LA-5832-MS Informal Report

C. 3

UC-20

Reporting Date: December 1974

Issued: January 1975

CIC-14 REPORT COLLECTION REPRODUCTION COPY

Heat Transfer Model for Composite
First Wall Materials in a Pulsed High-Beta
Controlled Thermonuclear Reactor (CTR)

by

Jefferson W. Tester C. C. Herrick

I O S Talamos

Scientific laboratory
of the University of California
LOS ALAMOS, NEW MEXICO 87544

In the interest of prompt distribution, this LAMS report was not edited by the Technical Information staff.

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22151 Price: Printed Copy \$4.00 Microfiche \$2.25

This report was prepared as an account of work sponsored by the United States Government Neither the United States nor the United States Asimic Energy Commission, nor any of their employees, nor any of their controctors, subcontractors, or their employees, makes any swarranty, errees or implied, or assumes any legal tuchship or responsibility for the occurrocy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not intringe privately owned rights

HEAT TRANSFER MODEL FOR COMPOSITE FIRST WALL MATERIALS IN A PULSED HIGH-BETA CONTROLLED THERMONUCLEAR REACTOR

(CTR)

bу

Jefferson W. Tester and C. C. Herrick

ABSTRACT

A computer model has been constructed to predict temperature and time excursions for radial composite walls currently under consideration for pulsed high-beta Z-pinch machines. The effects of incident flux, internal heat distribution functions, thermal properties, and material dimensions have been examined for a Nb/Al₂O₃ composite to establish the feasibility of the model.

I. INTRODUCTION AND SCOPE

In a previous report, a preliminary treatment of first wall heat transfer and chemical stability effects was presented. For homogeneous materials such as Nb, Al₂0₃, BeO, or BN temperature excursions and/or chemical reactivity with molecular or atomic hydrogen became prohibitive, indicating that a composite first wall might present a feasible alternative. Prediction of thermodynamic equilibrium, kinetic, thermal stressing, and radiation damage effects require first-hand knowledge of anticipated temperature-time profiles for composite wall materials intended for use in pulsed, high-beta, controlled thermonuclear reactors (CTR's) where heat fluxes on the order of 1 kW/cm² or more are possible. Furthermore, estimates of maximum operating temperatures for the molten lithium blanket are useful in establishing the effectiveness of proposed CTR's in producing high temperature heat sources for direct or indirect energy production.

II. DESCRIPTION OF THE MODEL

A. Basic Geometry

Due to the large radius of curvature (30 m) and torus diameter (~ 1 m) a rectangular coordinate system was used for the model. Figure 1 illustrates schematically how a Z-pinch prototype might be

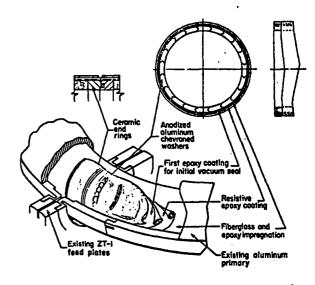


Fig. 1. Schematic of prototype Z-pinch design. 2

designed.² The major feature of interest is the radial arrangement of the composite first wall. In the prototype design the conductor (material 1) is an aluminum washer separated by thin layers of anodized aluminum which can be conceptually thought of as the insulator (material 2). Figures 2A and 2B schematically represent the geometry used in the model. The grid has I2 points in the x-direction and J

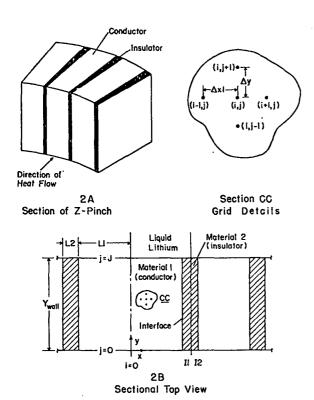
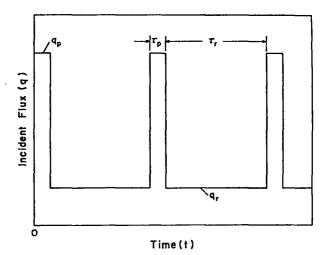


Fig. 2. Geometry employed for finite difference grid. I2 x J points having Δy spacing in the y-direction and $\Delta x1(\Delta x2)$ spacing in the x-direction for materials 1(2).

points in the y-direction with the point at Il on the interface between materials 1 and 2.


A time-dependent heat flux impinges on the inner surface of the composite [i=0, ..., Il, ... I2; j=0], and a liquid metal (lithium)/metal conduction temperature dependent heat transfer resistance exists on the outer surface [i=0, ..., Il, ..., I2; j=J]. The two center lines (-.-) define mirror symmetry planes in each material and can be represented by a zero flux $[-k\frac{\partial T}{\partial x}=0]$ condition.

B. Design Criteria

Heat enters the first wall via several sources, including:

- 1. Bremsstrahlung radiation,
- 2. n-y reactions within the wall, and
- 3. direct neutron deposition energy.

In a preliminary report, Burnett, Ellis, Oliphant, and Ribe³ demonstrated that most of the energy deposited (> 85%) was Bremsstrahlung energy. In our model, the total heat absorbed is divided

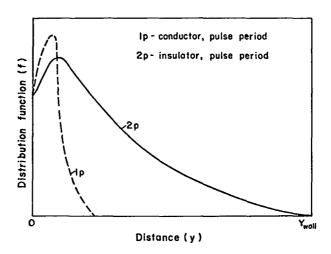


Fig. 3. Incident heat flux q and heat distribution functions f = H(y)/q Δ y expressed as a fraction of the pulse heat flux q_p (arbitrary scales).

into two quantities:

- An incident flux which is deposited at the surface y = 0.
- 2. A distributed heat source function H = f(y) representing the energy absorbed as a function of distance into the wall from the point y = 0 to the extent of the wall y = Ywall.

Consequently, for a two-component composite, there would be four H functions corresponding to each material in the pulse and rest mode. In Fig. 3, we present idealizations of these heat distribution and incident flux functions used in the current approach.

Only distribution (H(y)) curves for the pulse period are shown in Fig. 3, since negligible values for the rest period are anticipated when heat transfer to the wall will be primarily by radiation and convection from the expanding plasma. As a first approximation, one might assume that H(y)/q = 0 during the rest period for both materials, indicating that all of the heat is deposited on the inside surface of the wall. Nevertheless, in implementing the model, the user is free to select any heat distribution function that is appropriate. For example, for our Nb/Al203 composite both rest and pulse H functions are set to zero for Nb, and a finite H used only for the pulse mode in Al₂0₃ (see Ref. 3). In general, the insulator (ceramic) would be expected to have a much wider distribution function than the conductor (metal) as is illustrated in Fig. 3.

The square wave function idealization for q is somewhat of an over-simplification of the actual case which might show an exponential increase and decrease of heat flux during the cycle. However, at this stage, a square wave functionality should be adequate. Actual values for the incident heat flux q may be determined by design limitations of the materials used in the first wall. For example, the magnitude of q can be partially controlled by changing the amount of first wall surface area for a given amount of heat produced during the cycle.

C. Governing Equations and Boundary Conditions

The following partial differential equation (PDE) applicable to unsteady state, two-dimensional heat conduction was used for both materials.

$$\alpha_{i} \left[\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} \right] + \frac{H_{i} (y)}{\rho_{i} C_{p_{i}}} - \frac{\partial T}{\partial t} . \tag{1}$$

i = 1,2 (for both materials).

An ambient temperature (T_B) equal to the bulk lithium temperature is assumed for the initial condition at t = 0. Four boundary conditions are applied to positions specified on Fig. 2B:

 Incident heat flux at the inside surface (see Fig. 3)

at
$$y = 0$$
 (j = 0), all x
$$-ki\left(\frac{\partial T}{\partial y}\right) = q_{1}(t)^{+} \qquad (2)$$

Temperature dependent flux with contact resistance at the outside surface

at
$$y = 0$$
 (j = 0), all x
$$-ki\left(\frac{\partial T}{\partial y}\right) = h \left(T - T_B\right)^{\dagger}$$
(3)

where h is an effective heat transfer coefficient applying to the molten lithium blanket and any solid liners that might be used.

Continuous flux and temperature at the interface

at
$$x = L1/2$$
 (i = I1), all y
 $k1\left(\frac{\partial T}{\partial x}\right) = k2\left(\frac{\partial T}{\partial x}\right)$ (4)

4. Zero flux condition at centerlines of materials 1 and 2 via symmetry

at
$$x = 0$$
: $(i = 0), \left(\frac{\partial T}{\partial x}\right) = 0$ (5)

at
$$x = \frac{(L1 + L2)}{2}$$
 (i = I2) $\left(\frac{\partial T}{\partial x}\right) = 0.(6)$

In solving Eq. (1) to generate temperature profiles as functions of time, a dimensionless temperature u was defined as

$$u \equiv \frac{T-T_B}{T_B} , \qquad (7)$$

and finite difference equations were written to approximate the PDE. Appendix A contains a tabular presentation of these equations. A detailed description of the finite difference formulation of the boundary conditions is presented in Appendix B. An Alternating Direction Implicit (ADI) scheme was used to solve the system of equations (see Appendix C). The advantages of an implicit rather than explicit scheme should be useful in conserving machine time and in adding to the flexibility of the code.

In the expression ki or q_i the i = 1 or 2 depending on what material it is.

The tridiagonal algorithm and a complete listing of the Madcap V code are presented in Appendixes D and E.

III. LIMITATIONS AND APPLICATIONS OF THE MODEL

Several features of the model have been kept general; for example, various wall sizes can be used with any two materials. If the repeating thicknesses in the x-direction, Ll and L2, become much smaller than the thickness of the wall in the y-direction Y, the code reverts to a unidirectional (y only) calculation of temperature profiles with area average physical properties used. Any combination of incident heat flux and internal heat generation terms can be used. The outside boundary condition (all x, y= Ywall at j=J) is temperature dependent in order that an effective heat transfer coefficient can be used which combines the resistances of a liquid lithium boundary layer and any metallic and/or ceramic backing material that might be present.

The interface condition (at i=I1) can be specified by either of two procedures (see Appendix B):

1. Criteria of continuous flux at the boundary

$$-k1 \left(\frac{\partial T}{\partial x}\right) = -k2 \left(\frac{\partial T}{\partial x}\right)$$
. (4)

Criteria of continuous flux and an operable PDE at the boundary.

In using the code, large time steps should be avoided since they can cause inaccuracies as well as instabilities because of the pulsed boundary condition and the interface between materials 1 and 2. At least 10 time steps for each pulse comprise the upper limit, i.e., for a 10 ms (10^{-3} s) pulse Δt would be 1 ms. Since the rest period is usually much longer than the pulse period, e.g., 90 ms compared to 10 ms, a larger Δt could be used during this period if conserving computation time became important.

IV. PRELIMINARY RESULTS AND DISCUSSION

The main purpose of this section is to discuss preliminary results which demonstrate the feasibility of applying our heat transfer model to CTR applications.

A. Choice of a test system

A niobium (Nb) - alumina (Al₂O₃) radial composite was selected since it is currently under consideration as a first wall composite material, and because its thermal properties are representative of typical metallic conductors and ceramic insulators that might be considered at a later time. Present Z-pinch design estimates will require an insulating capacity between 1 to 3 kV/cm which will control the relative dimensions of insulator (2) to conductor (1). Although actual sizes have not been specified for a real operating system, a prototype experimental design utilizing anodized aluminium washers (0.0254 cm thick Al with approximately 0.0005 cm of anodized coating) is currently under construction by Phillips and associates. 2 A large scale-up from these dimensions is anticipated for future experiments and consequently a test geometry with about 1 cm width of conductor to 0.1 cm of insulator with an overall wall thickness of 1 cm was selected. Total heat flux loads on the first wall during the pulse period are expected to be the range of 0.1 to 10 kW/cm² consisting mainly of Bremsstrahlung and n-y energy. Niobium, due to its high mass number, will absorb most of the plasma energy within a very thin layer (~0.01mm). Alumina, on the other hand, will absorb the energy continuously with a distribution function given in Fig. 4. As suggested by Burnett et al. an average electron temperature of 25 keV was selected to define the heat generation function. During the rest period, approximately 10% of the instantaneous pulse heat flux will impinge on the inside surface of the wall with no distribution within the wall (H(y) = 0). As a first approximation a constant value was used during the entire rest period (see Fig. 3). In order to meet the Lawson criterion a 10% duty cycle corresponding to a 0.01 s pulse and a 0.09 s rest period has been employed for the test case. A range of outside surface (y = Ywall, Fig. 2) heat transfer coefficients from h = 0.14 to 14 cal/cm² s K were utilized to approximate the thermal resistance anticipated from a niobium (Nb)/ boron nitride (BN) protective liner and a molten lithium boundary layer. Average values for material properties were selected at approximately 800°C, and these are tabulated in Table I for several first wall material possibilities.

