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ABSTRACT

We consider the Fredholm integral equation

p.<
¢(2) = g(z) +/ K(z,z") ¢(z7) dz~
y

where g(z) represents a fairly large class of functions and

K(Z,Z‘) = Y(z’) / k(S‘) e"a(s )lz—z" ds”
0

This dissertation first develops a method for solving the integral
equation when v(z”) is a constant and then extends it to the case where
Y(z”) is a step function. The solution of the integral equation is
achieved by solving the integro differential invariant imbedding equa-
tions derived from the integral equation by varying the limits of inte—
gration. The imbedding equations are solved using a moment method which
reduces the calculation to an initial value problem. Proofs of the
existence and convergence of the method are given. In the case where
Y(z”) is a constant, the solution of the integral equation is obtained

by a simple quadrature of the product of the solution with a transform

of the function g(z). In the case where y(z”) is a step function, the
integro differential equations for the reflection and transmission kernels
are reduced to initial value problems and solved. These kernels are used
to obtain fluxes from which the solution to the integral equation can
again be obtained by simple quadratures.

Numerical examples are presented.



1. INTRODUCTION
We are concerned in this dissertation with the solution of Fredholm

integral equations of the general form

X
$(z) = g(z) +./r R(z,z7) ¢(z7) dz~ (1.1a)
y

where the kernel K has the integral representation

co

K(z,2") = y(z‘>[ k) e 26 z27 e
0

It can be shown [1], [11] that this problem is equivalent to the "pseudo-

transport" problem

[eo]

sgn (s) %N(z,s) + a(s) N(z,s) = k(s) Y(z)/ N(z,s") ds*

-0

ysSz=sx s (1.2a)
N(y,s) = h(s) , 0<s<wo , (1.2b)
N(x,s) = f(s) , ~—o <5 <0 . (1.2¢)

G. M. Wing [11] applied the method of invariant imbedding to equations
(1.2) to arrive at a set of coupled non-linear partial differential
integro equations. These equations form an initial value problem. Wing
pointed out that the pair of solution functions for the imbedding equa-
tions together form a Green's function for equations (1.1). The solution
of the imbedding equations is complicated by the fact that the equations
themselves contain the solution evaluated at the end-points of the in-

terval of interest, i.e. at y and x. If these end-point values are




known, Wing's equations can be integrated.

By appropriately specializing Wing's equations one can derive a
set of equations similar to the X and Y equations of Chandrasekhar [4]
for the solutions at the end points. Under the assumptions that
y = -x and Y(z) is an even function, these equations reduce to a set
of ordinary differential integro equations. R. C. Allen [2] applied a
method of moments to solve these reduced equations. The moment method
results in a doubly infinite coupled set of ordinary differential equa-
tions. Existence and uniqueness of solutions to this set are provided
by Allen and Kyner [3].

In this paper we carry out the invariant imbedding procedure to
arrive at the general imbedding equations and the specialized imbedding
equations for the solutions at the end points. Defining moments for
these two sets of equations, we arrive at two new sets of equations,
the imbedding moment equations and the specialized imbedding moment
equations. Relationships between the moments are found and used to
simplify the specialized imbedding moment equations. Other relation-
ships connect the moments to the Taylor coefficients for the resolvent
kernel of equation (1.1). Specializing to the case y(z”) = constant,
allows the reduction of the specialized imbedding moment and imbedding
moment equations to equations which require integration in only a single
variable. The reduced specialized imbedding moment equations are shown

to satisfy the hypotheses of Allen and Kyner's existence and uniqueness

theorem and so existence and uniqueness of their solutions is established.

An existence and uniqueness proof is provided for the reduced imbedding

moment equatdions.




Returning to the general case, integral reflection and transmission
operators are defined and it is shown that the kernels of these opera~
tors satisfy integro differential equations. Using integral identi-
ties, these equations are reduced to ordinary differential equations
which can be integrated simultaneously with the specialized imbedding
equations when y(z”) is a constant., The reflection and transmission
kernels are used to obtain the solution for the case when y(z”) is a

step function.

Computational examples are presented to illustrate the method.



II. DERIVATION OF THE IMBEDDING EQUATIONS

We start by considering the equivalence between the integral equa-
tion (1.1) and the "pseudo-transport" problem (1.2), Specifically we
consider

[+

sgn(s) %N(z,s) + a(s) N(z,s) = k(s) yv(z) f N(z,s”) ds” ,

-0

YsyszsxsX |, ls] < , (2.1a)

N(y,s) = h(s) . , 0<sg<w , (2.1b)

N(x,s) = £(s) . —0o < g <0 , (2.1¢)
where

Rl k(s) is an even piecewise continuous function belonging to Ll;
R2 a(s) is an even piecewise continuous function;

R3 either a(s) or k(s) is zero outside a finite interval or

[k(s’) aj (s')[ ds’S—jl—-j— rj where Z rj < s
0 x-1) 3=0

R4 Re a(s) = 0 for sufficiently large s;

R5 y and x lie in some fixed interval i.e. Y Sy <z s x =X

R6 v(z) is positive and piecewise continuous for y,z,x in the fixed
interval [Y,X];

R7 f(s) and h(s) are continuous functions with compact support on
-0 < g <0 and 0 < 8 < = respectively;

R8 f(s) and h(s) are not both identically zero;

R9 The eigenvalues of the operator K defined by

X
K- = / K(z,z") . dz= , (2.2)




where K(z,z”) is given by equation (1.b), have absolute value greater than
unity on Y Sy = x s X,

Assume that (2.1) has a unique solution, N(z,s), which is piecewise
continuously differentiable with respect to z iny < z < x, and uni-
formly integrable with respect to s for -» < s < ®» , With

o

n(z) =j N(z,s') ds~ , (2.3)

equation (2.1) can be written in the form

~:—z [N(z,s) ea(s)z] = k(s) v(z2) n(z2) ea(s)z for s > 0 , (2.4)

and

522' [-N(Z,S) e_a(s)z]= k(s) v(2) n(z) e 22 gor s <0 . (2.5)

Using conditions (2,1b) and (2.1lc) we carry out the integration and find

.z
N(z,s) = k(s) fY(z‘) n(z") 2(8)(z™=2) 4 - h(s) c2(8) (y-2)

y

for s > 0 (2.6)

and

X
N(z,s) = k(s) J[ v(z7) n(z") 2 (ZZ7) 4oy fig) £2(8) (2X)

z

for s <0 . (2.7)

Substituting equations (2.6) and (2.7) into equation (2.3) we arrive at




0 x
n(z) =[ k(s™) ds‘f v(z*) n(z") ea(s")(z—z’) dz”

4

3 z
+f k(s”) ds” / v(z”) n(z") ea(s’)(z‘—z) dz”
0 y

{++]

0
+/ £(s7) ea(s‘)(z-x) ds” +/ h(s”) ea(s’)(y—z) ds” . (2.8)
-0 0

At this point we would like to change the order of integration in
the first two integrals in the right member of (2.8). To justify this
we need to show that the integrand is absolutely integrable since then
we can invoke Tonelli's theorem. To this end we note the following.
By the piecewise continuity of N(z,s) with respect to z and its uniform
integrability with respect to s, n(z) is a bounded function on the finite
interval [Y,X]. Since y(z) is piecewise continuous on [Y,X], it is
bounded there. The exponential is bounded, for in the first integral
the fact that ea(s)(z—z’) = e_Re a(s) Iz—z’ l and that a(s) is piece-
wise continuous implies it is bounded for bounded s and restriction R4

implies its boundedness for sufficiently large s. A similar argument

holds for the exponential in the second integral. From this we see that

k(s) v(z) 28 12727 oy ey |
and absolute integrability follows from restriction R2.
Changing the order of integration and recalling that a(s) and k(s)

are even we arrive at



O

X
n(z) = g(z) + / Y(z*) n(z") dZ‘/ k(s”) RICION Lo g R , (2.9)
y 0

where

0 ©
g(z) =f f£(s7) 2Nz 4o +] h(s®) 202 4o | (2.10)
-0 0

Equation (2.9) is identical to (1.1) when the kernel is defined by
equation (l.1b). This is the basis of the equivalence between the
problems (1.1) and (2.1). We state this as a theorem.

