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DEVIATIONS FROM THERMAL EQUILIBRIUM IN SHOCK WAVES

SUMMARY

The various terms contributing to the energj content of a gas, viz.
translation, rotation, vibration, electronic excitation and dissociatidn, are
discussed_(par;l).A Tables are given of the energy'content and the épecific_
heat of a simple harmonic oscillator (Teble I), of the energy content and the
dissociation of nitrogen, oxygenA(Tablé II) and'air (Tdﬁle III). The moleculer
viBration becomes important for air at dbout-600°K, the dissociation at about'
3000°K. | |
| The theory of shock waves is génerdlized to the céée whén the spe-
cific heat changes with temperature (par, 3). General formulae are obtained for

the velocity, (3.10), density (3.8a), pressure (3.80), and temperature (3.9) on

the high pressure side. It is shown that the asymptotic values of v, p, p axd

T on the high pressure side at sufficient distance fram the front of the shock

wave are unlquely determined by the values of these guantitieé on the low pres~

sure side, and are independent of any intervening phenomensa comnected with the

approach of statistical equilibrium between the various degrees of freedom of

the molecule. This we consilder the most importent result of the present

investigations.
A teble is given (Table VIII) of the asymptotic values of v, p, D

and T on the high pressure side as a function of the velocity v of the ghock

1
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_wave. Ihe four quantities are calculated (a) using the actual specific heat
of air as a function of temperature, as given by Table III (quéntities are
pubscript in Teble VIII), and (b) using a constant specific heat equal to that
at 300°K (subscript 2)., Iarge differences are found for the temperature in
the fwo calculations (Tp = 8000° when T3 = 5000°) and for the density
“(p2 = 5.8, p3 = 9.1) but the pressure, which is the most important~guan£ity for
applications, is almost independent of the specific heat (pp = 155, pj a 168
~-atmospheres in the example quoted). |

The sudden change of the temperéturé of é gas when péssing through
a shock wave destroys temporarily the statistical equilibrium.betﬁeen the various
forms of energy of. the gas molecules, The deérees'of freedom of & molecule can
conveniently be divided into two classéa, the aqtive ones and the inert ones
(par. 2). Thé "active" degrees of freedom are translation and rotation; they
‘come into thermal equilibrium after gne or a few collisions (pan 2A). The
‘mogt important "inert" degree of freedom is the vibration (par, 2B). Experiments
- ‘on ‘the absorption Qf sound shoﬁ thatvbetween 20 and more than 500,0@0 collisions
are neéessary to establish thermal equiiiﬁrium between vibrations and the active
degrees of>freedom at‘room temperature (Table V). Thié result agreeé wilth the
expectation from the theory of Landau ahd Teller., This tﬁeory allows‘one to
predict ﬁith moderaie accuracy thé femperature'dependénéé of‘Z, the'nuMbefvof
‘collisions‘necessary:to de~excite the first’vibrational quantum'stéte, when a
measuremeﬁt‘of Z aﬁ one temperature is available (Teble fV). Unfortunately no\
accurate measuremsnts have been made for oxygen and none at all forbnitfogen,
which makes.quantitative statéments almost'im@ossible. Therefore -we have only
\listed (Table VI) the values of the mean free path fpr vibration;‘kv whidh
follow ffom variqus‘assumption (par, 2D) about the efficiency of the collisions.
The resulting values of A\, for the cases which have practical imﬁortance for

!

shock waves lie between 3 and 0.0016 millimeters, depending on the vibrating



molecule (N, or 0,), the assumption made about the efficiency of various
molecular céllisions, and the humidity of the air.

'fhe dissociation also requires a éonsidérable tine to come into
equilibrium. The theory (par- 2C) is somewhat more definite m this case than
for the vibrations because it depends on the Boltzmann factor rather than on
assumptions about the kinetics of collisions. Very large values (from 1 milli-
meter to 1 me‘tef) are obtained (par.2D, Teble VII) for the meé.n free path for
dissociation, Ag, in practical cases. | | | o

The theory of par.2 is applied to shock wave in par. 4. It is shown
tha'b the shock wave hé.s a sharp front on the low pressure side while on the
»high pressure side it exfends over & distance of the order of the mean free
path for vibration, Ay O for diséociation, Ag. Immediatel& at the wave f?ont,
but on the high pressuie side, the physical .quanti'ties P, p, T, v can be _calcu-
lated assuming that oﬁly the aétive degrees of freedom exist (Table VIII, quan;
tities'with-subscrtpts 2). Going away from the weave front into the high pres;
sure region, the energy E; of the inert degrees of freedom increases gradually
and approaches the value corresponding to thermal equilibrium. Iz simple
cases, Ey, Py p, T and v will follow an exponential law (ef. 4.10, 11). If
the shock wzive is violent enough so that dissociation occurs on the high pres-
sure side, there is first a region of extension A, near the wave front in which
vibrational equilibrium is ést&bl;shed but in which the dissociation is hardly'
affecfed, and then a much more extended region (extension Ay) in which

dissociation takes place.

Two special cases of very soft shock waves are discussed in pars. 5
and 6, these discussions having mostly dca.demic interest. In par. 5,we consider
the case where the velocityA of the shock wave vy 1s between the actual velocity
of sound aq and the sound velocity obte_f.ined by considering only the active-

degrees of freedom, i.e.,
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' Cv - SvalR _
al< Vl(&l (l + —2—6—\7—.&;? ) (A)

where Cy is the tota.i specific heat at constant volume and cy gy the specific
heat due to the active degrees of freedom only. It is shown that in this nar-
row veloclty interval the shock wave is diffuse on the low pressure as well
aé on the high pregsure side. These diffuse shpck waves go over automatically
into shock waves with a sharp front when vy approeches the upper limit given
i (A).
' In par. 6, slightly faster shock waves are considered, viz. vaves

for ‘irhich

(cy - cva)R,_ R
84 (1 + Yo 2 "< 1 + A
1 ( By oy 1AL (At ) B (3)

For such waves, the temperatwre on the high pressure side increases with’
increasing distance from the wave front while for waves of higher wvelocity V1»
the teiﬁ_péra.ture has its maximm immediately at the wave front and decreases

from theré .



NOTATION

Throughout this Report, the following notations will be used..

density of gas
= pressure (in atmospheres)
= - temperature in degrees Kelvin

energy content of one gram of gas

a 4 3 Y D
1

= dJegree of dissoclation,

1 +or= p/(p RT)

E
= + 1
P p/p
Cp = specific heat at constant pressure per gram
¢y = specific heat at constant volume per gram

cp/ey

«Q

R = gas constant per gram .

Ro = @gms cdnstant per mol

X = DBoltzmemn's constant (gas constaanper molecule)

h = Planck;s constant

v = velocity of the gas

n = pvV= flow in grams per cm? pef sec

vV = v+ %

¢ = velocity which the gas would have if streaming into vacuum

a =  velocity of sound

mean free path for vibrations

&

Ag = muean free path for dissociation

frequency of molecular vibrations

X

D = dissociation energy of molecules



for
for
for
for

for

for

for

for

for

SUBSCRIPTS

activg degrees of freedom
inert.degrees of freedom
vibration

dissociation

an arbitrary point on the high pressure side of a
shock wave

an arbitrary point on the low pressure side

a point on the low pressure side where thermal equilibrium
exists between all degrees of freedom of the molecules

a point on the high pressure 81de immedlately at the front
of the shock wave

a point on the high pressure side at sufficient distance
from the wave front so that thermal equilibrium exists



Par. 1. The Energy '/Conten’c of Gases

Perfect gases obey the eqﬁation of state
p/p = BT | .‘ (1.1)
where p ,/ ps T are pressure, density and sbsolute temperature and where the
gas constant R is a characteristic of the ga.s‘ conaidered. If the gas d:-is-w
sociates, (1.1) ceases to be valid; in the particular case of a diatomic gas

dissociating into atoms, we have instead:

p/p = RI(1 +e() (1.2)
vhere oC ig the degree of d:.tssociation,‘ i.e., the fraction of molecules dis-
,sociated.. Generally, p/p T is proportiqnal to the ‘mnnber of separate particles
'(molecules or atoms) pér gram of the substance. | | |

The energy content of & gas consists of five main parts, viz:
(1) the kinetic energy of the ‘trenslation of the molecules
(2) /the energy of molecular rotation |

(3) 'Ehé energy of vibration

(k) the energy of electronic excitatiun of the molecule

(5) the energy of dissociation into atoms (61' smaller groups of
atoms). :

We shall write the total energy content per gram in the form
E = (B-1) (p/p) (1.3)

The inclusion of the term -1 is convenient because the quantity cccurring in
the theory of shock waves is E + p/p, where p/p is connected with the work
done by the pressure. Furthermore, we shall denote by PB4, Br, Bys Pes Bg the

energy of translation, rotation, vibration, excitation, and dissociation, each

divided by p/p, so that



B = By +Bp+B,+B, +Byt+ 1 (1.k)

The various contributions will now be discussed in order:

1. The trenslational energy is 3/2 p/p for any gas, independent
of the number of atoms per molecule, the temperature, etc.

2. ,The rotational energy, for all gases except H,, and at all
temperatures at which the substance is gaseous, is given by the classicé.l
kinetic theory of gé.ses without any important quantum correction. It is zérd
-f‘or atoﬁs » 1 RT per gram for dia.tomic molecules and all polyatomic ones whose
atoms lie on a straight line such as COp, and 3/2 RT for all other polyatomic
mole'cules, At high temperatures, there is a correction because the molécules
change their shape due to théir vibrations. This corfection, commonly called
the interaction of vibrations and rotations, lis usually not very great,

3, The vibrational energy can be apprpximted (at not too high
temperatures) by resolving the vibre.,tbion into normai modes and treating each
mode as a harmonic oscillator. |

The anumber of normal modes is .l. for & diatomic molecules, '3:0.-'5 for
a molecule containing n atoms on a straight line and 3n-6 for a molecule with

n atoms not on a straight line. The energy contained in one mode is (per gram)

Ey = BT =7 (1.5)
where
' _ hv
2 = ETI'“ ’ | (1953')

=/ is the frequency of the vibation, h Flanck's a.ﬁd k Boltzmenn's constant.

If 3 is given in wave numbers (cm"l) and T in degrees Kelvin,

z = LU8V/r (1.5b)



The frequencies of the various normal modes of molecules can be
obtained from ‘band. spectra. A good survey of data can be found in H. Sponer,
Molekulspektren I (Springer 1935). The frequencies of simple light molecules’
are very high, e.g. for Ny we have ¥ = 2345 cm’"l, f‘dr 0o, 1570 em~l., TFor
nore éom_plic_:ated, and especlally for polyatomic molecules, the lcwest frequen~
cies are much smaller, the highest ones of the same order as for diatomic ones.
E.g., CO, has four modes of vibration with frequencies ¥ = 667, 667,' 1336 and
2350 cm~t. |

. For low temperatures (z large), the vibrational energy is ncgligible.
E.g., for z = 5, 1t amounts only to 0.034 RT, i.e. 1 per cent of the value of
E + p/p for translation and rd'fation‘ of a diatomic molecule. 2z = 5 corresponds
to 680°K for Np, 450° for Op but only 192° for the low frequency mode of COp.
Thus the vibrations mey be neglected at room 'bempera._’cqre for N2 and 0‘2 but

not for COo. .
At high temperatures (z small), the vibfa.tiona.l energy is RT per

mode., This value is attained very slowly.
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N
(i
<

0.05
0.1
0.15
0.2
0.25
0.3
0.k
.0.5 :
0.6
0.8
1.0

1.5

" large

TABLE I

Energy Content of Harmonic Oscillator

%.1+10
4.5.10
0.0085
0.0339
0.0747
6.123

0.223

0.313

-8
-b

0.389

0.502
0.582
0.70k
0.771

-1z + j;z
o 12

1.400
1-5995
1.391
1.375
1.357
1.342
13215

1.3105

1.303
1.296
1.292
1.289
1.2875

1.2857

10



11

In Teble I, we give the vibrational energy of a harmonic oscillator as a

function of the temperature. We also give the contribution of the vibration
to the specific heat, viz.

' DE,
Sy = g (1.6)

which is seen to become appreciablelat much smaller temperatures than E,
.and td approach its asymptotic velue much faster. We have also included the

ratio, 7 - of the specific heats at constant pressure and volume, for & diatomic

gas with harmonic oscillation, viz.

_ T/2 R+ cyyy |
7 N 5/2 R + cv} . (1‘68')

v

At high temperatufes, the Qibrations can no longer be regarded as
harmonic. The effect of the anhaymonicity is %0 increase the energy ;ontent of
the gas. E.g., for No at 5000°K. the hafmonic oscillator model would give
By = 0.699 while the correct value is 0.753, including the interaction of vi-
bration and :c’o‘b.ev.‘l:ion‘T and a small contribution from excitation. The influence
of the anharmonicity 1s greater for molecules which are easily dlssociated.

4., The electronic excitation is usually rather unimportant.éompared
with vibration and dissociation.