A summary of the system parameters investigated is presented in Table II. Again, we would like to emphasize that our purpose at this stage was to

TABLE I
MATERIAL PROPERTIES (*)

Conductors (1) Niobium, Nb Molybdenum, Mo	k ca1/(cm ² s K/cm) 0.158 0.350	g/cm ³ 8.57 10.20	Cp ca1/gK 0.0736 0.0630	$\frac{\alpha = k/\rho C_p}{cm^2/s}$ 0.250 0.545
Insulators (2) Alumina, α-Al ₂ 0 ₃	0.034	3.96	0.198	0.0434
Beryllia, BeO k-thermal conductivity	0.835 ρ-density	3.00 C _p -heat cap	0.50 pacity α-ther	0.0557

- (*) Data based on information taken at ~800°C from
 - 1. "Perry's Handbook for Chemical Engineers," 4th Ed., McGraw-Hill N.Y., (1965).
 - "Handbook of Chemistry and Physics," Chemical Rubber Publ., N.Y., 41st Ed. (1962).
 - "Thermal Physical Properties of Matter," Vols. 1-2 Eds. Touloukian, Powell, Ho, and Klemens, Plenum Publ. Corp., N.Y. (1970).

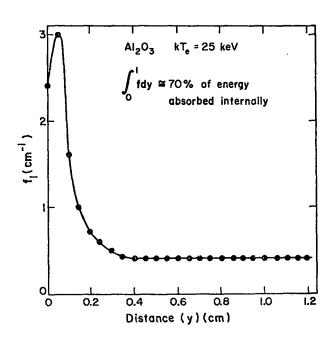


Fig. 4. Heat distribution function for ${\rm Al}_2{\rm O}_3$ for pulse period (original data Ref 3 kTe-electron temperature of the plasma).

demonstrate calculational feasibility rather than propose a definitive design.

B. Temperature-Time Excursions for a Nb/Al₂O₃ Composite

Table III (A and B) provides a complete summary of the test runs made. The effects of heat flux, heat transfer coefficient, time step, and grid size parameters were all examined.

A typical temperature-time excursion for seven consecutive pulses (for complete parameter specification see Table III, Run 1) is presented in Fig. 5. Several features of the graph are apparent.

- There are no inherent instabilities in the ADI solution.
- 2. The outside surface temperatures, $\Delta T(0,J)$, $\Delta T(I1,J)$, and $\Delta T(I2,J)$, do not increase due to the large value of h = 14 cal/cm² s K used.
- 3. The interface $\Delta T(I1,0)$ is between the maximum excursion in the Al_2O_3 layer $(\Delta T(0,0))$ and the minimum in Nb layer $(\Delta T(0,0))$.
- 4. The inside surface temperature for either material Nb or Al₂O₃ does not relax to what its initial level was before the pulse, hence there is a continuous increase in ΔT which should approach steady-state conditions after a temperature profile of sufficient magnitude has been established

TABLE II

SYSTEM PARAMETERS INVESTIGATED

1. Duty cycle

$$\tau_p = .01 s$$

$$\tau_r = .09 \text{ s}$$

2. Incident heat flux

$$q_1$$
 (pulse period) 0.1-1.0 kw/cm² (~23.82 - 238.2 cal/cm² s) q_1 (rest period) .01-.1 kw/cm² (~2.382 - 23.82 cal/cm² s)

3. Heat distribution/generation function H(y)

separate functions for insulator (2) and conductor (1) during pulse and rest mode utilized

- 4. Heat transfer coefficient h = .14-14 cal/cm² s K outside surface-combined resistance of backing material and liquid lithium
- 5. Bulk temperature $T_R = 600$ °C^a
- 6. geometrical parameters

wall thickness Ywall = 1 cm

conductor thickness L1 = .01-1 cm

Composite

insulator thickness L2 = .0005 - .1 cm

7. Equation solution parameters

grid sizes

 $\Delta \times 1 = .0005 - .05 \text{ cm}$

 $\Delta x^2 = .0005 - .005$ cm

 $\Delta y = .01 - .02$ cm

time steps

 $\Delta t = 10 - 2000 \,\mu s$ (10⁻⁶ s)

to conduct away the total energy deposited during the pulse and rest periods.

A series of temperature profiles are presented in Fig. 6 for the conditions of Run 5 (Table III). In this case, heat was deposited on the inside surface of the Nb layer during both pulse and rest periods and on the inside surface of the $\mathrm{Al}_2\mathrm{O}_3$ layer during the rest period. The heat distribution function given in Fig. 4 was used for $\mathrm{Al}_2\mathrm{O}_3$ during the pulse period. One can see a marked reduction in the temperature excursion of the $\mathrm{Al}_2\mathrm{O}_3$ layer caused by distributing the heat. All three profiles, at the center lines of materials 1 and 2 and the interface, are uniform in shape and magnitude for the

three times given. This effect is also illustrated by comparing Fig. 7b with Fig. 8 which have identical conditions, except in Fig. 8 no heat distribution was used (H(y))'s = 0).

The magnitude of the outside surface effective heat transfer coefficient has a significant effect on predicted temperature-time excursions (see Figs. 7a and 7b). With $h=0.14~{\rm cal/cm}^2~{\rm s}$ K to approximate anticipated thermal resistances, the outside wall temperature has increased by > 60K over the bulk lithium value in 30 pulses. This ΔT will, of course, continue to increase until steady-state conditions are reached.

a Really arbitrary, material limitations will set the upper bound.

TABLE III

TABLE III (SECTION A)

SUMMARY OF RESULTS FOR COMPOSITE/PULSED CASE[®]

				Geometry		(Grid Size		Time	Heat Transfer Coeff. Outside	Tot Inciden	
Run	Conductor (1)	Insulator (2)	Ll	L2	Ywall		Δx2	Δу	Step _ <u>\D</u> t	Surface h	qi	q _i
			cm.	c u	сш	cm	cm	cm	þя	cal/cm ² s K	Rest Period kW/cm ²	Pulse Period kW/cm ²
	Niobium	Alumina										
1	Nb	A1 ₂ 0 ₃	1.0	0.1	1.0	0.05	0.005	0.02	1000	14	0.01	1.0
2	Nb	A1,03	0.01	0.0005	1.0	0.0005	0.00005	0.02	1000	14	0.01	1.0
3	Nb	A1,03	1.0	0.1	1.0	0.05	0.005	0.02	1000	14	0.01	1.0
4	Nb	A1203	1.0	0.1	1.0	0.05	0.005	0.02	1000	14	0.1	1.0
5+9	Nb	A1 ₂ 0 ₃	1.0	0.1	1.0	0.05	0.005	0.02	1000	0.14	0.1	1.0
6	NЬ	A1203	1.0	0.1	1.0	0.05	0.005	0.02	100	0.14	0.1	1.0
7	NЬ	A1203	1.0	0.1	1.0	0.025	0.0025	0.01	200	0.14	0.1	1.0
8+10	Nb	A1203	1.0	0.1	1.0	0.05	0.005	0.02	1000	0.14	0.1	1.0
	Molybdenum Mo	Beryllia BeO	1.0	0.1	1.0	0.05	0.005	0.02	1000	0.14	0.1	1.0

TABLE III (SECTION B)
SUMMARY OF RESULTS FOR COMPOSITE/PULSED CASE[®]

					Steady S	tate Temper	ature Excu	rsions ΔT(x,y,	t=∞) ^b
	Heat	Distribution Fu	nctions Utilize	d ^c		face (Plasm		Surface	Comments
					ΔT(x=0,	ΔT(x=11,	ΔT (x=12,	Average \[\Delta T (< x > , \] y=Ywall.t= \[\Delta)	Commence
Run	Conductor (1) Pulse Period	Conductor (1) Rest Period	Insulator (2) Pulse Period	Insulator (2) Rest Period	у-0, с у К	,-0,2, K	,-0,t,	K	
	Hp1 (y)	Hrl(y)	Hp2(y)	Hp2(y)					
1	0	0	٥	0	370	460	490	~ 0	
2	0	0	0	0	260	260	260	~ 0	unidirec-
3	0	0	0	0	250	320	380	~ 0	tional (y only)
4	0	0	Hp2(y)	0	360	351	348	~ 0	G 52,7
5+9	0	0	Hp2(y)	0	650	640	640	300	
6	0	0	Hp2(y)	0	650	640	640	300 ^d	
7	0	0	Hp2(y)	0	650	640	640	300 ^d	
8+10	0	0	0	0	600	695	810	300	
	0	0	Hp2(y)	0					

^{*}Refer to nomenclature section (Appendix F) and Figs. 1-2.

bExtrapolated to mtime.

CRefer to section IIC and Figs. 3-4.

 $^{^{\}mathbf{d}}$ Equivalent to run 5.

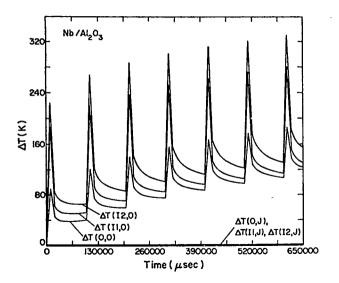


Fig. 5. Temperature-time excursions for a Nb (lcm)/Al₂O₃ (0.1 cm) composite at six locations. For parameter specifications see Table III, Run 1, and see Fig. 2 for geometrical grid locations.

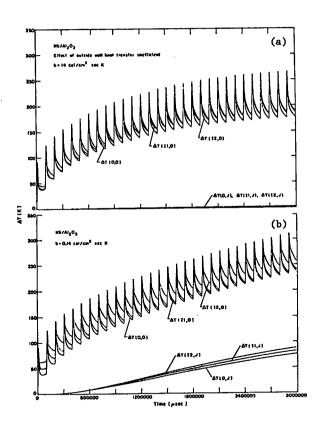


Fig. 7. Effect of outside wall heat transfer coefficient h on temperature-time excursion for a Nb/Al₂O₃ composite. For parameter specifications see Table III, Runs 4(7a), 5(7b).

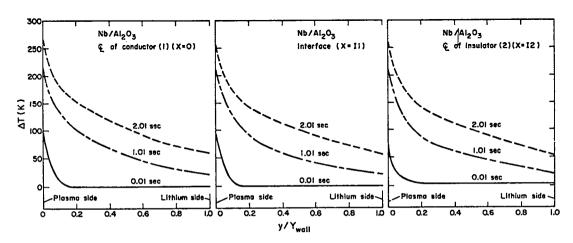


Fig. 6. Approximate temperature profiles T = f(y) at various times (2.01 s - 21 pulses, 1.01 s - 11 pulses, 0.01 s - 1 pulse). For parameter specifications see Table III, Run 5 and see Fig. 7b for temperature-time excursion.

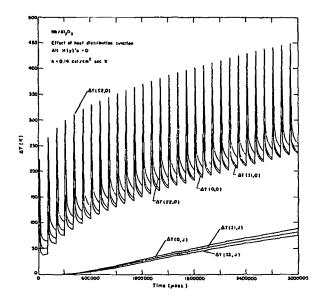


Fig. 8 Effect of heat distribution function on the temperature-time excursion of an Nb/Al₂O₃ composite. For parameter specifications see Table III, Run 8.

C. Approach to Steady State

As steady state is reached, the temperature profile at any position along the composite will stabilize except in the vicinity of the inside surface where it is continuously pulsed. This behavior was observed in a preliminary study of heat transfer effects. Because the thermal time constant $\tau_{\rm H} = {\rm Y_{\rm L}}^2/\alpha$ is large compared to a cycle time of 0.1 s, e.g., for a 1-cm wall τ_w (Al₂0₃) \cong 23 s and τ..(Nb) ≅ 6 s and because an additional thermal resistance is imposed by the low h = .14 cal/cm2 s K on the outside surface, successive pulsing will cause AT to increase at any point in the wall. A crude estimate of the maximum AT anticipated is given by superimposing both the ΔT_a equivalent to steady-state heat transfer through the wall and the ΔT_h caused by thermal contact resistance at the outside surface onto the ΔT_{p} caused by the pulse itself. For instance, at the center line of the conductor (0,0), an estimate of $\Delta T_{0,0}^{\infty}$ at steady state is given by,

$$\Delta T_{0,0}^{\infty} \cong \Delta T_a + \Delta T_h + \Delta T_p$$
,

where
$$\Delta T_a = \frac{\text{(net heat transferred/time)}}{\text{kl/Y}_w}$$

$$=\frac{(q_p \tau_p + q_r \tau_r) Y_w}{(\tau_p + \tau_r) kL}$$

 ΔT_p = temperature rise after the 1st pulse at (0.0)

$$\Delta T_{h} = \frac{\text{(net heat transferred/time)}}{h}$$

$$=\frac{(q_p \tau_p + q_r \tau_r)}{(\tau_p + \tau_r)h} .$$

For the case of a 1 kW/cm 2 (238.2 cal/s cm 2) pulse and a .1 kW/cm 2 (23.82 cal/s cm 2) heat dump,

$$\Delta T_a = 287 \text{ K}$$

$$\Delta T_p \cong 90 \text{ K}$$

$$\Delta T_h = 333 \text{ K}$$

Therefore,

$$\Delta T_{0,0}^{\infty} \stackrel{\sim}{=} 710 \text{ K}$$
.