Theorem 2.1 Let N(z,s) be piecewise continuously differentiable in

z, y £z <x, uniformly integrable in s,]sl < o, and let N(z,s) satisfy
the "pseudo-transport" problem, (2.1). Then n(z) given by (2.9) and
(2.10) is a solution to (1.1). Conversely, if n(z) is a solution to

(1.1), then

z
k(s)/ @) n(z?) 2T 4o 4y 207D
y

N(z,s) = 8=>0

X
k(s)/ Yy(z7) n(z") ea(s)(z-z’) dz” + f£(s) ea(s) (z-x) ,

z
s <0 (2.11)

is a solution to (2.1). This correspondence is unique.

Proof: The proof requires only minor modifications to that given in

reference [11]. 1}

We now derive the invariant imbedding equations. This converts



the solution of the integral equation (1.1) into the solution of an
initial value problem and a simple quadrature, In the invariant imbed-
ding approach the limits on the integral appearing in equation (1.1) are
varied. Thig amounts to varying the boundary surfaces of the imaginary
slab in the "pseudo-transport" problem (2.1l). In order to make this de-
pendence on the limits of integration more obvious, we will hereafter
show the dependence explicitly. In our new notation the integral equa-

tion (1.1) becomes

X
¢(z,x,y) = g(z) + / K(z,z") ¢(z",x,y) dz~ . (2.12)
y

The general theory of Fredholm integral equations, along with the
condition R9, assert the existence of a resolvent kernel, Q(z,z”",X%,¥),
such that the solution of equation (2.12) is given by:

X

$(z,x,y) = g(z) +] Q(z,z27,x,y) g(z”) dz~ . (2.13)
y

In the sequel we will need the following lemma

Lemma 2.2 Under the assumptions R of the problem (2.1), Q(z,z”,x,y) is
piecewise continuously differentiable with respect to x, y and z except
perhaps for z = z°. At z = z”, Q(z,z",x,y) is continuous except perhaps
for a finite number of points. Also %%-S 0 and %3—2 0.

3Q ;
Proof: The proof of all but the statement % 2 0 is given in references

3Q -

{1] and [11]. That o 2 0 is true follows in a manner exactly analogous

to the proof given in [1] for %% = 0.1




Substituting equation (2.12) into equation (2.13), and using equa-

tion (2.10), we have

X

qS(z,x,y) = g(z) +j Q(z,z',x,y)
y

X £(s”) ea(S ) (27-x) ds’-i-/ h(s”) ea(s ) (3-27) ds” dz® .

e OO 0

Since R7 implies f(s) and h(s) belong to Ll on their respective inter-
vals, arguments similar to those used earlier allow us to change the
order of integration and, after some further rearrangement, equation

(2.13) becomes

0 X
$(2,x,y) =/ f(s?)ds” (287 (zx) / Qz,27,x,y) 28B4, .
o0 x ) )
+/ h(s”) ds ea(s’) (y-2) +/ Q(z,z" ,x,y) ea'(S ) (y-z )dz’ .
0 y
(2.14)
Let x
RR(z,x,y,s) = ea(s)(z—x) +./r Q(z,z7,x,y) ea(s)(z ~x) dz” (2.15)
y
and

X
R, (z,x,y,8) = 2(8)(72) +/ Qz,z”,%,y) 2 T2 g00 (2.16)
y

The subscripts R and L indicate to which side of the interval, [y,x],




the R function is referred, x appearing in the exponentials in the
definition of RR and y appearing in the exponentials in the definition
of RL. They may also be thought of as referring to the right and left
sides of the imaginary slab in the "pseudo-transport" problem (2.1).
Using (2.15) and (2.16) we can express the solution of the integral

equation (2.12) as the sum of two integrals

6 (z,%,¥) =[ £(s7) RR(z,x,y,S‘) ds” +/ h(s”) RL(z,x,y,S’) ds” . (2.17)
—oo 0

0

From this we see that RR(z,x,y,s) and RL(z,x,y,s) together form a
Green's function for the problem. Because f(s) is the boundary value
of N(z,s) on the right side and h(s) is the value of N(z,s) on the left,
we can conclude that RR(z,x,y,s) gives the result at z due to a S-function
input from the right and RL(z,x,y,s) the result of a §-function input
from the left side of the slab, If RR(z,x,y,s) and RL(z,x,y,s) are known,
the expression (2.17) implies that we can obtain the solution to the
integral equations (2.12) by quadratures. Furthermore, if either f(s)
or h(s) is identically zero, only one of the two R functions is needed.
The result toward which we are moving is an initial value problem for
these R functions.

Proceeding with the derivation we differentiate equations (2.1)

with respect to x to obtain

10



o

sgn(s) —agz-Nz(z,x,y,s) + a(s) Nz(z,x,y,s) = k(s) v(z) / Nz(z,x,y,s) ds” ,

=00

(2.18a)
N,(y;x,y,8) =0 , s>0 (2.18b)
Nz(x,x,y,s) = —Nl(x,x,y,s) s s <0 . (2.18¢c)

That this differentiation is allowed is easily seen from the expression
for N(z,s), (2.11), given in Theorem 2.1l. The problem defined by equa-
tion (2.18) is of the same type as (2.1) with h(s) = 0. Hence, it has
an equivalent integral equation, the solution to which can be written

as in equation (2.17); that is

0
¥(z,x,y) =/ -Nl(x,x,y,s‘) RR(Z’X’YYS’) ds” . (2.19)

- 00

But, as in equation (2.3), the solution to the integral equation can be
written in terms of an integral of the solution of the "pseudo-transport"

problem. So

(-4}

q)(z’st) =/ N2(23X’Y)s’) ds” . (2.20)
Since ©

¢(st’Y) =/ N(z:x,y’sl) ds” ’

¢, (z5%,y) =f N,(z,x,y,s") ds” . (2.21)

-0

11



Comparison of equations (2.20) and (2.21) shows that
v (z,x,y) = ¢2(Z,X’Y)- (2.22)

Equation (2.,18c) gives N2(x,x,y,s) in terms of Nl(x,x,y,s) and the

latter can be obtained directly from equation (2.l1la). Thus from (2.19),

(2.22) and (2.1a) we have

»

