETBO0019
SETR0020
SETR0021
SETB0022
SETR0023
SETB0024
SETB0025
SETB0026
sETR0027
SETBO02A
SETBQ029
SETR0030
SETB003)
SETR0037
SETB0033
SETB0034
SETR0035
SETB0036&
SETB0037
SETB003A

BFLDOO10
RFLDOO11

CAOMMNM/RFI D/T] ¢ T24eT34T49154T6,B2Z19RZ24BRMAX4CPHI4SPHI (PI2,Y2,MO0DF ¢BFLDOO1?

tvriLOC
CAMMON/RF) DP/Z2(100) ¢eB2Z100) 4B8RR(100) ¢N2Z
Gn TN(200.3009400) «MODE
C MODE 1 (READ IN TARLES OF BZ+8R)
200 IF(T,GT.T1) 6O TO 700
Rz=B21
Ry=0,0
Hyx0,0
Gn To %00
100 IF(T,6TeT?) 0 TO 101
2=VELOC*T )
C TAHLF IN GaUSS AN Ax1S AND 7 CM nFF AxTS NORMALI?FD TO UNTTy BZ(1)
CALL TABLF (702Z1(1)9NZsl MFLAG)
DRZDZE(B27(11)=RB22(1))1/7172(141)=Z7(1))
DakD7E(RRR(T41)=RRR(1II/Z (2Z(T1e1)wZ2(1))
37NORMaRBZ7(1)+DB2NZ#(Z2=27(1))
BuNORMaRRR (1) «DBRNZ# (Z=27(1))

BFLDO01]
BFLD0O014
BFLDOO1S
BFLDOD16
RFLDOOY7
RFLD001R
RFLDO019
RFLDOO2n
BFLDO0021
8FLD0022
BFLDOO023
AFLD0024
RFLDOO025
BFLD0026
RFLNO027
RFLDOO2A
BFLDO029

21



22

c

oOn

H7SB2d4 (#71enZ?2) #RZNORM RFLNO003n
INITIAL RAY NEFINES y=~Z PLAME AFLN0031
ByxY2# (RZ)=H72) *RANORM RFLNDNO3)
Hx=0,0 RFLN00373

Gn TO 500 RFLD0034

101 Hr=bizz 'BFLD0035
Hv=0,0 BFLDOO03s
Bv=0,0 |FLD0037

Gn T0 500 . BFLDO0O3R
MODE 2 (COQINE=SQUARED FIrFLD DECAY) RFLD0039
300 Ir(T.GT.T1) GN TO 301 RFLDO0&N
Hv=0,0 BFLD0041
By=0,0 AFLD0042
H7=B7Z) 8FLDO00&3

Gn T0 %00 RFLD0044

301 IF(T.GTel») O TOo 302 BFLDO0GS
ARGEPI24 (Y=T)) /(T2=T1) . RFLDOO04A
H72H72¢ (871=RZ22)#C0OS (ARG ##2 RFLNOO0&7
RysY2#SIN(2,n*ARG) BFLNOO4R
He=0,0 BFLND00&9

6n To 500 BFLDOOSA

302 Hxav,0 BFLD00S]
Hy=0,0 AFLDOOS?
Hr=B72 RFLD0O0S3

Gn TO SN0 RFLD00SS
MOLE 3 (EXPONENTIAL FIELD DECAY) 8FLD0OOSK
400 IF(T,6T«T1) 60 TO 401 8FLN00Se
Ry=0,0 RFLDOOSY?
Hy=0,0 RFLDOOSA
H7=871 AFLDOOSQ

Gn T SO0 RFLDODGN

401 EARGaEXP(a(T=T1)/(T2=T1)) RFLDOOA
H7?=({RZle 72)aEARG.BZ? RFLDO0O0K?
Hy=0,0 RFLD006
Hy=Y2#EARA AFLDO0064s
START TRANSVFRSE COMPONENT, PH] IS ANGLE WITH REQPFCT To X AX1S BFLD0OGS
INCINENT HEAm IM ve? PLANE RFLDOOGA
S00 IF(BRMAX.FQ,naN)RFTURN RFLNOOGLY
IF(T.GT.f3) 60O TO S01 RFLNODGR
B=z0,0 AFLDO069

