

UNITED STATES ATOMIC ENERGY COMMISSION CONTRACT W-7405-ENG. 36 In the interest of prompt distribution, this status report was not edited by the Technical Information staff. 1-

.

.

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 2251 Price: Printed Copy \$4.00 Microfiche \$2.25

This report was prepared as an account of work sponsored by the United States Government Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any worranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights

THE STATUS OF LASER SEPARATION OF BORON ISOTOPES-JUNE 1974

by Stephen D. Rockwood and Sherman W. Rabideau

ABSTRACT

A 14% enrichment in the ratio of B^{10}/B^{11} has been achieved by selective excitation by $^{11}BCl_3$ (v_3) with a CO₂ laser followed by preferential photodissociation of the excited state molecules. The subsequent photochemistry used O₂ as a scavenger.

1. INTRODUCTION

At this time we can report a 14% isotopic enrichment of a 5-ug sample of BCl₃ obtained with 5 pulses of laser radiation using two photon induced photochemistry. This mass of material represents a relatively large sample in comparision to other recent work in the field ¹ and, furthermore, the present results indicate that both the enrichment and the yield can be greatly improved by the development of a brighter uv source.

As stated we have employed selective two photon dissociation of BC13 in the presence of chemical scavengers. The first step is the selective excitation of ${}^{11}\text{BCl}_3$ in the v_3 mode using the P(20) line of a CO, laser. This is immediately followed by photodissociation of the excited state molecules yielding fragments containing an enhanced fraction of ${}^{11}B/{}^{10}B$. The fragments of the photodissociation are then consumed by a chemical scavenger. In the present case 02 has been used as the principal scavenger leading to a product which has a much lower vapor pressure than the BC13. Physical separation of the two isotopes is thus accomplished by trapping of the product gas onto a cold surface while leaving the 10 B enriched BCl₃ in the gas phase. Subsequent portions of this report will examine in some detail the necessary physical properties of BC1, which allow the present process to work and conclude by presenting the isotopic enrichment obtained to date

along with projected future experiments.

II. INFRARED REQUIREMENTS

Fig. 1. ir absorption spectrum of BCl₃ to the ν₃ mode showing the isotope shift between ¹⁰BCl₃ and ¹¹BCl₃. Path length was 10.2 cm. Pressure was not measured precisely.

Figure 1 displays the absorption spectrum of BCl_3 in the vicinity of 1000 cm⁻¹ along with the location of many CO_2 laser lines as presented in Refs. (2-4). The attenuation coefficients and saturation flux for many of these lines are given in Ref. 3. From these data it is readily observed that quantities of BCl_3 on the order of 10 - 100 torr can be promoted to the v_3 mode using CO_2 laser powers readily obtainable with today's technology.

The relaxation of the v_3 mode by vibration-vibration (V-V) transfer is known to be rapid and the equilibration of excitation energy between ¹¹BCl₃ (v_3) and ¹⁰BCl₃ (v_3) proceeds with a rate of ⁴

$$\frac{1}{p\tau} = 2 \times 10^6 \text{ sec}^{-1} \text{ torr}^{-1} .$$
 (1)

To avoid scrambling of the selected isotopic state the vibrationally excited ${}^{11}BC1_3$ must be dissociated on a time scale short compare to this V-V transfer rate. This rapid dissociation rate requires in turn a large uv photon flux as discussed in the following section.

III. ULTRAVIOLET REQUIREMENTS

Figure 2 displays the measured uv absorption of BCl_3 containing a natural abundance of both B and Cl isotopes. The absorption spectrum was measured on a Cary Model 14 spectrophotometer with a 10-cm quartz absorption cell at room temperature. A hydrogen lamp was used for the light source. A BCl₃ pressure equal to its vapor pressure at the temperature of solid CO₂ was used to record spectrum A of Fig. 2. This pressure is approximately 4.0 torr. Spectrum B was run at a pressure of 2.1 torr.