9,(z5%,y) =/ RR(z,x,y,S’)[-a(S‘) N(x,%,y,87) + k(s”) v(x) ¢(x,x,2)] ds” v

(2.23)
Differentiation of equation (2.17) with respect to x supplies a second

expression for ¢2(z,x,y), namely,

¢2(Z,X,Y) / f(s RR(Z’ ’3YsS )] ds”

2

/ h(s RL(z,x,y,s )J ds” . (2.24)
0

2

That this differentiation is allowed follows from Lemma 2.2 and the

definitions of the R functions. Equating the two expressions for ¢2(z,x,y),

we arrive at

f R (z,x,y,87) [-a(S’) N(x,x,y,87) + k(s7) v (x) ¢(x,x,y)] ds”

0

-/ £(s) [RR(z,x,y,s')] ds” - /mh(s’) [RL(z,x,y,s‘)] ds” = 0 . (2.25)
2

—00 0 2

12




We can eliminate ¢(x,x,y) from this expression by using equation (2.17)

and N(x,x,y,s) = £(s), so we finally have a relation free of ¢ and N

0 0
/ Rp(z,x,5,87) { —a(s”) £(s7) + k(s") Y(X)/ Ry (x,x%,y,8") £(s") ds"

-0

[+

+ k(s ) Y(x)/ R (x,x,y,8") h(s") ds"} ds”
0

0 ]

- / £(s”) 5‘8}2 RR(Z’X’Y’S‘) ds” -] h(S’)a_iRL(zsx’y,S’) ds”“=0.
© 0

(2.26)

Since the R functions are bounded and f(s) and h(s) belong to Ll’ we can

change the order of integration in this equation to get

0
/ £(s7) |~a(s”) Rp(z,x,7,87) - 2= Ry (2,x,5,87)

=00

0
+ Y (x) Ry (x,x,y,8") f k(s") Bp(z,x,y,s") ds"lds”

-0

© 0
-i'/ h(s”) § v(x) RL(x,x,y,S’)/ k(s") Rp(z,x,y,s") ds"

0 -c0

- = R.L(z,x,y,s’)! ds* =0 . (2.27)
J

13




Now f(s) and h(s) are arbitrary functions in the class of functions
satisfying the restrictions R7 and R8; hence, their coefficients must
be zero, except perhaps at a finite number of points. This gives the

first two imbedding equations,

_8_3;_ RR(Z’X’Y’S) = —a(s) %(zaxsy’s)

0
+wmg@nmﬁ)/ﬁﬁﬁgummf>df (2.28)

- 00
and

0
a—i-RL(z,x,y,S) = v(x) RL(x,x,y,S)/ k(s”) R.(z,s,y,87) ds” . (2.29)

-0

To get the initial conditions for these equations let y = x = § where §
is arbitrary in [Y¥,X]. Since y = z = x, this implies y = z = x.

For this case the defining equations (2.15) and (2.16) give

1 ’ s <0, E¢ [Y,X] ’ (2.30)

Ry (E5,€,8)

1 ., s >0, &g [Y,X] . (2.31)

R (£,£,E,8)

To get the other pair of imbedding equations we differentiate equation
(2.1) with respect to y. Then, proceeding as above, we ultimately
arrive at the relations

é%'RL(z,x,y,s) = a(s) RL(z,x,y,s)

@©

- Y(Y) RL‘(stsy,S)f k(S’) RL(Z,X,Y,S’) ds” ’
0

(2.32)

14



and

ga);RR(z,x,y,S) = -y(y) Pk(y,x,y,S)/ k(s”) RL(z,x,y,S') ds” , (2.33)
0

with the initial conditions (2.30) and (2.31).

Equations (2.28), (2.29), (2.32) and (2.33), along with the initial
conditions (2.30) and (2.31), are the imbedding equations derived by
Wing, [11]. The above derivations make clear that there is only one re-
solvent kernel associated with these equations. This fact will be use-
ful later,

The solution of the imbedding equations is complicated by the fact
that the dependent variables appear not only in the usual way as functions
of z,x,y and s, but also with the variable z evaluated at the end points
of the interval [y,x]. If the values of the R functions at the special
points (x,x,y,s) and (y,x,y,s) are known, then the imbedding equations
can be integrated. We can get equations for the R functions at these
speclal points by setting z = x in equations (2.32) and (2.33) and z = y

in equations (2.28) and (2.29). This results in the set

% Ry 5%,7,8) = -a(s) Rp(y,%,Y,s)

0
+ v (x) RR(X,X,Y,S)/ k(s”) RR(Y’X:Y’S‘) ds” > (2.34a)

(o]

_33}: RR(X,X,Y,S) = ~y(y) RR(Y,XQYsS)/ k(s ) RL(X,X,}’,S') ds” , (2.34b)
0

15



0
-Z—)-a}-{—RL(y,x,y,s) = y(x) RR(X,X,Y,S) f k(s”) RR(y,X,Y,S') ds® , (2.34c)

=00

and

3y R Go%,7,8) = a(s) R (,x,5,9)

(o]

=Y (y) RL(y,x,y,s)/ k(s”) R (x,x,y,87) ds” . (2.344d)
0

The initial conditions (2.30) and (2.31) still apply. This set of equa-
tions is analogous to Chandrasekhar's X and Y equations [4] which are of
great importance in transport theory. In the sequel we refer to this set
as the specialized imbedding equations. If the specialized imbedding
equations can be solved, then their solutions can be inserted in the im-
bedding equations and these integrated. The R functions so obtained can
then be used in equation (2.17) to affect the solution of the integral
equation (1.1).

Both the imbedding equations and the specialized imbedding equations
are integro partial differential equations. and the solution of equations
of this type can be difficult and cumbersome. In the next section we
extend a method suggested by Allen [2] which will result in partial differ-
ential equations for the integrals appearing in the specialized imbedding

equations.
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III. THE METHOD OF MOMENTS
R. C. Allen [2] proposed a numerical method for the solution of a
particular case of the specialized imbedding equations. The case pre-

sented was

0

g’t—x«;,s) = 2v(t) Y(t,s)/ k(s™) Y(t,s") ds”
0

é%-Y(t,S) = =2a(s) Y(t,s) + 2y(t) X(t,s) ./r k(s”®) Y(t,s”) ds” s
0

X(O,S) Y(O,S)=1 s 0=t=T s 0 ss <o

These equations result when the specialized imbedding equations are

restricted to the case

v(z) = y(-z) ,
y = =x .

Allen defined moments, Pi(t) and Qi(t), by

P, (t) / al(s’) k(s) X(t,s”) ds”° , i =0,1,2...

0
and

o

] al(s’) k(s*) Y(t,s") ds” , 1 =0,1,2...
0

Q, (t)

and obtained a doubly infinite set of ordinary differential equations

satisfied by them. Thus, his problem now had the form

17



2 x=2yYQ, ,

I
4
I

-2aY+ 2yX QO ’

X(O,S) = Y(O,S) =1 ’

|
2}
|

i~ 2% 49

o

&1
L
Il

=2 Q4 T2 By Q

oo

P,(0) = Qi(o) =J(. ai(s‘) k(s”) ds”;i = 0,1,... .
0

This set was then truncated by setting
Pi(t) =Qi(t) =0 ) i=nmn+1,...

and solved. Allen showed that this method required much less computa-
tional effort than the usual method of approximating the integrals by
quadrature formulas and integrating the resulting set of differential
equations. The prospect of substantial computational savings in itself
gives sufficient motivation for attempting to apply Allen's method to
the general specialized imbedding and imbedding equatioms.