Gn TOo S0% RFLNDOO7N

501 IF(T.GTeT4) 6O TO SD2 RFLDODOT
HRzBRMAX*SIN (PI2# (T=T31/(T4=T3) ) #e2 RFLDOO7?

Ga Tn 504 RFLDO073

5102 ApaBRMAX HFLDO0O74
505 Hy=BR®#SPHT+BY RFLDOOT7w
bYEBRA#*CPHT+HAY RFLDOO07A
RFTURN RFLDOO77Y

Enb RFLDOO7TA
SUBROQUTINFE DERIV(T.V.FD) B PERYOO] 0
COMPHTES THE FIRST UFRIVATIVF OF THE STATE VECTOR FOR USF By INTEG NERIOV1)
DTMENSION V(30)4FN(30} DERIOCO12
COMMON/BLNACK1/A14A29434A444C1l 4RO DERIOO11
COMMON/BLACK/MeNN DERIOO1&
COMPLEX B1482¢R33+R49B5¢HayBPLUSIBMINUS,C1BDOT NDERIDO1®
CaLL BFIE| D(TeRX4RYeBZ) NDERIOO1A
ROLUSECMP| X (RXBY) DERIOO17
HMINUS=2CONJG (BPLUS) DERIO0O01R
IF(M,EQ.,?y Gn TO 100 DERIOU)Q
SPIN 1/2 SECTIOM NERIOOZ0n
Al=Q 5% (1l+K) A2=0 5% (1=K A3m(,5%K Abuan,0 DERT10021
BO=DFLTAW/ (M11#G ) Cl=sMI®#BJ/ (HBARQ®T} UNITg 1/MICRNOSDERIN022
BY=CMPLX{v{l)sV(2)) DERIO023
BoxCMPLX (V(3) eV (4)) DERI0024
H3CMPLX (v (S)ysvi6)) DERIO002%
RamCMPL X (v (T)ysV(RY)) . DERIDO26A
BPOT=Cl#( (A1#BZ240,25#80) #B1+A#BPLIS#R2+0,54Bp| USHB4) DERIOO27?
Fn(l)sREA (BNOT) DERIO02R
Fn(2)=aIMaG (RONT) DERI0029



¢
c
C

o000

HNOTuCl® (A3#RAMINIIGRB] + (ADPRZe0259R0) #B2+0,.5%RPLIS#B3+0,5#B0#R4) DERI0N03n
Fn(3)=sREA| (BNOT) : NERI0O031}
Fin(a)sAIMAG (RDNT) DERI0032
HROTaCle®(n ,S5eBMINIIS®R24 (n25#R0=A1#B7) #B3+A3enMINUS#B4) DERI0033
Fni(S)=REA; (RNOT) DERI0034
Fn(6)AIMAG (ROOT) DERI0Q35
HROTuCl®(n ,5eRMINIIS#R1 40, S#B0#B2+A3#RPLUS#BI=(A24BZ+0,254B0)8R4) DERID036
FR(T7)sREAI (BDOT) NERI0037
Fn(8)=ATiiaG (ROAT) DERIO03A
Re TURN DERIO0039
100 CnNTINUE NERI004N
SPIN 1 SECTIaN DERT0041
Al=my _SeK A2=mn , SeK A3mK A4mGQRT (,5) DERIO004?
RO=DELTAW/ {) ,SemUeG) C1=MII®GU/ (HBAR®T) UNITS 1/MICROSDER1I0043
R1=CMPLX (v (1Yevi2)) DERI0044
HpxCMPLX (v (3)ev(8)) DERI0045
BIECMPLX (v {S)eVi6Y) DERIO004s
J4sCMPLX (v (T) sV (B)) DERI0047
HoxCHMPL X (v (9)sV(1n)) DERID04R
<AECMPLX (V1)) eV (12)) DER10049
KNOTaCle((A18H7en S#R0)I#n]+A34#BPLUSHR2+0,5%BP) 11S#B6) DER10050
Frn(ly=REa) (B8NOT) DERI0DOS)
Frn(2)=A1dAG (RADAT)Y PDER100S?
AnNTsCl® (A3#RMINUGRB1+0,58R320R2+A38RD| US#R340,5#RPLUS#BS ,AG#RN*BK)DERIO0S3
Fn{3)=RFA; (RDOT) DERIOUS4
Fn(4)sATMAG (RDAT) NDERIOOKSR
HAOT=Cl® (A3%#RMINIS#B2+4 (AD#RZan,S5%BN) #RI+N,5#Bp| US#B4+AL*#RO*RS) DERIO0S6
FriS)=REA| (8NOT) DERIDOS?
Fn(6ysAIMAG(RDAT) DERIOO0BR
Br0T=Cl®(n ,SeBMINIIS#BI4 (N ,S5*¥BN=ALl#RB7) #B4+A3WBMINIIS#HS) NER100S9
FNITy=REAL] (RNOT) NERIOOG&N
Fr{By=mAlmaG(RADNT) DERIVU6G1
HOT2Cl® (N S#RMINIISPR2+A4#R0#RI¢AI4BPI USHRG=0 , G#RZ#BS+A34RMTINUS® NERT0062
lnn) NERTO006%
Fro(91=rEA) (HNOT) NERIOOAG
FA(1n)sAT+AG(HNOT) PERIOO6GS
HNOTaCl¥ (n SeBMINIISH#RL1+A4#ROBR2+AINBP LISH#BS=(A2#R2+0.5%Bn) #RA) DERIONOGA
Fa(ll)sREAL (RNAT) NERINO06ET
Fr{l2)=Al+AG(BRNOT) NERIDORR
R TURN NnERINOKS
EnD DERIO07n
SURROUTING PRIMT(THVS) PRNTO010
PRINTS STRONR FIELD SQUARED AMPLTTUDES WITH RESPFAT TO PROB| EM NFe PRNT0011
FINEn Z AXIS, STORES WEAK FIELND SQUAREN AMPLITUNFS WITH REQPECT PRNTO0012
TO IuSTANTANFOUS R AX1S FOR LATER PRINTAUT BY MATN PROGRAM PRNTOO011
COMMON/RLACKS/RSQ(69201) JTIME (201) ,BRX (201) ¢BRY (201) ¢RBZ (201, PRNT0O014
1P3(201) ePI3(201) «PEL (201 oNs ITIME PRNTO0015
CNMMON/BLNACK A/M g NN PRNT0016h
NDIHENSION V(12)9VS(12)+BRSQ(R) PRNT0017
ITIME=XITI~E+) PRNTO01A
Dr 90 Ix=] NN PRNT0019
90 VT)aVsS(Iy PRNT002n
Cabl REHURM MgV VY)Y PRNT0021
IF(VVeGTe1,N1) PRINT 80 PRNT0022
BN FARMAT(# RENORMALTZATION EXCEFDS | PERCENTH#) PRNT0023
Call BETEIN(TyRAXIRYIRZ) PRNTO0024
HaX(1TIMEy=RY PRNTO02%
HirY{ITIMF)yzRY PRNTD02A/
RAZ (ITIMFyx=HR? PRNTO027
HTOT2SURT (X e R s Ry ##26BZ2002) PRNTO0028
4y PHAE({241415927/1R0,0)%ARCTANI(BY RX) PRNT0029
RETAR(3,1415227/180.0)%A0CTAN(SQRT (RX#82eRYR#2),37) PRNT0030
GAMMAZ(0 . () PRNT0031
Gn TO (10141024103)0M PRNT0032
101 xsRTNT/63,448 PRNT00372
98 DoOLUSESQRT (0,540 ,5#X/SQRT (1eeX#%2)) PRNT003¢4
DMIMISES ST (UeSm0,58X/SQART (1l ,neXeu31)) PRNT0035
Nn 105 Ts144 PRNT003A
105 BRSO(I)ZV(2#T=1)eu2eV(28T)8%2 PRNT0037