5. The dissociation becomes important at temperatures above 2-3000°K.
if oc is the degree of dissociation, p the total pressure, pA‘and Py the partial

pressures of atoms and (diatomic) molecules, we have

2
BaT | hern | g L oAF/RST
DU 1= ot (1.7)*

¥ pin (1.7) is considered & dimensionless quentity, viz. the ratio of the
pressure to one atmosphere.
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. 2o 1-0 '
The first equality follows from ps = T +a PrPu=71+qgP Kis the dis-

socilation constant, R, the gas coﬁstant per mole = 1.987 calories/degree,

AF = Fy - F, the difference of the free energies per mol of the molecular
and the atomic gas, each taken at unit pressure. Fér some gases, like N2 and
0o, tables of AF as a function of temperature have been published (cf. bqlow).
Where they are not published, AF cen be calculated from the Stern-Tetfode |

formula, which reads for diafomic gases

3/2 L2 _.D
(2rmp kT ) . 2 e " BT

= e (1.8)

where m, is the mass of>oné atom, n the number of separate pérticles per cmd
of the gas at wnit pressure and temperature T, and D the dissociation ensrgy
in calories per mol. According to spectfoscopic evidence (Spdner); D has
the valuelll7,200 cal, for oxygen and l82,006'ca1. for nitrogen, so that
D/R, = 59,000:and_91,600 degrees, respectively. |

gy and Gy are the statistical weights of the atom and the molecule.
In éeneral, gy may be put equal to the combined.weight of éll‘states of fhe,
multiplet to which the ground state belongs, 50 that

g = (2L +1) (25 +1) | (1.9)

where L. and S are Brbital angular momentum and spin of the atomic groqnd state.
N, having a 1"S'gx"o'u_'nd. stéte, has therefore gy =_(1)(h).= L; oxygen, with a 3p
state, hes a weight g, = (3)(3) = 9. Gy consists of three factors referring
to the electronic state (gy) of the molecule, the vibration (g,) and the

rotation (g,.) respectively,

Gy = 8y 8v &, (1.10)



13

g, can be calculated from spin S and orbital momentum A s Vviz,

=25 +1 i‘orz states (A = Q)

2(28 + 1) Tor all other states A\ # o) (1.11)

The ground state of No is a lZ state (gM = 1), that of 0y & 323
state (gM = 3). g, is alwa'ys given with sufficlent approximation by

classical kinetic theory

By =L (1.12)

vwhere B, is defined by the fact that the rotation levels of the molecule are
BL.J(J+1) if j is the rotational quantum number; B, = 144 em™? for 0, and
2,00 em™L for No. If B, is measured in el and T in degrees Kelvin,

By = T/l.)+58 By The vibrational rart, g,, is given by

1
l-e~2

= = (1.13)

with z defined as in (l.52). Ordinarily, dissociation is only important at

high tempera‘turesj then g, is sufficiently nearly

g, = kXI/ny I (1.132)

If there are seversl modes of vibration, there is one factor of the type (1.13)

for each mode.

Whern K has been calculated, and the total pressure pA is knowm, a

can be calculated immediately from (1.7), viz.

K
@ =Vx+Iip (1.14)
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In the theory of shock waves, the density p on the high pressure side can be more
readlly estimated than the pressure (par,3). Then, inserting (1.2) in (1.7), we

have

LRT p 0@ (1 + @) = K(1 -~ o) " (1.1ka)
_ ﬁhichfgives '
a=-1/2K + |k +1/k k2 _. (1.15)
with o= K .
| W K $are | (1.15a)

If'po is the density of the gas at temperature T, and unit pressure, we have

)

K; = o Po | (l.l5b)

T o

=

The dissociation ¢ depends strongly on the temperature (increasing‘with
. Increasing T) and slightly on the pressure or density (decreasing with increasing
P or p). The equation of state for a dissociated gas has already been given in

(1.2); The energy content is given by -

_ 1l - o D . )
6—14—& 5M+l+a (-ﬁ-o'i;*QBA) | (1-16)

where By and B, are the coefficients of energy content for the molecular and the

atomic gas at the given temperature. Disregarding the term D/ROT, (1.16) is simply

the weighted average of By and By, the weights being given by the partial pressures.

The dissociation itself contributes an energy 0D per mol of the gas; to obtain B
the energy per mol must be divided by Mp/p = (1 +'a)R§T (M the mplecular‘weight).’
BM can be calculated by édding the contributions 1 to 4 discussed above.
By 1s essentially due to translational energy only, and has therefore the value
5/2. (The energy of electronic excitation of the atoms 1s seldom important below -

5,000° and has therefore been neglected.)
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ps

At extremely high temperatures (above 5,000°) the ionization of atoms

and molecules must be considered. This can be done using similar calculations as

for dissociation.

Tables

Table II gives the energy constant P of nitrogen and oxygen at temper-
atures from 300 to 5000° Kelvin. The energy constant from 300° down.to the ligue~
faction température rémains ealmost unchanged. The data for nitrogen were taken
from W. F. Glauqus and J. 0. Clayton, Journ. Am. Chem. Soc. 55, 4875 (1933), those
for oxygen from H. J. Johnéton and M. K. Walker, ibid. 55, 172 (1933). Both sets
of data were calculated by the respective authors taking into éccount ail correc-
tions such as anharmonicity of the vibrations, interaction befween fotation and
vibration, and electronic excitation;A The figures given in our table for nitrogen
are less accurate because Glauque énd.Clayton‘give only the free energy from which
the energf content had to be obtained by numerical differentiation; involving con-
sidereble inaccuracy. A graphical method was used to smooth out‘the‘results of
the numerical differentiation. The energy content of O, could be read diréctly
from the tables of Johnston and Walker &as the‘difference between T times the en-
tropy, and-the free energy. .

| The dissociation was calculated for oxygen and nitrﬁgen in air of a
density equal to 8 times the density at 300°K and one atmosphere pressure. These
"conditions were chosen because in a shock wave in which the temperature is raised
to 3000-5000°, the density is increased about 8 fold (cf. 3; Table.VIII). ' Ob=
viously, the figures for oxygen would also be valid for pure oxygen of a density
of (3)(0.210) = 1.680 times that at 300° and one atmosphere, and the dissociation of
nitrogen would be the séme for pure nitrogen of a density of(8)(007805)= 6.244 times‘

the density of nitrogen at 300°K and one atmosphere.
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Teble II. Energy Content and Dissociation of Nitrogen and Oxygen

Nitrogen 4’ Oxygen

T By X o A Bu Kk o B

300 3.493 | 3.493  3.493 .93 ‘
400 - 3.499 . 3.499  3.520 o 3.520
500 3.508 . 3.508 3.548 3,548
600 3.521 | 3,521 3.590 - 3.59%
700 3.541 3.541  3.636 3.636
800 3.56h | 3.564  3.684 s
900 3.5k | 3.50k  3.751 | 3.731
1000 3.625 | o 3.625  3.77% ’ 3,774
1250 3.702 | | ; o 3702 3.871 | 3.871
1500  3.780 | 3,780 3.950 . ) 3.950
1750 3.845 3.845  4.015 k.015

2000 3.900 4.0-10°  1.55.10-8 3.900 %.068 5.15-10-7 1.07-107% k071

2500“ 3.992 4,9-10'10 1.55°10'6 3,992  k,157 2.36-10'h 2,05.107°  4.199

3000 h.062 2.61-1077 3.23-1070 L0635 h.223 o0.0lk2 0.0l b b5k
3500 ¥.,127 2,28.107° 2.86»10’lL b.13h  h.278  0.268 0.0568 4,982
:hooo  L.177 6,95#10'” 1841077 5,205 L.327 2.15 | 6.1523. 5.79
4500 4.218  5.85.1073  5.12-1073 bosok  h.a7h 15.8 0.38  6.58

5000 4.255 8.22.10"% 1,59:1072 .L.A57 k.12 55.h 0.500 7.07
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Itvis seen that for oxygen the increase of the enérgy content, both due
to vibrations and to dissociation, begins at much lower temperatures than for ni-
trogen. Aﬁ 5000°, the values of B differ by more than 50 per cent. This is dué
maeinly tq the smaller dissociation energy and vibrational frequeﬁcy of 02, and to a
small extent also to the smaller concentration of 02 in air (cf. 1.15a).

Table III gives the necessary date for air. We have assumed a compo-

sition of
78.05 per cent Nitrogen
21,00 per cent Oxygen
0.92 per cent Rare gases
0.03 per cent CO2

all percentages being by voiume, i.e. by number of molecules. The energy content
of the rare gases 1s B = 5/2 because they are monatomic. The B of COy was only

guessed because of 1ts small concentration.

From the B's and a's of the constituent gases, the dissociation and the

energy content of a mixture are calculated as follows:

o=, o (1.17)
k
B = z«"k Pre {1 + ax) | (1.18)
1+«

where ¢y 1s the concentration (by volume) of the xth component of the mixture

(B oy X
tively. « is meinly important for the calculation of p/p, Eq (1.2).

= 1), o and Bk its degree of dissociation and energy constant, respec-

Specific Heat

The specific heat can be obtained by differentiating the energy content.

As long as there 1s no dissociation, the specific heat per gram at constant pressure is
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¢y =S (R18) = R(B + T 2B ) (1.19)

The velocity of sound, again in the absence of dissociation, is given by

a2 = g RT  (1.20)
where is the ratio of the specific heats at constant pressure and constant
volume, viz.
cp c
7 cy cpR (1.21)

If B is independent of temperature, we may write from (1.19) and (1.21):

6 =f_§ - 7 o (1.22)

3r-l

as is commonly done in the theory of shock waves and other phencmena involving
gases in rapid motion. While this is approximately Justified for low'temperatures,
it is certainly not for air above 600°K."

We have not included the specific heat in our Tables II_and III because
another numerical differentiation would have been necessary which would have made
the results very inacgurate. Moreover, wé believed that thére was at theAmoment
no pressing need for a table of the specific heat and of the Velocity of sound at
very high temperatures but that the interest was centered arcund the shock waves.

. If there is dissociation, (1.19) is no longer correct because the energy
is RTIB(l + Q) énd « as well as B changes with temperature. Moreover, the deriv-.-
ative with respect'to T must now be calcﬁlated at constant pressure. Furthermore,

the difference between °y and c_ is no longer R so that (1.21) is no longer valid.



300
400
500
600
700
800

900

1000
1250
1500
1750
2000

2500

3000
3500
Looo
4500

5000

2.726
2,731
2.738
2. 7485
2,764
2.7815

2;805 ,
' 2._8295

2.8895
2.9505

3.001

3,04k
3.115
3.171
3.2275
3,287
3.5765
3.527

Table ITTI. ZEnergy Content and Dissociation of Air

cxBx
0

0.733

0.739
0.745
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3.483
3.k
3,507
3.527
3,552
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3.613
3,647

3.727

3.805
5.869
3.92k
4,023
4,133
k.307 -
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4.875
5,227
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Finally, (1.20) ceases to be correct and is replaced by

(L.22)

2._.% da 7} Rr
a = (l‘+ o+ 512@?%3 o )

2, The Approach of Eduilibrium between Various Degrees of Freedom of the Molecules,’

%uppose the energy content of a mass of gas is suddenly changed, as it
is when thé gas passes through a shock wave. Then it will take some time'until the
various degrees of freedom adapt themselves to the new conditions; and this "time"
of relaxation" will be different for the different degrees of freedom.

A, Translation and Rotation.

The equilibriﬁm will be attained most rapidly by the translation. For
this degree of freedom, one collision is in general sufficient to come close to
equilibrium. In order to have conditions similar to those in a shock wave we may
consi&er a gas of a certain tempefature Ty, into which streams a more dilute gas
‘of a.lower,température Tl' Then the molecules of the cooler gas will (on the av-
erage) become accelerated as soon as_they make their first collision with those of
the hotter gas. The average kinetic energy of a molecule of a cool gas will In-
crease from 3/2 kTy in oné collision to something of the'ordef(3/2 k)l/?(Tl+T2).

A shock wave can obviously never be quite discontinuous but the tran-
sition from temperature T, to T2 takes place over a distance of at 1eas£ one gas-
kinetic mean free path Ay (t for translation). For ordinary gases at room tem-
perature and atmospheric pressure, Ai 1is of the order of 10-5 em; it 1is in first
approximation independent of the temperature and inversely proportional to the"
“density; therefore, even a very violent shock wave in whick the density increases
by a factor 6 to 10 (cf.par,BTable:VIIi),mqst have an extension of at least about
10‘6 cm. The classical theory Qf the physical structure of shock waves as given
by Becker (Zeits. f. Phys. 8, 321, 1922) gives extremely small extensions which
become of the order of 10-7 cm for very violent waves, The theory of ﬁecker>which

takes into account the heat conduction but neglects molecular effects can therefore
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not b

(6]

correct, &t least not for violent shock waves. Becker, himself, pointed
out that the probiem regquires a treatment based on the kinetic‘theory of gases,
In practice a spatial extension of the shock wave of the order of éne mean free
path is, of course, of no importance at all, even at rather low‘initial Pressures.
The‘molecular rotatién may approach equilibrium as rapidly as the trans=-
lation. This would be expected for strongly elongated molecules such as_COQ. If‘
‘the effective boundary of the molecule is nearly sphefiqal (e.g. N2 or SQ) the‘
' excitatiop of molecular rotations may bé estimated to take roughly 10 to 100
collisions. To show thaﬁ the rotation approaches equilibrium so quickly, we use
the results of Landau and Teller, Physik. Zeits. d. SOWjefunion ;9, 34(2936).
These authors have found that the effectiveness qf coilisions on a certain degree

of freedom is determined by the ratio

X =T/ (2.1)
where Te is the effective duration of the collision and Tb the natural period of
the degree of freedom concerned. If 5 is of order unity or smaller, one or a few
collisions will be sufficient to establish equilibrium whereas a large number of

collisions is required if 31 (cf. 2.5).