In the remainder of this section we apply an analogous method of
moments to the specialized imbedding equations. We obtain a quadruply
infinite set of partial differential equations in x and y involving
four moment sets. We then apply the method to the imbedding equations.
Here, there also results a quadruply infinite set of partial differen-
tial equations in x and y, but now involving only two sets of moments.

Before proceeding, we make some observations which allow us to
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simplify our notation. Both a(s) and k(s) are assumed to be even func-
tions of s. Since the resolvent kernel is not a function of s, we
easily see from the definition of the R functions that they are also

even functions of s. This means that we can write

0 o
f a’(s") k(s*) Ry(z,x,y,8") ds =f a(s7) k(s") Ry(z,%,7,87) ds
0

That is, we can exchange the limits of integration on any integral
over s whose integrand involves only a product of a(s), k(s) and one
(or both) of the R functions without affecting the result. In the fol-

lowing we will treat all such integrals as being over the interval [0,=).

We now define the following moments:

(=]

Ai(xs}') =/ ai(sl> k(S’) RR(Y’X,Y3S‘) ds” ’ (3-1)
0

Bi(x,y) =/ ai(S’) k(s?) RL(x,x,y,S’) ds” , (3.2)
0

¢, (x,y) -—/ a’(s”) k(s") Ry(x,x,y,87) ds” (3.3)
0

Di(xs}’) =/ ai(s‘) k(s”) RL(Y,x,Y’S') ds” , i=20,1,2,... (3.4)
0]

At present we do not know if these integrals exist. We demonstrate

their existence in Section V. To obtain partial differential equations
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satisfied by these moments, we multiply the specialized imbedding equa-
tions, (2.34), by ai(s) k(s) and integrate on s. When we interchange
the order of the integration and differentiation and use the moment
definitions given above we find the following set of equations for the

moments:

gi-Ai(x,y) = -Ai+l(x,y) + v (x) Ci(x,y) Ao(x,y) R (3.5a)

Ji-C.(x,y)

3y Ci -v(y) A; () Bo(x,y) s (3.5b)

20, G,y) = Y@B Y) AjGLy) (3.5¢)

35 B G6Y) = By () = YO Dy G6y) ByGoy) 5 4= 0,1,2,0.. . (3.5)

Uéing the initial conditions for the specialized imbedding equations
RR(E,F”E,S) =R (§,6,6,8) =1 ,
we obtain the initial conditions

(]

A, (£,6) = B,(£,6) = C,(£,6) = D, (£,8) =] al(s’) k(s*) ds” , (3.5e)
0

where § is an arbitrary point in [Y¥,X]. For convenience of reference we
call the set of equations, (3.5), the specialized imbedding moment equa-
tioms.

To get a set of moment equations from the imbedding equations we

define the moments

20




Gi(Z,X,}’) ai(sl) k(S’) RR(Z,X’Y’S’) ds” s 1 0,1,2,... (3.6)

c;-"“%

and

I

B (2,%,9) =/ al(s7) K(s7) R (2,%,y,67) ds” , i=0,1,2,00s .  (3.7)
0

The existencde of these integrals is also proved in Section V. When we
apply the same procedure to the imbedding equations as we did to the

special imbedding equations, we obtain the set:

3% 01 (2s%:y) = =G, 11 (Z:%,5) + v(x) C, (x,y) Gy(zsx,y) (3.8a)
"387 Gi(zsx’Y) = —Y(Y) Ai(x’Y) HO(Z:X’Y) ’ (3°8b)

= B (2,%,9) = Y@ B (oY) Golzx,y) (3.8¢)

5;-Hi(z,x,y) = Hi+l(z,x,y) - Y(y) Di(x,y) Ho(z,x,y) » 1=0,1,2,... (3.8d)

For this set of equations we can find three sets of initial condi-

tions. We get the first set as before by using

R.R(E,E,E,S) = RL(gsgygys) =1

to obtain
[e]

G, (E,£,E) = H, (6,8,8) =f a'(s) k(s*) ds” , felY,x] . (3.8e)
0

This is not particularly useful since as we integrate away from say
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(yo,yo,yo), we will get only Gi(yo,x,yo) and so on. The second and

third sets are obtained when we note that the moments Gi(z,x,y) and

Hi(z,x,y) can be related to the moments Ai(x,y), BiCx,y), Ci

Di(x,y). Specifically,

Gi(E,E,y) Ci(E,y) R YsysgsX >

Gi(€,x,£) = Ai(x,E) R Y=g =xsX s

Hi(E,E,Y) Bi(g’Y) s Y=y=sgs=sX ’

H, (£,%,8) = D, (x,¢8) R Ysgs<xsX , i=0,1,2,..

(x,y) and
(3.8f)
(3.8g)
(3.8h)

. . (3.81)

The above quadruply infinite set of equations, (3.8a-d), with any con-

sistent set of the initial conditions, we call the imbedding moment

equations.

For ease of reference we collect all these equation sets, using

the moment notation, in the order in which their solution should be

carried out.

1. Specialized imbedding moment equations.

A ALGGY) = oA GLY) F Y G GGy AjGLy)

9
ay

ci(x,y) -y () Ai(x,y) Bo(x,y) R

_X Di(x’Y) = ‘Y(X) Bi(x’}') AO(XSY) s
é% Bi(x,y) = Bi+1(x,y) - v(y) Di(x,y) Bo(x,y) s

e o]

Ai(gsg) =Bi(€’€) = Cl(g’g) = Di(gyg) =] ai(s‘) k(s”)-ds”
0

i=20,1,2,...

(3.9a)

(3.9b)

(3.9¢)

(3.9d)

(3.9e)




2, Specialized imbedding equations,

2 Rg@%,7,8) = =a(s) Ro(7,%,7,8) + ¥(x) Ry (,x,y,8) A Ge,y) , (3.108)

a_ay" RR(X’X’Y’S) ""Y(Y) R-R(}’,X,Y,S) BO(X,}’) ’ (3.10b)

é%-RL(y,x,y,S) Y (%) RL(x,x,y,s) Ao(x,y) , (3.10c)

55 RL%,,8) = a(s) R G6x,5,8) = Y() R (5%,7,8) ByGx,y) >  (3.100)

R (€,8,€,8)= RL(E,E,E,S) =1 » Y=g <X . (3.10e)

The moments obtained from the solution of the specialized imbedding
moment equations are used to solve the

3. Imbedding moment equations.

_a— Gi(z’xs}’) = —Gi'i‘l(z’x’y) + v (x) Ci(x,}') Go(z,x’}') ’ (3.11a)

Ix
Ao Gi(z,x,y) = =y(y) Ai(x,}’) HO(Z’XaY) ’ (3.11b)
% 13 (Zx,y) = Y&) B, (x,y) Gy(z,%,y) > (3.11c)