23



24

e NaNeXe}

102

103

20

AL

PPEL=BBS v (1) +RRSN (2) =BBSA(3)=RARSQ(4&) PRNTO003R
PraV (1) #%0,v (2) 8824V (T) %2V (R)##2.V () #8220V (4)#02=V (5)Pa2=V (6) ##2PRNT0039

P2Z=Ne0 , PRNTO0040
CalL ROT(mMoAI PHAZRETAyGAMMAYY) PRNT0041
D73V 1I#000Y (2) %82,V (7)RePeV (R)H#2.V () B02ay (()#02=V (5)%a2=y (&) #22PRNT0042
P33(ITIMEY=0,0 PRNT00473
PR(ITIME) N7 PRNTO0044
HGQ (1o ITIME) =V (1) ##24V (2)%ad PRNT0045%
BSO(29y ITIME) = (NPLIIS*V (3) 4DOMINYS*#V (7)) ##24 (DPLIISHV (&) ¢DMINUSH#Y (B) ) #PRNT004A
14> PRNTO0047
RSQUIsITIHE) aV(H)aw2eV (6) #e2 PRNT0048
HGQ (49 ITIME) 2 (=DMINUS®*V (2) «DPLUS#V (7)) ##P¢ («DMINIIS*V {4) onPLIIG#V (R)PRNT0049
1)ed2 PRNTO005n
PRLITTIMEYZRSA (1o ITIME) +0SQ (2, ITIMF)=RSQ(3vITIME) =BSQ (49 ITIMF) PRNT0051
sn T 110 PRNTO005?
XeRTOT/14 A0 PRNT0053
DPLUSS(X+4140/3,0) /SART(1, 0e2,0%X/3,0eX##2) PRNT0054
DMINUS(4=]let)/3.0)1/SART(1.0=2,0%X/3,0eXH82) PRNTO0055
E1xSART (U ,5¢0,5%DpLUS) PRNT0056
E2=2SORT (0 ,5«n5#NPLUS) PRNT0057
EI=SQART (0 ,5+0,S¢DMINUS) PRNTQOO05R
E4=SQRT (N ,H=n S#DMINUS) PRNT00S9
DA 1né 1=y,6 PRNTO06N
RRSQ(I) =V (2#T=])#u2eyV(2¥T)0®2 PRNT0061
PPEL=8BBS111)+48BRSQ(2)+BBSH(3)=ABSQ (4) =RBSQ(5) =RRSN (6) PRNT00672
P2V (11480 (218824 V(11)0%2ey (12) ¥ 82V (S)#¥2ay(6) # 82y (7)##2.v(8) PRNTONG
1982 PRNT0064
P7Z2V(1)10824y (21 8824V (D) a¥2ey(6)#824y (T)®R2,V (R) %24V (1]1)%%p,V(12)PRNTOUVGS
1082=2,08 (V{31 %82+y (4)FR2,V (F) 882,V (10)##2) PRNT0064A
CaLL ROT (19 A PHA,RETAsGAuMA WY} PRNTOQ0A7
Q7EV (1) #8046V (2)#R54V (11} 8024y (12) %82V (5) 482y (6)# %2y (T)#*5.y (8) PRNTD06R
1402 PRNT0069
Q778 (1) 824y (2)802+V (D) w824y (6) BBV (T)R424V (R)A#2eV(111##2,y(12)PRNTO070
1442=2,08 (Y (3) %824y (4) W2,V (F)w02eV (10) #%2) PRNT0071
PR{ITIME) Q2 PRNT0072
P33(ITIMRY =022 PRNTQ0071
RSQA(LsITIVE) 2V (1) #®2eV (2) %02 PRNTOU74
BSQ(PIITIMEY = (FL*#y{3)+E2aV(1]1) )R 2, (E1#V(4)sEDMV(12) ) w2 PRNTO007%
HSO (39 ITIME) a(F3#y{S) +E4aV (F))##24 (EINV(6) +EGuy(10)) #u2 PRNTO0076
BRQ(4s ITIME) =V (T)#*2+V (8) a2 PRNTO0077
HSUISIITIME) = (=E4#V(S) +ENV () ) #8224 (uF4PV(6)¢FANY(10) ) 4> PRNTO078
BSQ{AeITIME) z(abf28V(3)sE1#VI]1]))®e2¢ (E2¥V{4)sFlav(12))¥s2 PRNTQO079
PFLIITIMEY=RSQ (1 ¢ TTIME) ¢2SQ(2,ITIME) +RSQ (3¢ ITTME)~RSQ (4 TTIMF) PRNT0080
1=pSQ(SeITIME ) =dSQ (69 ITIMF) PRNTOOR1
Gn Tn 110 PRNT0082
x2BTOT/67,75% PRNTO00R3
Gn TO IR PRNT0084
TIME(ITIME) =T PRNT0085
PRINT 209 ToAXeRYRZIRTOT ,PZyP7ZvPPEL . (BBSQ(I),T=1¢N) PRNTO0084
FARMAT (14F9,4) PRNTO0087
RFTURN PRNT008R
END PRNTOU0RS
SIIBROUTINF RAT (Mg ALPHAWBFETAYGAMMA V) ROT 001n