T . in (2.1) may generally be written

’rc = S/V (2'2)

where v 1s the relative velocity of the two colliding molecules and s the range -
of the intermolecular forces, il.e. the distance over which the molecules intefact
strongly. We may expect s to be of the order of one half to one Bohr‘radius,

i.é} 2.5 to 5-10’9 cm, a range of values which seems confirmed by some experimental
. results on the approach of vibrational equilibrium (cf. Table IV), In the case of
rotafionvvb may be taken as the time required for one revolﬁtion, or rather this
time divided by 2n (cf., 2.4) so that To = r/vr where r is the radius of the mol~

ecule (distance of an atom from the center of gravity) and vy is the velocity of
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the atoms in their revolution around the center of gravity. Now Ve is of the same
_order as v, the velocity of molecular translation (equipartition of energy!) and
r is of the same order as s.. Thereforélx:is of order unity f@r rotation, and |
equilibrium between rotations and translation will be attained in a few collisions.
We shall find in the folloﬁing that all other degrees of freedom béhaver
quite differently in that,ﬁany collisions are necessary to establish equilibrium.
Therefore it will be gonvenient to group together translation and rotation on one
side, and all other degrees of freedom on the oﬁher. ‘The latter we shall call the
"inert" degrees of freedom while translation and rotation will be-denoﬁed as the
"active" degrees of freedom. TFor all practical purposes we may say that the energy
content of the active degrees of freedom can change almost discontinuously, bhecause
a‘distance of a few mean free paths may be considered negligible. We can‘then define

the temperature of a moving gas at each point by the energy content of the active

degrees of freedomgwhich is

E, + o/p = B, p/p = B,RT | (2.3)

(the last relation being only valid if there is no dissociation). In (2.3) B, 1s
independent of the temperature and equal to 5/2 for monatomic,7/2 for diatomic
gases (cf. par,1l). The energy content of the inert degrees of freedom, Ey, on the
other hand, cannot change abruptly and is therefore not aiways in equilibrium with
that of the active ones; in other words, Ei is not necessarily related to the local
temperatﬁre T in the way discussed in par, l. |

B. Vibrations

Theory

The most important inert degree of freedom are the vibrations. For these,

we set in (2.1)

T, =1/2xv (2.4)
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where 74 is the natural frequency of the molecular vibratiomn. (In all formulae
like (2.1) 2wx+ rather than < should be used as represénting the frequency because
the frequency i1s generally introduced into physical formulae by taking the time
derivative of experssions like sin 2x7t. If we toék v iﬁstead of 2x v in (2.4),
the onlylchange would be that the values of s deduced from experimental data ﬁould
: be‘multiplied by 2r). Since the frequencies ofimolecular vibrations are rather |
high, it is plausible that 25 is rather large; this will be shown by direct cal-
culation and by discussion of experimentél results below. For the cgée X 1,

Lendau and Teller give the formula
P10 £ Ce- x (2.5)

Here P10 is the probability that a molecule in the first excited‘state of vibration
is de-excited by a collision with another ﬁolecule. C is a geometrical factor wﬁich
gives the probability that the coliision of the two molecules will take place in
. a direction suitaBle for excitation or de-excitation of the vibration. There are
no experimental date sufficiently accurate to deduce Cys0 that gualitative arguments
must be used for its determination. Obviously, C must be less than unity, and
probably it will lie between 1/5 and 1/30 in most cases, its value being higher for
diatomic and lower for polyatomic molecules because .it is less likely that a com~
A plicated molecule. 1is hit at the right place to induce a given mode»of vibration.
In our computations below, we shall use arbitrarily Czl/lO.

Presumably, a better approximation could be obtalned by introducing in
(2.5) another factor, viz. a certain poﬁér of %7 . Arguments—-can be glven for a
factbr ;{”2, However, these arguments are tob uncertain to just;fy at present the

inclusion of such fine points.

The most important factor in (2.3) is the exponential ef?i where

(cf. 2.1, 2.2, 2.4)
x = 2n s/V ’ (2.6)
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Let us investigate e for the case when the kinetic energy of the relative motion

of the colliding molecules is just kT, i.e.
1/2 Mv® = kT (2.7)

vhere M 1s the reduced mass of the two molecules; if they are equal, M is one half

the mass of one molecule. The value of 0% for the velocity detérmined by (2.7) is

%, = 2nws V M/2kT | -~ (2.8)

This can be re-written as follows:

%, = Vh /2T . s V!mi My (2.9)

For the collision of two equal diatomic molecules, each consisting of two equal

atoms, M is the mass of one atom; then the reciprocal of the last factor is (2.9) viz.

b = Vh/imem-u (2.10)

represents the amplitude of the molecular vibration in the lowest quantum state.

Generally, the b defined in (2.10) has the value

_ 8.2.1078

VF*T/‘

. where o is the molecular weight of the molecule (assuming collision between equal

b cm ' (2.102)

molecules) and 2 the vibrational frequency in ém‘l. For N2, 2 = 2345 and;; = 28
so that b = 3.l.lO"lOcm. Thus we see that b is very small compared with the range
s of the forces. The factor \[EZ?EEE’is (2.9) is also.in general greater than unity;
so that 5(1 is indeed very large compared with unity as we expected above. There-

fore (cf. 2.5) the probability of transfer of energy between vibration and
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trenslation is very smalls the vibration is an inert degree of freedom. It is

seen from the derivation that the reason for this result is not so much that the
energy of. one vibrational quantwym ht» is large compared with the average energy
of translation, kT, but rather that the amplitude of the vibrations, b, is very

small compared with the range s of the intermolecular forces. This in turn is

i
vy

due to the large elastic forces which govern the elastic vibrations.

The quantity oz (2.6) will be feduced, and therefore the probability of
energ&Atransfer'pio (2.5) considersbly increased, if we take higher velocities v. '
Thefefore a given molecule will lose and gain vibrational'energy mostly‘at the |
times When-its;kinetic_energy of translation is high compared with kT, i;e. when
it 1s in the tail of the Maxwell distribution. If we average over all the mol- ~
egules in the gas, the probability of energy transfer per collision bec0m§s

~

='2/\/{f““’ R C@“% - (2.12)

where

(212a)

(2.12) represents the probability (2.5), averaged over the Maxwell distribution of
the relative velocities of the two colliding molecules.* With (2.6) for s , the

integration of (2.12) can be carried out by the saddle point methods,the integrand

having a steep maximum near

* It might be preferable to take into account the different collision probablllty
of fast and slow molecules, i.e. to replace (2.12) by

P1o w{é X xdx Ce (a)

which would give instead of (2.13)
Pip = 2/9 YT @32 e (b)

The'temperaturé dependence of Pjp would not be changed very much by this correction
because the difference between (b) and (2.13) would be largely compensated by a
different value of s deduced from the experiments.
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x, = 1/2 (2rsw) 2/3 (ujur) 1/3 (2.12b)
The integration gives
| pp=Clage | (2.13)
where & = 3z, = 3/2 (8/b) 2/3 (nyp/xr) /3 (2-.11;) _
c! =.(%7 3/2 C  (2.1ke)

(b as defined in (2.10, 2.10a), s the range of the molecular forces, @/ the fre-

quency of vibration). (Egs. (2.13, 14) are similar to the equations determining

the rate of nuclear reactions in stars).

Numerically, (2.1}) may be written
g = 0.090 (2us)>2/5 (pe/7) 1/3 , (2.15)

where g is measured in cm‘l, s in units of 10™9 cmy, T in degrees Kelvin, and.}xis
the molecular &eight per molecule (or twice the reduced molecular’weight,
2HAE/ Ay + Hp), if two unequal molecules collide),

We shall now try to get a more quantitative estimate of s. Experiments
are available (cf. below), among other gases, for puré CO,, and for’the action of
Na on the ﬁibrations of 05, For 002, Fricke (Journ. of the Acoust. Soc. of Am. 12,

- 24k5(1940)) finds that Z = 86,000 collisions.are necessary for de-excitation of the

first excited vibrational state, so that

Pig == ot = 1,15°107°
10 =3~ 88,000 ? |

Taking C' = 1/10, (2.13) gives ¢ = 11.5. Using this number in (2.15) with 2

- 667 cm™l, we find,

5 = 5,620 cm. (COp) | (2.16e)
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For‘the de-excitation of tﬁe vibrations of O, by collisions with N2, Kneser and
Khudsen find Py, = 102, 1Imserting this figure in (2.13, 15) and taking ¥ = 1570
cm‘l, we obtain
| s = 3107 cm (og/Ng)'. | (2.16p)
Both the results (2,i6a) and (2.16b) are of the order of the Bohr radius .
as we assumed above. Differences between the values of s for different molecules
are, of course, to be expected. We can therefore not predict the value of s fér

.a pair of molecules for which it has not been measured experimentally. This is

very unfortunate because Plo,'or

| Z=1/Pg , (2.17)
is very sensitive to s. This-can be seen directly from (2.13, 14) or from Table IV
in vhich we have calculated Z from (2.13, 14) for 02 and N2, in each case for two

different values of s. A more detailed discussion of Table IV will be given in

par. 2D.
Influence of foreign gases, experimental difficulties.

Collisions Eetweén two different molecules are often more effective in transfer-
ring energy to and from the vibrations than collisions between like molecules.

This 1is the casebespecially (1) if the two colliding molecules have a chemical
affinity and (2) if one mqlecule is iery light so that its velocity is great. in
case (2) which is realized for Hy, BHe, etc., pin (2.15)is very small. In case (1)
the interaction between the two molecules is much more intense than usually which
may perhaps result in more sudden changes of interaction and correspondingly shorter
effective fange, or even in a complete failure of the Landau-Teller theory when

the two molecules penetrate so deeply into each other that they can be said to

form a temporary compound. In the latter case, the temperature dependence may

be quite different from that indicated in (2.13).



Table IV. Theoretica: Temperature Dependence of the Number of Collision N:cessar: for

De -excitation ->f the First Vibrational State,

Temperature °K ) 300 500 700 1000 1500  200C 3000 5000
ame .

COp 5.6°1677 & | 1.2 945 - 845 7.5 6.35 5.95 5.20  1%.38
z | 45,000 13,500 3500 2400 1080 650 340 180
02 Wilo-9 14,32 12.08 10.80 9.58- 8.37 7.60  6.56 5.50
oz 1.1-10° 1.&5'105 46,000 15,000 5100 2600 1150 380
3107 o | 18 997 89 7.9L  6.91 6.28 549 .62
‘ z | 1.1710° 21,500 8400 3400 1450 850.. 440 220
Np 3+1079 o | 1478 12.48 1.1 9.89 8.6k 7.85  6.75 5.77
| z | 17206 2.0'10° 62,000 20,000 6600 3200 1400 570
2507 & | 13.08 - 11.05 9.88 8.77  17.66 6.96  6.08 5.11
z -| 3.710° 57,000 19,500 7500 2700 1500° 720 320

Collisions sith Ho0
0,  0.937107 2z 100 210 140 100 75 60 50 40
Np u z 1300 650 320 200 130 100 75 50

82
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As will be seen from Table V, the foreign gases investigated are 3 to
4000 times more effective in de-exciting the vibration of 02 than O, itself, the

.effect being greatest for complicated molecules such as C2H OH which has a chemicel -

«

affinity to 02, and for water,which can probably form a temporary compound with 0s.

5 on 02 ig almost as small as that of 02 1tself because there is

not much chemical interaction; the.collisions between O2 and N2 will be dis-

The effect of N

cussed in more detail in parn 2D.

The large‘effect of water vapor on the variafion of oxygen makes it
extremely difficult to measure the small effect of collisions between 02 molecules
theﬁselves. Only a lower limit for Z was therefore obtained in the experiments
on "pure" 0,, viz. ;oo,oodﬁ

For the problem of shock waves we must conclude that the establishing of
vibrational equilibrium-will depend sensitively on the humidity of the air. On hot
humid days, the water vapor contenf of the air may easily reach 3 per cent (23 mm
vapor pressure) so that only hOO/0.0B = 13,000 coliisions would be necessary to
establish vibrational equilibrium for the oxygen. On the other hand, for complete-
ly dry alr the necessary number of collisions 1s about iO5 because then only the
collisions with nitrogen will be important. A more accurate discussion of the

humidity effect will be given in Table VI.

Excitation and De-excitation. Instead of -the probability PlO of de-

excitation per collision, it is convenient to introduce the probability klo of

de-excitation per second which is given by

Kig = Ppo* ¥ =N/2 (2.18)

where

N = '(,%'v © (2.18a)

is the number of collisions per second, N the number of molecules per cm3, cbz the

gas-kinetic collision cross section and Vv the average relative velocity of two
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colliding molecules, viz. % -%2 « The quantity k;, has two adventages compared
" with PlO’ viz. (1) that it is more directly related to the extension of the shock

wave and (2) that it is directly connected with observational data (cf. 2.22, 26)"
whereas the connectlon of P with these data -involves the somewhat uncertaln cross
section q. |

Th:z :.proba.'bility of ekcitation, kOl’ 1s connected with the probability of

de-excitation, klo’ by the statistical principle of detailed balancing eccording

to which

«

= -av .
ko1 = %10 ¢ iF (2.19)

fo

The time rate of change of the number Vs of molecules without vibration is then

dyo = x -k (2.19a)

v
it 0l Yo

10 Y1

whers ¥y is the number of molecules in the first excited viurastional state. Sim-

ilar equations hold for the other ¥y, -where, according to quantum theory, ks n=l =

nklo and kn-l, n =k n’n_"le'h”/kT. "By adding the equation@for the various yn, an

equation for the total energy of vibration, ‘ :

Ev.-—:h‘v Z nv

2.,19b)
n=o 1Y | (2.19
can be obtained, namely g
a4k : i .
v o= (1 - e n¥/KTy o0 _ y (2,20
L vk (1-e PR, - E) { )
Here E', 1s the vibrational energy in thermal equilibrium, viz.
B —h (2"20&)

v ehv/kT_l
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Eq. (2.20) is velid no matter how large the deviation from thermal equilibrium.
The factor 1 - e - h /kT takes account of the fact that there occur transitions

awvay from equilibrium as well as towards equilibrium. The solution of (2.20) is

E', - E = Ae=wot _ (2.21)

where dao'is the reciprocal of the time of relaxation and 1s given by (cf. 2.20).

-

It has been assumed in (2 21) that T remains constant. This not strictly correct
- 1in shock waves (cf par.B,h) where W o’ being a function of T, will change with
time so that the integral of (2.20) cannot be given in closed form.

In shock wavés, we are Iinterested in the sgatial variation of Ev‘ If

the gas flows with a velocity v, we may write

dE, S dE E,' -Ey ’ (2.23)
Vg Ay '
where
A, = v, 0y (2.24)

defines the mean free path for vibration.

Evaluétion of Experiments . The experimental determination of w, is

based upon the absorption and dispersion of sound in gases. The théory of this

phenomenon has been given by H. 0. Kneser, Ann. d. Phys. 16, 337 (1933) and Journ.
e

Acoust. Soc. Amer. 5, 122 (1933), and others. The absorption‘coefficientﬁger wave

(3%
length depends on the circular frequency,of the sound wave approximately* as

*.In order to obtain (2.25), Cp=Cpa must be assumed to be small in comparisdn with
. Since is the absorption coe?ficient per wave length, the absorption coeffi-

cient per centimeter will behave as s and will therefore obtain its
I"‘-’maxz Y

maximum value for w =00,



w (f) o
[~ v L.u_.5)
= W nax® + W
where cumax is the frequency of maximum absorption per wave length. “’max can be

determined experimentally, and@ , way be deduced from 1t using the relation

w, | °pa (Cpa - R) (2.26)

Wnax Cp (Cp -R)

Here c, is the ordinary spécific heat at constant pressure and Cpa the specific

p
heat counting the "active" degrees of freedom only. In contrast to (2.25), (2.26)

is exact.