From Table III, one can see that excursions of 650 K are typical for these conditions (Runs 5,6, and 7).

D. Prototype Geometry - Effective Undirectional Heat Transport

Run 2 attempted to simulate conditions similar to those expected in the prototype Z-pinch reactor (Fig. 1). The widths of Nb and Al_2O_3 in the x-direction, .01 cm for Nb and .0005 cm for Al_2O_3 , are very small compared to the thickness of the wall in the y-direction, 1 cm. Consequently, conduction in the x-direction is fast and can be neglected relative to that in the y-direction and the code performs a unidirectional ADI solution to the PDE using area average properties. In Fig. 9, temperature—time excursions are presented for the case with h = $14 cal/cm^2$ s K.

E. Convergence and Stability of the Method - Effect of Grid Size and Time Step

Convergence of the ADI technique was checked with Runs 6 and 7 by reducing the grid sizes, $\Delta x1$ from .05 to .025 cm and $\Delta x2$ from .005 to .0025 cm and Δy from .02 to .01 cm, and time step Δt from

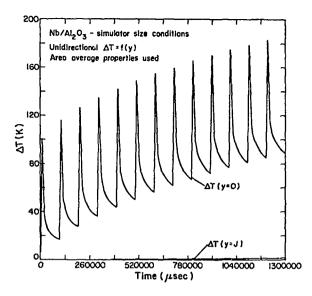


Fig. 9 Temperature-time excursion for a Nb/Al₂O₃ composite having similar dimensions to the prototype Z-pinch (Fig. 1). For parameter specifications see Table III, Run 2.

1000 to 200 μ s. Temperature profiles varied by no more than 5% at equivalent grid locations. Furthermore, when the composite was reduced to a single component, e.g., Nb, and a two-dimensional ADI solution was run, x-direction variation of ΔT was less than 0.1% and the temperature-time excursions were consistent with previous data accumulated for unidirectional heat flow using an explicit method. 1

Although the ADI technique, as applied to rectangular two-dimensional problems, should be unconditionally stable regardless of the choices of Δt , Δx , and Δy , our specific application of the ADI technique did result in instabilities as mentioned in Sec. III. The pulsed heat flux and interface condition were probably responsible for this since when they were removed from the problem by using a single component and continuous flux boundary, Δt

could be selected independently of Δx and Δy . Certain improvements to the stability of the ADI procedure are obtained if the grid system is converted to a half-interval system with the interface containing $\Delta x1/2$ and $\Delta x2/2$ parts of materials 1 and 2. F. Concluding Remarks

The computer model for heat flow in radial composite CTR first wall materials should provide a useful tool for establishing temperature excursions and profiles which are necessary in evaluating the mechanical and chemical behavior of any proposed materials.

V. RECOMMENDATIONS

- Additional materials should be examined, including, ZrO₂, BeO, and other insulating oxides as well as Ta, Zr, Mo, and other conducting metals.
- Having established anticipated temperaturetime excursions, other properties such as chemical stability, radiation damage including void and helium bubble growth, thermal stressing, and other aspects of materials compatability should be considered. 1,5,6
- 3. By selecting a range of thermal properties, dimensions, incident fluxes, and heat distribution functions, generalized thermal history charts applicable to pulsed-highbeta machines could easily be generated for use in preliminary design work.

ACHNOWLEDGEMENTS

The authors would like to acknowledge the assistance given by J. A. Phillips of CTR-3; R. L. Bivins, M. Stein, and R. D. Richtymer of LASL, and D. G. Wilson of ORNL.

APPENDIX A

FINITE DIFFERENCE EQUATION FORMALISM

Tables A-1 and A-2 list the difference equations utilized by the code. Both sequences of sweeping x first and then y, and vice versa, are presented. In addition, two different equations applying at the interface between materials 1 and 2 are included. A complete description of the nomenclature employed is given in Appendix F and a partial one below for Tables A-1 and A-2. Tridiagonal matrix coefficients are easily determined by recalling that \underline{a} would be the coefficient of the i-1 term, \underline{b} the i term, and \underline{c} the i + 1 term and \underline{d} the remaining terms. (See Appendix D.)

Nomenclature for Tables A-1 and A-2 A1 = α I Δ t/ $(\Delta$ x1)² - material 1 A2 = α 2 Δ t/ $(\Delta$ x2)² - material 2

B1 = $\alpha 1\Delta t/(\Delta y)^2$ - material 1

B2 = $\alpha l \Delta t / (\Delta y)^2$ - material 2

C1 = $H1/\rho 1C_p 1T_B$ = heat distribution function (f(y)) for material 1

 $C2 = H2/\rho 2C_p 2T_B = \text{heat distribution function (g(y))}$ for material 2

 $E = \frac{k2\Delta x^2}{kl\Delta x^2}$

 $F = [k2\Delta x1/kL\Delta x2]$

 $G = \frac{k2\Delta \times 2\alpha 1}{k1\Delta \times 1\alpha 2}$

$$\Phi = \left[C1 + \left(\frac{k2 \Delta \times 2\alpha 1}{k1 \Delta \times 1\alpha 2} \right) C2 \right] / \left[1 + \frac{k2 \Delta \times 2\alpha 1}{k1 \Delta \times 1\alpha 2} \right]$$

$$\xi = \alpha 1 \left[1 + \frac{k2 \Delta \times 2}{k1 \Delta \times 1} \right] / \left[1 + \frac{k2 \Delta \times 2\alpha 1}{k1 \Delta \times 1\alpha 2} \right]$$

$$\delta_{yy}^{u} = u_{I1, j-1}^{-2u} - u_{I1, j}^{+u} + u_{I1, j+1}^{+u}$$

APPENDIX B

FINITE DIFFERENCE EQUATIONS APPLYING AS BOUNDARY CONDITIONS AT THE INTERFACE BETWEEN MATERIALS 1 AND 2

I. CONTINUOUS FLUX AND TEMPERATURE AT THE INTERFACE

Both temperature and heat flux must be continuous at an interface assumed to be in good thermal contact. Using the nomenclature adopted in this report, this is equivalent to saying that

and

(2)
$$k1 \frac{(u_{11,j}^{*} - u_{11-1,j}^{*})}{\Delta x1} =$$

$$k2 \frac{(u_{11+1,j}^{*} - u_{11,j}^{*})}{\Delta x2} . \qquad (8)$$

Equation (8) can be used directly in the tridiagonal matrix since only the terms $u_{I1-1,j}^{\star}$, $u_{I1,j}^{\star}$, $u_{I1+1,j}^{\star}$ are involved. Therefore, by rearranging Eq. (8), the coefficients a_{I1} , b_{I1} , c_{I1} , and d_{I1} can be specified as:

TABLE A-1
DIFFERENCE EQUATIONS FOR CCMPOSITE (X-FIRST)

Difference Equation	Condition	Range	Comments
begin x-sweep			
1. u* _{1,j} = u* _{0,j}	left boundary		Symmetry (no flux)
2. $u_{i,j}^{-u}u_{i,j} = \frac{A!}{2}(u_{i+1,j}^{-2u}u_{i,j}^{+} + u_{i,j-1}^{*})$	material 1	j = 1,,J-1 i = 1,,I1-1	PDE, implicit x
+ $\Delta t c 1 + \frac{B1}{2} (u_{i,j+1} - 2u_{i,j} + u_{i,j-1})$			
3a. $(u^{*}_{11,j}^{-u^{*}}_{11-1,j}^{-1}_{\Delta x1}^{-1} = (u^{*}_{11+1,j}^{-1}_{11,j}^{-1}_{\Delta x2}^{-1}_{11,j}^{-1}_{\Delta x2}^{-1}_{\Delta x2}^{-1}_$	Interface	j = 1,,J-1	a. Cont. flux
3b. $u^*_{I1,j} = u_{I1,j} + \phi \Delta t + \varpi u_{yy} \frac{\Delta t}{2\Delta y^2}$	Interface	j = 1,,J-1 i = Il	b. Cont. flux and PDE apply
$+ \underbrace{\text{A1 } \underbrace{(u^*_{11-1}, \underbrace{1}_{1} + (1+F) \ u^*_{11}, \underbrace{1}_{1} + (F) \ u^*_{11+1}, \underbrace{1})}_{2(1+G)}$			
4. $(u^*_{i,j}^-u_{i,j}^-) = \frac{A^2}{2} (u^*_{i+1,j}^- 2u^*_{i,j}^+ u^*_{i-1,j}^-)$	material 2	j = 1,,J-1 i = 11+1,,12-1	PDB, implicit x
+ $\Delta tC2$ + $\frac{B2}{2}$ ($u_{i,j+1}$ - $2u_{i,j}$ + $u_{i,j-1}$)			
5. u*12,j = u*12-1,j	right boundary material 2	j = 1,,J-1 i = 12,12-1	symmetry (no flux)
begin y-sweep (no heat source term)			
6. $km(u^{\pm \pm}i, 1 - u^{\pm \pm}i, 0) = \Delta yq^{\pm}m/T_B$	material 1 or 2 m = 1,2	i = 1,,Il-1, Il + 1,I2-1 j = 0,1	inside boundary (incident fixed heat flux) (q° = qr rest time) (q° = qp pulse time)
7a. $u^{**}_{i,j} - u^{*}_{i,j} = \frac{Am}{2} (u^{*}_{i+1,j} - 2u^{*}_{i,j})$	m = 1,2	i = 1,,II-1, II + 1,,I2-1 j = 1,,J	materials 1 or 2 ex- cluding interface and right & left boundaries
$+ u^*_{1-1,j}) + \frac{Bm}{2} (u^{**}_{1,j+1} - 2u^{**}_{1,j})$			
+ u** _{1,3-1})			
7b. $u^{**}_{11,j} = u^{*}_{11,j} + \frac{A!}{(1+G)}(u^{*}_{11-1,j})$	interface	i = I1 j = 1,,J	PDE implicit y applies at interface if Eq. (3b) is used
- (1+F) u _{I1,j} + (F) u _{I1+1,j})			
$+\frac{\xi \Delta t}{2\Delta y^{2}} (u^{**}_{11,j+1} - 2u^{**}_{11,j} + u^{**}_{11,j-1})$			
8. $-\text{km} \left(u^{**}_{1,J} - u^{**}_{1,J-1}\right) = \Delta yh \left(u^{**}_{1,J}\right)$	m = 1,2	i = 1,,II-1, II+1,,I2-1 j = J-1,J	outside boundary (temp. dependent flow with liq. metal heat transfer coeff.)

TABLE A-2
DIFFERENCE EQUATIONS FOR COMPOSITE (Y-FIRST)