PHAy HBETAy AND GAMMA ARE FULER ANGLES AS DEFINEN RY ROSEs WHICH ROT 0011

ROTATE THE IMITTAL COORDINATE SYSTEM INTN THE FInaL SYSTEM, ALPHA ROT 0012
IS PASITIVE ROTATION ABOUT 7, BETA ABOUT Y PRIME, AND GAMMA ABNUT ROT 0013
Z DOIBLE PRIME ROT 0014
DIMENSION V(12)9VV(6) eWW(6) ROT 0015
COMPLEX VyswweXIeAPPsAMMAMP 4 APMyCPPyCPOsCPMeCOPoCO09sCOM,CMP,CMO, ROT 0014
1CMM ROT OU1T
X12CMPLX(Nne041,0) ROT 00]1R
APPECOS (0 ,5%#nETA)#CEXP (=xI®*0 5% (AL PHA«GAMMAY) ) ROT 0019
AMMECONJG (APP) ROT 002n
AMPRSIN (N SHBETA)#CEXP (o XI*0,5% (AL PHA=GAMMA) ) ROT 0021
APME=CONJG (AMP) ROT 0022
Gn TO (10,20410)eM ROT 00213
10 Dn 11 Im1.4 ROT 0024
11 vw(l)mCMP| X(V(2%1=]) sV (2#])) ROT 0025
Ww (1) SAPP# (APP#VV (1) ¢ APM#VV (2) ) ¢APM® {APMSYV (3) LAPP®VYV (4)) ROT 0026




Wt (2)2APP R (AMPHYY (1) ¢AMMUVV (2) ) s APM® (AMMEYY (3) s AMPRVYY (4)) ROT 0027
Wi (3)3AMPs (AMPaVY (1) sAMMaVY (2) ) sAMM® (AMMOVY (3) s AMP®YVY (4) ) ROT 0028
Ww(4)IAMP® (APPaYY (1) +APMEVY (2) ) + AMM® (APMSYY (3 4APPEVY (&)} ROT 0029
Nn 12 I=1,4 ROT 0030
V(2*T=113anEAL (uwW(T)) ROT 0031y

12 v(2*1)®AIMAG (WW(lY) ROT 0032
RF TURN ROT 0033

20 CnSH=COS(RETA) ROT 0034
SYNBaSIN(RETA) ROT 0035
CPPE (0,500 5#CNSR)WCEXP (L XI®(ALPHASGAMMA) ) ROT 0036
CoO0=(SINB/SOART (2,n) ) *CEXD (=XT#BGAMMA) ROT 0037
CoM=(0,5=n,50COSB)#CEXP («I# (ALPHA=GAMMA) ) ROT 0038
CAP=(=SING/SORT(2,0) )®CEYP (=X T#ALPHA) ROT 0039
CnO=COSHK ROT 0040
CoM==CONJG (COP) ROY 0041}
CvP=CONJG (CPM) ROT 0042
C0==CONJR{CPO) ROT 0043
CuM=CONJIG (CPP) ROT 0044
Nn 21 I=1.A ROT 0045

21 Vu{I)=CMP| X(v(2®#Ta]1)sV(2s])) . ROT 0044
€5 {1)=aPPa (CPPOVV (1) +CPOsVV(2) +CPMaVY (3) ) +APMa (CPM®#VV (4) +CPOMVV (S)ROT 0047