Experimental Results. Experiments were made by H. O. Kneser and V. O,

Knudsen, Ann. d. Physik 21, 682 (1955) on the vibrations of O,, by Fricke and by
Knudsen and Fricke, Jqurn. Acoust. Soc. Amer. 12, 2&5 and 255 (194%0) on 002 and a
few other gases, and by Kﬁchler, Zeits. f. phys. Chemie B 41, 199 (1938), on the
temperature dependence of the time of relaéa%ion. The latter experiments were pro-
Bably carried ocut with somewhat impure gasesvbecause_Kﬁchler finds for 002 at

. room tempepature Z = 50,000 whereas Fricke gives 86,000 {impurities reduce Z, cf.
above and fable V), and a similar decrepancy exists for NQO (7,500 vs, ll,SOO).
The experiments of Kneser and Knudsen were the first systematic ones carried‘out
and were therefore less accurate than the later work of Knudsen and Fricke, but

~ the results of Kneser and Livsen are most important for us because they were done
with oxygen. PFor N2 there are no experiments but only an estimate by P. 3. H.
Henry, Nature 129, 200 (1932) bvased on the failure to detect the influence of the
vibrational specific ﬁeat on the velocity of sound in certain experiments. Henry
estimates wy & 104 sec™l, i,e. 72100 for N2 which seems not implausible._

Table V gives some of the experimental results. They bear out the fea=-

tures discussed above and expected theoretically, viz.



‘Yable V. Experiméntal Results on the Excitation of Molecular Vibrations, Number of Collisions Required
for De-excitation, Z, and Reciprocel Time of Relaxation,cub (in sec'l), for Various Molecules (Colliding

with other Molecules.

qulision with 05 No Hy Ho0 HoS CHBOH 02350H
Vibration of 02- Z 2 300,000 'lO0,000 20,000 25,000 Loo 4,200 --- 120
(Knudsen and Kneser) w_ <8‘103 5'1(3lL 5-10° 1.7°10° 1.1°107 1.3-106 - 6107
Vibration of CO, z e emem : 215 86,000 17 1,200 , 35 ______
(Kneser and Fricke) . ;g; | ewem e 8.0'107 9.8°10 1.02°107 1.1&‘107 5.1‘108 ------
The same quantities for some pure geses (Fricke)
Gas 02 | CO, N20 Ccos CS2 80,
z - >500,000 86,000 11,800 9,600 - 8,70C 1,900
,(in 107 sech) < 7.08 0.98 6.9 11.5 1.3 55
Z for CO, at various~temperatures (Kichler)
T(degrees Kelvin) 293 373 k73 573 673
Z 50,000 31,000 19,000 12,000 9,000
Rstio of 2293o/Z675° for various gases (Kﬁchler)
- Colliding gases : CO, - COp Hs0 - N0 COy - Bp COp - Hx0
2295 o 50 b 000 7, 500 500 105 -
Zog3/2677 5.6 5.6 1.0 0.k N
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1. All the pure gases investigated have rather highZ (small W, long
relaxation times), the smallest being SO, with Z & 2,000, the largest O, with
Z 500,000, The large value for O2 is probably due mostly to 1ts high vibratioﬁ
frequency. Tﬁe decrease of Z from cog‘tb COS to 082 is also in the direction
of decfeasing v on-the other hand, the small value for SO2 is presumabiy due to
the greater chémical activity of that molecule.

2, The impurities investigated gave smaller Z than pure gases. It can-k
not be decided at present whether this is due to the selection of gases used in
‘the experiments, or to a general rule. Among diatomic molecules, Hé 1s most
effective 1in de-exciting 02 and 002; this is to be expected theoretically from
its smallbmass (large velocity). Triatomic gases are on the whole more effective
ﬁhan diatomié ones; this may be due to the fact that there will always be some
"qorner" of a triatomic molecule which has a chemical affinity or at least a strong
interaction with a given molecule. Among the triatomic gases, thére is again a-
decrease of Z with increasing chemical activity (CO, to HyS and Hy0). Polyatomic
molecules are even more effective than triatomic ohes, for the same reason..

By collisions with the same molecule, the vibratiéns of COglare in general
more affected than those of 02, because of the smaller fregquency of vibration.

3. The temperature dependence/of Z for COy 1s about as expected (cf.
Table IV)° ‘Generally, the decrease of Z with Increasing temperature 1s most
pronounced if Z is large, In agreement with theoretical expectation. Whether the
ggcrease of Z with the temperature as found by Kﬂchler for collisions between
COo and Hp0, 1s real cannot be decided‘at present; however, Z is very small in this
ins£ahce so that the landau-Teller theéry can probably not be applied, A

Sevéral Degrees of Freedom. At first sight, it might be expected that

each mode of vibration has its own relaxation time, this time being greatervfor

the modes with higher frequency. Experiments show, however, that this is not the
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case because all thé experimental curves show only one absorption maximum with the
absorption coefficient falling off on both sides according to (2.25)., This be-
havior can easily be understood if we remember that the resolutioﬂ of the vibra—‘
tion into normal modes is only an approximation which 1s correct only for exactly
harmonic forces, The enharmonicity will mix the various normal modes in each
vibrational quantum state. An extreme case of mixiﬁg is known in 002 where the
second excited state (vibrational quantum number* n, = 2) of the first mode of
vibration’(vl = 667cm’1) is degenerate with the first quantum state of the second
mode (24, = 1536 em™t) (ny = 1) (cf., e.g., Sponer, loc. cit.). The amharmonicity
causes an "interaction" of the two resonating quantum states with the result that
a splitting occurs into two séates of considerably different frequency (1286 and
1388 cm™ ). Tﬁe form of vibration in each of these states is a combination of
modes 1 and 2 with about equal emplitudes. ‘

In other molecules, the mixing of different modes is usually less strong
but it must;always exist to some exfent. Let us assume, e.g.,that there 1s a mode
of vibration with a high frequencyy/, which 1is between 3 and 4 times the fre-
quency )V of anothér mode, Then the first excited state of mode 2 (n2 = 1) will
contain some.admixtﬁre of the fourth state of mode 1 (nl =4), In this cése, the
excitation of the staté n, = 1l will not take élaceiby direct trénsfer of energy
from the translation, but the translation will excite in successive collisions the
states ny =1, 2 and 3, and finally, in a fburth collision, the state n, = 1.
This mechanism avoilds large energy transfers in one collision which are very im-~

probable according to the Landau-Teller theory (c¢f. 2.15). The transition from

.nl = 3 to n, = 1 is somewhat less probable than a‘collision in which n, is raised

by one unit because the mixing between ny, = 1 and n, = 4 i1s assumed small; on

the other hand, it 1s more probable because the energy differenceibetween n, = 1

* In order to evoid confusion with the velocity v, we denote the vibrational
quantum number by n rather than the customary v.
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and n; =3 1s smaller than v, . Thé Z for the transition n; =3 to n, = 1 is there-
fore probably of the same order or smaller than for the excitation of the first mode,
- and it can therefore be understood that only the successive excitation of quantum
states of the lowest mode of vibration gives rise to an observable absorption of

sound.

C. Dissociation

The dissociation differs from other degrees of freedom in that_it becomes
appreciable at temperatures'at which kT is still very small coﬁpared with the dis-
‘sociation energy D per molecule, We have mentioned in,par'lthati% = 22%999 for
oxygen and 91,600/T for nitrogen. On the other hand; we have shown in Table II'
that the degree of dissociation is as much as 1.4 per cent for Oé_at 3000° X and
for N2 at 5000° K. At these temperatures, D/kT is about 20 in both cases, énd the
Boltzmann’factor e~ E%,z e~20 ~ ;0-9. The fact that an appreciable dissqciat;on is
possible for such a small Boltzmann factor 1s due to the large a priori probability
of the dissociated states.

In order to produce dissociatioﬁ, two molecules must collide whiéﬁ have
a relative kinetic energy at least equal to D. Such molecules are very rare because
of thé smail Boltzmann factor e E% . Dissociation will therefore take a conslderable
time at 3060-5000° K even 1f every collision between molecules of sufficient energy
is effective. ‘

The same conclusion can be reached by considering the inﬁerse process,
viz. recombination. In order that two atoms recombine into a molecule, there must
be s triple collision between the two atoms and another molecule which takes up
the excess energy and momentum. Triple éollisions, however, are rafe events espe-
cially if two of the colliding particles must be atoms which are relatively rare
as long as %he degree of dissociation remains low.

We must now examine the efficiency of collisions between two molecules

of sufficient relative velocity in causing dissociation of one of the molecules.
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If two molecules have relative kinetic energy equal to D, i.e. severgl electron
volts, they will penetrate very deeply into each other. 1In this case, ﬁe can no
longer distinguish between fast motions (of the electrons) and slow motions (of
the molecules as a whole), .and we can therefore no longer.conclude that the trans-
fer of energy from the slow molecular translation to the fast electronic motion
is improbable. It is very difficult to make any quantitétive estimates but we be;
lieve that the efficiency of collisions between molecules of energy greater thaﬁ
D will not be reduced by a factor of the type of (2.5) but will be determined mainly
by a geometrical factor which may perhaps be somewhat smaller than for the exci-
tation of #ibrations. In numericel calculations, we shall assume an efficiency
Cd = 1/100 which may be wrong by a factor of 10 or more either way.

The probability that the relative kinetic energy of a pair of molecules
is between kTx and kT (x + dx), is given by the Maxwell distribution

2

yaw V= e e

+

The velocity of the molecules. in question is“%f VX times the“average relative ve-~ -
locity ¥ of two molecules. Therefore, the fraction of all molecular collisions for

which the relative kinetic energy of the colliding molecules lies in the interval

mentioned, 1s approximately
f(x)dx = e™* x dx (2.27)
The fraction of collisions for which

© kT (2.27a)

is then

i}

“ .
F (xo) = Xs{%(x)dx = e X0 (x5 + 1) ® xoe'xo E% e -D/kT o (2.27b)
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Therefore, the number of ordinary molecular collisions required per dissociation,

is
X
C Zy o= —_— . = __J_'__ go

d Ca F(Xo) C4 X, (2.28)

where Cd is-the efficiency of the collisions between molecules of sufficient

energy in producing dissociation. The reciprocal relaxation time for dissociation

is

w N
a = 7y a (2.29)
where N 1s the number of collisions per second (cf. 2.18, 2.18a)., The mean free

path for dissociation is {cf. 2.2k).

Y=yl  (2.29a)

Because of the large factor e X0, the number of collisions required for
dissociation is very large at temperatures of 3000-5000° K.gt which the dissocia%ion
of air‘beéomes important (Tebles II and III). In Table VII (cf. p. 52a) we give
the values of ZC;’ wd,-and 7‘:1 fon. oxygen and nitrogen; it is seen that Zy lies
between 106 and 1012 and is thus much higher théq for the vibration. It is obvious
that impurities cannot greatly affect Zy 5ecause the decisive faétor is the Boltz-
mann factor rather than the efficlency of the collisions.

D, Conclusions on the Excitation of Air.

Vibrations.

Neither the theory nor the available experimental results are sufficiently
accurate to permit any quantitative predictions 6h the mean free path for the
vibratidns of the most important gases, O, and Ny. It 1s certain that these mean

free paths are rather long, and under certain circumstances they may become com-

. parable with the dimensions of a projectile.
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Experimental information is available (Table V) only on the effect of

N2 and of water vapor on the vibration of 02; in addition an upper limit is known
for the effect of O, on the 0, vibration. The effect Of N2 on‘O2 is described by
an effective range s = 3°10~%m as computed in (2.18a). In Table IV, we have cal-
culated Z as a function of temperature with this value of s, These calculated
values ehould represent the temperature dependence of the effect of Ny on the
vibrations of O2 fairly accurately,-i.e., within a factor of perhaps 3.

For 'the collisions between two 02 molecules, the experiments give
ZX 500,000 at room temperature. Assuming Z = 106, we obtain s = 4°10"9 cm from
(2.13, 15). The values of Z for 0, at various temperatures with s = 4:10"7 are
also given in Table IV; the ectual Z for O2 - O2 collisions mey be smaller than
the values given in the table by about a factor of 2, but greater by any amount.
In any case, in air the vibrations of 02 will be ekcited much more easily by col-
lisions with N, than by collisioﬁs with other O2 molecules, both because of the
greater abundence of N, and of the smaller 7.

In Table VI we give the estimated times and distances required to es-
tablish equilibrium of the molecular vibrations in air. In pa;ticular, Table VI A
glves the reciprocal tiﬁe of relaxation, W, as a function of temperature for
various assumptions. w, has been calculated from (2.18, 18a and 22), considering
q as independent of the temperature. The values of q were ebtained by comparing
the values of Z andW, given by Kneser and Kunze for room temperature; these q's
seem somewhat low but the errors are not important compared with the uncertainties
in the theory. The density of the air was assumed to be 1.18'10’3, corresponding
to atmospherie pressure at 300°K. In the first row of‘Table VI Aecx)O is given
for the vibrations of 02, taking into account only the collisions with N2 molecules.
The neglected collisions with O2 can increaseécé by 10 per cent at most.

Cellisions‘with water molecules are very effective in exciting the vib-
rations of O, (Table V). Four hundred collisions with Hy0 are suffiéient for de-

excitation of 02 at room temperature; therefore, as little as one per cent of water
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vapor will be three times as.effective as all the nitrogen in the air. In the
second row of Table VI A we have listed the value of Wy for collisions of 0,
molecules with HEO’ assuming a concentration of 1 per cent water Vapqr by volume.
On hot humid days, the water concentration may be easily 3 per cent. It is seen
that, at 1 per cent, the collisions with HQO are more effective than those with NZ'
at 500° K, but less effective at 700° and higher temperatures. This behavior ié
due to the fact that w rises very rapidly with temperature for-collisions with
NQ, but rather slowly for collisions with HQO. (Table IV)

While the Information obtainable on O2 is fairly satisfactory, very little
can be said about the excitation of the vibrations of{Ne.' It is reasonable to
expect that the effect of O2 on the N2 vibrations can be described by the same

“effective range, s = 321079 cm, as the effect of N2 on 02, although this is by
no means certain. In Table IV we have glven the corresponding Z for Ng; it is
muchhigher then the Z for 02 with the same S because the vibraﬁion frequency_bf
N, is about 56 per cent higher than for 02. The third row of Table VI gives cuo

2

for the excitation of the vibration of N in ailr, assuming that only collisions w
2 |

with O2 are effective., These values for w can therefore be regarded as lower
0

limits.