	Difference equation	Conditions	Range	Comments
beg	in y-sweep			
	$km (u^*_{1,1} - u^*_{1,0}) = \Delta y q_m / T_B$	materials 1 or 2 m=1,2	i=1,I1-1, I1+1, ,I2-1 j=1,0	inside boundary (incident fixed heat flux) (q° =qr for rest time) (q° =qp for pulse period)
2a.	$u^*_{i,j} = u_{i,j} = \frac{Am}{2} (u_{i+1,j} - 2u_{i,j} + u_{i-1,j})$ + $\Delta t Cm + \frac{Bm}{2} (u^*_{i,j+1} - 2u^*_{i,j} + u^*_{i,j-1})$	m = 1,2	i=1,,I1-1,I1+1, ,I2-1 j=1,,J	material 1 or 2 (excluding interface and left boundaries)
2b.	$u^*_{I1,j} = u_{I1,j} + \frac{C1 + GC2}{(1+G)} \Delta \epsilon$ $+ \frac{A1}{(1+G)} (u_{I1-1,j} - (1+F)u_{I1,j} + (F)u_{I1+1,j})$	interface	i - I1	applies at interface if Eq. (6b) is used
	$+\frac{5\Delta t}{2\Delta t^2} (u^*_{11,j-1} - 2u^*_{11,j} + u^*_{11,j+1})$			
3.	$km (u^*_{i,J}^{-u^*_{i,J-1}}) = \Delta yh(u^*_{i,J})$	n = 1,2	i = 1,II-1, II+1 ,I2-1 j = J-1,J	outside boundary (temperature dependent flux with liquid metal heat transfer coeff.)
begi	In x-sweep (no heat source term)			
4.	u**1,j = u**0,j	material 1 left boundary	j = 1,, J-1 i = 0,1	symmetry (no flux)
	$u^{**}_{i,j} - u^{*}_{i,j} = \frac{A!}{2} (u^{**}_{i+1,j} - 2u^{**}_{i,j})$	material 1	j = 1,,J-1 i = 1,,II-1	PDE, implicit x
	$+ u^*_{1-1,j}) + \frac{B1}{2} (u^*_{1,j+1} - 2u^*_{1,j} + u^*_{1,j-1})$			
6a.	$(u^{**}_{11,j} - u^{**}_{11-1,j})^{\frac{k!}{\Delta \times 1}} = (u^{**}_{11+1,j})^{\frac{k!}{\Delta \times 1}}$	interface	j = 1,,J-1 i = 11	a. continuous flux
	$-u^{\pm i}_{11,j}\frac{k_2}{\lambda x^2}$			
6ъ.	$u^{**}_{11,j} = u^*_{11,j} + \frac{\xi \delta u^*_{yy} \Delta t}{2 \Delta y^2} + \frac{A1}{2 (1+C)}$		j=1,,J-1 i = 11	b. continuous flux and PDE
	(u** _{I1-1,j} + (1+F) u** _{I1,j} + (F) u** _{I1+1,j})			
	$u^{**}i,j - u^{*}i,j = \frac{A^{2}}{2}(u^{**}i+1,j - 2u^{**}i,j$	material 2	j = 1,,J-1 i = 11+1,12-1	PDE, implicit x
	$+ u^{**}_{i-1,j}) + \frac{82}{2} (u^{*}_{i,j+1} - 2u^{*}_{i,j} + u^{*}_{i,j-1})$			
8.	u**I2,j = u**I2~1,j	material 2 right boundary	j = 1,,J-1 i = 12-1,12	symmetry (no flux)

$$a_{11} = -1$$

$$b_{11} = 1 + \frac{k2\Delta x1}{k1\Delta x2}$$

$$c_{11} = -\frac{k2\Delta x1}{k1\Delta x2}$$

$$d_{11} = 0 . (9)$$

The stability and convergence of the ADI procedure appeared to depend on the choice of $\Delta x l$ and $\Delta x 2$ for a given kl and k2. If values of $\Delta x 2$ were selected such that

$$\frac{k1}{\Delta \times 1} \cong \frac{k2}{\Delta \times 2} \quad , \tag{10}$$

the ADI technique was convergent and stable. Consequently, an alternate form of the interface condition was developed to keep the PDE itself continuous at the interface.

CONTINUOUS FLUX AND TEMPERATURE WITH MODIFIED PDE AT THE INTERFACE

By utilizing the technique suggested by Carnahan, Luther, and Wilkes, 7 one can develop appropriate finite difference equations for the boundary between material 1 and 2 for our case. Following the conventions of the model, the dimensionless temperature at position II-1 in material 1 can be approximated by a Taylor expansion as

$$u_{II-1,j} \cong u_{I1,j} - \Delta x 1 \left(\frac{\partial u}{\partial x}\right)_{II} - + \frac{(\Delta x 1)^2}{2} \left(\frac{\partial^2 u}{\partial x^2}\right)_{II} + \dots$$
(11)

by solving Eq. (11) for $(\partial^2 u/\partial x^2)_{11}^{-}$, one gets

$$\frac{\left(\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}}\right)}{\mathbf{I}\mathbf{1}^{-}} \cong \frac{2}{\left(\Delta \mathbf{x}\mathbf{1}\right)^{2}} \begin{bmatrix} \mathbf{u}_{\mathbf{I}\mathbf{1}-\mathbf{1},\mathbf{j}} & -\mathbf{u}_{\mathbf{I}\mathbf{1},\mathbf{j}} \\ \mathbf{u}_{\mathbf{I}\mathbf{1}-\mathbf{1},\mathbf{j}} & -\mathbf{u}_{\mathbf{I}\mathbf{1},\mathbf{j}} \end{bmatrix} + \Delta \mathbf{x}\mathbf{1} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)_{\mathbf{I}\mathbf{1}^{-}} \end{bmatrix} .$$
(12)

Using the finite difference equation for $(\partial^2 u/\partial y^2)$ and $\partial u/\partial t$

$$(\partial^2 u/\partial y^2) \cong \frac{1}{\Delta y^2} \left[u_{I1,j+1}^2 - 2u_{I1,j}^2 + u_{I1,j-1}^2 \right]$$
 (13)

$$(\partial u/\partial t) \cong \frac{1}{\Delta t} \left[u^*_{II,j} - u_{II,j} \right]$$

$$u^* \text{ at new time } t + \Delta t \qquad . \tag{14}$$

Likewise for material 2, Eqs. (11), (12), (13), and (14) can be rewritten as,

$$u_{I1+1,j} \simeq u_{I1,j} + \Delta x^{2} \left(\frac{\partial u}{\partial x}\right)_{I1}^{+} + \frac{(\Delta x^{2})^{2}}{2} \left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{I1}^{+}$$
(15)

$$\left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{II^{+}} \cong \frac{2}{(\Delta \times 2)^{2}} \left[^{u}_{II+1,j} - u_{II,j} - \omega_{II,j} - \Delta \times 2\left(\frac{\partial u}{\partial x}\right)_{II^{+}}\right]$$
(16)

$$\left(\frac{\partial^2 u}{\partial y^2}\right) \simeq \frac{1}{\Delta y^2} \left[u_{\text{II,j+1}} - 2u_{\text{II,j}} + u_{\text{II,j-1}}\right]$$
 (17)

$$\left(\frac{\partial u}{\partial t}\right) = \frac{1}{\Delta t} \left(u^*_{II,j} - u_{II,j}\right)$$
 (18)

By substituting into the differential equation,

$$\alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + c = \frac{\partial u}{\partial t}$$
,

one can develop an expression for $\partial u/\partial t$ at the interface. For medium 1, using Eqs. (12), (13), and (14)

$$\alpha 1 \left[\frac{2}{(\Delta \times 1)^{2}} \left(u_{11-1,j} - u_{11,j} + \Delta \times 1 \left(\frac{\partial u}{\partial \times} \right)_{11} \right) + \frac{1}{\Delta y^{2}} \left(u_{11,j+1} - 2u_{11,j} + u_{11,j-1} \right) \right] + C1$$

$$= \left(u_{11,j}^{*} - u_{11,j} \right) / \Delta t . \tag{19}$$

Solving for $(\partial u/\partial x)_{11}^-$, by defining

$$\delta u_{yy} = u_{I1, j-1} - 2u_{I1, j} + u_{I1, j+1}$$

Eq. (19) becomes

$$\Delta x 1 \left(\frac{\partial u}{\partial x} \right)_{II}^{-} = \frac{(\Delta x 1)^{2}}{2\alpha 1 \Delta t} \left(u^{*}_{II,j} - u_{II,j} \right)$$

$$- \frac{(\Delta x 1)^{2} C1}{2\alpha 1} - \frac{(\Delta x 1)^{2}}{2(\Delta y)^{2}} \delta u_{yy}$$

$$+ u_{II,j}^{-} - u_{II-1,j}^{-} \qquad (20)$$

Similarly for medium 2, using Eqs. (16), (17), and (18)

$$-\Delta x^{2} \left(\frac{\partial u}{\partial x}\right)_{II}^{+} = \frac{(\Delta x^{2})^{2}}{2 \alpha 2 \Delta t} \left(u^{*}_{II,j} - u_{II,j}\right)$$

$$- \frac{(\Delta x^{2})^{2}}{2 \alpha 2} C^{2} - \frac{(\Delta x^{2})^{2}}{2(\Delta y)^{2}} \delta u_{yy}$$

$$+ u_{II,j} - u_{II+1,j} \qquad (21)$$

Applying the interface condition of continuous flux, viz,

$$k1 \left(\frac{\partial u}{\partial x}\right)_{11}^{-} = k2 \left(\frac{\partial u}{\partial x}\right)_{11}^{+} \qquad (22)$$

We can use Eqs. (20), (21), and (22) to eliminate $\left(\frac{\partial u}{\partial x}\right)_{II}^{-}$ and $\left(\frac{\partial u}{\partial x}\right)_{II}^{+}$ by just rearranging Eqs. (20 and (21).

$$kl \left(\frac{\partial u}{\partial x}\right)_{II}^{-} = \frac{kl \Delta xl}{2\alpha l \Delta t} \left(u^{*}_{Il,j} - u_{Il,j}\right)$$

$$- \frac{kl \Delta xlCl}{2\alpha l} - \frac{kl \Delta xl}{2(\Delta y)^{2}} \delta u_{yy}$$

$$+ \frac{kl}{\Delta xl} \left(u_{Il,j} - u_{Il-1,j}\right) \qquad (23)$$

$$k2 \left(\frac{\partial u}{\partial x}\right)_{I1}^{+} = -\frac{k2\Delta x^{2}}{2\alpha 2\Delta t} \left(u^{*}_{I1,j} - u_{I1,j}\right)$$

$$+ \frac{k2\Delta x^{2}C^{2}}{2\alpha 2} + \frac{k2\Delta x^{2}}{2(\Delta y)^{2}} \delta u_{yy}$$

$$-\frac{k^{2}}{\Delta x^{2}} \left(u_{I1,j} - u_{I1+1,j}\right) . \quad (24)$$

Equations (23) and (24) can be used to solve for $\overset{\star}{u}$ II.1

$$\begin{bmatrix} \frac{k1\Delta x1}{2\alpha 1\Delta t} + \frac{k2\Delta x2}{2\alpha 2\Delta t} \end{bmatrix} u^*_{II,j}$$

$$= \begin{bmatrix} \frac{k1\Delta x1}{2\alpha 1\Delta t} + \frac{k2\Delta x2}{2\alpha 2\Delta t} \end{bmatrix} u_{II,j}$$

$$+ \begin{bmatrix} \frac{k1\Delta x1C1}{2\alpha 1} + \frac{k2\Delta x2C2}{2\alpha 2} \end{bmatrix}$$

$$+ \begin{bmatrix} \frac{k1\Delta x1}{2(\Delta y)^2} + \frac{k2\Delta x2}{2(\Delta y)^2} \end{bmatrix} \delta u_{yy}$$

$$- \frac{k1}{\Delta x1} \begin{bmatrix} u_{II,j} - u_{II-1,j} \end{bmatrix}$$

$$- \frac{k2}{\Delta x2} \begin{bmatrix} u_{II,j} - u_{II+1,j} \end{bmatrix} . \tag{25}$$

By simplifying Eq. (25),

$$\mathbf{u}_{\text{II.j}}^{*} = \mathbf{u}_{\text{II.j}} + \Phi \Delta \mathbf{t} + \frac{\xi \Delta \mathbf{t} \delta \mathbf{u}_{yy}}{\Delta y^{2}} + \left[\frac{\mathbf{u}_{\text{II-I,j}} - \mathbf{u}_{\text{II,j}} \left[\frac{1}{k!} + \frac{k2\Delta \times 1}{k!\Delta \times 2} \right] + \mathbf{u}_{\text{II+I,j}} \left[\frac{k2\Delta \times 1}{k!\Delta \times 2} \right]}{\frac{(\Delta \times 1)^{2}}{2\alpha \mathbf{l} \Delta \mathbf{t}} \left[1 + \frac{k2\Delta \times 2}{k!\Delta \times 1} \frac{\alpha \mathbf{l}}{\alpha \mathbf{l}} \right]} \right]$$
(26)

where

$$\Phi = \left[C1 + \frac{k2\Delta x 2 \alpha 1}{kl\Delta x 1 \alpha 2} C2 \right] / \left[1 + \frac{k2\Delta x 2 \alpha 1}{kl\Delta x 1 \alpha 2} \right]$$

$$\xi = \alpha 1 \left[1 + \frac{k2\Delta x 2}{kl\Delta x 1} \right] / \left[1 + \frac{k2\Delta x 2 \alpha 1}{kl\Delta x 1 \alpha 2} \right]$$
(28)

Equation (26) is similar to the explicit difference equation presented by Arpaci.²

For the case of no heat generation, C1 = C2 = 0; $\Delta \times 1 = \Delta \times 2 = \Delta \times$; and only one direction dependence for u, i.e., $\delta u_{vv} = 0$, u^* becomes

with
$$\Phi = \Phi^*, \xi^* = \xi$$
.

(Note that again the heat source Φ^* is put in with full Δt , and $\Delta t/2$ is used for other time intervals.)