1ecPPOVV (M) ROT Q048
WW(2)=aPPa (CnPaVY (1) «CO0#VV(2)+COMaVY (3) ) ¢APMa (COMBYY (4) . CONBVV (5)ROT 0049
1+rQPaVY (Ay) ROT 0080
Ww (3)=APPa (CMP#VY (1) +CMOaVV (2) 6CMMEVY (3) ) sAPME (CMM#YYV (4) LCMOWVV (S)ROT 0051
1¢rMPBVY (6)) ROT 0052
Wu(4)ZAMP% (CMPBVY (1) +CMOBVV (2) +CMMBVY (3) ) +AMMS (CMM#VV (4) «CMNBVV (5)ROT 00813
1erMPOVY (6)y) ROT 0054
aw (D)1 =a4MPa (COP#VY (1) +C00uaVV (2)eCOMBVY (3) ) +AMM# (COMBVY (4) 4 CON#VV (K)ROT 0085
1erQPBVV (Y} ROT 0054
A 6)SAMP R (CPPaVY (1) «CPOaVYL2) «CPMaVy (3)) «AMMa (CPMaYY (4) 4CPNaVV (S)ROT 0057
1+0PPaVYV ( +y) ROT 0088
Dn 22 1=1,6 ROT 0059
Vi24l=])20E AL (NW({T)) ROT 006&n

22 V(2%T1zALl4AG(WW(TY) ROT 0061
AF TURN ROT 0062
Frao ROT 0063
SHIRROUTINE RENNRM(NeVeVV) RENMOO1n

¢ RENOWMALIZES TO REMOVE ACCU4ULATED DEVIATION FROM UNITY TOTalL RENMNO1)
C PROSARILITY RENM0OO12
NIMENSTON v (12) RENMU011
whzpaN RENM0O)4
VIV2E=060 RENM0O0]15

NN 14 T=1,.N RENM0OO16A

1IN Yy2=VUV2ev (28 1=]) 8820V (2%1) 8% RENMDOY 7
Vvv=SART (vu2) RENMOO18

1A 11 I=]1,.NN RENMDO19

11 weld=V(1l)/vv RENMQO020
ReTURN RENMQ021

Erw RENMQ022
FuMCTION ARCTAN(Y, X) ACTNOO1n

C ARCTANGENT RAUTINFy CNRRECT IN aLL QUADRANTS, IN NEGREES ACTNOO11
Ie(X)3005301,302 ACTNOO1?

300 Ir(Y)3034304.304 ACTNOO1R

303 ARCTANSATAN(Y/X)=341415927 ACTNOO14
G To 30 ACTNOOlS

304 ACCTANZSATAN(Y/X) 431415957 ACTNOOL A
5 TO 309 ACTNOOY7

30Y TR (Y)30%e306,307 ACTNOOLR

305 ApLTAN==3_,16415927/2.0 aCTNOOlo
Gn To 308 ACTNOO2n

306 ALCTAN=Qen ACTNOO21
an To oan.. aCTNQOO2?2

307 ACTANZ31415927/2,0 ACTNOO217
Gn TN 308 aCTNOO024

302 ARCTAN=ATAN(Y/X) aCTNOO2S

25



308 APCTAN=ARCTAN®180,0/341415927 ACTNOO2A

Re TURN ACTNOO27

EnD . . . ACTN002R
SHRKOUTINF TABLE (Z9ZZeN7y19MFLAG) TBLEOO10

C RETURNS INDEY T OF NFXT SMA|ILER ENTRY OF ZZ(I) TBLEOO1
C MFLAG=0 IF Ze2Z(1) FNR SOME T THLEQOO1?
DTMENSION 2Z(100) TBLEOO1

Ngx1n THLEOO]4
MFLAG=] TBLEOO1S
IFtZ.LTeZ7(1)) GO TO 30 ; TBLFO0O016
Ir(Z.GTeZ7(N2}Yy Go TO 30 TBLEOO]7?

NA 10 Tx11s7910 THLEQO1R
IF(Z.EQs 721(1)) MFi{ AG=0 TBLFO0019
I1(Z,LTeZ7(1)) GO TO 20 TBLEOO2n

1u CoNTINUE TBLEQO2)
N.1zNZ=1 TBLEOO2?

Gn 10 11 TBLEO0O2R

20 [=1~10 : TBLE0024

11 Un 21 Jesl My TBLEOO25
IF(ZeEQRe?7(1eJ)) MFLAG=0 TELE0026
IF(Z2,LTeZ7(T+d)) GO TO 4n TBLEQO27

21 CANTINUE TBLEOO28

40 [zT1+J-1 TBLF0029

RF TURN TBLEOO3n

30 PRINT 31 TBLEOU3

31 FARMAT(#* 7 OUT OF RANGE nF TARLE®) TBLE0O3?
I1=1 - TBLFO033
RFTURN TBLEOQOU36

gl TBLE0O03S
SUBROUTINF INTEG(MNeTIoTTF yHH HHP ¢MMaUVMyABSIREL ¢ X0y TTe X¥P) INTE0O1n

C INTEr SOLVFES A SYSTEM OF NN FIRST ORDER DIFFFRENTTAL EQUATIONS RY INTEO0011}
C A 4TH ORDER aDAMS PREDICTORLCNRRFCTOR METHON WITH AUTOMATIC ERRNR INTEDO012
C CONTROL, STARTING I8 HY THe RUNGA=KUTTA METHOD INTEO0O011
LNGICAL acrC INTEOOla
COMMON/INT/N o ToTF ¢HeHO s HP oMo VM JeACCo XLBoRELTETsABSTST+FACTORBNN9 INTEOOQ1S
1X130e5)eF (3045)9F(30)sXP(30)4G(30¢4), TDOUBLINNAURL INTEQOQle&
DTMENSTION X0 (30) ¢xyP(30) INTE0O017