No experimental results are available concerning the effect of collision
with the N2 molecules on the vibration of Ng' To obtain any thgoretical estimate,
we must find an interpretation of the difference between the effective range s for
02 - 02 and O2 - N2 collisions, viz. sx 41079 and s = 3.10"9 cm, respectively.
There arevtwo‘possiblé interpretations: The first alternative is to assume that
generally collisions between different molecules are more effective than between
equal ones. Such a tendency seems to exist in the experimental result (Table V)

but there appears to be no theoretical justification. Moreover, it is to be re-

membered that the experiments were mostly done with polyatomic molecules, for
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which there are other reasons for a stronger inte:acticn (cf. point 2 in the sec-
tion on Experimental Results of par, 28). Tgus we do not get an explanation fop
the effectiveness of the collisions between O2 and NQ’ and we are led to the sec~.
ond alternative. This is based on the fact that N9 is a nore compact molecule
than 02, having a greater binding energy and smaller distance between the atoms.
From this difference in structure we may expect a shorter range of the forces for
N2 which would explain the smaller value of s for 0, - Np collisions as compared
with Op - Os.

If this second alternative is accepted, we should expect an even smaller
s For the interaction between two NE molecules than for the N2 - 02 interacﬁion.
We have therefore Included in Table IV the values of Z for N2 obtained with
5 = 2.5°LO~9 cm. These Valﬁes are,'of coursq,considerably smaller than for N2
and s = 5'10“9'cm, and not much larger than for O2 and s = 5:LO‘9 cm.,. In the
fifth row of Table VI A we have given.ogo for N2 in air, assuming s = 2.5-10“9 cm
for the interaction N2 - NQ; the values thus cobtalned are only slightly less than
those for O, (first row).

On the other hand, if the first alternative explanatioﬁ above is assumed,
the interaction between two NQ molecules would have a large s, just as the inter-
action between two 02 molecules. In this case, the N2 ‘.Ng collisions would not
contribute appreciably to the excitation of N2 vibrations, and W, for N2 would

be given by the third line in Table VI A in which the N2 - 02 collisions alone

are taken into account.
Finally, as a compromise, we have also given the results when s = T.10"9
cm 1ls assumed to be valid for collisions between two N, molecules as well as be-

tween N, and 0, (fourth row of Table VI A).

The effect of water vapor on N2 is also unknown. ,HEO is extremely ef-
fective in exciting the vibrations of 02 and C02 (cf. Table V) ag well as of NQO’

CS, and COS (Knudsen and Fricke, loc. cit.). By pure analogy we might therefore
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conclude that it would also be effective on N2, and we have therefore included in
Table IV a calculation of Z for collisions between N2 and HQO,’assuming the same.s
as for collisions between O2 and HEC but taking into account the higher v of N2.
However, it must be remembere@ that O2 has a chemical affinity to H20rwhile'N2 has
very little; therefore, collisions with water may be much less effective on N2

(Z higher) than is indicated by the last line of Table IV.

In Table VI A, last row, we have computed w, for collisions between

3

N2 and. Heo, assuming 1 per cent water vapor in air of density 1.18-10 7, and

assuming the Z as given in Table IV. Presumably, thése values of W are on the
high side. Whether or pot the humidity has an appreciable influence on the vibra-
‘tions of N., depends not only on the temperature and on the éorrectness of our
assumption about the interaction between N2 and HEO’ but also on the assumed in-
teraction between Né and NE' If the latter is strong (s = 2.5-10;9), the humidity
is rather unimportant even at low T; if it is weak (collisions with 0, only), the
humidity is the decisive factor. This again indicates the extreme uncertainty of
the data on the excitation of the vibration of N2’

In Table VI B, we have calculatéd the mean free path for vibration, xv’
the high pressure side of a shock wave produced in "standard air", i.e., when
the temperature and pressure on the low pressure side are BOOo and 1 atmosphere
respectively. XV is given'in Table VI as a function of the temperature T5 which
is obtained on the high pressure side at large distance from the front of the
shock wave (par. 3); T5 again is a‘known function of the velocity vy of the shock
wave (Téble VIII). Velocity and density on the high pressure side were also taken
from Table VIII (par. 3), the asymptotic values v5, p3 being used. The so defined

XV is related to the o, given in Table VI A by

o

S‘vf

(2.20)

e}
Pl
W



43

Table VI. Relaxation Time and Meén Free Path of Vibration for

0, and N, in Air.

2

2 2
Vibra- | Collisions Abun- Temperature
z;on with dance (10'9cm) 300 500 70O 1000 1500 2000 3000 5000
A. Reciprocal Relaxation Time w (in 105 sec_l)
0, N, 3 .0.55 2.3 7 19 50 80 140 260
H,0 1 093 1.1 2.8 5 7.5 11 13 1k 17
N, 0, 21 3 0.006 0.07 5.26 0.9 5.2 7 16 37
N, 78 3 0.024 0.25 0.95 3.5 12 26 60 140
N, 78 2.5  0.10 0.9 3.0 9 3 55 - 115 240
H,0 1 0.95 0.3 0.9 2.2 N 7 10 13 -18
B. Mean Free Path of Vibration A_ (in millimeters)
vy py/py(meters/sec) 35 98 71 6 56 56 58 48
Vibra- Collisions with
tion of
0, N, only 10 0.z 0.10 0.032 0.011 0.007 0.004 0.0018
N, and H,0(1%) 2.4 0.19 0.06 0.023 0.009 0.006 o.'oo57 0.0017
N, 0, only ; 550 14 2.7 0.7 0.18  0.08 o.oagf 0.013
0, and Ng(s=5-10_9cm) 110 3.0 0.6 0.1k 0.057 0.017 o.oo75 0.0027
0, and Nz(s=2.5glo'9cm) 3% 1.0 0.22 0.06 0.017 6.009 0.004; 0.0017
0, end 1% H,0 10 1.0 0.20 0.12 0.05; 0.033 0.020 0.009
02,N2(5=5-1o'9)and H,0 9.5 0.8 0.21 0.07 0.025 0.013 0.0065 0.0025
02,N2(s=2.5-1o'9)and H,O 8 0.5 0.13 0.04% 0.01k ©0.008 0.004 0.0016
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The quantity v5-pl/p5 is given in the first row of the Table VI.B, in meters
per second. Then xv is given for varlous assumptions.

The value of xv for 02 in dry air decreases from 10 millimeters at 500o
to 1/150 millimeter at 2000° and 1/500 at 5000°. If the initial pressure is low--
let us say, l/lOO atmosphere--xv is proportionally greater (100 times) and may
therefore easlly reach considerable values. In wet air containing i per cent of
water vapor by volum,e,),V for 02 is reduced to 2 mm at BOOo but is almost the
same as for dry air when T 2 1500°K.

’ For the Vibraﬁions of nitrogen, the value of kv is extremely uncertain.
If the collisions with N2 afe unimporta?t (cf. above) and if the air is dry, only
collisions with 02 need to be considered; then xv is as large as half a meter at |
EOOOK. Since the vibrational energy of N2 becomes important only for T 7 600°
(Table II),,A,v is important only at higher temepratures; but even at T = TOOO we
obtain xv x3 mn if only collisions with O2 are effeétive. On the other hand, if
collisions with N, are very effective (s = 2.5'10—9 cm), M, is reduced by sbout a
factor of 12 at 7000, and a facto? of 8 at SOOOO. If collisions with HQO are as
effective as assumed in Table IV and VI A, a water vspor cohtent of 1 per cent
_reduces xv by factors varying from 9 to 1.05 when only temperatures43ﬁ7000 are
considered. | |

Apart from the uncertainties in the assumptions, there i1s also aﬁ un-
certainty in the Landau-Teller theory itself which makes the temperature depend-
ence of xv uncertain by a factpr of sbout 3 even if o, at room temperature is
accurately known.

The unsatisfactory state of our knowledge about the mean free path for
molecular vibraxion; in air could be improved by experiments on the dispersion
and sbsorption of sound in mixtures of 02 and N2 of varying composition and free
from impurities. Such experiments should be done at T ::7000 K or higher in order

to ensure sufficient excitation of the molecular vibrations of Né. With such

experiments available, the dependence of A, on the temperature at hignher temperaturds
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could probably.be calculated from the Landau-Teller theory with fair accuracyot
The influence of huwidity should also be investigated experimentally.

Nitrogen and oxygen are probably almost unique in their large values df,
Z, and therefore of‘}\;v° Other molecules have much lower frequencies or much greater
chemicel activity (cf. above). Therefore for most other gases, and especially
for complicated po}yatomic ones (explosives!), RW,Will in general be too small to

be of any practical importance.

Dissociation. In Table VII, we give the number cf molecular collisions

Zd'required for one dlssoclation process, the reciprocal time of reléxation cud,
and the mean free path Xd for dissociétion; These quantities were calcul'a.'ted_bfrom
Eqns. (2.28, 29 and 29a). The constants N and v were assumed as in Table VI,
namnely N = 5«109 sec~l at 300° Keand one atmosphere; and proportional to PVE-otherw
wise; v equal to tﬁe velocity v3 of air on the'high pressure side of a shock wave
éroduced in "standard air";orwas taken from Table 1I, C4q was arbitrarily put equal

to 1/100, is, of course, independent of the pressure; w4 is calculated for a

Za
density* of 1.18.1077 as in Table VI, and?kd for the actual conditions on the high
pressure side of a shock wave. It can be seen that the mean free paths obtained
‘are very long inﬁeedy decreasing for O, from a little under one meter at 2500° to
a 1ittle over one millimeter at 5000°. Therefore we should expect large effects
from lack of dissocilation eguilibrium in shock waves which are sufficiently violent
to produce dissociation. We must emphasize again the great uncertainty of the
figures in Table VII which is caused by the lack of knowledge of Cy. Here again

experiments would be desirable but they seem considerably more difficult than in

the case of vibratiouns. Possibly studies of the dissociation equilibrium of other

gases (e.g., N, 0y,) would help.

* This is not guite consistent sinceer, which occurs in (2.29), was calculated
for an 8 times larger density, but P = 1.18°10-3 was chosen for comparison with

the u)o in Table VI.
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Table VII. Relaxation Time and Mesn Free Path for the Dissocilation of Air

T = 2500 3000 3500 ~kooo 4500 5000
O,  0.00205  0.01kk 0.0568 0.152 0,308 0.500
-3
N, - — 0.0005  0,001%  0.0051  0.0139
N 0p 23.60 19.67 16.86 14,76 13.12 11.81
A S 26.17 22.90 20.36 18,32
0, 75100 1.85.10% 1.27.108 1.76-107 3.8-10° 1.16-10°
A
N, 9.2:10%  4,0.1010 3,5-10° 5.1.1068
Wit oo 85 600 2ho0 6800 16,600 35,200
(sec'l) No- - 65 320 1080 2900
v3-P1P3 57 58 57 55 52 48

3 (0o 670 98 2k 8.1 3.1 1.4
| ¥ 80 -~ - 170 48 16
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Par, 3, Theory of Shock Waves in the Case of Variable Specific Heat.

Notation:

We shall denote by letters without subscripts the physical Quantitieé
at any point in the shock wave, by letters with the subscript 1 the quantities on
the low pressure side of the wave, by the subscript 2 those on the high pressure
side immediately at the front on the wave, and by the subscript 3 those on the high
pressure side at large distance from the wave fromnt, i.e.; where equilibrium has
been established for vibrations and dissociation. We shall also use h and 1 for
arbitrary points on the high and low pressure side, respectively. We consider the
one-dimensional case throughout. For further notations, see the end of the intro-
duction.

Fundamental Equations:

1. Equa%ion of cdntinuity ,
PV = constant = m (3.1)
| 2, Conservation of momentum: The gain of momentum of the mass m of
gas va, is equal to the decrease in pressure, -3p. Therefore*
p + mv = constant = mV (3.2)
(definition of V)

3%, Conservation of energy

E+2 4+ % v2 + constant =

c? (3.3)

o=

When the gas flows adiabatically into vacuum,v)Ao and therefore also E go to zero

so that v approaches c¢. IntroducingBdefined in (1.3), (3.3) becomes

V2 = % C . (j°3a)

POf-

2

has been extensively discussed in par,l and 2. 1t has been shown in par.2 that ﬁ

depends on the existence or non-existence of equilibrium between the various degrees

¥ It is interesting that in our case p + v2 is constant while in the imcompress-
ible fluid it is p + {(1/2) v2. In both conservation laws, the elementary law is
dp + vdv = 0, but for the integration we must assume P = constant in the in-
compressible fluid, PV’= constant in our case.
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of freedom of the molecules. If there is equilibrium, ,B is a function of the tem-
perature (or p/P) alone; tables of 8for this case are given in par, 1l for nitrogen,
oxygen and air (Tables IT and III). Equilibrium will exist everywhere on the léw.
pressure side of the shock wave (8= B ;) and asymptotically at large distance from
the wave front on the high préssure side (B = ﬁ3 ). The valﬁe of Bon the high pres- .

sure side immediately at the wave front (ﬁg) can be calculated easily from the

fact.that the énergy content of the inert degregs of freedom (vibration, excitation
and dissociation) is the same as on the low pressure side (cf. beginning of par.h4).
IA _the particula;' case when the temperature on the low pressure side is low enough
so that there is no appreciabble energy in the inert degrees of freedom (fulf.illed‘
for air below 400° K), we have simplyﬁg =ﬁl ( = 7/2 for diatomic gases). In t_he
 intermediate region on the high pressure side ,'B must be considered as varying from
ﬁg to 55 in a way which will be discussed in par. 4. For the moment, we shall con-
sic‘ierﬁas glven and determine the_bther physical quantities from it.

The three constants m, V, and ¢ defined in (3.1, 2, 3) are given by the

pressure;, density, and velocity of the incoming gas on the low pressure side:

vl sy (3.42)
P17y
c® = vl2 +2p _I_')i | (3.4b)
P1

It is often convenient to introduce the velocity of sound by putting

pp =a%/y (3.5)

~(Valid only in the absence of dissociation)

‘In most practical épplications s the temperature on the low pressure side is suf-
ficiently low so that 48/dT = O and (cf. 1.19, 1.21)

"3‘\:2‘@"1‘ (3.6)
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If this is true, we may rewrite (3.4):

L | ' . (5.7)

]

® =72+ 28, - 1) a)° (3.70)

Solution of Fundamental Equations:

(3.1) and (3,2)’may be used to eliminate p and p , viz.

p =mn/v . (3.8a)
p = n(V -v) (3.8b)
g =(Vv-v)v (3.9)

These equations are important to calculatep, p, and T once v has been determined.