To determine the coefficients for the tridiagonal matrix, viz., a_{11} , b_{11} , c_{11} , d_{11} , we define the following quantities.

$$E = \frac{k2\Delta \times 2}{k1\Delta \times 1}; \quad F = \frac{k2\Delta \times 1}{k1\Delta \times 2}; \quad G = \frac{k2\Delta \times 2 \times 1}{k1\Delta \times 1 \times 2} \quad (33)$$

$$u^{*}_{I1,j} = u_{I1,j} + \frac{2\alpha \underline{1}\Delta t}{\Delta x^{2}} \left[u_{I1-1,j} - u_{I1,j} \left(1 + \frac{\underline{k2}}{\underline{k1}} \right) + u_{I1+1,j} \left(\frac{\underline{k2}}{\underline{k1}} \right) \right]$$

$$\left[1 + \frac{\underline{k2\alpha 1}}{\underline{k1\alpha 2}} \right]$$
(29)

By multiplying the numerator and denominator of the second term on the right-hand side of Eq. (29) by k1/k2 and rearranging, one gets,

Note that $\delta u_{yy} = u_{\text{I1,j-1}} - 2u_{\text{I1,j}} + u_{\text{I1,j+1}}$ is defined at the old time t rather than $t + \Delta t$.

$$u^{*}_{I1,j} = u_{I1,j} + \frac{2\alpha 1 \Delta t}{\Delta x^{2}} \quad \frac{\left[u_{I1+1,j} - u_{I1,j}\left(1 + \frac{k1}{k2}\right) + u_{I1-1,j}\left(\frac{k1}{k2}\right)\right]}{\left[\frac{k1}{k2} + \frac{\alpha1}{\alpha2}\right]}, \tag{30}$$

which corresponds to Eq. (7.67) presented by Carnahan et al. 7 on page 463. If both materials are the same, $\alpha 1 = \alpha 2 = \alpha$; k1 = k2 = k and,

* " " " " II, i

$$+\frac{\alpha\Delta t}{\Delta v^2} \left(u_{11+1,j} - 2u_{11,j} + u_{11-1,j}\right)$$
, (31)

which is in standard explicit form for a homogeneous system.

Using implicit formulation in order to implement this algorithm in the current ADI code, one can show that

The first three terms on the right-hand side of Eq. (32) are used to specify \mathbf{d}_{11} , while the fourth term specifies \mathbf{a}_{11} , \mathbf{b}_{11} , and \mathbf{c}_{11} , along with the left-hand side of Eq. (32). Consequently,

$$a_{11} = \frac{-2\alpha 1 \Delta t/2}{(\Delta x 1)^2 (1 + G)}$$
 (34)

$$b_{11} = 1 + \frac{2\alpha 1 \Delta t / 2 (1 + F)}{(\Delta x 1)^2 (1 + G)}$$
(35)

$$c_{I1} = \frac{-2\alpha 1 \Delta t / 2(F)}{(\Delta x 1)^2 (1 + G)}$$
 (36)

$$u_{I1,j}^* = u_{I1,j} + \phi^* \Delta t + \frac{\delta u_{yy} (\Delta t/2) \xi^*}{\Delta y^2}$$

$$+\frac{\alpha 1 \Delta t / 2}{(\Delta \times 1)^{2}} \left[\frac{u^{*}_{11-1,j} - u^{*}_{11,j} \left(1 + \frac{k 2 \Delta \times 1}{k 1 \Delta \times 2}\right) + u^{*}_{11+1,j} \left(\frac{k 2 \Delta \times 1}{k 1 \Delta \times 2}\right)}{\left[1 + \frac{k 2 \Delta \times 2}{k 1 \Delta \times 1} \frac{\alpha 1}{\alpha 2}\right]} \right]$$
(32)

$$d_{II} = u_{II,j} + \frac{\Delta t (CI + GC2)}{(1 + G)} + \frac{\Delta t \alpha I (I + E)}{2(I + G) \Delta y^{2}} \left[u_{II,j-1} - 2u_{II,j} + u_{II,j-1} \right]$$
(37)

(in the Madcap code $\alpha 1 = D1$ and $\alpha 2 = D2$).

In the ADI scheme, we also need an equation to allow us to implicitly calculate $u_{I1,j}$ at the interface when sweeping in the y-direction. Since Eq. (25) is an equivalent form of the PDE applying at i = I1 (interface), it can be rewritten implicit in y and explicit in x. Equation (26) thus can be restructured as

$$u^{*}_{I1,j} = u_{I1,j} + \phi \Delta t + \frac{\xi \Delta t}{2 \Delta y^{2}} \left[u^{*}_{I1,j-1} - 2u^{*}_{I1,j} + u^{*}_{I1,j+1} \right] + \frac{2 \alpha 1 \Delta t / 2}{(\Delta x 1)^{2}} \left[u_{I1-1,j} - u_{I1,j} \left[1 + \frac{k 2 \Delta x 1}{k 1 \Delta x 2} \right] + u_{I1+1,j} \left[\frac{k 2 \Delta x 1}{k 1 \Delta x 2} \right] \right] ,$$

$$\left[1 + \frac{k 2 \Delta x 2}{k 1 \Delta x 1} \frac{\alpha 1}{\alpha 2} \right] ,$$
(38)

which is similar to Eq. (32). Again we can solve for the tridiagonal coefficients using Eq. (33) to define terms.

$$u^{*}_{I1,j} = u_{I1,j} + \frac{\Delta t \left[C1 + GC2\right]}{(1 + G)}$$

$$+ \frac{\Delta t \alpha 1}{(\Delta x 1)^{2} (1 + G)} \left[u_{I1-1,j} - (1 + F) u_{I1,j} + (F) u_{I1+1,j}\right]$$

$$+ \frac{\xi \Delta t}{2\Delta y^{2}} \left[u^{*}_{I1,j-1} - 2u^{*}_{I1,j} + u^{*}_{I1,j+1}\right]$$
(39)

$$\xi = \frac{\alpha 1 (1 + E)}{(1 + G)}$$
 (40)

$$a_{I1} = \frac{E\Delta t}{2\Delta y^2} = -\frac{\alpha 1 (1 + E)\Delta t}{(1 + G)(2\Delta y^2)}$$
(41)

$$b_{II} = 1 + \frac{\xi \Delta t}{\Delta y^2} = 1 + \frac{\alpha 1 (1 + \xi) \Delta t}{(1 + G) \Delta y^2}$$
 (42)

$${}^{c}I1 = -\frac{\xi \Delta t}{2 \Delta v^{2}} = -\frac{\alpha I(1 + E) \Delta t}{(1 + G)(2 \Delta v^{2})}$$
(43)

$$d_{II} = \frac{\Delta t \alpha I}{(\Delta x I)^{2} (1 + G)} \left[u_{II-1,j} - (1 + F) u_{II,j} + (F) u_{II+1,j} \right] + u_{II,j} + \frac{\Delta t (CI + GC2)}{(1 + G)}$$
(44)

APPENDIX C

ALTERNATING DIRECTION IMPLICIT METHOD (ADI)

The implementation of the ADI method as discussed in Appendix A has been considered by numerous authors (7,9,10,11), and consequently only a brief discussion is included here. The ADI technique when applied to a rectangular grid network avoids the step size limitations of an explicit method and also uses a tridiagonal coefficient matrix for rapid calculation of the temperature grid at any time step. The basic concept is to use two difference equations, each applied at half Δt steps.

Each difference equation is implicit in either the x or y direction. For example, solving the two-dimensional elliptic equation

$$\alpha \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right] = \frac{\partial u}{\partial t}$$
 (45)

would involve iterations using difference equations of the following form for an (i,j) grid. The x-sweep [implicit in x] is written as

$$u_{i,j}^*$$
 = value of $u_{i,j}$ at $t + \Delta t/2$ (half time step)
 $u_{i,j}^{**}$ = value of $u_{i,j}$ at $t + \Delta t$ (full time step).

Richtymer and Morton 3 have demonstrated that this form of the ADI method is unconditionally stable regardless of the choice of Δx , Δy , or Δt . Our particular problem has three additional complications:

- (1) A heat source term C is present [Eq. (1)].
- (2) An interface between two materials is present.
- (3) The inside boundary condition is time dependent (pulsed flux).

All of the above can induce instabilities and/or inadequate convergence unless the difference equations applying at the interface and boundaries are properly formulated. (See Appendix B.) Consistency for the difference equations has been demonstrated if the heat source term is introduced at the full time step, i.e., $C\Delta t$ is introduced in either the x

$$\frac{u_{i,j}^{*} - u_{i,j}}{\Delta t/2} = \frac{(u_{i-1,j}^{*} - 2u_{i,j}^{*} + u_{i+1,j}^{*})}{\Delta x^{2}} + \frac{(u_{i,j-1} - 2u_{i,j} + u_{i,j+1})}{\Delta y^{2}},$$
(46)

and the y-sweep [implicit in y] as

$$\frac{u^{**} - u^{*}_{i,j} - u^{*}_{i,j}}{\Delta t/2} = \frac{u^{*}_{i-1,j} - 2u^{*}_{i,j} + u^{*}_{i+1,j}}{\Delta x^{2}} + \frac{(u^{**}_{i,j-1} - 2u^{**}_{i,j} + u^{**}_{i,j+1})}{\Delta y^{2}},$$
(47)

where

$$u_{i,j}$$
 = value of $u_{i,j}$ at time t

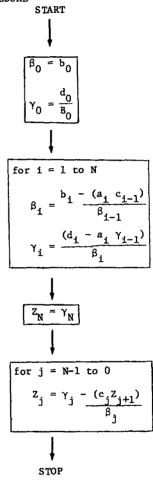
or y sweep and not at both half-time steps. Systematic errors due to this procedure were eliminated by altering the sweeping sequence to xyyxxyyx

APPENDIX D

FORMULATION OF THE TRIDIAGONAL ALGORITHM

The ADI technique inherently generates equations for each grid point involving 3 adjacent terms in the u matrix.

or


$$u_{i,j-1}, u_{i,j}, u_{i,j+1}$$
 (48)

The coefficients a,b,c refer to i-1 (j-1), i(j), and i+1(j+1) terms, respectively, while d refers to the remaining terms. Furthermore the a,b,c coefficients would be for terms involving the new time step either u^* or u^{**} (see Table I). Thus, the tridiagonal matrix can be represented as

$$\begin{bmatrix} b_0 z_0 & c_0 z_1 \\ a_1 z_0 & b_1 z_1 & c_1 z_2 \\ \dots & & & & \\ & a_1 z_{i-1} & b_1 z_1 & c_1 z_{i+1} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

[Z] refers either to u_{i,j}, j fixed, or u_{i,j}, i fixed. The algorithm for solving the tridiagonal matrix is relatively straightforward. The matrix is sweeped from top to bottom and then from bottom to top to solve for [Z]. The following flow sheet depicts this procedure.

TRIDIAGONAL PROCEDURE

APPENDIX E

MADCAP V LISTING

26 Jul 73 0926+b1

Rec O1 Page O1

	act of tel.
01,001	I I I I I I I I I I I I I I I I I I I
01,002	*ALTERNATING DIRECTION IMPLICIT METHOD USED*
01,003	"Pulsed Case"
01,004	"Isotropic and homogeneous properties assumed for each material"
01.005	"Modified Gode with continous interface condition"
01,006	"Variable Specification"
01,007	"T = temperature, 00"
01,008	FTB = bulk lithium temperature, OC=
01,009	*Gp = heat capacity, cal/goc*
01,00a	*p = density, g/cm ³ *
01,005	Fh = heat transfer coefficient, cal/cm ² sec ^o C*
01,000	*k = thermal conductivity, cal/cm sec ⁰ C*
01,004	*D = thermal diffusivity = K/PC _p , cm ² /sec*
01,00e	"Tp = burn time for pulse, Hicro-sec"
200,10	"Ir = test time, Ficro-sec"
01,010	baxi = x-step size in Haterial i*
01,011	"Ax2 = x-stop size in Haterial 2"
01,012	"Ay = y-step size"
01,013	"At m step size for time"
01,01%	PTime = actual time, sec"
01,015	*Tprint = interval between prints giero-sec*
01,016	"Y = Wall thickness, cm"
01.017	"L1 = size of Material 1 element, cm"
01,018	"L2 = size of Material 2 element, cm"
01,019	"sub or postecripts 1 and 2 refer to two different Materials"
01.014	sub or postscript 3 regers to average value at interface*

```
26 Jul 73 0926+15
```

Rec O1 Page 02

01.016	
01,01c	"D(d ² u/dx ² +d ² u/dy ²)+C(y) = du/de"
01,010	"Dimensionless parameters"
01,01e	"u = (T-T _B)/T _B "
210,10	"A = Dat/ax2"
01,020	*B = Dat/ay2.
01,021	"CAL = Bat/pcp"
01.022	"QAY/R = incident heat flux"
01,023	"where: "
01,024	"Postscripts 1 and 2 refer to two different materials"
01,025	"postscripts r and p refer to rest and burn periods"
01,026	*For example,*
01,027	" H is the internal heat generation term, it can take on"
01,028	"values: Hr1(y), Hp1(y), hr2(y), Hp2(y) =
01,029	"Likewise for Q: Qr1,Qp1,Qr2,Qp2"
01,024	"u" w dimensionless temperature at 1/2 time step"
01,02b	"u** = dimensionless temperature at complete time step"

```
26 Jul 73 0926+18
```