3y Hi(z,x,y) = Hi+1(z,x,y) - Y(y) Di(x,y) Ho(z,x,y) R (3.114d)

with
O

G, (£,8,6) = H, (£,E,8) =/ al(s?) k(s”) ds” , &e [L,X]
0

i=0,1,2,... ; (3.1le)
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or

G, (8,8,y) = C, (&,Y) ,
H, (€,8,y) = B, (&,y)
or

G, (€5%,€) = A, (x,£) s
H, (£,%,8) = D, (x,8) ,

YSys<gsX

Y<SysgsXx

Y<EgE<x<s<X

YsEg=xxsX

’

(3.11f)

(3.11g)

(3.11h)

i=20,1,2,... . (3.111)

Go(z,x,y) and Ho(z,x,y) from the solution of the imbedding moment

equations, along with RR(x,x,y,s), R (¥,%,¥,5), RL(X,x,Y,S) and RL(Y,XsYsS)

from the solution of the specialized imbedding equations, are then used

to solve the

4, Imbedding equations

'é'a; RR(2,X’}'sS)

o
_a; %(Z,X,Y,S)

% RL(zsx’Yss)

)
'5; RL(Z’X’Y9 s) =
with.

Ry (£,€,€,5)

RL(E;,E’E’S)

or

24

Y (%) RL(X,X,Y,S> GO (z,x,y)

s s <0

. s >0

-y (y) RR(y,X,Y,S) HO (z,x,y)

~a(s) RR(Z,X,Y,S) + y(x) RR(X’XSYsS) GO(Z’X,Y> ’

a(s) R (z,%,y,8) = v(¥) R (v5%,¥58) Hy(z,%,5)

(3.12a)

s (3.12b)
, (3.12¢)
(3.12d)

ge[Y,X] , (3.12e)
ge[Y,X] (3.12f£)



RR(E" E’y’s) = RR(x,x,y,s) ’ at £ = x ’ (3.12g)

RL(g’ E,y’S) = RL(XQXQY’S) H4 at g =X ] (3'12h)
or
RR(E,x,g,s) = RR(y,x,y,s) , at £=y . (3.121)
RL(€’X9 EyS) = R-L(y’x’y’s) ’ at £=y o (3.123)

In equations (3.12g) through (3.12j) the notation is intended to indi-
cate that the solutions of the imbedding equations can be started from
the solutions of the specialized imbedding equations.

It is not always necessary to solve all the equations appearing
above. For instance, if h(s) = 0, we need only find RR(z,x,y,s). This
means that only one of the equations (3.12) must be integrated. Choos-
ing equation (3.12a) we then require RR(x,x,y,s) and Go(z,x,y). Go(z,x,y)
can be obtained from the integration of the single set (3.1la) while
RR(x,x,y,s) is secured by solving the pair of equations (3.102), (3.10b).
To integrate the latter pair requires a knowledge of Ci(x,y), Ao(x,y)
and Bo(x,y). We will show later that it is always the case that Ao(x,y) =
Bo(x,y); hence, we can get all three functions by solving only the sets
(3.9a) and (3.9b). Even if both f(s) and h(s) are non zero, some reduc-—
tion in the imbedding and imbedding moment equations is possible.

At this time we do not discuss the existence and uniqueness of solu-
tions to these sets of equations, nor do we consider the convergence of
the solutions of the truncated sets of imbedding moment and specialized

imbedding moment equations to the solutions of the infinite sets. In
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Section VI we show that for the case Y(z) = constant, there is always

some region in which there exists a unique solution to which the solutions
of the truncated equations converge. The existence, uniqueness and con-
vergence has not been proven for the case of non constant yv(z).

In the next section we take a closer look at the moments.
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IV. A PROPERTY OF THE MOMENTS

We will discover that the moments defined in the preceding section
are intimately connected to the resolvent kernel of the integral equa-
tion (1.1).- In the following certain properties of this resolvent kernel

are required. The first of these is the exchange relation

v(z) Q(z,z7,x,y) = v(z7) Q(z7,z,x,y) . 4.1)

To establish this relation it is sufficient to show that the product
series of v(z) or yv(z”) and the appropriate Neumann series expansion

for the kernel are equal term by term. That is

Y(z) Kn(z,Z’) = v(z") Kn(Z',Z) (4.2)

where Kh(r,t) is the nth iterated kernel of the kernel defined in equa-

tion (1.1b);it is given by

X X
Kn(r,t) =f ces(n-1)... [ Y(tl)...Y(tn_l) y(t) dt;...de o
y vy

n

> ~a(s,) |-t | ” —a(s )|t ~t]
X/ k(sl) e L 1 dsl...f k(sn) e n’ -l ds
0 0

(4.3)

Thus the relation (4.2) is merely the identity
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X X

Y(z)[ e (n-1)... / y(tl)...Y(tn_l) y(z7) dtl'”dtn—l
y y

Y

0

[+ <«

-a(s )|z—t | -a(s )It _ -z
k(sl) e 1 1 dsl.../ k(sn) e n" -l dsn
0

X X
= v(z") / ...A(n-‘-l).../‘ Y(tl)...Y(tn_l) y(z) dt:l...dt;n_l
Y y

©o

-a(s,)|z"-t, | ® —a(s_)|t_-z|
X/ k(sl) e 1 1 dsl...f k(sn) e non dsn .

0 0
(4.4)

The other relations we need are the Fredholm identities. It is well
known that the resolvent kernel of a Fredholm integral equation satisfies
integral equations involving the kernmel of the original equation [8], [10].

These integral equations are the Fredholm identities:

X

Q(Z,Z',XsY) = K(z’z’) +/ K(Z,t) Q(t’z’sst) dt s (405)
y
,.x

Q(z,27%,5) = K(z,2") +j K(t,2°) Q(z,t,x,y) dt . (4.6)
y

For our kernel these become
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[+ <]

Q2,27 ,x,y) = y(z’)j k(s e z2"| 4o
0

x [++]
+ / v(t) Q(t,z",x,y) dtjf k(s?) e"a(s’)lt—zl ds” ,

0
(4.7)
” - - - _a(S‘)lz—Z’I -
Q(z,z7,x,y) = Y(z") k(s”) e ds
0
x 00
+y(z'>f Q(z,t,x,y) dtf k(s”) e 22 g
y 0
(4.8)
Using these relations we now show that, in general,
Ag(x,y) = B,y(x,y)
We first establish the Lemma:
Lemma 4.1. The R functions and the resolvent kernel satisfy
/ k(s”) RR(Z,X,}',S‘) ds” = Q(z,x,x,y)/Y(x) ) (4.9)
0
[ k(S’) RL(zsxa}'aS’) ds” = Q(Z’Y9XSY)/Y(Y) . (4010)

0

Proof: We multiply the defining equation of RR(z,x,y,s ), equation

(2.15), by k(s) and integrate on s. This yields
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[+

f k(s™) R.R(z,x,y,s') dsf =/ k(s”) ea(s') (z-x) ds”

0 0

® X
+f k(s”) ds’/ Q(z,2 " ,x,Y¥) ea(s')(z ~X) dz”
0

Yy
=f k(s,).ea.(s’)(z—x) ds”
0

0

X
+/ Q(z,27x,y) dZ"/A k(s”) ea(s‘)(z“x) ds”
0

y

o

L Y(x)/ k(s”) ea(s')(z—x) ds”
0

T YY)

<o

X
+ v ) / Q(z,27,X%,y) dZ‘/ k(s”) ea(s’)(z’_x) ds” ’
v 0

which, by equation (4.8), is equal to Q(z,x,x,y)/v(x). Relation (4.10)
is proved in an analogous manner. |

Theorem 4.2 Under the restrictions required to establish Theorem 2.1,
Ay(x,y) = By(x,y) . (4.11)

Proof: From the definition of Ai(x,y), equation (3.1), we have

AO(X9Y) =/ k(s”) RR(y,x,y,s’) ds® .
0
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Using Lemma 4,1 and the exchange relation (4.1), we see that

AO(X,Y) = Q(x’y,x’}')/Y(Y) .