¢ SET 1P INIT1AL VALUES INTEQO1R
NxNN INTF001Q
TFr=TTF INTEOO2n

H=HH INTEQO21
hp=HHP INTE002?

MzMM INTEQO023
vueVYM INTENQ24s

vn 10 I=allN INTEQD2%

10 X¢lel)=XO0 (1) INTEQO026
T=TI INTEOCOQO27
HND=TT4HP INTE002R

MnsH INTEQO29
AnSTST=AB< INTEO0030n
ReLTST=RE| INTE0O31
FACTOR=RE| TST/ABSTST INTEQO3?

X) B0 ¢ 009¢RELTST INTEQO033
INnQURL=D INTE0036
NNOURL=3 . INTEQO35

Hx2 o N*H INTEQO36

30 CabL START(IRETRN) INTEQOQ37

Gn TO (10ne99) ¢ IRETRN INTEOQO3R

C SHOULD ANY OF THE STARTING vALUES BE PRINTED OuT INTE0Q039
100 TaT=3,04H INTEOOGN
Dn 35 J=2.4 INTEQU&)
TeT*H INTEOOA?

CalL TEST(IRETRN) INTEQO4R

Gn TO (35,6N)9IRETRN INTEQOGG

35 CoNTINUE INTEOUAS




HEGIM ADAMS METHOD

40

4S5
S0
101
60
64

6%

70
99

10
15

XP(1y=DAL INTERVAL RFSULT FnR ERROR ANALYSIS

2n

21

30
40
a1

INTEARATE N FQNS AHEAD ON THE J/TH STEP NF LENGTH H,

1n

20

30

CaLl ADAMg

CallL ACCRy

Ir (ACC) GO TO S0

Dn 4% I=1,N
X(Iol)=X(Toh)

Gn TO 30

CaLl TEST(IRETRN)

Gn TO (101460) s IRFTRN
CaLL OOUw| E(TRETRN)
G6n TO (604,309 IRETRN
I (JetQes) =0 TN &5
DA 64 I=1,N
xo(IyaxX(l.d

Call. PRINT(T.XP)
Tr=T

0n 70 I=1.N
XxP(l)=xP (1)

RETURN

Ert)

SIIBRQUTINF START ( IRETRN,
RUNGA=KIUTTA TARTING METHOOD

LAGICAL AcrC

INTEOO46
INTEQOAY
INTEQO&4R
INTE0049
INTEOOS0H
INTEO005]
INTE00S2
INTEQDS53
INTEOO0S54
INTEOO05%
INTEOOSS
INTEOQOS?
INTEQOSS
INTE0O0S59
INTEO0060
INTEQO6A]
INTEOO062
INTE0061
INTEQQ64
INTEOO&S

STRTO0010
STRT001)
STRT00]2

COMMON/TNT/N TeTF qHoHO ¢ HP ¢ Mo VMg JsACC o XLBIREL TeT9ABSTST¢FACTORBNDeSTRTO013

J=2

CalLL RNGa
DA 19 lzl.N
Ko(li=x(l.2)

TeT=H
HSO.S.H

Ir ((Ter) NE,TY G T 30

PP INT 20

FARMAT(SuM ENNS CANNOT RBF SOLVED FURTHER WITHIN GIVEN ERROR

TOLUSH=T N
POINT 219 TPLUHSH.T

FARMAT (AR TeHE E154100

IPFTRN=2

Ry TURN

Do 4n JmP 3
CaLL RNGa
catl ACCRv
IF (JNOTeACCY GO TO 10
J=6

CALL RNGa
IETRN=]

RF TURN

Ewl)

SHRROUTIHE RNGA

AH T=

El5.10

1X(30,5)¢F t30,5)9F (3031 9XP(30),G6(3044),1D0VIBL ¢NNNURL

}

STRT0014
STRT0015
STRT001m
sTRT0017
STRT001R
STRT0019
sTRTOC20
STRT0021
sTRT0022
sTRT0023
sTRT0024
sSTRT0025
STRT0026
sTRT0027
sTRT0028
STRT0029
STRT0030
STRT0031
STRT003?
STRT0033
STRT0034
STRY0035
STRT003A
STRT0037
STRTO003R

RNGAOO]n
RNGAOO11

CHMMON/INT/N.ToYF.HOHOQHPQMOVMvJvACCoXLBQPELTQT.ABSTSTOFACTODQBND'RNGAOOIQ

un 10 I=! N
G(lel)sHer (] ,Je=])

Xtled)=x(T9J=l)a0,.5%G(1s1)