The peak at 207.6 nm was recorded at 0.05 nm/s. At 210 nm the dispersion of the Cary is 0.29 nm when using a slit of 0.22 nm. No evidence of structure is observed in the 207.6-nm peak at either pressure. Since matched sample cells were not available it is necessary to subtract the background spectrum C of sample cell with vacuum from the results A and B. To obtain greater precision in the measurement of the extinction coefficient of BCl₃ in the ultraviolet, a slidewire was used which expanded the optical density scale tenfold. An optical density of 0.046 was recorded with this

Fig. 2. uv absorption of BC1₃ near 207.6 nm parametric in pressure.

slidewire with 4 torr of BCl₃ in a 10-cm cell. Defining the extinction coefficient of BCl₃ by the expression: $I/I_0 = \exp(-\exp)$, where ε is the extinction coefficient of BCl₃, p is the pressure in torr, and x is the path length in cm, a value of 0.003 cm⁻¹ torr⁻¹ is computed for ε at room temperature.

Using the measured width of the 207.6-nm absorption and a Morse potential ground state with constants appropriate to the v_3 mode one can construct the potential curves shown in Fig. 3 using the theory of Winans and Stueckelberg.⁵ The calculated slope of the upper state of the 207.6-nm transition is -1.6 ev/A.

Using the measured absorption curve shown in Fig. 2 and assuming that all the energy of the v_3 mode is available for dissociation one can construct the excited state absorption curve displayed in Fig. 4. This curve does not account for possible Frank-Condon shifts of the dissociation energy indicated in Fig. 3. From these data we conclude that uv radiation in the wavelength range 213.0 $\leq \lambda \leq 215.0$ nm is desirable to obtain at least a 10:1 enhancement in absorption from the excited state over absorption in the wings of the ground state.

Fig. 3. Morse potential curve for the v_3 mode of BCl₃ plus estimated excited state from uv absorption. Indicated wavelengths are for transitions from the probability maxima regions of the ground and first excited states.

From the measured uv absorption coefficient and the known V-Vrelaxation time, Eq. (1), one can compute the required uv flux for efficient enrichment as

$$\phi \geq \left(\frac{\text{RN}}{\sigma}\right) \times 6 \text{ ev} = 1.9 \times 10^7 \text{ W/cm}^2/\text{torr BCl}_3$$
(2)

where $\sigma = 1.0 \times 10^{-19} \text{ cm}^2$ is the uv absorption cross section, $R = 5.7 \times 10^{-11} \text{ cm}^3/\text{s}$ is the V-V transfer rate from Eq. (1) and N is the BCl₃ number density. Flux densities of this magnitude in the desired 2.0nm bandwidth almost certainly require a uv laser. However, no lasers at the appropriate wavelength are currently available and development of these sources must receive attention in the immediate future.

IV. PHOTOCHEMISTRY

To assess the results of absorption of uv light by BCl_3 in the absence of other gases a sample cell containing 4.0 torr of pure BCl_3 was placed in front of a 1-kW deuterium discharge lamp for 1 h. No evidence of solid formation or alteration in the uv or ir absorption spectra of the gas was observed.

Fig. 4. Smooth curve fit to uv absorption from ground state at p=4 torr plus absorption from the first vibrational level of the v_3 mode assuming conservation of energy. The relative amplitudes assume 50% of the ¹¹BCl₃ has been promoted to v=1 of the v_3 mode.

However there was evidence that a radical species had been formed because of a markedly improved transmission of the empty sample cell. The radical species was most likely Cl which rapidly recombined with BCl₂ to reinstate the BCl₃ population.

A second photolysis experiment was then performed to examine the scavenging action of an olefin for the radiation fragments of BCl₃. The system consisted of 23 torr of research grade (Phillips Petroleum, 99.7 mol% purity) ethylene and 40 torr of BCl₃ in a 10-cm quartz cell. There was no apparent reaction at room temperature in the absence of radiation. A mass spectrographic analysis of the product formed after 2 h of radiation with the continuum from a 1-kW deuterium lamp indicated that approximately 1% of the product was ethyl chloride. The kinetic aspects of the effective addition of HCl to C_2H_4 were not examined further. Unreacted BCl₃ and C_2H_4 were also present.

From the results of these experiments it was clear that absorption of uv light by BCl_3 could be used to initiate photochemical reactions and it appeared feasible to separate boron isotopes by the process described in the introduction if the appropriate scavenger could be selected. The scavenger must be nonreactive with BCl_3 at moderate pressures, exhibit no uv or ir absorption at the wavelengths of interest, and produce a simple chemistry with little or no scrambling of isotopic information.