Inserting now (3.9) into (3.3a), we find:

= 1 2:;1.‘2
g (v v)v+§v 5 c (3.92)

and therefore

L BV Ve2v? - (8- 1)c2
-1

(3.10)

If V and ¢ are gi_ven‘,9 there are, for any value ofﬁ s two solutions
for v, In general, these two solutions are real (for exception, c¢f. par. 5,
p. 71); if real, they are both positive. It can easily be shown that the larger
value of v E)lus sign in (3.ibﬂ in é’eneral i pteater than the corresponding
velocity of sound, the smaller v siidllet the#t the corresponding a.

To show this, we calculate from (3.9)

g- = .é.,g‘i:.,i. [(ﬁ., 1)V ¥ Vﬁev2 - (28- l)ca:l (3.11)
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where the upper and lower sign correspond to the upper and lower sign in (3.10).

Now if we assume that B8 does not depend much on the temperature, we may use (3.5,

6) and have

. ,
a = 7§= Eﬁ-‘-.l [ﬂV?— ﬂ Vﬁ2v2- (ep l)c] (3.12)

This gives

2 .
v -8 =3
v

- (28 - 1)c? (3.12a)

i.e. v>a for the upper, v<a for the lower sign.

In reality, B does depend on T and therefore (3.6) is not correct but

should be replaced by (cf. 1.19)

y = 8+ df/d log T .
B-1+dB/d logT (3:13)

: (a.ssuming no dissociation).

In all practical cases ﬁ increases with tempera.ture so that 7 (and therefore & )

is slightly less than it would be if (3.6) were valid. Therefore it remains true
that for the upper sign in (3.10 - 12) v is greater than &, but for the lower sign
v is not necessarily less than a. However, the difference between (3.6) and (3.13)
is only very slight; therefore the exceptional case that the smaller v is greater

than the corresponding a will be of minor importance. A more detailed discussion

will be given in par.5, p. 80, 81.

Discussion:

On the low pressure side of the shock wave, the velocity will be given
by (3.10) with the plus syign (in the following denoted by the subscript.@ , for
low), on the high pressure side by the solution with the minus sign {(subscript h

for high). We have pointed out above that 8 will have the equilibrium values,
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Bl and ,/5’ Lt both on ths low pressure side and on the high ‘px‘”essu:r‘e sigle at large
distance from the vave front. The sgullibrivm valus ofﬁ isv a unique function of
the temperature so tha‘tg? 1 end @ 3 &reé completsly determined by T, and Tﬁ’a Let
as deriote by/Te ({3) the temperature which belongs to a given ﬁ infhermal equi-
librium ; it is the function tabulated in Tables II and IIT and it increases mon-

| .
tonically withﬁ . On the other hand, the theory of sheck waves (Eq, 3.10) gives

V.

3
(cf. 3.ka, b) and the sign of the square root is also determined (negative).

uniquely in terms of 8 3 since V and ¢ are given by the initial conditions

From Vs in turn T3 is determined through (3.9)% so that T is, by the shock wave
theory, & given function of 8 which we shall denote by T (8). The temperature '1’3,

and the energy contentﬁ.j, are determined by solving the equation
7. (@) =T @) : (3.14)

It can easily be shown that this eguation has only one solution for which the
velocity v 1s smaller than the corresponding velocity of sound, i.e., only one
"high pressure” solution. In most cases, this follqws‘ from the fact that Ts(ﬂ)
decreases with increasing 5 over almost the whole range of ﬁ (cf. 3.16c and
especially par, 6) whereas Te(ﬁ) increases monotonically. In the small range of
g in which Ts(p) incx;eases (cf. par.6), this increase is slower than that of T ;

in fact, the condition v< a is equivalent with de d‘.I‘eo
LA S, -5
dg as
We may conclude, then, that ‘%33 s T3 and of course also the other physical
quantities (pj, PB’ VB) are uniquely detsrmined by the initial conditions Pys Py

In other words, all the physical guantities (v, p, » T, etc.) on the high

MK
pressure side at sufficient distance from the shock wave are independent of all

intervening processes connected with the establishment cf equilibrium bhetween

# 1f there is dissociation, (1.2) must be used together with (3.9).
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"inert" and "active" degrees of freedom. Therefore, 1f the dimensions of the ob-

gtacle causing the shock wave are large compared.with the mean free path for vi-

bration, etc. (par.2), the pressure, resistance, etc. will be the same as-if all

degrees of freedom were in equilibrium all the time.

We could rewrite Eq,(3.10) inserting the values (3.ka, b) or (3.7a, b)
for V and c. .This would in general lead to complicated expressions if B #pl
However, simple results are obtained ip the two cases (a) B =g, and (v) vi>> 5.

a) For B =g, and (dB/d log T); = O our theory reduces to the usual theory

of shock waves, and (3.10) becomes (use 3.7a, b!)

o]

- 1) 2L
v=Y1* (B l)—-;l—j_-(p-l)(vl~_a.'.3;__2_)
1

ep-1

‘ wﬁich gives

="
_ 1 ay2
R B R R (3.15)

(3.15) is the fundamental equation of the usual theory in an especially convenient

form.

b) Simple expreséions can also be obtained if vy >>'al no matter whether

B —ﬂl or not. In this case (cf. 3.ka, b) we have V= ¢ = vy and (3.10) gives

v
1
T (3.16)

n

From (3.8, 9) we find then

p, = Py (28-1) (3.168)

Ele

et KETU (3160
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(RTy=) —Eﬁ- - v? 3%2?%%11)2 (3.160)%

The relative error of these formulaé is about 2ﬁ1e112/vl2 (for p, only a12/v12).
In the approximation used here, the quantities on the high pressu:c"e side are in~
dependent ofﬁ 1 and depend only on the local value of 8 on the high pressure side.
It 1is seen.that the value of Pn increases linearly withﬁ; in the speclal case
g = 7/2 (diatomic gases with translation and rotation only), (3.16a) giveé the
well-known result 'ghat the density in & shock wave can only increase six-fold.
Since ﬂ increases considera’bly at high. temperatures, the actual increase ofP can
be much greater than six-fold. p, depends only slightly on B (for lé,rgeﬂ) be-
| cause, in our limit vl>> al s Ve have. vh << V and therefore Pn is approximately
nV (cf. 3.8b) which is a constant. |

' Finally, 'Th decreases*¥ strongly with increasingﬁ because the total
energy E + g = RT 1s almost independent of B when vy << ¢. (cf. 3.3) (Only a very
small amount of kinetic energy is left!). As an example, we compare the asymp-
totic values of thé physical quantities for air at ordinary temperatures (ﬁ = 7‘/2)

and for hot air with the vibrations fully excited but no dissociation (ﬁ = 9/2).

B =1/2 B =9/2
vh/v:L 1/6 1/8
Ph/Pl 6 8
Py/Pv 2 5/6 = 0.853 7/8 = 0.875
RTh/vie 5/36 = 0.139 7/64 = 0.109

* 1In case of dissociation, (3.16c) holds for RT, (1 '+bth) rather than for RT,.

%% This statement holdé also in case of dissociation because T 1s a monotonic
function of p/p.
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Table:
Table VIII gives the physical characteristics on the high pressﬁre side
of a shock wave produced in éir of 300° Kelvin (27° Centigrade) by inciéent streams
of various velocities. For the construction of such'a table, it is convenient to
consider the temperatures T, and T

1 3 ,
than to start from Tl and A1 and calculate Ty vB from them. p 3 is & tabulated

as given and to calculate vy and v3, rather -

function of T3 (cf. Table III). Egs (3.3) and (3.9) mey be rewritten

3 ey, = B 1, (3.17a)

S o '
2 --2 2 = -—J-; 2 ' .
Bs : * Vg 28, o + v (3.170)
Solving for v, v3 we obtain
ops (B2, R/A , ' (3.18)
V3 P37t°5
snd 2 2pa+1 /
- Vo< + - D P : o
n S 1057750 (5.18a)
5P5 (vl/.VB)a -1 : '
where y .
P, /P
b=, -+ -2271 -1
55 > 5—37‘;-3—- (31 2) (‘5.18b)

These formulae are suitable for compution.

. _Table VIII gives the important Physical qgahtities as functions of vi/al,
the ratio qf the velocity of the incoming stream to the corresponding velbcity of
sound,‘for values of vl/&l from 1.5 to 11,6. Velocity, density, temperature end
pressure on.tﬁe high pressure side are given both at largg distance from the wave

front (subscript 3) and immediately at the wave front (subscript 2). The latter



Table VIII. Characteristics of Shock Waves in Air

vifay  vsfey  valey s/ 1 o/1 Tz T2 ps/m me/my
1.523  0.798  0.800  1.907 1.90% koo koo - 2.543 2,538
1.98%  0.746 0,795 2.659 2.6k7 500 501 kb3 bk,
2.577 0.737 0T  3.225 3.180 600 60k  6.450 6.1
2.725  0.7hh 04759 3.663 3.591 700 709 8.547 8.h9 ,
3,061 0.7575 0.779  b.015 3.90s 800 816  10.707 10.62
3.331 0.7725 0.8035 k.31h k.16 900 925  12.9%  12.77
3.611  0.7955 0.831  h.5ho L.346 1000 1036  15.23  15.01
4,235 0.8355 0.900  5.069 k4,706 1250 1320 21,12  20.72
4,797 0.880 0970 5.454 k,9h5 1500 1616  27.27  26.66
5.307 0.9235 1,041 5.746 5.098 1750 1925  33.52 32,7
5.718  0.9665 1.1035 5.978  5.236 2000 2222  39.85  38.75
6.643 1.045  1.2285 6.359 5.h09 2500 2848 53.01  5l.k
7455 1.115  1.350  6.685 5.521 3000 3510  67.05 6.6
8.315 1.167; 1.481  7.122 5.615 3500 k300 8h.09  80.5
9.297  1.208  1,6335 7.697 5.691 4000 5300 106.02 100.6
10.410 1.2415 1.809 | 8.385 5.754 14500 6570 ‘'13k.bo  126.2
11.595 1.269  1.997 9.136 5.80% 5000 8030 168,38 155.6

55
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quantities were calculated assuming that the inert degrees of freedom retain the
same energy as on the low pressure side. Since this energy 1s practically zero,
we can put52‘= ﬁl = 3,483 (cf. Table III), and can therefore calculate w‘rg from
(3.15) (and the remaining quantities from (3.8, 9) ).

Comparing the quantities with subscripts 2 and 3, we find approximate
agreement up to about vl/al = 3, At higher vl/al, we find thatfp5 is considerably

greater than p, (cf. 3.16a) and, correspondingly (because of the contimuity equation)

V3 < Ve Thus the shock wave consists of a discontinuous compression followed by

a_gradual further compression which extends over a distance determined by the con-

siderations éf par, 2 and 4, Along‘with the strong increase of the density there
is a smal; increase of the presgure from pz to p3 flast two columns, cf., also
3,16b), but even if the discontinuous change of the pressure is by as much as a
- factor of lOO,_the follow;ng contlnuous one 1s only 5.4 per cent. Therefore, as
far as the pressure 1s concermned, the change cﬁ'ﬂ with temperature is rather un-
1mportant. The temperature increases discontinuously at the wave front from
Tl‘= 300° to T2 and then decreases* gradually to TB,_due to a transfer of energy
from. the "active" degrees of freedom by whose excitation the temperature is de-
fined, to the "inert" degrees. The temperature decrease is gréatest for the
highest'vl/al where 1t 1s from over 8000 to 5000 degrees.

Of some interest are perhaps the columns vg/al and vj/al. It is seen
that for relatively small vl, the velocilties Vs and vjrare smaller than the veloc-
ity of sound on the low pressure silde, ai, and that they decreaée with increasing
vy Then a minimum is reached-and at still larger values of Vs the high pressure

velocities Vo and v3 become greater than a,. For v,, the existence of a minimum

2
can be seen directly from (3.15); the minimum is obtained for

¥ For very "soft" shock waves (v, only slightly greater than &y ) there can be a
slight increase from T, to T5’ ct. par.6
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L=\[f2(8, - 1) =2.25 (forg = 3.483) | (3.19)

and has the value

Vomin . 2 V2(By - 1) _ 0.747  (for B = 3.483) (3.19a)

For very high v. we obtain

1
Vp = V1 (3.19b)
231 -1 '
Vs = EB;TJ- T - (3.19¢)

Par. 4. The Approach of Equilibrium.

We méy assume that the eﬁergy of the inert degfees of’freedbm (vibratio&,
etc.) does not change‘discontinuously at the front of the shock wave while that
of the active degreeé of fréedom does., It ﬁill therefore be convenient to'split
the total ehergy E into the part due to translation and rotation, E (a = active)-
and the Part due to vibrations, electfonic excitation and dissociation, Ei

(1 = inert). We put

E& +£ =ﬁav2 (hol}

o

.whereﬁa is practically constant and equal to 7/2 for diatomic gases (5/2 for

monatomic ones). Further, we must have

i.e., the energy of the inert dégrees of freedom is the same on both sides of the

shock wave front. Then (3.3a) becomes:

A A (4.3)
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Instead of (3.9a) we have
B(V~v)v+22-écg~Ei (h.b)

and instead of (3.10):

| . _
_BaV Wﬁ v - (28 - 1) (c2 - 2my) (h.5)
28, - 1

Equétion (3.4a) is unchanged:

Vel oy o (4.6a)

while (3.6b) is replaced by

(4.6b)

c® = v.% + 28R, + 2K

It can be seen easily that the physical quantities Pos Por Vo T on

the high pressure side immediately at the front of the shock wave are exactly as

.if the molecular vibration were absent ‘entirely. We may use Eq, (3.15) withﬂ
instead of B to calculate v2, and then obtain the other quantities from (3.8, 9).
This has actually been done in Table VIII.