TT=T+0a5%n

Call DERTVITTeX(1eJ)sF(laJ})

un 20 Is1l,N
Gile2)=Hee (1,J)

X(Iod)=X(TeJa=l)+0,54G(19s2)
ColLlL DERIVITToX{14J)eF(1,U))

Ha 30 Izl N
GleY)mHer ([ 4J)
X({Ied)=X{TeJal)+G (1)

1x(3049)sF (30,51 9F (301 eXP(30) ¢G(3044) « INOURLYNNOURL
CaLL DERIV(ToX(lea=l)sFl1sJ=1))

RNGAQOO1R
RNGAOO16
RNGAQO1S
RNGAOD 16
RNGAQDY?
RNGAQO1R
RNGAOOYQ
RNGAOO20
RNGAQO21
RNGA0022
KNGAQQ273
RNGAOD24
RNGAQ025
RNGAQO26



28

40

TESTS AHS ANNn REL ERROR AND SFTS ACC FALSE,

10

20

75

5n
99

TxTeH

CaLl DERIV(TeX(lo.g)sF(le 1))
Dn 40 I=]1 N

G(Ilog)=Her (T ,4,U)
Xtlod)2X(tedal ¢ (G(lel) 2 0®(R(192)¢G(193))¢G(T04))/6,0
RETURN :
EnD

SIIBROQUTINF ACCRY

LNGICAL arC

IF MFITHER SAT(SFIfFD

RNGAQO27
ANGAOO2R
RNGAQOOZ29
RNGAOO030
RNGAO031
RNGAQO03?
RNGAQU33

ACCY001n
aCCy0011
ACCy001?

COMMON/INT/NyToTF qHoHO e HD oMo VMo J e ACC e XLBoRELTET9ABSTSTeFACTORBNN9ACCY0013

1x(3045)eF (30,5)eFE(30)9XP(3N)463(3094) ¢ TODOURL ¢NNNURL

AcC=  TRUE ,

Nna 50 I=1,N

ErI)=ARS (YP(T) =X (TeJ)])

IF (E(1)«GEABS(X1IeJ))*RELTST) GO TO 10
EcI)=E(1) JARSIX(14U))

Gn TO S0

E(l)=E(I)aFACTOR

Gn TO S0

T2T=H

HN=Q ,S#H

ACC=.FALSrQ

FARMAT(1H o 16HSTEP SIZE CUT TUs F]2,Rs 6H AT T=,
PRINT 75441047

Gn TO 99

CANTINUE

RF TURN

EnD

S1IBROQUTINFE TFST (TRETRN)

MONTTORS FOR vM, END OF INTEGN OR PRINT RANGE,

10
70

20
80

81
30

35

40

SAVE ALL VARTABLES WHICH MAy RE MODIFIEN IN PRINT PROCEDURE

45

CAOMMONZTINT/N T o TF qHoHO s HD g MoyMa o ACC o XLBoRELTRTsABSTST«FACTOR«RNDY
1X13045)9F (30,5)sF (30)eXP(30)¢G(30e4) ¢ IDOUBL¢NNNURL

DIMENSTION X1¢30)+%x2(30)eF1(30)sF2(30)
IF (MsEQan) GO T0 20

I ((X(Mo.}) LEoVM) ¢ANDo (¥ (M3 Jml) «GTeVM)} GO Tn 1n
IF ((X(My J) o 3T VM) o AND,s (X (Mo Jel) LFevVM)} GO Tn 1n
Gn TO 2V

CalLlL DIODF

IF(T=TF)7neTny 30

IRETRN=2

ReTURN

[FARS({(TaTF)/TF)aleNE=6) ARO04,R81481
IRETRN=2

RETURN

IF(T.LECTF) GO T0O 40

HeTFaT

Dn 35 I=],N

X(Teld=X(19Jy

Jx2

Cal.L RNGa

IRETRN=2

RETURN

IF(T,LT.BND) GO TN S0

HQAVE=H
TGAVE=T
JRAVE=SY

DA 45 I=x1.N
X1(I)=X{I,41)
X2 (Iy=x(I1,2)
Fi(Iy=F(1,1)
Fa(l)=F(1,2)
X(Iel)=mX(1eJ)

ACCY0014
ACCYO001S
aCCyo01s
ACCvy0017
aCCyvy001~A
ACCY0010
aCCyo0o02n
ACCY002)
aCCyoQ02>
ACCy0023
ACCY0024
ACCYQ02%
ACCYO0026
aCCyo027
ACCYO02Rr
ACCY0029
ACCY003n
ACCY0031
ACCY003>

TESTO0O0]10
TESTOO 1N
TESTO001?
TEST001%
TESTO0014
TESTO00]15
TESTO0014
TEST0017
TEST001R
TEST0019
TEST002n
TEST0021
TEST002?
TESTOU2
TESTNO24
TEST002%
TEST0024
TESTO0027
TEST0028
TESTO0029
TEST0030
TEST0031
TEST003>
TEST0033
TEST0034
TESTO003%
TEST0036
TEST0037
TESTO003R
TEST0039
TESTO004n
TESTOU4
TEST0042
TEST0041
TEST0044