Now from the definition of Bi(x,y), equation (3.2), we see that

(o]

Bo(an) =f k(s”) RL(X,X,Y,X‘) ds” ,
0
and by Lemma 4.1,

B, (x,y) = Qx,y,x,y)/vy(y) .

Equating, we have the result. |

Theorem 4.2 is of essential importance in the later development.
In Appendix A we present a continuation of this section-which is of
interest because it displays the relationship of the moments to the re-

solvent kernel.
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V. POWER SERIES REPRESENTATION OF THE KERNEL, K(z,z~)

In this section we prove some results about a power series repre-
sentation of the kernel, K(z,z”), given by equation (1.1b). These re-
sults are used later in the proof of the existence and uniqueness of
solutions to the imbedding and imbedding moment equations. They will
also show that the Taylor's series expansions for the resolvent kernel
derived in Appendix A have a non-zero radius of convergence.

Theorem 5.1. For all admissible functionms, k(s), a(s) and y(z), (that
is, functions satisfying restrictions R1l, R2, R3, R4 and R6), the kernel
of the integral equation (1.1) can be expressed in the form

R(z,2”) = y(z°) —(—‘-jl—}j— |z - z’|j/ k(s”) ad(s”) ds” (5.1)
3= 0

where the series is convergent for all values of z and z~ belonging to

the interval of definition of K(z,z"), [Y,X]. Moreover, the series is

absolutely and uniformly convergent for all z,z” € [Y,X].

Proof: The proof proceeds in two steps. We first show that the change

in order of integration and summation can be carried out when the domain

of k(s) is finite. Assume that this domain is [0,s;] < = . Then, since

a(s) is piecewise continuous on the bounded interval [0,80], a(s) is

S < (=] S S -

0

Now consider the infinite series
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j=0

o So . - z;j j
> ==L k| (a3 sn] as”
0

3 rso .
z -'z / k(s | lal(s™)] ds”

J: 0

™~

[
il
o

This series converges for all z and z”~ in [Y,X] because

j!

S
o . %0
-~ J L]
JZ;,) JZ-_ZL/ k(s | |ad )| das”
0

and k(s)e Ll[0,°°) from R2. Then

0 3 - ,
f }: (—_J—%—)- k(s ") aJ(s’)[ z - z° [J ds“
0 3j=0

o _ i . s .
=Z .(_J.l_'l |z - z‘IJ/O k(s al(s) ds-
3=0 0
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by the absolute convergence termwise integration Thereom [71.

If the range of k(s) is infinite while the range of a(s) is finite,
the above proof is valid if the zeroth term of the series is split off.
This term_is merely the infinite integral of k(s) which is finite be-
cause k(s) belongs to Ll'
Now assume that the range of both a(s) and k(s) is infinite. Split-

ting up the summation we have

[k(s’) e—a(s’) |z-z’l ds”
0

g

o\ .
k(S‘) Zg j}) |z - zalJ aJ (S’) ds;
0 j=0

o n .
J . .
=/ k(s‘)z —(——;.—:!L-La:’(s') [z - z‘|:l ds”
0 j=0

@ @ j )
+f k(s‘)Z -(—;}L aJ(s’) [z - z’[j ds”

0 j=nt+l

Because the first series on the right is finite we can change the

order of integration and summation so it follows that
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- N P 9y . bt
/ k(s”) e a(s )lz z I ds” - z Q— |z - z’|J f k(s”) aj(s’) ds”
0 A 0

@ ) ) j
s/ [k(s*)| Z ]aj(s’)IJ-E-;—!Z—-L— ds”

0 j=nt+l

By a corollary to the monotone convergence theorem the right side of this

inequality can be written as

[+ ]

] . ) j
> /Ik(s'>l lad (s | ds"lz—g,—z‘—

j=n+l 0

= E it r.IZTZ’IJ
i 3!

jom1 & -0
= r,

:E: j
j=ntl

where the condition R3 has been used. This last term can be made as

small as desired since the rj form a convergent series. Hence
[+°]

ace) | ams L (epyd - -
f I R A D I - / k(s) al(s?) as’
) 0

0 j=0
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for any z,z”, belonging to [Y,X]. Equation (5.1) now follows by
multiplication by the bounded piecewise continuous function Y(z).
Since the integral in (1.1b) is a continuous function of z and z~,
K(z,z") is a bounded piecewise continuous function of z and z“ on
the interval of definition [Y,X]. That the series of equation (5.1)
converges follows from the above proof and the boundedness of K(z,z"). *
Since this series is a power series, it is absolutely and uniformly
convergent inside its radius of convergence. As the proof shows, we
are allowed to take the maximum value of |z - z”| in equation (5.1)
to estimate the radius of convergence and this value is X -~ Y. From
the convergence of the series in (5.1) we have

L[ k(s”) al(s”) ds-
0
31

1/3

Lim Sup (X - Y)
j+co

so that
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-] ) l/j
/k(s’) al(s%) ds'l L

Lim Sup 0

|
>
|
<

jre i

But the quantity on the left is by definition the reciprocal of the radius
of convergence so we can conclude that X - Y is less than the radius of
convergence. From this the series is absolutely and uniformly convergent
for all z,z” in [Y,X].§

For later reference the result derived in the last part of the proof
is stated in a corollary.