A summary of the scavengers which have been studied to date is given in Table I. All of the present experimental attempts to achieve isotopic enrichment have used O_2 as a scavenger and will be described in the following sections. This does not imply that O_2 is the best scavenger but of the present list it was the most convenient experimentally.

V. EXPERIMENTAL APPARATUS

It was noted in Section II that the uv requirements demand light of laser intensities at frequencies at which lasers are not currently available. As an alternative we have used BCl₃ to filter a Xe flash lamp in the configuration displayed in Fig. 5.

The reaction chamber shown in Fig. 5a is constructed of quartz with KCl windows mounted at 45° on either end. The CO_2 laser pulse is provided by a 1-m helical pin laser and is propagated axially through the 3-mm capillary tube. The CO_2 laser provides 150 mJ on the P(20) line with a temporal FWHM of 1.5 µs as measured with a Au-Ge detector into a 50- Ω load. The 3-mm capillary is centered at the intensity maximum of the unfocused CO_2 laser beam and a nominal energy of 11 mJ is transmitted through the evacuated capillary tube. Burn patterns indicate that this energy is uniformly distributed across the 3-mm diameter of the capillary tube. The peak CO_2 power as determined from oscilloscope tracings and the known geometry was about 10^5 W/cm^2 .

		3	
Scavenger	Light Source	Product	Comments
с ₂ н ₄	CW D ₂ lamp, and 206.1-nm, line of CW I ₂ lamp	с ₂ н ₅ с1	Ethylene absorbs 10.6 µ light
C2H2	_	White volatile solid. Condensation of pro- duct in liquid N ₂ gave rise to a transient pink colored solid.	Reacts spontaneously with BCl ₃ at 40 torr pressure
cis-butene-2	uv lamps also CO ₂ laser only	Dark brown, sticky liquid	Note that CO ₂ laser alone produces a reactio
°2	D ₂ , I ₂ CW, and Xë flash lamp	(BOC1) ₃ plus white solid	Product is only tenta- tively identified based upon work of Refs. 6,7. Sec present ir spectrum in Fig. 7. CO, laser alone would not induce m reaction.

		TABLE	I	
PHOTOCHEMISTRY	٥F	BC1.,	SCAVENGER	MIXTURES

	1			
	,	í		
5		ł	,	

Fig. 5. Experimental configuration of the photolysis chamber.

The reaction chamber is surrounded by a coaxial jacket of quartz containing pure BCl₃ at pressures of 600-700 torr. This acts as a filter for radiation providing a contrast ratio of about 10:1 between 215.0 nm and 207.6 nm light as shown in Fig. 6a.

Since pure BCl₃ did not suffer photodecomposition as noted in Section III the filter showed very little aging on a span of 20 to 30 shots. The entire reaction chamber is placed at one focus of a Raytheon model LH5 ruby laser flash lamp cavity. A Xe, FX-5, flash lamp is placed at the other focus and discharges 840 J of electrical energy in 250 μ s with the pulse shape shown by the lower trace of Fig. 6b. The CO₂ laser was triggered at the peak of the uv pulse as shown in Fig. 6b.

The output spectrum of the Xe lamp was not measured; thus it is difficult to state accurately the energy contained in the desired uv bandwidth. However it was noted that this lamp was very efficient in initiating the photochemical reaction between BCl₃ and O₂. Six torr of BCl₃ in an excess of O₂ could be completely reacted using 15 shots of the uv lamp alone when no filter gas was employed. From the known BCl₃ pressure and volume one can then infer a uv output of $\sim .1$ J/shot in the bandwidth of the 207.6-nm absorption feature. This assumes no chain reactions were occurring which is consistent with

(b) Oscilloscope tracing showing timing of uv and

the fact that the irradiation could be stopped after a smaller number of uv shots and the remaining (BCl_3, O_2) mixture would show no further reaction for time scales on the order of at least 24 h.

VI. RESULTS AND FUTURE WORK

The first experiments with the flash lamp system were designed to verify the (BCl_3, O_2) photochemistry described in Ref.6. Figure 7 displays the ir spectrum of the residual gas resulting from the irradiation of 3 torr BCl₃ and 6 torr O_2 by three shots of the unfiltered Xe lamp. Three distinguishable species are present in this sample: the BCl₃, a solid product which is deposited on the windows, and a gaseous product showing peaks attributed in Ref. 6 to $(BOCl)_3$. In addition to the peaks observed in Ref. 6 we observe 4 additional absorption peaks lying between 800 cm⁻¹ and 950 cm⁻¹ which are attributed to the same species giving rise to the strong 1370 cm⁻¹ absorption feature.