J=@ TEST0045

HeHNO=T TESTO004m
CaLL RNGA TEST0047
CalL PRINT(TeX(1e 1)) TESTOO06A
HMUSRND +HD TEST0049
RESTARE VARIARLFES TO PROCEEN . TEST0050
J=JSave TEST0051
H=HSAVF TEST0052
T=TSAVE TEST0053

Da «6 I=l N TEST00S4
Xelol)aXl ) TEST00S5
x(le2)=X2¢1) TEST00S54A
FileldzF1¢]) TEST00S7

a6k F(le2)=F2 (1) TESTO0SR
50 IF (JeNF &) GO Tn 99 TEST005Q
Ne 60 1=1.N TEST0060
X(lea)=X(T19%) TEST00k1

Nn 60 J=2.9 ’ TESTO00R?
60 F(le)=1)=r(1,4J) TESTO0067
99 IoFTRN=1 TEST0064
R¥ TURN TEST006R
Erel) TEST0066
SHRRAUTINE NTONE plonnodln
FInD VALUE OF T WHFRF THE M,TH yaRIARLE REACHES THE VALUF Vm plonooi
CAMMON/T uT/NeToTF ¢HoHO oHO oMo YMeJo ACC+ XLBIRELTEToABSTSToFACTNORRND9DIODO0012
1x¢30e5)sF 130,5)4F (30)9XP(30)4:(3044) 4 1D0URLNNAURL DIODO013
DTMENSTON D30y pION0O014
Yi=X(MeJ) ploDools
YrzX(Mgd=1) nIonoodle
DFLT==8KHS (HeYl/(Y1=YD)) plopooy7

10 H=DELT pioDpoolR
A 20 1=1.N nNICDO01Y

20 xqlellaX{tely nplopoo2n
J=2 pIopoo2:
CaLL. RNGA pIQD002?
Calll DERIV(TeX(1ls 1)eD) ploDo023
NELT=(VMay (Mg J) ) /N (M) DION0024

I (BHS(OFLT1«GE4140E=4) GO T 10 pIopoues

X (M )} =U™ ‘ 01000024

RE TURN pIoDo02Y
(X1} DIODO002R
SHRRAUTINE anAMS ADAMOO1n
INTEERATE ONF O STEP Ay THE ANAMS PREDICTNR-CORRECTNHR METHND ADAMOO1)
COMMANZTAT /i eToTFqHaHO g HO g My YUMo JeACCoXLBIRELTGT98BSTSTeFACTORBNNADAMOG]?
1X135065) 0r t3NeS)oF (30) e XP(30) ¢3(3044) « TDOURL «NNAURL ADAMOO) 3
J=5 aDaMo014
Crll. DERPLIv(TeX(lea)sF(lva)) aDAMOO1%

ae I I=1.n ADAMDO 1A
10 x0(I1=X(1.4)40,06166666TsHR (G5, 0#F ([44)=59,04F ([,43) ADAMOO17
1427 09F ([.2)9,04F (141)) ADAMOO]R
T=Ter ADAMOOLQ
Call DERTU(T(XPesF(198)) ADAMOO20

D 20 I=si N ADAMOD21

20 A{190)ZX{T96)4NaNL1060E6THUS (Q08F (1,5)419,0%F (1,4} ADAM0OO022
1= 08F (Te)*F (142)) ADAM0023
RFTURN aDAMOD24

[ XX ADAMO0O2S
SIRRAUTINE NDAURLE (1RETRw) DBLEOO1Q
TEST 10 SEE 1F TNTEHVAL CAN RE DOUBLED DBLEOO11
CnﬂMnN/INT/N.T.TF.H.Hoan.M-vM.J.Acc.XLB,RELfcroABSTSToFACTon.RNnoDBLEOOIZ
1X(30+5) oF 130,5) ¢F (30)eXP(30)4G(3044) ¢ IDOURL,NPOURL pBLECO1
InouUnL=TINNUBL*1 DBLEOO}s

29



30

IF (INOURL LT NDOURL} GO t0 99
ALLOWS DOUBLF ATTEMPT ONLY FVERY NDOURL/TH CALL
INOURL=0
hn 10 I=1 N
If (E(I)enTeXLRIGNH TO 99
10 CANTINUE
DI=HR/ (24 n#H)
IF(D‘OLE."OO) G0 10 99
U2 (BND=T)/ (P (N*H)
IF(DPelLFa2e0y 60 TO 99
Dn 209 Izl N
20 X(Ta1)=X(Te6)
Hp=2, 08K
Hzl o N #1410
30 FPRMAT (184 STEP IMCREASENn TO F12,8, 6H AT Tx F12.8)
PRINT 309 40,7
TRETRN=2
Rr TURN
99 IRETYN=]
RETURN
ke

NBLEOUL]&
DBLEOOIA
NBLEOOY?
NBLEQO1R
DBLEOO19
NBLEOOZ2n
NBLEOO21
DBLEOOZ22
NBLEQDZ2?
NBLE0OZ24
NBLEODO02S
NBLEOOG24
NBLE0O27
NDBLEQOOPA
NBLEOOP9
DBLEVO3n
NBLFO03)
NBLEOO3?
DBLEOOU33
DBLEOO34
DBLEQO3S