Corollary 5.2,

- N1/
/ k(s”) aJ(s') ds”
Lim S
m Sup 0 < 1 (5.2)
j=re 3! S X-X
We also need the following two corollaries.
Corollary 5.3,
w 3 1/3
./.Rw(z,x,y,s’) k(s”) aJ(s’) ds”i
. =7 < r (5.3)
J > oo J, X—Y

w=Ror L, y = z = x, except perhaps at a finite number of z points.
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Proof: From the definitions of the R functions, it is easily seen that
they are bounded provided the integrals involving the resolvent kernel
are bounded. However, the resolvent kernel is an Ll function in both

z” and z, and by Lemma 2.2 it is continuous except perhaps for a finite
number of points. Thus, the integrals, and hence, the R functions,

exist and are bounded except at a finite number of points. For the

points where Rw(z,x,y,s’) is bounded we have

Z“: | z -z~ Ij [ Rw(z,x,y,s’) k(s”) aj(s’) ds”
| 0

<M

© .I 1)
|z -2 | j

. ‘ k(s”) a'(s8”) ds~
j=0 3! 0
and the series on the right is absolutely and uniformly convergent
with radius of convergence greater than X - Y. We conclude that the
series on the left must have at least the same radius of convergence,
hence, equation (5.3) follows.l

Corollary 5.4 The integrals in equations (3.1) through (3.4),

(3.6) and (3.7), which define the moments Ai’ Bi’ C Di’ Gi’ and

i?
Hi exist.
Proof: This is an immediate consequence of Corollary 5.3.1

An examination of the power series developed in Appendix A shows
that Corollary 5.3 is sufficient to ensure their absolute and uniform
convergence except for a finite number of z points,

We now proceed to examine the existence and uniqueness of solu-

tions to the various imbedding equations for the special case when

vY(z) is a constant.
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VI. SOLUTION WITH y(z) CONSTANT
We now show that the imbedding moment equations possess unique
solutions on some non-vanishing interval if y(z) is a constant. For

this we use the Neumann series expansion for the resolvent kernel

Q(z,z7,x,y) =Z Nn(Z,Z’,X,}') (6.1)

n=1

where Nu(z,z’,x,y) is the n-fold 1iterated kernel defined by

Nl(Z,Z‘,X,Y) = K(z,z") ’

X
Ni(z,z’,x,y) ] Ni—l(z’t) Nl(t,z’) dt .

y

We recall that this series is almost uniformly convergent whenever

|]1<(z,z‘)||L <1 (6.2)
2

We now derive some results concerning the R functions and the various

moments For the case where y(z) is a constant.

Theorem 6.1 If y(z) = ¢, a constant, then for d = 0, Y, < z =< Y, +d

and forAa = 0

RR(Zo,yo+d,yo,s) = Ro(z +0,y +4+d,y +A,8) (6.3)
RL(zo’yo+d’yo’s) = RL(ZO"'AQYO'*'AMQYO'*'A,S) . (6.4)

Proof. We prove only equation (6.3); (6.4) is proved in a similar way.

39



Using the definition of RR(z,x,y,s), equation (2.15), we obtain

a(s) (z -y -d)
RR(Zo,yo+d,Y°,S) = e

yo+d
a(s) (z™=y_~d)
+ Q(zo’z‘syo+d’yo) e dz”~

Yo

and

a(s) (z_+A-y ~-A-d)
Ry (2 +0,y tiHd,y +h,8) = e °© °°

yo+A+d

a(s)(z’—yo—A—d)
+ Q(zo+A,z‘,yo+A+d,yo+A)e dz”
yo+A

y o+A+d

a(s)(zo—yo—d)
=e + | Q(z Hh,z%,y +o+d,y +A) e

+A
Yo

a(s)(z’—yo—A—d)

Thus equation (6.3) will be demonstrated if we show that

yo+d
a(s)(z"-y _-d)
Q(zosz syo+dsyo) e dz”~
Yo
yo+A+d
a(s) (z”-y _-A-d)
= Q(Z°+A,Z',YO+A+d,YO+A) e dz”
y +A

(o}
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Substitute the series expression for the resolvent kernel in each of the

integrals appearing above. Since almost uniform convergence allows us

to integrate termwise, we can change the order of integration and sum-—

mation. This means that it is sufficient to show that

yo+d
a(s)(z”-y -d)
Nn(zo,z’,yo+d,yo) e dz
Yo
yo+A+d
a(s)(z'—yo—A—d) )
= Nn(zo+A,z‘,yo+A+d,yo+A) e dz
yo+A

For v(z “)=c, the n-fold iterated kernel can be written as

X X

Nn(z,z',x,y) =cn/ ...(n—l)...f dtl...
y y

(o] (o]

a(s )lz—t I —a(s.)lt._ -t, |
...dtn / k(sl) e 1 1 dSl"' / k(si) e -1 ds,
0 0

2]

-a(s )It -t |
/ k(sn) e " =l n dsn .
0

(*)

1

So, letting z’=tn, we can write the left hand side of equation (*) as



y +d
° a(s) (t_-y _—d)
f N (z ,t_,y +day ) e dt

n*“0”> n’’o n
Yo
yH y +d %
n ° ° —a(sl)lzo—t1|
= c ces(n)... dt:l...dtn k(sl) e dsl...
Yo Yo 0

o

-a(s )|t -t |
k(s ) e -1 1 dsi

k(s dsn e . (*%)

f —a(sn) le_;-t,l a(s) (t_-y _-d)
0

We now show that the right side of equation (*) reduces to the right

gide of equation (**)., Let z’=rh in the right hand side of equation (%*).

Then
y +i+d
a(s)(rn—yo-A—d)
Nn(zo+A,rn,y°+A+d,yo+A) e drn
yo+A
y Hot+d y +i+d -
a —a(sl)lzo+A—rl|
= c eee(n)... drl...drn k(sl) e dsl
y°+A yo-l-A 0
-a(s;) |t, .-t d ~a(
caee 1 i_l i ais )I — l
/k(sl) e dsi..fk(sn)e n’ -1 s
0 n
0
a(s)(rn—yo-A-d) (h**)

X e .
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Further let

This changes the limits of integration in the following way:

Y, + A > Yo and Y, +A+d~ Yo +d

Moreover,

ey g = eyl =y -8 -1 +al = ey - gyl

and

r - A - Yo ~ d = t - Y, "~ d .

Making these changes in the right hand side of equation (**%) we finally

have

yo+A+d
a(s)(rn-yo-A—d)
Nn(zo+A,rn,yo+Md,yo+A) e dr_

y +A

y +d y +d

o o )
—a(s,) |z ~t,|
_ 1 o 1
= ¢ f U ¢ T f dtl"'dtn] e dsl...
y

0

-a(s,)|t, .-t.|
k) e 0 T as .

n n—l-tnI a(s) (tn_yo_d)
. k(sn) e dsn e

o
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The right side of this equation is exactly the right side of equation
(**) and the theorem is proved. |

Corollary 6.2. For v(z) = ¢, a constant, RR(y,x,y,s), RR(x,x,y,s),

RL(y,x,y,s) and RL(x,x,y,s) are constant on lines parallel to the line

x = y. That is

RR(Y,X,Y,S) = RR(Y‘*'A,X‘*'A,}H'A,S) s etc.

Proof: We use the diagram below to make the argument clear. Any
point on a line parallel to the line x = y can be given in terms of
some (arbitrary) initial point (yo,yo), lying on the line x = y, in
terms of equal increments of length A in both the x and y coordinate
directions and a single increment d in the X coordinate only. This is

illustrated in Fig. 1. To show that RR(y,x,y,s) is constant on the

X=y
A
/ - ~
A
Yo ==A— >
' S
! d
X=yb

Fig. 1 A line of constant R values.
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line through the points (yo+d,yo) and (yo+A+d,yo+A) we need to show

that

Rp(y,sYotdsy »8) = Rp(y +A,y +A+d,y +A,s) .