Rec 02 Page 01

```
1 1 1
                  02.001
                  *sense 2 - on for print out at each*
. 02,002
                  "sense 3 - on set generation terms to sero"
 02,003
 02,001
                  "sense & - on to set up plots"
                  "sense 5 - on to terminate the iteration"
 02,005
                  "sense 6 - on to terminate iteration and initial plotting"
 02.006
                  "sense 7 - on ask for new print interval"
 02,007
                  *sense 8 - on to use old interface condition at It*
 02,008
                            -k1(du/dx) = -k2(du/dx) in finite difference form
 02,009
                       off to use modified inverface condition at I1"
 02,004
                            Continuous flux and PDE apply*
 02.00b
                  "If cont, flux and PDE are used at the interface then the"
 02.00c
                  "interface is included in the y sweep"
 02.004
                  "sense 9 - on to use harmonic mean for interface,"
 02,00e
                       off for arithmetic area average"
 02,001
                  u,u-,u-+0 to 110,0 to 110
 02,010
 02,011
                  2,4,b,c,do to 110
                  Gri, Gr2, Gp1, Gp2, Hr1, Hr2, Hp1, Hp2 to 110
 02.012
 02,013
                  2,yo to 110
                  *Array assignment for plots*
 02,014
                  "AT = T-T, . OC"
02,015
                  "AT1 = inside surface (plasma) temp, rise for material 1 at (1=1,3=0)"
 02.016
                  *AT2 = inside surface (pla=ma) temp, rise for material 2 gt (i=12-1,j=0)*
 02.017
                  "AT3 = inside surface (plasma) temp, rise at interface (i=I1,j=0)"
 02,016
                  *ATh = outside surface (lithium) temp, rise for material ( (1=1, j=J) *
 02,019
                  *ATS = outside surface (lithium) temp, rise for material 2 (i=12-1, j=J)*
 02,014
                  "AT6 m outside surface (lithium) temp, rime at interface (i=If,jmJ)"
02.015
```

```
26 Jul 73 0926+52
                         Rec 02 Page 02
              02,01C
02,014
              Cal 0 to 2000
              Yaxiac to 500
02,010
              D6290 to 10
02,011
02,020
02,021
              to.AT10,AT20,AT30,AT40,AT50,AT60 = 0
               (200 characters) Compi, Comp2
02,022
              for i = 0 to 110
02,023
                   a,,b,,c,,d,,Z, = 0
02,024
02,025
                   AT1, AT2, AT3, ATh, AT5, AT6, - 0
                   for j = 0 to 110
02,026
02,027
                       "1,j""1,j"""1,j = 0
                               Temperature Profiles (T-T , OC)
02.028
              fo is 4
```

```
26 Jul 73 0926+55
```

Rec 03 Page 01

```
03,001
                                                                                      (21+12)/2
                                                                                                     12-1
                   12 1s " J"
. 03,002
 03,003
                   Tatop = 1000000
 400,001
                   if sense ! is on
                                              "Trial data set"
 03,005
                        read console by = at = x
                                                      \Delta x1 = x \Delta x2 = x \Delta y = x *(\Delta x, \Delta x), \Delta x2, \Delta y
                        read console by *L: * x L2 < x Ywall = x*: L:,L2,Y_
 03,006
 03,007
                        read console by * ki* x | k2 * x * aki,k2
 03,008
                        read console by *Cpi* x Cp2* x *:Cpi,Cp2
 03,009
                        read console by * pin x p2 = x *api,p2
 03,004
                        read console by * Dim x D2 m x * * * * * * D1, D2
 03.006
                        read console by * h = x*th
 03,00c
                        read console by eqri = x qr2 = x *
 03,004
                             *Cp1 = x Cp2 = x*, Qr1,Qr2,Qp1,Qp2
 03,000
                        read console by * compt = x compt = x *:compt.comp2
 100,00
                        read console by "Tprint(micro-sec) = x": Tprint
 03,010
                        if sense & is on
 03,011
                             read console by "Tatop=x": Tatop
03,012
                  otherwise
                                        "input data"
03,013
                        At=10003 Ax1=,05; Ax2=,005; Ay=,02
410,00
                        11 = 1 3 12 = ,1 3 Yu = 1
03,015
                        k1=,158; k2=,03L
03,016
                        Cp1=.0731; Cp2=.138
03,017
                        p1=8.57; p2=3.96
03,016
                        D1=,25; D2=,0431
03,019
                        h = .1h
03,014
                        Gr1 = 23.62 ; Qr2 = 23.62
03,016
                        4p1*238.28 Qp2#238.2
03,01c
                        Comp1 = "Nb"
```

```
26 Jul 73 0927+02
                             Rec 03 Page 02
                      03,014
03,01e
                      Tprint = 10000
210,50
                      Tstop = 3000000
                 T<sub>m</sub> = 600
03,020
                 T = 10000
03,021
                                      "miero-eec"
                 T_ = 90000
03,022
                                      "Micro-sec"
                 Ip = [(Tp/At)]
03,023
03,021
                 It = \{(\{T_n+T_n\}/At\})
03.025
                 I_1 = \{(L1/(24x1) + .5)\}
03,026
                 I2 = I1 + {(L2/(24x2) + .5)]
03,027
                 J = [(Y /Ay + .5)]
03,028
                 At = .000001 At
                                           "conversion to sec from micro sec"
03,029
                 A1 = D1(\Delta t/4x1^2)
03,024
                 A2 = D2(At/4x2^2)
                 B1 = D1(\Delta t/\Delta y^2)
03,025
03.02c
                 B_2 = D_2(\Delta t/\Delta y^2)
                 if sense 9 is on
03,024
                                           "harmonic mean"
03,02e
                      k3 = (2K1×K2)/(K1+K2)
```

```
26 Jul 73 0927+05
                             Rec Oh Page Of
                                    04,001
                      k3 = (k1×4×1+k2×4×2)/(4×1+4×2)
01,002
01,003
                 Index = 1
01,001
                 Delta = [(.000001 x Tprint/at + .5)]
                 "internal heat generation functions as arrays"
01,005
                 is sense 3 is off
01,006
                      read card by "(d;0)5": Points,Fract,Fract2,Fract3,Fractk
 04,007
 01,008
                      new card
 01,009
                      for 1 = 0 to Points
01.001
                           read card by *(d10)5*: y1,0r11,0p11,0r21,0p21
01.000
                           new card
                      Degree = 2
01.00c
01,004
                      10 = 1
                      for j = 0 to J
04.00e
200,40
                          = 1(Ay)
                           for i = 10 to Points
04.010
01,011
                               is vi > y
                                    execute lagran(j,1,Degree,ÿ)
01,012
                                    10 = 1
04,013
410.40
                                    exit from loop
                               otherwise: loop back
04,015
01,016
                 otherwise
01,017
                      Fracti = 1
01,018
                      Fract2 = 1
01,019
                      Fract3 = 1
```

fractk = 1
for j = 0 to J

01.014

01.010

```
26 Jul 73 0927+09
                             Rec Oh Page 02
                           01.016
                 *Conversion from percent absorption to heat,cal/cm3sec *
01,014
 01,010
                 for j = 0 to J
 01,012
                       Hr14 = Qr1×Hr14/Ay
 01,020
                      Er2, = Qr2×Er2,/Ay
 01.021
                      MP14 = QP1×HP14/AY
 04,022
                      Hp24 = Qp2×Hp24/Ay
 01.023
                 Qr1 = Fractixer1
 01,021
                 Qr2 = Fract2×Qr2
 01,025
                 Qp1 = Fract3xQp1
 01.026
                 Qp2 = FractixQp2
 01,027
                 for i = 0 to 12
                                          "Initial condition " ... " O"
 OL.028
                      for j = 0 to s
 01,029
                           u1.j,u41,j,u441,j = 0
 01.021
                 Time = 0
 01,025
                 "begin. Of iterations for each time period At as n=1 to infinity"
 01,02c
                 "Gode will proceed with one of two algorithms"
 01.024
                      1 - if x and y profiles are important, 2-D ADI*
 01.02e
                      is used with entire heat source added at one"
 01.021
                      half time step, and iteration sequence altered"
 04,030
                      as XYYXXYYX in sweeping x and y arrays."
                      2 - if composite has very small x dimensions,"
 01.031
 01,032
                      i.e. if Li and L2 are small compared to the
```

thermal diffusion depths, only the y direction"

is used in the code, and a unidirectional ADI"