Fig. 7. ir absorption spectrum of residual gas following irradiation of 3 torr of BCl₃ and 6 torr of O₂ by three flashes from the unfiltered Xe lamp. Absorption features, except as noted, are assigned to (BOCl)₃.

TABLE II

1	R Absorption	Spectrum of	(8001)3
Absorption peak			-
(present work)		<u>,</u>	lef, 6
790 cm ⁻¹			620
810			
835 (shoulder	at 845)		
880 (structure))		
930			
1210		1	210
1370		1	385
1405		14	430
1450-1600 (much	structure)	14	670

The peaks identified with the gas phase product in the present work are compared with those of Ref. 6 in Table II. Some of the new absorption features can be assigned to modes of $(BOCl)_3$ (g) using the spectrum of $(BOCl)_3$ (s) given in Ref. 7 however, we have not yet attempted a detailed classification of the product and its spectrum.

Attempts were made to determine the identity of the product by analysis in a Bendix MA3-A time-offlight mass spectrometer. Mass peaks which were not observed in scans of pure BCl₃ could be attributed to BO⁺, BO₂Cl⁺, BOCl₂⁺, and BO₂Cl₂⁺. However, from these results we could not identify a parent molecula For the remainder of this report we will identify the gaseous product as (BOCl)₃ on the basis of its ir spectrum however this identification is tentative and subject to further investigation.

In Ref. 6 it was stated that the gaseous $(BOC1)_3$ was unstable with respect to decomposition into the solid phase product. We found this to be the case only in sample cells which had recently been exposed to room air. The ir sample cells used in this investigation were made of brass and used KCl windows. Once the solid phase product was present, as demonstrated by its ir absorption feature, the $(BOC1)_3$ could be contained for periods of several days at room temperature without evidence of further decomposition. These facts suggest that the "instability" of $(BOC1)_3$ is principally a manifestation of a very rapid reaction rate with H_2O adsorbed onto

the surface of the sample cells and that the solid product, which appears to passivate the surface, may be the result of reactions between $(BOCL)_3$ and H_2O .

No reaction between BCl₃ and O_2 could be induced by the CO₂ laser alone at the power densities employed in this investigation. Also, in contrast to the work of Karlov ² where much higher power CO₂ laser pulses were used, we observed no visible fluorescence from the irradiated BCl₃. No attempts were made to monitor the ir fluorescence of the BCl₃ gas.

We had initially intended to measure isotopic enrichment by changes in the ratio of the area of the ir absorption of ${}^{10}BCl_3$ (v_3) to ${}^{11}BCl_3$ (v_3). However, the discovery of the (BOCl)₃ feature at 930 cm⁻¹ complicated this measurement by adding an underlying background to the ${}^{11}BCl_3$ (v_3) mode at 947 cm⁻¹. For this reason all isotopic analyses of the irradiated gases were performed with the Bendix time-of-flight mass spectrometer.

·	TABLE I	n.
HASS	SPECTROMETER	ANALYSIS
	OF BCL.	