Farther in the high pressure region, the inert dégrees of freedom will
gradually come into equilibrium. If we have only one such degree, e.g., the
#ibr&tion (sﬁbscript v), we may wriﬁe (par. 2)

dE ‘E'(T)-E

—¥ =¥ L4 4,
e WS (.7)

where T is the local temperature (defined as p/pR), '(T) =g (T)p/p the equi-
librium value of the vibrational energy corresponding to T, Ev the actual local
value of the vibrational energy, x the coordinate perpendicular to thé wave front

counted from the low pressure to the high pressure side, and A, the mean free
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path for vibrations (par, 2) which will depend on the local density and temperature.
Similar equations, but with a different A; will hold for dissociation and excita-
~ tion.

To integrate (4.7), if is ﬁore convenient to calculate x as a function
of the physical variables than to do the reverse. The iIntegration must iﬁ
general be done nUmericaily becauseekv_and Ev' are given on;y by numerical tables
(Tables II to VII) and depend in a complicated way on the variable T. A depend-
ence of EV'l and.?\.V on the density does'not present any additional difficulty be-
cause p is, by (3.82) and (3.9), a unique function of p/p = RT. Assuming again
that vibration is t£e only inert degree of freedom* (true for air Eelow 2500° X),

Ev can be calculated in terms of T from (4.3), elimineting v by use of (3.8b):

B, =2?-2v2. (g, - Dre + v |[v2 - i (4.8)

This is é fairly compliqated dependence. It seems hardly worth while to carry out
numerical integrafions of (4.7), (4.8) for special cases.

However, it is easy to estimate the distance required to establish
equilibrium. It must be of the order of‘aw, more precisely of the largest value
of?gv-occurring, i.e., the one corresponding to the lowest temperature (par, 2)
existing oﬂ the high pressure.side of the shock wave, Ordinariiy (1.e., with

the exception of the case discussed in par.6); this lowest temperature is reached

. % If there are several inert degrees of freedom (vibration, excitation, dissoci-
ation, possibly of several gases), there is one equation of the type (4.7) for
each of them. The unknowns are the energies Ei(l), E (<), etc., in the various
inert degrees of freedom; and T, the temperature as adfined by the energy in the
active degrees of freedom. From the temperature, v,p and p can be determinedi
and also the equilibrium values of the E,'s, viz. Ei(l)', Ei(e)', etc., and A(*),
A(2), etc. The number of differential ejuations' (4.7) is obviously one less than
the number of unknowns. The system is completed by Eq (4.8), with E, replaced by

Ei = Ei'(l) + Ei(g) + coc0



60

in ﬁhé equilibrium state (highest B, cf. 3.16c). Therefore it is only necessary

‘to read from Tables VI, VIII the z.for‘the teméerature T5 and pressure p3. |
The integration is simple if Te’f’e are sufficiently close to the va;ueé

T35 P Then we may consider A as constant and T |according to (h.é] and there-

fore E;' (according to par. 1) as depending linearly on E,, viz.

t
\4

dE .
v

B

= - p = constant ‘ _ (4.9)

P is positive because T, and therefore E ', decreases with increasing E_ (cf, 4.8).

Using (4.9), (4.7) integrates immediately to
‘Eﬁv(r) -E, = E%V'(TQ) - Evi] e-x(l +;‘)ﬁA(T3) (%.10)

Eemembering (h.e)ﬂ . Thus the deviation from equilibrium decreases exponen-
tially as we go away from the wave front. Since all physical quantities are ex-
pected to change very little (TE:: T3, ete.), T’P s D, v, etc. are sufficiently

neérly linear functions of Evi - E;, s0 that
2x) - T3 = (7, - 1) X )/ (4.11)

and similarly for the remaining quantities.
It need hardly be pointed out that the gradual change of thevphysical

A quantities occurs only on the high pressure side because the gas streams from the
low pressure to the high'pressure side if we consider the wave front as f;ked,
Increasing x means therefore a later time. On the low pressure side, the wave
fronﬁ is shafp (except in the case of par.5).because any molecules which may
cross the wave front sgainst the stream, i.e., from high pressure to low pres-
sure side, ﬁili soon revert to the high pressure side because of collisiohs.
There will therefore be no perturbation of the state on the low pressure gilde

outside of a distance of a few times the ordinary mean free path from the wave front.
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The stabiiity‘of the shock wave sgainst diffusion is insured by the
fact that the gas velocity reletive to the shock wave is greater than the velocity
of sound on the low pressure side; lsss on the high pressure side. if there
should at any time be e splitting of the shock wave into two parts (due to a
small obstacle or so), these two parts will soon reunite: supﬁose a small dis-
turbance runs before the main shock wave; then its velocity will be the veiocity.
of sound; a,, and 1t will be overtaken by the shock wave of velocity v,. If the
small disturbance runs behind, its velocity (relative to the gas) will be az and
it will therefore catch up with the main shock wave which moves only with the
velodity'v5 relative to the high pressure gas.

Par. 5. Diffuse Shock Waves.

In this and the fellowing section, we shall discuss some peculiar -
phenomena which occur only for very "soft" shock waves, i.e., when the velocity
vy of the shock wave.is only slightly greateg than the velocity of sound, 8,
These two sections are in no way'important for the general problem of shock ﬁaves
in a medium of variable specific heat which has been solved in par. 3 énd ,
Especially for & substance like air, whose inert degrees of freedom are very
1ittle excited at room éemperatureg the effects discussed in par.5 and 6 have
no practical significance but only academic interest. In the two sections, we
solve some mathematical difficulties vwhich might occur if the formulag of par,3
and 4 were applied indiécriminately, and complete some proofs which were left
incomplete in par.3 and b, The most important of these is the proof (end of
par.5) that for any initial conditions pl§Plngg vy there is always exactlz oL
solution of the shock wave eguations in thermal equilibrium for which v is less
than the velocity of sound a (high pressure solution) and one for which v a,

the latter 'beihg identical with the initial conditions.
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In particular, in par.S we sball discuss the cese when the velocity
vy of the shock wave 1s less than that welecity of sound, 8,15 which is obtained
when only the specific heat of the active degrees of freedom is consi&eredo. Such
shock waves are possible because the "active velocity of sound", 8519 is greater

than the ordinary velocity of sound; we have

Pl "R
2
=== (1) (5.1
%1 =gy (e (5.1)
a 12 ='£,J; (1 + E’E"“ (5°la.)l
vl
1

where Cy1 is the total specific heat at constant volume on the low pressure
side of the shock wave while Cyal is the specific heat of the active degrees of
freedom alone, Since Cy® Cygs WE have‘aal?” &1 and therefore there gre

va.lges of vy such that
al < vvl “« aa.l (5.2)
These values of vy shall be the subject of the investigations of this section.
The difficulty is the foll.é_awing: according to the general theory; a
shock wave must exist if v, > an. On the other hang the front of the shock

" wave behaves as if only the active degrees of freedom existed (par.4), there-

fore the wave front cannot exist if v:L < a 1° Mathematically, this difficulty
a .

appea.rs' in the form that the square root in (4.5) becomes imaginary if the con-
stants c, V and E;, are inserted which correspond to the initial conditions.
Practically, the region determined by (5.2) is very narrow. If év;l..

and Cral 2F€ not too different s We have

a1 _, , B (cy1 - Cya) (5.3)

) .

ay 2¢a1 (cy1 *+ R)
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Taking ¢y,3 = g K (diatomic molecule) and even assuming Cy1 to be as large as
3R, this gives only 1.025. PFor air at 300°K, cv1 ~ a1’ i.e.; the specific
heat of the vibration, is about 0.00TR; then ayi/a; = 1.000k so that the in-

terval (5.2) is exceedingly narrow.
The solution of the difficultj which we found above for the velocity
4interval (5.2) is as follows: there exists a shock wave which is propagated .

without change of shape; but in which the velocity goes continuouély through the

velocity of sound. The extension of this shock wave in space is again of th?
order of the mean free path for vibration,).v (cf. par. 4); and the variatioh of
the physical quantities with x is again determined by (4.7) in conjunction with
(4.5), (3.8), (3.9). However, instead of having a continuous variation only on
the high pressure side (lower sign in (4.5)), we now have 1t also on the lov pres;
sure side, Coming from the latter, ﬁe have a graqual increase of temperature, .
density and pressure togeﬁher with a gradual increase of the vibrational enefgy-
E,. The 6onne§tion between v and E is given by the positivé sign in (4.5). The
change of the temperature is such that the vibrational energy falls more and more
short of its gquilibrium value, or mathematically, the difference E;(T) - E,
(orf?{ —/?)vinbreases (cf. 5.21). Thereby the square root in (%.5) is reduced
until it vanishes. From then on, the negative sign must be taken‘with the
square root; there is a further gradual incféase of T,p and p but.nOW‘the
vibrational energy "catches up" again with its equilibrium value Evé(T) which
it reaches at lasrge distance from the shock wave. |
For the quantitative treatment, we introduce that value @o of_B at
which the sQuare root_in (30105 vanishes when V and ¢ are kept constan%, (30 is.
thus a function of the initial conditions éf the shock wave. The temperature,
pressure, etco,'which are obtained by setting Q:=6°in (5510), will be denoted
by Ty D,s etc. '

Obviously, 60 is defined by
242 2
@O Ve = (260 L l) C (5;114') .
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which has the solution*
B, = Lo (e + Ye? - VR (5.4a)
"80 is thus uniquely determined by the initial conditions Vys Pyps Pl q.nd p 1

(cf. 3.ha, b).

The square root in (3.10), divided by V, may now be written

2 - 502 - = - ' | . ﬁO
\/ﬁ o (2B~ V) \/(ﬂ B, . (B 7 - =) (5:5)

Neglecting all higher terms inf-p , this gives ‘
)

| (5.58)

| Inserting this into (3%.10) and neglecting again all higher powers of - o

than the square root (for more accurate formule, see (6.92)) ;, we get

_ 1.t {BR B 1) -

Y.
V 28 -1 _
% fo - 1
2
Denoting the velocity for 8 =ﬂo by Vs this gives
’ - 1
_,Y. = 1 i- ﬁo ° P“‘ po . - (5.6&)

Bo Bo “’%

 Similarly, we get from (3.11) for the temperature (assuming no dissociaticn):

- B-Bo (5.7)
T \/ﬁo(po -3 (B -1

* The negative sign before \/cg - v would lead to e value of 8 _ smaller than
unity which cannot be attained by the physical quantityﬁ (ﬁ = 5/8, cf. pars1l).

(o]
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where T_ is the temperature corresponding tof o? ¥hich is given by (cf. 3.9, 5.6)

- Bg- 1 5 : o
RTo = g v | K (5.79.)..
Introducing the abbreviation
L DR “
y = T 1 A | (5°7b)
o
we have from (5.7)
N _1 _ o g
BB, BB -Bg-NR 58
and from (5.6e)
T -1--(@ -1y | o (5.8)

0

We consider three velocities of sound, viz.

(1) the velocity of sound with the active degrees of freedom alone.

\[ \/ _1 S (5.9)

(2) the true velocity of sound
73&3 o (5.92)
where (cf. 1.19) ‘ '

. /a log T -
7 =B 1T+ ap/a log T | (5.10)

B changes not too rapidly with T, this may be writtex_ﬁ

7= 501 - A | (5o



(3) the expression

(_5.,11) .

which would result if dﬁ/d log T were neglected in (5.10a). Orﬂinarily,1the;
three velocities of sound are quite close to each other so that we may write,

neglecting higher powers of dB/d log T and of B »ﬁéﬁ

-~ (5.12a)
a _ 4 _ dB/d log T )
& = 1 %ﬁ (5.12b)

v =a" (5.13)

Since &' varies as Vﬁ; we have therefore from (5.8a)

, - B . .4
i 1= (@O 5 y) v (ﬁolh) .

Therefore the value of y at which v is equal to the actual velocity of sound,

is (cf. 5.12b)

- ag/a iog T ' = B (5.15)
BB, < 3 B - 1 |

LR

The value of y at which v is equal to a_, is (cf. 5.128)

Bo-Ba 5 .p (5,16)
b8, " ) (B, - V)
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For Y1 < Ty there will be an ordinary shock wave with wave front. Only for
Ya< J1< ¥, there will be a diffuse shock wave (yl'= initial value of y on

Low pressure side). From (5.14) and (5.15), we have *

To1=(p, -2 (- (5.16a)

It is convenient to introduce the abbreviation

v, =& B -
7 = 1l -*1 _ J1 (5017)
: a .+ = & B+ A <
al 1

Diffuse shock waves will be obtained for z between O and 1.

Since the local value of 8 is given by (5.8) for all y, we may write

BBy = Folbo=D) B, -1 2o (a8)

On the other hand, the equilibrium value ofﬁ which we denote byB ", as in (%.7),

may be regarded as a linear function of 3 in the small temperature interval

consideredyand sincef." =4, we have:
B' By = dB/a log T+(y - y;) (5.19)

Asymptotically on the high pressure side we must have equilibrium again so that

v33” =ﬂ5° Comparing (5.18) and (5.19), we find
BoBo = %) B+ 1) (3" = 3,7) = (aBfa1og ™) (y5 - yy)  (5.19)

Therefore (cf, 5.15)

Y5 = 2B - ¥, {5.20)

* Eq, (5.16a) contains the solution of the problem discussed efter Bq (3.13), The

vanishing of the square root (BO, To" ‘vj) actually does not represent the point
(&

where v = &, but this point lies at slightly higher temperature and lower velo-
city (i.e. in the region described by the lower sign of the square root in (3,10}).
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This means that the temperature at which v is equal to the velocity of sound
(cf. 5.15) is the average of the initial and final temperatureo For the final
temperature, we have always v< a as we might expect. |

We can how disﬁuss the actual equation (4.7) describing the change of

the physical quantities in the shock wave . "Eq {(4.7) may be re-written

d ! "

= Ei‘(ﬂ ~ﬂa_)] =5 -8r (5.21)
Using (5.8); (5.18), (5.19) and neglecting higher powers of g —po, this gives

1 .
, ,(ﬂo ”ﬂa) '%%/‘*‘ ﬁo(ﬁo - E)(ﬂo - 1) 2y %}Y{’
) 7% d gog“’f (v -7) <Bo B - 2) (/_30 - 1) (y2 = 1,®) (5.21a)

With (5.15, 16, 20) this becomes

(A + y) dy. = 8x (5.22)
(v ~71) (y3 -3} 24

Elementary integration gives

A-i~y1 A+y
— log (y = ¥} = ——mw- log (y, - y) = 2.
¥y3 - ¥y Yoyt 5 A (5.228)

Using again (5.20) and (5.17), this may be written

(1 -2) log (y ~yy) -~ (2 +.z) Log (v = ¥) = %Z' - (5.23)

The temperature approaches 'I'l asymptotically for large negative x, T5

for large positive x. The approach in each case is exponential, viz.
T - T, expl.XZ__ x - .
1 P,(-Tl - ZT) for x+ - oo (5.2ka)

1’3 -7 ‘exp (a— “‘z‘%’zﬁ)) for x4 +00 (502,‘“b)
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Thus, for z % 0, the approach of the asymptotic value 1s more rapid on the low
temperature side (Tl) than on the high temperatureone(TB). In the limit z-» 1,
i.e. when v approaches the "active" velocity of sound, a7 the diffuse shock
wave automatically goes over into a wave with a discontinuous front as we might
expect.