is run with average property values used*

Test for parabolic (2D) or unidirectional dependence

01,033

04.034

01,035

01,036

```
26 Jul 73 0927+14
                               Rec 05 Page 01
                  1 1 1 1
                                       1
                 - Twx1 = (L1/2)2/D1
05,001
                  Twx2 = (L2/2)2/D2
05,002
                  TWY1 = Yw2/D1
05.003
                  Twy2 - Yu2/D2
400,20
05.005
                  if sense 8 is off or (k1=k2) and (D1=D2) and (Ax1=Ax2)
05,006
                        Iomit = 12+1
                                             "includes interface in computation"
05,007
                  otherwise
05,008
                        Iomit = I1
                                             "excludes interface"
05.009
                  for no = 2 to infinity
05.004
                        1f model() = 1
                                                  "Parabolic ADI (2D) x and y Directions"
05.000
                             if Index 4 IP
                                                  *Counter to determine if in pulse or rest mode*
05,00c
                                  91 = 9p1
05,004
                                  02 - 9p2
05,00e
                                  q3 = (q1x\Delta x^4 + q2x\Delta x^2)/(4x1 + \Delta x^2)
05,001
                             otherwise
05,010
                                  Q1 = Q_1
05,011
                                  92 = 9r2
05,012
                                  q3 = (q1x\Delta x2+q2x\Delta x2)/(\Delta x1+\Delta x2)
05,013
                            if no is even
                                                       "swoep x first"
05,011
                                  execute equne(0)
05,015
                                  for J = 1 to J-1
05,016
                                       if Index < Ip
05,017
                                            G1 = Ept /(pt×cpt×Tm)
                                                                       "pulse period"
05,018
                                            C2 = Hp2 / (p2×cp2×Tm)
05,019
                                       othervise
05,01=
                                            C1 = Hr14/(p1×cp1×TB)
                                                                            *rest period*
```

```
26 Jul 73 0927+18
                              Rec 05 Page 02
                                           05,010
05,01c
                                      for 1 = 1 to I1-1
05,014
                                          execute eqtwo(1, j, A1, B1, G1, At, 1)
05,010
                                      execute eqthree(11, j, k1, k2, D1, D2, C1, C2, Ax1, Ax2, Ay, At, O)
05,012
                                      for 1 = I1+1 to I2-1
05,020
                                           execute eqtvo(1, j, A2, B2, G2, At, 1)
05,021
                                      execute eqfive(I2)
05,022
                                      execute std(I238,b,c,d,Z)
05.023
                                      for 1 = 0 to 12
05,021
                                           401,j = 21
05,025
                                 for i = 1 to 12-1 + 1 + Ionit
                                                                          "begin y sweep"
05,026
                                      12 1 < 11: A-A138-B13K-K13Q-Q1
                                                                          "material 1"
05,027
                                      1g 1 " Il: q=q3; x=x3
                                                                    "interface"
05,028
                                     14 1 > 11: A=A2;8=82;k=k2;q=q2
                                                                               "material 2"
05,029
                                     execute equix(0,4y,q,k,Tg)
05,024
                                     for j = 1 to J-1
05,025
                                          12 1 + I1
05,02c
                                                execute eqfour(1,5,8,A,D,O,O)
05,024
05,02e
                                                execute eqseven(11, j, k1, k2, D1, D2, O, O, ax1, ax2, ay, at, O)
05,02£
                                     execute equight (J, Ay, h, k)
```

```
26 Jul 73 0927+22
                              Rec 06 Page 01
                    1
                           1 1
                                    06.001
                                      for 3 = 0 to 3
06,002
06,003
                                           "" 1.1 " I
06,004
                            othervises
                                                 "Sweep y first"
                                 for 1 = 1 to I2-1 + 1 + 10mit
06,005
06,006
                                      12 1 < It: Amaighmhiskmaisqmq1
                                                                           "material 1"
06.007
                                      12 1 = 11: q=q3;k=k3
                                                                  "interface"
                                                                                "material 2"
06,008
                                      1g 1 > I1: A=A2;B=B2;k=k2;q=q2
06,009
                                      eyecute eqsix(0,4y,q,K,Tg)
06,002
                                      for 3 = 1 to J-1
06,00b
                                           if Index & Ip
06,00c
                                                 ct = Hpt / (ptxcptxTp)
06,004
                                                 C2 = Hp2<sub>1</sub>/(p2×Cp2×T<sub>R</sub>)
06.00
                                           othervise
100,00
                                                 c1 = Hr14/(p1×Cp1×Tg)
06,010
                                                 C2 = HT2<sub>1</sub>/(p2×Cp2×T<sub>R</sub>)
                                           1f 1 < I1: C = C1
06.011
                                           otherwise: C = C2
06.012
06,013
                                           11 1 + 11
06.011
                                                 execute eqtwo(1, j, B, A, C, At, O)
06,015
                                           othervise
06,016
                                                execute equeven(11, j, x1, k2, D1, D2, G1, G2, Ax1, Ax2, Ay, At, 1)
06.017
                                      execute equight(J,Ay,h,k)
06,018
                                      execute std(J;s,b,c,d,Z)
06.019
                                      for j = 0 to J
06,014
                                           ""1.1 " "j
                                 for J = 1 to J=1
06.015
                                                           "begin of x sveep"
```

```
26 Jul 73 0927+27
                             Rec 06 Page 02
                 1 1 1 1
                                                       1 1 1
06,01c
                                     for 1 = 1 to I1-1
06.014
                                          execute eqfour(1, j, A1, B1, 0, 0, 1)
06,010
                                     execute eqthree(I1, j, k1, k2, D1, D2, O, O, ax1, ax2, ay, at, 1)
210,00
06,020
                                     for 1 = I1+1 to I2-1
06,021
                                          execute eqfour(1,j,A2,B2,0,0,1)
06,022
                                     execute eqfive(12)
06.023
                                     execute std(I2;a,b,c,d,Z)
06,021
                                     for 1 = 0 to 12
06,025
                                         u**1,j = Z1
06,026
                           "Hissing values for u at [i=0,I1,I2; j=0,J]are assigned via B.C.'s"
                           *These are not used in the computation of u(x,y,t)*
06,027
06,028
                           u**a,0 = u*41,0
06,029
                           u**0,J = u**1,J
06,024
                           u** 12.0 * u** 12-1.0
06,020
                           u**12,J = u**12-1,J
06,020
                           1f k2 4 k1
                                               "interface values at j=0,J"
06,024
                                Phi = (k2×4×1)/(k1×4×2)
06,02e
                                use 11,0 = ((phi)use 11+1.0 + use 11-1.0)/(1 + Phi)
```

```
26 Jul 73 0927+30
                                 Rec 07 Page 01
07.001
                              for 1 = 0 to 12 .
07,002
                                    for J = 0 to J
07,003
07,001
                                         "i.1 " " "1.1
07,005
                                               "Unidirectional (Youly) dependence"
                              A = (A1(L1)+A2(L2))/(L1+L2)
                                                                      "average properties"
07.006
                              B = (B1(L1)+B2(L2))/(L1+L2)
67.007
                              k = (k_1(l_1)+k_2(l_2))/(l_1+l_2)
07,008
07,009
                              if Index 5 ID
                                    Q1 - Qp1
07,001
07.000
                                    92 = 9p2
                              otherwise
07.00c
07,004
                                    Q1 = Qr1
07.00e
                                    d5 = d25
200.70
                              a = (a1(11)+q2(12))/(11+12)
                              execute eqsix(0, Ay, q, k, T,)
07.010
                              for j = 1 to J-1
07,011
07.012
                                    if Index < Ip
07,013
                                         O_1 = \text{Hp}_{14}/(\text{p}_1 \times \text{Cp}_1 \times T_m)
                                         C2 = Bp21/(p2xCp2xTB)
07.011
07,015
                                    otherwise
07,016
                                         c_1 = \text{Hr1}_3/(\text{p1xGp1xT}_R)
                                         C2 = Hr24/(p2xGp2xTm)
07,017
                                    C = (C_1(11)+C2(12))/(11+12)
07.016
                                    execute eqtwo(1, j, 25, 0, C, At, 0)
07.019
07,012
                              execute eqeight(J, Ay, h, k)
07,015
                              execute std(J;1,h,c,d,Z)
```

```
26 Jul 73 0927+35
                              Rec 07 Page 02
07.01c
07,014
                                 for 3 = 0 to 3
07,010
                                      uias - Zs
07.01£
                       if Index = It: Index=1
07,020
                       otherwise: Index=Index+1
                                                          "end of At period"
07,021
                       if sense 2 is on; Interval = 0
07,022
                       othervise: Interval - IP
07,023
                       if (ne-1) = Interval(mod Delta)
07,021
                                                                    --
07,025
                           Time = (ne-1)4t
07,026
                           if sense k is on
                                                     "set up arrays for plotting"
07.027
                                 w = v+1
07,028
                                 t, = Time
07,029
                                 ATIW " UO,O"TB
07.028
                                 AT2 " "12.0 " B
07,025
                                BTX = UZI,CXTB
07,02c
                                ATLy " UO,J"E
07,024
                                475, " " 12.JXTB
07.02e
                                AT6 = "11.J"B
07.025
                           if [(1000000 Time)] = [{Tprint}]
07,030
                                new page
07,031
                                print: date
07.032
                                skip k lines
07,033
                                print: "CTR COMPOSITE FIRST WALL"
07,034
                                skip 2 lines
07.035
                                if mod_{e}1() = 1
07,036
                                     Print: "Two dimensional ADI (x and y)"
                                othervise
07.037
                                     print: "Unidirectional ADI (y-only)"
07,038
                                     print: *average property values used*
07.039
```

```
26 Jul 73 0927+10
                              Rec 08 Page 01
                     i i i i i skip 1 line
                                               1 1 1 1 1
 08,001
08,002
                                 print: "heat generation functions for pulse and rest mode"
 08,003
                                 for 3 = 0 to 3
 400,80
                                      print by "j=xx y =x.xh Hr1=x.x5+ee "
 08.005
          cont.
                                          *Hr2=x,x5+ee Hp1=x,x5+ee *
 08,006
          cont.
                                          "Rp2=x,x5+ee": J,Jx4y,Rr13,Hr23,Rp14,Hp24
 08,007
                            new page
 08,008
                            print: date
 08,009
                            skip & lines
 08,004
                            print: "CTR COMPOSITE FIRST WALL"
 08.005
                           skip 2 lines
 08.00c
                           if model() = 1
 08,004
                                print: "Two dimensional ADI (x and y)"
 08,000
                           otherwise
 100,80
                                print: "Unidirectional ADI (y only)"
 08.010
                                print: "average property values used"
 08.011
                           skip | line
 08.012
                           if sense 8 is on
 08,013
                                print: "cont, flux interface condition"
 08.011
                           otherwise
 08,015
                                print: "cont, flux and Pps at interface"
08,016
                           if sense 9 is on
 08,017
                                print: "parmonic mean for k at interface"
 08,018
                           othervise
08.019
                                print: "grithmetic area average for k at interface"
08,014
                           print by * conductor(1) = x
                                                            insulator(2) = x4:00mp(,Comp2
08,015
                           skip 1 line
08,010
                           print: *incident flux - k(dT/dy)y = 0*
```

```
26 Jul 73 0927+15
                              Rec OS Page 02
                 ı
                     1
                                          i i i i i i i pulse period qp;=xt,xt=qp2=xt,xt=
08.014
                                 "cal/sec cm2": Qp1,Qp2
08.010
                            print by *
                                         rest period qri=xt.xt qrz=xt.xt*
08,015
                                 "cal/sec cm2": Qri,Qr2
08,020
         cont.
08.021
                            skip | line
08,022
                            print by "wall thickness (y direction) = x3.x4 cm":Y_
                            print by "element size material ! (x direction) = x3.x4 cm sl1
08.023
                            print by "clement size material 2 (x direction) = x3.x6 cm*s12
08,021
08,025
                            skip 1 line
                            print by "At = x5 micro-sec %:[(1000000At + .5)]
08,026
08,027
                            print by "Ax1 = X1.X5 cm ":AX1
                            print by "Ax2 = X1.X5 Cm ": AX2
08,028
08.029
                            print by "Ay = X1.X5 Cm ":AY
08,022
                            skip f line
                            print by *D1At/Ax12=x4.x5*: A1
08,025
                            print by "DoAt/Axo2 =x4.x5": A2
08,020
                            print by "D; At/Ay2 "xh, x5": B;
08,024
```

```
26 Jul 73 0927+k9
                            Rec 09 Page 01
                         print by "DgAt/Ay2 "xhex5": 82
09,001
09,002
                          skip 1 line
09,003
                          print by "pulse time = x.x5 sec rest time = x.x5 sec":
09.001
                               T_/1000000,T_/1000000
         cont.
09,005
                          skip 1 line
                          print by "for material 1 km x3.x5 cal/sec cm<sup>Q</sup>C *
09.006
                               #Gp= x3,x5 cal/g0c p= x3,x4 g/cm3 =
09,007
         cont.
09,006
                               *D1= x3,x5 cm2/sec*1 k1,Cp1,p1,D1
         cont.
09.009
                          skip i line
                          print by "for material 2 km x3,x5 cal/sec cm<sup>0</sup>d "
09,000
                               *Cp* x3.x5 cal/g °C p= x3.x4 g/cm3 *
09,000
        cont.
09.00c
        cont.
                               "D2" x3,x5 cm2/sec": k2,Cp2,p2,D2
09,004
                          skip 2 lines
                                                   effective heat transfer coeff, cal/cm2sec of "th
09,000
                          print by * h = x3,x4
200,00
                          skip 1 line
09,010
                          print by "Grid size = (x(material 1) = x3 points, "
09.011
        cont.
                               "x(naterial 2) = x3 points) by (y = x3 points)"sI1,(I2-I1),J
09,012
                          new Pege
09,013
                          print by "Time" x Micro-sec ": 1000000 Time
09.011
                          skip 2 lines
09,015
                          print : 10
09,016
                          prints fl
09,017
                          prints 12
09.018
                          skip 2 lines
                          176 = [(11/2)]
09,019
09,014
                          177 = \{((11+12)/2)\}
```

```
26 Jul 73 0927+55
                               Rec 09 Page 02
09.015
                                  print by "xxx,, (,, sx, x4+ee) 7,, ": 3,
09,010
09,014
         cont.
                                        "dad"E. aria, "TB, "I76, J"TB,
09,01e
                                        "11,3" "8," 177,3" "8," 12-1,3" "8,"
         cont.
09,012
         cont.
                                        "12.j""=
                             if sense 7 is on
09.020
09,021
                                  read console by "Tprint=x": Tprint
                                  Delta = [{.000001*Tprint/At+.5}]
09,022
09,023
                             if sense 6 is on
09,021
                                  Tatop = 0
                       if 1000000*Tize > Tstop and sense & is on
09,025
                             "plotting routine"
09,026
09,027
                             for m = 1 to 6
09,028
                                  for j = 1 to w
                                       15 = " 10 Yaxis = AT1 5
09,029
                                       1f m = 2: Yax18 = 472
09.028
                                       1g m = 31 Yax1#4 = AT34
09.025
09,02c
                                       is m = he vaxing = aths
09,024
                                       1f p = 50 Yaxis = AT5
                                       1f m = 6: Yaxis = AT6
09,020
09.021
                                  D629g w MAX net to w (Yaxis,)
09,030
                            T_{\text{MAX}} = HA^{X}_{n} = 1 \text{ to } 6^{(D629_{n})}
```

```
26 Jul 73 0927+59
                            Rec Oa Page O1
                                                     1 1 1
                          08.001
                          T629 = * T-Tm (C) *
08,002
04.003
                          U629 = "CCHPOSITE-PULSED CASE"
                          execute cprime(Cal,2000,1,12)
400,40
                          execute csymbol(.1,9.5,.11,0629,0)
01,005
                          execute csymbol(.1,9.2,11,Compf,C)
04,006
                          execute csymbol(.1,9.0..11,00mp2,0)
08,007
04.008
                          if TMAX <500 : TMAX = 500
04,009
                          othervise: TRAX = 1000
                          Tstop = 1000000xTime
08.004
                          execute cscaler(0,Tstop,0,Tsax,0,10,0,10)
04,000
                          execute cplot(0,Tqax,3)
01,000
08,004
                          execute cplot(Tstop,Tmax,2)
01,00e
                          execute cplot(Tatop,0,2)
                          execute caxis(0,0,0,10,3629,17)
100.40
                          execute caxis(0,0,90,-10,7629,-10)
04,010
                          for n = 1 to 6
02,011
                               Symb = n
08.012
                               for M = 0 to W
01,013
                                    ig n = 1: Yaxis = AT1
04,011
08,015
                                    is n = 2: Yaxis, = AT2,
                                    ig n = 3: Yaxis_ = aT3_
04,016
                                    if n = he Yaxis = ATh
04,017
                                    if n = 5: Yaxis = AT5
04,018
                                    if n = 6: Yaxis_ = AT6_
04,019
04,014
                               9629 = 3
```