¥	Sanadaa	Relative	Experimental	Theoretical Isotupic Ratio
r ^{nass}		The conking	IEPEPPIC KALLO	pased on Nitural Abundance
10.0	108+	-019	.252 ± .002	.247
11.0	11 ₈ +	.077	1.000	1.000
17.5	35 _{C1} ++	.002	-	1.000
18.0	8 ³⁵ C1 ⁺⁺	-	-	1.000
18.5	37 _{C1} ++	7x10 ⁻⁴	-	. 320
19.0	<u>ж³⁷с1⁺⁺</u>	- 1		. 320
29.0	10 ₈₅ +	.012 ^(#)	.336 ± .003	.247
30.0	11 _{BF} +	.036	1.000	1.000
35.0	35 _{C1} +	.223 *	1.000	1.000
36.0	RC1 ⁺	.183	1.000	1.000
p7.0	³⁷ c1 ⁺ •	.067	.336 ± .010	.320
38.0	BC1+	.052	.299 + .012	. 320
40.0	¹⁰ ³⁵ c1 ³⁵ c1 ⁺⁺	.010	-	.247
40.5	¹¹ ³⁵ c1 ³⁵ c1 ⁺⁺	.034	-	1.000
41.0	10B35C137C1++	.003	-	159
41.5	¹¹ ³⁵ ¹⁷ ¹⁷ ¹ ⁺⁺	.020		.639
45.0	10 _{35c1} +	-030	.227 <u>+</u> .010	.247
46.0	¹¹ ³⁵ c1 ⁺	.128	1.000	1.000
47.0	10B37C1+	.010	-	079
48.0	11 ₈ 37 _{c1} +	.054 (†)	(†)	- 320
	10 87 +			
49.0	11 _{BF2} +	.075	-	1.000
64.0	10835C1F+	.035	.242 ± .003	.247
65.0	11 ₃ 35 _{C1F} +	.155	1.000	1.000
66.0	10 ₈ 35 _{C1F} +	.010	.082 + .005	.079
67.0	¹¹ B ³⁷ C1F ⁺	.045	.297 ± .003	. 320

Indicated numbers for F containing species are typical but actual values varied with history of the mass spectrometer.

	······································		
70.0 ³⁵ C12 ⁺	.015	1.000	1.000
72.0 ³⁵ c1 ³⁷ c1 ⁺	.007	.40 ± .10	.320
10 35 +			
80.0 B'C1 2	.253	.253 ± .002	.297
81.0 - 8 - 61 -	1.00	1.000	,159
82.0 **B'C1'C1			-
83.0 ¹¹ 8 ³⁵ C1 ³⁷ C1 ⁺	.624	.624 ± .004	639
10 ₈ 35 _{C1F2} +		-	.247
84.0 10, 17 _{C1} +	.056	.056 + .007	.026
11 ₈ 35 _{C1F} +		-	1.000
11.37 +		l soo + oost	102
85.0 3 C12	.100	-100 <u>-</u> -001	
LOB CIF2	1 .	. −	.079
8.60 11B37C1F2+	.005 ^(*)	-	.320
97.0 108.35 C1.F+	.014	.267 <u>+</u> .010	.247
100.0 ¹¹ ³⁵ C1 ⁷	.057	1.000	1,000
101.0 10 ₈ 35 _{C1} 37 _{C1F} +	.008	.153 <u>+</u> .010	.157
107.0 ¹¹ 8 ³⁵ c1 ³⁷ c1F ⁺	.033	.620 <u>+</u> .007	.639
104.0 ¹¹ B ³⁷ C1 ₂ F ⁺	.003	-	.102
115.0 ¹⁰ 8 ³⁵ c1, ⁺	.050	.244 ± .008	.247
116.0 ¹¹ B ³⁵ C1, ⁺	.198	1.000	1.000
117.0 ¹⁰ B ³⁵ C1, ³⁷ C1 ⁺	.045	.227 ± .007	.238
118.0 11 _B ³⁵ C1 ³⁷ C1 ⁺	.188	.952 <u>+</u> .004	.957
119.0 ¹⁰ 3 ³⁷ c1 ³⁵ c1 ⁺	.013	.064 <u>+</u> .015	.074
120.0 ¹¹ ³⁷ c1 ³⁵ c1 ⁺	,055	.266 +.010	.306
121.0 10 ₈ 37 _{C13} +	5×10-4	-	.008
122.0 11 37 c1 +	.003		.032

Table III presents the results of mass spectral analyses of 10 separate samples of pure BC1, as supplied by Matheson Co. A CRS-160 Infotronics digital read out and a MDS P-20 printer was used for data acquisition. The results of these analyses were used to establish the cracking pattern of BCl₃ in our mass spectrometer and also to establish a baseline for the ratio of ${}^{10}B/{}^{11}B$ in the gas received from Matheson. The dominant ion in the fragmentation of BCl₃ is BCl₂⁺. For the two ³⁵Cl isotopes the boron peaks occur at masses 80 and 81. We found the ratio of mass 80 to 81 in our sample of BC1₃ to be .253 \pm .002 and free from interference with mass peaks of the product. The ratio of mass 80 to 81 was thus used for all subsequent analysis of the boron 10 to 11 ratio in BCl₂.