In the other limiting case z 3 Q, i.e. vlib al, the shock wave becomes

symmetrical and more extended; (5.23) is then equivalent to

1 1 XE/A L g
T=3 (T +T;) += (Tz - T,) &L =1
2 (T %) +5 (55 - ) K2+ 1 (5.25)

i.e., the extension of the shock wave is of the order A/z.

The formulae of this section can also'bé applied to the approach of rota-
tional equilibrium if vy is smaller than the velocity of sound, 8iq5 which would be
obtained if the translation alone is.considered in the specific heat. In this case,
(5.23) gives the distribution of temperature (defineq by the translational energ&)
where A is the mean free path for rotation which, of course; is very small (par, 24).

Aside from giving the solution for shock yave velocities between al, and
ag1s this section completes two proofs which were léftkincomplete in par, 3:

l. On the high pfessure side of a shock wave, the gas velocity #z is al-

ways smaller than the velocity of sound 8% To show this, we calculate, instead of

(3.12), the value of a2/v with the correct value (5015)-of7/° If we use (5.10a)

(in which higher powers of dp/d log T have been neglected), we obtain for the low-

er sign
e 1 I | _ ag/a log T 8 \/ 242 . 1.2 5
v T BV Ea V4 FoT B (2B~ 1)c | (5.26)

Subtracting this from (3.10) (again with the lower sign); we find

8 _ ¥ dB/d log T . [x2 . (cg. c?
R !:eﬂ'/gw;g \/p (2f- 1) 2 (5.27)
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In order that this be negative (i.e. V3 < aj)_, we must have (cf. 5.5a, 5.4)

o .
B-p, > (48/d log T) - (5.28)
° 4B, (B, - j—2’) Bo = 1) |

The velue of B - p o on the right hand side is sufficiently small so that (5.6a),
(5.7) and all subsequent formulae are valid (cf. 6.18). Ir B "po is equal to the
right hand side of (5.28), it follows from (5.7), (5.15) that y is Jjust eqﬁal to B,
This result coincides with (5.15) where we have shown that v is Jus(t eqﬁal
to the velocity of sound a for ¥ = B. Thus; as we have already pointed out, thex_'e
is a certain interval, viz. 0 < y< B, in which the lower sign in (3.10), etec., |
corresponds to v> a. In this interval, the lower sign solution corresponds to
the low pressuré side rather than the high pressure side of the shock wave, the
velocity vy being between a; and ay ' (cf. 5.11 ). For any Ve Ny inA this
intetﬁral, t.:hev‘high Pressure solution V3s ¥y can be found immediately _from.(5020) 5
and for this high pressure solution we have (cf. 5.20, y; <B!) y5> B and therefqre
v5 < 350_" This »prov_es the underscgred statement above.
' 2‘_, In par, 3 we have shown that there is, for any initial conditions P

one and only one solution of the shock wave equations (3.10), (3.11) provided

—& 5 _s (5.29)

on the high pressure side. Here T:3 is the temperature which belongs to a certéin ﬁ
according to the shock wave theory, T, that which corresponds to the same B in

thermal equilibrium. In the notation of the present section, (5.29) is equivalent

to

ag’ _ 4B (5.30)
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Comparing (5.18) with (5.19), it can easily be seen that (5.30) is fulfilled when
y» B, i.e. always on the high prressure side of & shock wave, q.e.d.

Par, 6. The Temperature on the High Pressure Side. .

In par, 5 we have found that the temperature 'increases continuously from
the low pressure to the high pressure side if vl is only slightly greater than 85
and this remains true if 4 becomes equal to a_q 89 that sharp shock wave front is
formed. In the case vy = 8531, wé have T2 = Ti, and a gradusl increase from T2 to
T on the high pressure side of the wave front. On the other hand, for violent shock
waves (v] >> al), we have proved in (3.16c) that the temperature decreases ‘from
the wave front into the high pressure region as the inert degrees of freedom bé‘-
;::ome excited. In this section we t}ant to investigate where the limit between these
two types of behavior is to be expected. |

For this purpose we have to examine _the dependence of T on 3 on the high
pressure side. We know that ﬁ increases from the wave front into the high pressure
region; therefore dT/dB will ,be the quantity determining whether T increases or
decreases. This derivative must; of course; be taken with the initial conditions
(i.e. V and c) kept fixed. The value of B at which 'd‘I‘/dp is to be calculated;
must be chosen in the range of values occurring on the high pressure side. The low-

est value of B in that region, Bos can be calculated from (4.2) and is given by
£ -p -TLg -p)
2 "Pa T W1 TPa (6.1)
2
The highest value, ﬁ}’ is in sufficient approximation

dﬁl TEnTl 6.2
53-p1+dlogT T, (6.2)

(6.2) is justified because, in the whole region in which 4T/dB > O, the temperature

change '.I'5 - Ty 1s small compared with T, itself. (cf. 6.11a, b). Therefore we can

also rewrite (6.1):
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I82 =481 - (181 ”ﬁa) ———-—-—-Te T; Tl (6.1&)»

Both (6.2) and (6.1a) are rather close toﬁl because ﬁl -ﬂa and df/d log T are

small in practical cases; therefore it will be sufficient to calculate dT/dﬁ for!

- =ﬁl on the high pressure side.

More convenient that the explicit calculation of the derivative ar/ap
will be an investigation of the behavior of T itself as a functioh of for given
initial conditions V¥, ¢, It will turn out that for given V and c, the tem’perature
Ty, increases with ﬂ for "values: of. ﬂ close toﬁ as defined in (5.4), reache; a..'

maximum forﬁm zﬁ _H'(B—’TT_ (cf. 6.8) and then decreases for larger § . If,

» then,ﬂ 1 lies betweenﬁ and ﬁ B the temperature will increase from T to T3
' ﬁl is greater than IBm’ the temperature will d%crease on the high pressure side.
5 is uniquely determined by V and ¢ ,7 therefore‘the conditioﬁﬂl <ﬂm is equivalent
| to a condition for vl/a which will be given in (6.1ke).

For the calculation, we insert v from (3.10) into (3.11) and obta.in

(g e _11)'2 Ee_p - 1)e? -BVE R Y \/,3 2 . (28- 1)cﬂ (6.3)

fiere we express c ‘in terms of B by (5.4), and introduce instead of B and ﬁo
0

(6.4)

] oy

_A.1 = -
b=f-3 b =g,

Then we 6bta. in

,"‘ .1.: 1 ag:-.'_ b - - 1
F;en,.b l: T Mg \/(b B,) (B W;)] (6.5)

As usual, the lower sign 1is for the high pressure side of the shock wave. Putting

o'i

p/fz = RT, and né'glecting all powers of b - b, higher than the square root, we obtain

(5.7).
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For our present purpose,'we vhall carry powers of b - houp to the 5/2th, but we
shall simplify the calculation by neglecting l/hb° compared with b°° Since the
interesting values of bo are at least 3, we have l/hbzti 1/56°

Then (6.5) simplifies for the high pressure side to

%fb A C(6.6)
PV | |

el
) b572

(high pressure side). The maximum of the right hand side is obtained for

1 _3(b = by), by ' ;
=T (1 _—-,E_--) =2 - (€.6a)

'In sufficient approximation, this equation is solved by

b - b, = —t— | (6.6b)
° Wb o+ 2
o b

‘ Yo

If the small terms of order l/bo2 in (6.5) are taken into account, (6.6b) is re-

placed by
s (6
Ll-bo u -.5;- l‘ﬁo(ﬁo = l)

b-b, =f- Bo=

For b, = 3, this gives b - b0 = %5 = 0,086. The maximum temperature is thus obtained

at a value of B which is only slightly greater than ﬁo. For larger B, the factor

1/b in (6.5) has a stronger influence than the increase of the square root, so

the temperature (6.5) decreases again.

Thus we find that the temperature can increase on the high pressure side

only if 1
ﬁo =3
B.<B =B +——— (6.8)
1% Pu =P B (B - 1)
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Since ﬁo is determined by V and ¢ (cf. 5.4), (6.8) is equivalent to a condition
for vl/a.l° To derive this condition, we determine the dependence of v on B8 for

fixed V and ¢. We have (cf. 3.10)

1 E:r \/p2 - gp%“:li ﬁog:l (6.9)

<<
S
oW
8
)

Introducing b, this gives

2vo1+isl \/<b “F) (v (6.9)

For the negative sign (high pressure side), (6.9a) gives a monotonic decrease of v
with increasing b. Inserting in (6.9a) the value ﬁm (cf. 6.8) for B=1D + %, we

find on the high pressure side

v (6.10a)

I
ol
<

on the low pressure side

1
-1
B-3

v =
ny

v(L+ ) (6.10b)

i

Similarly, inBerthngﬁﬁlinto the expression (6.5) for the temperature, we

obtain on the high pressure side
RT. =2 =}V (6.11a)
mh. P |mh F v

on the low pressure side

RTml =L~’§]ml = f; v (1 - %5) o 11; ve (1 -B_;.) (6.11b
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Thus', at the valueﬂ =ﬁm at which Th reaches its maximum for given V and c, we

have the simple relation (cf. 6.10a, 1lla)

, 1 . ) :
th =Jmn1h - -é- v v (6@12)
and from (3.8pb)
= 1 - 1
Pup =5 BV = 5 Ppax -+ (6.12a)

where Pnax is the pressure corresponding to v = 0,

The velocity of sound a' as defined in (5.11) is then for ﬂ =ﬁm (ct.

6011a, b)
1 - '
alyy =3V —-ﬁ—l— . (6.1§a)
1 é + 1 |
a.ml =5V 3 (6.131;-)

It can easily be seen (cf. 5,12b) that in all practical cases a,‘m - a, is small"

compéred with Vi~ a.‘m on both eides of the shock wave., Therefore we can ideritify

(6.13a , b) with the actual velocity of sound a and obtain:

ZE’E: ’ ﬁ‘l ~ -l'_..- 1 -:&-... °
2 2 ~1 58 8-55 (6.14a)
v ' .
= 1 ='1+%-B+_8%2_+“. (6:14b)
1 .

_.J:<._.'_... =1 +--J;-+-—3-—+.‘eo (6»1’40)



76

For ﬂ = 7/2, the right hand side is 1.173. This shows that a temperature increase

from T2 to T_ is restricted to very soft shock waves.,

The temperature change T, - T, itself can be calculated from (6.2), (6.1la):
3 2 '

1

| ar_ : ar 'T3 ) T . |
T3-T2=EE-°(33-32)=EF-, — ElogT +p ‘B:] (6.15) ’

Here we have denoted, as in par.5; by Ts the temperature corresponding to.a given ﬁ
according to the shock wave theory, and by'Te that corresponding to the same ﬁ in

thermal equilibriuin° - Tl in (6.la) has been replaced by T5 - Tl because it

v T2 .
will be shown (cf. 6.17) that ‘1‘3 - T2 is small of & higher order. From (6.6) we

have in sufficlent approximation

d log Tg 'y - 1 '
dg. 3
% 2\[o, - v,

Likewise from (6.6), we can calculate the difference between the high pressure and

ﬁ (6.16)

the low pressure value of T for the same value afﬁ, viz, ﬁ]ﬁ this is

T, - T b -
3" 71 5P " B (6.16a)

Inserting in (6.16), (6.16a) into (6.15) and using the abbreviations A and B

(cf. 5.15, 16) we obtain

T, - T -
_ZT___.,?. = 2(A + B) E-Jubo(bl - bo)] (6.17) )

which may also be written (cf. 1.19)
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T -T c ' :

1

5 T3 - _i:ll 3 E' \/1‘(51 -3 By - Bo] (6.172)
R(By 5) |

where c, is the specific heat of the inert degrees of freedom. From (6.'17)»1t
follows thﬁt the tempersasture change 'I‘3 - T2 is greatest when ﬁ 1= ﬂo, i.e., for

the séftest shock waves; of course, this holds only when an actual wave front

exists (i.e., for v, > aal) bec_é.uée otherwise T, cannot be defined. For "ha,x:dez;"
shock waves, 1.e.,7 greater vl/al an@ﬁl - Bo’ the square brackét.d..ecreases and reaches
zero for ﬁl =ﬂm (cf. 6.8) as must be expected. For air of 1nitia_i temperature

T, = 300°, we have Cyq. = 0.007R; then from (6.17a) the maximum possible va.ltie of

T3 - T2 is 0.00025 T, = 0.08°. The temperature increase T3'- Tz, if 1t occurs at

3

all, is therefore extremely small in air at normal temperature. . The temperé.ture

difference Tn -~ Ty » on the other hand, is appreciable, viz. (cf. 6.11) 1/9 Ty = 33°).,

Finally, the developments of this section can be used to Justify those
of par,5. In that section, we have neglected in (6.5) and similar equations all
powers of b - bo higher than the square root. This is justified as long as B - ﬁo
is small compared with ﬁm - po as given by (6.8). Now the largest value of B - go
which we have used in par,5 is obtained for y=2B+A (cf. 5.15, 16). Using ‘

(5.8), (6.8) and neglecting quantities of relative order 1/B% we have.

(B~ Bodmax . v P(op + ) =208/alog T+ B -f, (6.18)
B~ fo 8, -1 - |
B, - 1

Army--APG, Md.--D
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