for n = 0 to w

04.012

```
26 Jul 73 0928+03
                            Rec On Page 02
                                    01,01c
02,014
                                    9629 = 2
02,010
                               execute chung((Tstop+,02),Yaxis_,,14,Symb,0,0)
01.012
                          execute cempty(1,1)
04,020
                          stop #1
04.021
                     if sense 5 is on, stop
04,022
                *Procedures*
08,023
                "edone thru equight generate coefficients for the tridiagonal matrix"
04.024
                     egone - left hand boundary-material ( (x-direction) "
                     eqtwo - material 1 or 2, PDE at even At/2"
04,025
08,026
                     eqtbree - interface condition at I; (x-direction)"
08,027
                     eqfour - material ; or 2, PDg at odd At/2"
04,028
                     eqfive - right hand boundary-material 2 (x-direction)
08,029
                     eqsix - inside(plasma) side boundary (y-direction)"
04,024
                     equeven - interface condition (PDE) for y sweep*
08,025
                     equight - outside, liquid notal heat transfer coeff, (y direction)*
08,020
                "Std solves the tridiagonal matrix"
08,024
                Plagran generates a lagrangian interpolation polynominal for-
01,02e
                "estimating discrete values of the heat generation term"
```

```
26 Jul 73 0928+06
                             Rec Ob Page 01
                 00,001
00,002
                 "will be used"
00,003
                 eqone(n;&11)
                 * "010 "110 "-114 "0
00,004
00,005
00,006
         ...
                 eqtwo(n,m,r,s,C,At,Test;all)
00,007
                 (array)u
800,40
                 if Test = 1
00,009
                     x = \{u_{n,n+1}^{-2}u_{n,n}^{+}u_{n,n-1}^{-1}\}
                      ke = n
00,004
00,006
                 otherwise
00,000
                     x = (u_{n+1,x}^{-2}u_{n,x}^{+}u_{n-1,x}^{+})
00.004
                     ke = 2
05,004
                 a. = -r/2
100,40
                 b. = 1+r
                 c. = -r/2
0b,010
                 d_{ka} = 0x4t+(a/2)(x)+u_{na}
65,011
05,012
                eqthree(I:,j,k1,k2,D1,D2,G1,G2,Ax;,Ax2,Ay,At,Test2;all)
05.013
05,011
                 (array)u.ue
00,015
                 if sense 8 is on
                                         "continuous flux at interface"
00,016
                     a_11 = -1
                     b_11 = 1+(k2×4x1)/(k1×4x2)
05,017
                     CI1 = -(K2×Ax1)/(K1×Ax2)
00.018
05.019
                     4 . . .
05.01a
                 otherwise
                                    "continuous flux and PDE apply at interface"
```

```
26 Jul 73 0926+11
                                                                                                                                       Rec Ob Page 02
           00,010
                                                                                                         F = (k2×4×1)/(X1×4×2)
           00,01c
           00,014
                                                                                                        G = (k2 \times \Delta \times 2 \times D1) / (k1 \times \Delta \times 1 \times D2)
                                                                                                       AT1 = -(D1=At)/(AX12(1+G))
           0b,01e
                                                                                                       b_1 = 1 + (D1 x at (1+F))/(ax12(1+G))
           210,40
                                                                                                       e_ = -(D1 x & t x F) / (A x 1 2 (1+G))
           05,020
. 05,021
                                                                                                       if Test2 = 0
                                                                                                                             R = D_1(1+E) \times (\Delta t/2) \times (u_{I1,J=1}=2u_{I1,J}+u_{I1,J+1})/(\Delta y^2)
           05,022
                                                                                                                              H2 = U11.5
           06,023
          00.024
                                                                                                        otherwise
                                                                                                                             H = D1(1+E) \times (At/2) \times (ue_{I_{1,3}=1}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1,3}}^{2ue_{I_{1
          00,025
                                                                                                                            H2 = U* I1,J
          05,026
                                                                                                       d_1 = H2+(At(C1+G×C2)+H)/(1+G)
         05,027
          05,028
         05,029
                                                                                   eqfour(n,m,r,s,C,At,Test;all)
         05,024
                                                                                   (array)ue
         05,025
                                                                                  1f Test = 1
         0b,02c
                                                                                                       x = \{ue_{n,n+1} - 2ue_{n,n} + ue_{n,n-1}\}
         00,024
         05,020
                                                                                  Otherwise
         00,021
                                                                                                       x = (u+n+1,=-2u+ +u+n-1,n)
         00,030
                                                                                                       k+ = a
         05.031
                                                                                 * - - r/2
         00,032
                                                                                 b<sub>k+</sub> = 1+r
```

```
26 Jul 73 0928+16
                                   Rec Ob Page 03
                                                       1 1 1 1 1
06,033
05.034
                    d = Gx4t+s(x)/2+u=n.m
05,035
           •••
00,036
           (...
                    eqfive(I2;all)
06,037
                    *12 * -15b12*13C12*0Jd12*0
05,038
05,039
                    eqsix(n, Ay,q,k,Tg;all)
           1 ...
00.034
                    a_n = 0; b_n = 1; c_n = -1; d_n = (q \times Ay)/(x \times T_n)
26 Jul 73 0928+18
                                  Rec Oc Page O1
                               1 1 1 1
                                                       . . . . .
00,001
                    eqseven(I1.j.k1,k2,D1,D2,C1,C2,&x1,Ax2,Ay,At,Test3;all)
00,002
00,003
                    (array)u.u.
00,001
                    \mathbf{E} = \{k2 \times 4 \times 2\} / \{k1 \times 4 \times 1\}
QC.005
                    F = {k2×4×1}/{k1×4×2}
00,006
                    0 = (k2×4×2×D1)/(k1×4×1×D2)
00,007
                    # = D1(1+E)/(1+G)
00,008
                    P = (At \times D_1)/(A \times 1^2(1+G_1))
00,009
                    1: Test3 = 1
00,004
                          H = P(u_{I1-1,3}^{-(1+P)}u_{I1,3}^{+(F)}u_{I1+1,3}^{-(1+P)}
00,000
                          W2 = U11,5
00,000
00,004
                          H = P(u+x_{1-1,3}-(1+y)u+x_{1,3}+(y)u+x_{1+1,3})
                         E2 - u. I1.J
00,000
                    = - ( | XXAt ) / ( 7Ay 2 )
00.001
                    b_{xx} = 1 + (x \times \Delta t) / (\Delta y^2)
DC,010
                    c_{11} = -(N \times \Delta t)/(2 \Delta y^2)
00,011
                    d = R2+H+At(C1+G*C2)/(1+f)
00,012
00.013
          ...)
00,011
          ...
                    eqeight(n, ay, h, k, all)
Oc.015
                    a = -1;b, -1+4y*h/k;c, -0;4, -0
00,016
          ...)
Oc. 017
          ....
                    std(ns4,b,c,d,Z)
                                                 "Tridisgonal matrix algorithin"
00,018
                    (array)a,b.c.d,2
                   B, G to 110
00,019
```

```
26 Jul 73 0928+23
                              Rec Oc Page 02
                 1 1 1 1 1
00.014
0c,01b
                       B_,G_ + 0
0c,01c
                 Bo = bo
                 G = 40/B
00.014
                 for m = 1 to n
DC,01e
De,011
                       B = b - s c = 1/8 = 1
                      G_ = (d_-4_G__,)/B_
Oc.020
0c,021
                 2 = Gn
                 for m = n-1,n-2,...0
00.022
Oc.023
                      Z = G -C Z =+1/B
0c,021
Oc.025
                 lagram(j.i.Degree, 7;311)
Oc.026
                 (array) Hp1. Hp2, Hr1, Hr2, Gp1, Gp2, Gr1, Gr2, E, Y
                 for k = 1 to k
00,027
                       1f k=1; s=0p1
Oc,028
                      1f k=2: 1=0p2
00.029
                      1f k=3: s=Gr1
00.02A
                      11 k=4: s=Gr2
00,020
00,020
                      for j* = 1-1 to i+Degrae-1
0c,024
                            11 y = y 10
00,024
00,021
                                 Hp1 = Gp1 4e
                                 Hp2, = 4p2,10
00,030
00,031
                                 Hr14 = 0r144
Oc,032
                                 Nr24 = Gr24e
                                 exit from procedure
Oc.033
                            othervise: c=c=(y-y44)
00,031
                       = 0
00,035
                       for is = 1-1 to i+Degree-1
00,036
                           t = c = c = z_{10} / (\bar{y} - y_{10})
0c,037
                            for je = i=; to 1+Degree-1
00.038
00.039
                                 1f 1* = 5*: 100p back
                                 to = to/(y_{io}-y_{io})
00,034
                           I - I+t.
00,030
                      if k=1: Hp1, = 2
0c,03c
                      if k=2; Hp2, = 2
00,034
```

```
26 Jul 73 0928+29
                            Rec Od Page O1
                     1 1 1 1
                     12 k=3: Hr1 = E
04,001
                     is kelt Hrz, = E
04,002
04,003
        ...)
                model(nones all)
400,00
         ...
                Thark = (Twx1+Twx2)/2
04,005
                Thary = (Twy1 + Twy2)/2
04,006
                if Therx < .01Thary
04,007
                                        *unidirectional*
                     model() = 0
04,008
04,009
                otherwise
                     20401() = 1
                                        "2-dimensional"
04.00=
        ...}
04.000
         8
```

APPENDIX F

NOMENCLATURE

Variable Specification

 $A1 = \alpha 1 \Delta t / (\Delta x 1)^2$

 $A2 = \alpha 2\Delta t / (\Delta x 2)^2$

B1 = $\alpha 1 \Delta t / (\Delta y)^2$

 $B2 = \alpha 2 \Delta t / (\Delta y)^2$

 $C1 = H1/\rho 1C_p 1T_p$

 $C2 = H2/\rho 1C_D 1T_R$

C_p = heat capacity, cal/g°C

 $C(y) = H(y)/\rho C_D T_B$ designated as C1 or C2

D or α = thermal diffusivity = $k/\rho c_n$, cm^2/s

 $\Delta y = \text{step size in both materials}$ (y direction)

 $\Delta xl = step size in material 1 (x direction)$

 $\Delta x2$ = step size in material 2 (x direction)

 $\Delta t = full time step$

 $\Delta T = T - T_R K \text{ or } {}^{\circ}C$

 $F = k2\Delta x1/k1\Delta x2$

h = heat transfer coefficient (liquid lithium, cal/cm² s °C) `

H(y) = heat generation rate, cal/s cm³, designated as Hr1, Hr2, Hp1, Hp2 Il = number of grid pts in x-direction material 1

12 = number of grid pts in x-direction material 2

J = number of grid pts in x-direction material 2

k = thermal conductivity, cal/s cm°C

L1 = size of element in material 1

L2 = size of element in material 2

 $\rho = density, g/cm^3$

q or q, = incident flux on the inside surface

T = temperature, K or °C

Tp = bulk Lithium temp., K or °C

 τ_n = burn time for pulse, μ s or m s

 τ_{x} = rest time, μ s of m s

u = dimensionless temperature = (T-T_p)/T_p

u i.i = dimensionless temp. 1/2 time interval

u** i, i = dimensionless temp. full-time interval

Subscripts or postscripts

1-material 1

2-material 2

r-rest period

p-pulse (burn) period

REFERENCES

- J. W. Tester, R. C. Feber, and C. C. Herrick, "Heat Transfer and Chemical Stability Calculations for Controlled Thermonuclear Reactors (CTR)," Los Alamos Scientific Laboratory report LA-5328 MS (August 1973).
- 2. J. A. Phillips, private communication (July 1973).
- S. C. Burnett, W. R. Ellis, T. A. Oliphant, and F. L. Ribe, "A Reference Theta Pinch Reactor (RTPR)," LA-5121-MS (December 1972).
- 4. T. A. Oliphant, private communication. (August 1973)
- W. V. Green and F. L. Ribe, Los Alamos Scientific Laboratory report. Private Communication (1972).
- L. C. Ianniello (Ed.), "Fusion Reactor First Wall Materials." AEC, WASH 1206 (April 1972).

- B. Carnahan, H. A. Luther, and J. A. Wilkes, "Applied Numerical Methods," Wiley, N. Y. (1969),
- V. S. Arpaci, "Conduction Heat Transfer," Addison-Wesley, Reading, Mass. (1966), p. 511.
- R. D. Richtmyer and K. W. Morton, "Difference Methods for Initial Value Problems," 2nd Ed. Wiley (Interscience), New York (1967).
- D. W. Peaceman and H. H. Rachford, Jr., "The Numerical Solution of Parabolic and Elliptic Differential Equations," J. Soc. Indust. Appl. Math. 3 (1), 28 (1955).
- 11. J. Douglas, Jr., "On the Numerical Integration of $\partial^2 u$ / $\partial x^2 + \partial^2 u/\partial y^2 = \partial u/\partial t$ by Implicit Methods," J. Soc. Indust. Appl. Math. 3 (1), 42 (1955).