^{*} Varied depending on history of the mass spectrometer. Hydrogen compounds appear to come from a reaction between BCl₃ and H_2O adsorbed in the mass spectrometer vacuum lines.

t Varied depending on history of the mass spectrometer. The primary source of F was the mass spectrometer which had been used previously to examine fluorine compounds.

Fig. 8. (a) ir spectrum of residual gas following irradiation of 4 torr BCl₃ plus 16 torr 0₂ by 10 shots of filtered uv radiation.
(b) ir spectrum of residual gas following irradiation of (BCl₃,0₂) mixture as in (a) by 10 shots of filtered uv plus ir laser radiation.

Figure 8 compares the ir spectrum of the residual gas following irradiation of 6 torr of BCl_3 in 12 torr of O_2 by 10 shots using in (a), filtered uv light only and, (b) filtered uv light plus ir radiation. The filter consisted of 600 torr of pure BCl_3 in the coaxial jacket as described above. Notice that there appears to have been some leakage of light through the filter because some (BOCl)₃ product is formed. However, the greater effectiveness of the filtered uv-ir combination in inducing the photochemical reaction is clearly demonstrated by the destruction of all the BCl_3 in case b. This result is a necessary condition for isotope separation since only the ir photons are isotopically selective.

For the results shown in Fig. 8b both isotopic species were reacted because the ir laser pulse was triggered 200 µs before the peak of the uv pulse. Since the BCl₃ pressure was 6 torr the timing delay allowed complete V-V equilibration of the ir energy between both isotopes during the duration of the uv pulse and no isotopic selective could be expected.

At this point conditions were defined for a series of experiments to attempt to show isotopic enrichment. All of the experiments used 5 shots of the filtered uv plus ir laser combination with the timing shown in Fig. 6. The filter was 600 torr of BCl₃ in all cases. The oxygen pressure was maintained at 20 torr and the BCl₃ pressure varied. The ratio of mass 80 to 81 was used as the principal diagnostic for the 10 B to 11 B ratio.

Figure 9 displays the results of this analysis as a function of the original BCl_3 pressure in the reaction chamber. The error bars on the data points are pessimistic in that they display the full range of values for the ratio of 80:81 obtained in from 3 to 10 scans of the sample by the mass spectrometer. The enrichment of the residual gas in ^{10}B increases to a value of 14% at an initial BCl_3 pressure of 0.8 torr which is consistent with a uv flux limited process as indicated by the dashed lines. This model will be discussed below.

Fig. 9. Ratio of ${}^{10}\text{B}/{}^{11}\text{B}$ as determined by mass spectrum analyses of residual gas following irradiation by 5 flashes of filtered uv plus ir laser radiation as a function of initial BCl₃ pressure. Error bars display the full range of observed data. Dashed lines indicate expected results based upon rapid V-V transfer between ${}^{11}\text{BCl}_3$ (ν_3) and ${}^{10}\text{BCl}_3$ (ν_3). Note 1 kPa = 7.502 torr. The data indicated by the open circles and triangles represent null experiments where all steps were repeated just as before with the exception of triggering the CO_2 laser. These null experiments give a ${}^{10}B/{}^{11}B$ ratio in good agreement with the value of 0.253 obtained previously in analysis of pure BCl₃. Also from the null experiments no pressure dependence is observed in the measured ${}^{10}B/{}^{11}B$ ratio which tends to rule out the possibility of a systematic error in the mass spectrometer yielding an apparent enrichment with decreasing BCl₃ partial pressure.

For weak irradiation the time rate of change of the concentrations of ${}^{10}BCl_3$ (ν_3) $\equiv X_{10}$, ${}^{11}BCl_3$ (ν_3) $\equiv X_{11}$ and the products may be described by the following equations:

$$\frac{d}{dt} X_{11} = \sigma_{ir} \phi_{ir} N - (RN + \sigma_{uv} \phi_{uv}) X_{11} \qquad (3)$$

$$\frac{d X}{dt} 10 = RNX_{11} - \sigma_{uv} \phi_{uv} X_{10}$$
(4)

$$\frac{d P_{11}}{dt} = \sigma_{uv} \phi_{uv} X_{11}$$
(5)

$$\frac{d P}{dt} 10 = \sigma_{uv} \phi_{uv} X_{10}$$
(6)

where N is the BCl₃ concentration and is assumed to be constant, P₁₀ and P₁₁₁₁ are the photodissociation fragments of ¹⁰ BCl₃ and ¹¹BCl₃, respectively, R is the V-V transfer rate used in Eq. (2), σ_{ir} and σ_{uv} are the ir and uv absorption cross sections and ϕ_{ir} and ϕ_{uv} are the ir and uv photon fluxes. With the assumptions that N, ϕ_{ir} , and ϕ_{uv} are independent of time Eqs. (3-6) are readily integrated. From the resulting solutions and consistent with assumptions of Eqs. (3-6) that the product produced is small compared with the initial BCl₃ concentration one obtains for the ratio of ${}^{10}_{BCl_3}/{}^{11}_{BCl_3}$ in the residual gas:

$$\begin{pmatrix} 10_{BC1_{3}} \\ \hline 11_{BC1_{3}} \end{pmatrix} = \begin{pmatrix} 10_{BC1_{3}} \\ \hline 11_{BC1_{3}} \end{pmatrix} \times \begin{bmatrix} 1 + \begin{pmatrix} \sigma_{uv} \phi_{uv} \\ RN \end{pmatrix} \begin{pmatrix} \sigma_{ir} \phi_{ir} \end{pmatrix} t_{p} \end{bmatrix}$$

$$t_{p} \qquad t=0$$

where $t_p >> (RN + \sigma_{uv} \phi_{uv})^{-1}$ is the duration of the radiation pulse. Evaluating Eq. (7) with parameters $\sigma_{uv} = 1 \times 10^{-19} \text{ cm}^2$, $R = 5.7 \times 10^{-11} \text{ cm}^3/\text{s}$, $N(\text{cm}^{-3}) = 3.52 \times 10^{16} \text{ p}_{BCl_3}$ (torr), and $\sigma_{ir} \phi_{ir} t_p = 20$ gives the results parametric in ϕ_{uv} indicated by the dashed lines in Fig. 9.

These simple analytic results appear to be in good agreement with the experimental data when values for the uv flux appropriate to experimental conditions are assumed. One thus infers that the present experiment was severely deficient in uv power and considerable scrambling of ir excitation was induced by V-V transfer. The most immediate modification of the experimental apparatus will be the construction of a faster flash lamp to provide a higher peak power. Preliminary results also indicate that a D₂ filled lamp will provide more radiation in the desired bandwidth. On a longer time scale we will attempt to obtain laser radiation at the required wavelength using harmonic generation in ADP crystals as described by Massey. ⁸

Other experiments currently in progress involve attempts to obtain isotopic enrichment by CO₂ laser induced chemistry between BCl₃ and numerous olefins. Should these experiments prove successful it would be possible to eliminate the need to develop a hard uv source. However, one step laser induced chemistry is severely limited in its approach to isotope separation since it requires the reaction time to be short compared to the V-V exchange time while at the same time keeping the V-T deactivation of the selected state by the reagent long compared to the chemical reaction time. It may prove very difficult to find a reagent which will meet all these requirements.

We would like to thank the members of the L-3 group at LASL for the support of this project and in particular the expert assistance of Dr. W. Beattie in operating the mass spectrometer.

REFERENCES

- 1. See, proceedings of VIII Int. Quantum Elect. Conf. session Q, to be published in IEEE-J.Q.E.
- 2. N. V. Karlov, Appl. Optics, <u>13</u>, 301 (1974).
- P. Lavigne and J. E. Lachambre, Appl. Phys. Lett. <u>19</u>, 176 (1971).

9

- P. L. Houston, A. V. Nowak, J. I. Steinfeld, J. Chem. Phys. <u>58</u>, 3373 (1973).
- J. G. Winans and E. E. G. Stueckelberg. Proc. Nat. Acad. Amer. <u>14</u>, 867 (1928).
- D. J. Knowles and A. S. Buchanan, Inorg. Chem. <u>4</u>, 1799 (1965).
- B. Latimer and J. P. Devlin, Spectrochim. Acta <u>21</u>, 1437 (1965).
- 8. G. A. Massey, Appl. Phys. Lett. <u>24</u>, 371 (1974).

÷

.

.