But this is just equation (6.3) evaluated at Z, = V,. The statement
for RR(x,x,y,s) is also obtained from equations (6.3) evaluated at
zZ, =Y, + d. The statements for RL(y,x,y,s) and RL(x,x,y,s) follow
from (6.4) with z, =Y, and z, =Y, + d respectively.l

Corollary 6.3. For y(z) = ¢, a constant, the moments Ai(x,y), Bi(x,y),

Ci(x,y) and Di(x,y) are constant on lines parallel to the line x = y.
That is

Ai(x,y) = Ai(x+A,y+A) , etc.

Proof: The assertion for Ai(x,y) follows immediately from the definition

of Ai and Corollary 6.2 since

CO

f k(s”) ai(s D) RR(yo,y°+d,yos “) ds”
0

Ai(yo+d,yo)

(e ]

./. k(s’)ai(s‘) RR(yo+A+d,yo+A,s‘) ds”
0

A (y +oHd,y +4) .

The statements for the remaining moments are similarly proven from

their definitions and Corollary 6.2. |
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Theorem 6.4. For y(z)=c, a constant,

RR(y,x,y,s) = RL(xsxsy’s) ’ (6.5)

RR(xsx9Y9s) = RL(Y,X’}',S) . (6.6)

Proof. We pick an arbitrary point, (xl,yl), in the region of interest,
the region below and to the right of the line x = y. Assuming (xl,xl)
and (yl,yl) are on the line x = y, this point can be reached by moving
downward from the point (xl,xl) a distance A = X -V along the line

x = x; or by moving horizontally to the right from the point (yl,yl)

the same distance A. See Fig. 2.

‘It (x, )
/
/
Xy 9 Xi—U)
Y11 - (x,,y,)
(yl’yl)//(yl+usyl) i
/
I/ 1
BrY 7Yy X

Fig. 2 Illustrative diagram for Theorem 6.4.
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Now consider the specialized imbedding equations restricted to

these paths

'a'%{' RR(ylsx’ylss) = ~a(s) RR(yl’x’yl’S) + c R-R(x’xsyl’s) Ao(x’yl)’ (6.7)

% RR(xl,xl,y,S) = -c RR(y,xl,y,S) A (xy) (6.8)

3y RO L7,8) = ale) R (x1,%;,5,8) - ¢ R (1,%,,7,8) A (x,9) 5 (6.9)

a_i RL(ylsx,Yl,S) =c RL(x,x’yl’S) Ao(x,}’l) . (6.10)

These equations can be considered as ordinary differential equations

if the variable s is held constant. We shift to a new single variable
u such that u = 0 on the line x = y; then dx = du. We set dy = -du
since the equations involving the partial derivatives with respect to y
need to be integrated in the negative y direction. With these changes

the specialized imbedding equations above become
)
Bu RR(yl’yl-'-u’yl’s) = -a(s) RR(yl’yl-hl’yl’s)

+ c RR(Y]_'*'U,Yl'*'u,Y’S) Ao(Yl'*‘U,}'l) 1 (6.11a)

]
™ RR(xl,xl,xl-u,s) c RR(xl—u,xl,xl—u,s) Ao(xl,xl—u) , (6.11b)

3
o RL(xl,xl,xl-u,s) -a(s) RL(xl,xl,xl—u,s)

+ c RL(xl—u,xl,xl—u,s) Ao(xl,xl—u) , (6.11c)
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3
35 R0y Hy s8) = ¢ R (yytu,y tu,yy,8) A (yptu,yy) (6.11d)

Keeping in mind that u is the distance from the line x = y and is

thus always positive, we now show that

A (y ta,yg) = A (xpx-u) (6.12a)
Ry (yytusy +u,yy,8) = Rp(xy,x,,%x,~u,8) (6.12b)
Rp(¥,5¥+u,¥758) = Rp(x)-u,x;,%x,-u,8) (6.12c)
R (yytu,y +u,yg,8) = R (%%, ,%7u,8) (6.12d)
R sy Hu,y,58) = R (x-u,x),%,-u,8) . (6.12e)

Looking at the figure we see that the points (xl,xl-u) and (yl+u,yl)
both lie on the same line parallel to the line x = y. So by Corollary
6.3 equation (6.12a) is true. The remaining four equations follow from
the fact that the points lie on the same line and Corollary 6.2.

Now rewriting equation (6.11) using the relations (6.12) we

obtain

9
'ﬁ' RR(ylsyl'*'usyl’S) = -a(s) RR(yl’yl-*-u’yl’s)

+ ¢ Ry tu,y tu,yg,s) A (ytu,yy) (6.13a)

0
E RR(yl'hlsyl"'usyl’s) = ¢ RR(ylsyl'*'usylas) Ao(yl"'u’yl) ) (6.13b)
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)
3; RL(yl+u,yl+uayl,S) = ~a(s) RL(yl+U,Y1+U’yl,S)
+ c RL(yl’yl+u’yl’s) Ao(y1+uayl) ’ (6.14a)

3
- R (y,,y,+u,y,,8) = ¢ R (y,+u,y,tu,y.,s) A (y.+u,y,) . (6.14b)
Ju 1°71 1 1 1 1 o1 1

The initial conditions are still

|
bt
-

R (E,E,8,8) = (2.30)

I
(-

R (£,8,8,8) = (2.31)

Now the equation set (6.13 ) with s fixed has a unique solution with
the initial condition (2.30). Similarly the set (6.14) has a unique
solution with the same initial value [see equation (2.31)]. But the
two equation sets are identical.[It must be remembered that the first
argument only serves as an identifier which distinguishes between, for
example, RR(x,x,y,s) and RR(y,x,y,s).] Since the equation sets also
have identical starting values, we conclude that, for the same s, the
solution sets of these equations must also be identical. This implies

that

RR(yl’xl’yl’S) = RL(xl’xl’yl’s) ’

RR(xl,Xl,yl,S) = RL(yl,xl,yl,S) .

Since this is true for an arbitrary point, we have proved the theoren.l]

Corollary 6.5. For v(z) = c, a constant,
Ai(x’Y) = Bi(x’Y) ’ (6.15a)
Ci(x,y) = Di(x,y) . (6.15b)
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Proof: Using the definition of Ai(x,y) and the theorem, we see that

f k(s”) ai(s’) RR(y,x,y,S‘) ds”
0

Ai(x’Y)

o0

f k(s*) a'(s?) R (x,%,y,87) ds”
0

which is equal to Bi(x,y). Equation (6.15b) is proved similarly.l}

We now define new variables, T and S, so chosen that the specialized
imbedding moment equations and the specialized imbedding equations are
dependent on the single variable T, independent of S. We choose to
define T by

T=xy . (6.16)

The coordinate S, orthogonal to T, is obtained from the condition

VT * V8§ =0 (6.17)
or
3T 8S 9T 3S _
5% 3% T By dy 0 . (6.18)
Using equation (6.16), we have
38 _ 23S _
3% 3y 0 . (6.19)

which is satisfied by the function (although by no means uniquely)

S = ex+y . (6.20)
Lemma 6.6 For y(z) = ¢, a constant, the specialized imbedding moment
equations (3.6) and the specialized imbedding equations (2.34) are func-

tions of the single variable T = x - y.
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Proof: Since

3T 3 , 35 3 3 _ 9T 3 , 35 3

2 e + =

)
& oX oT & ox 08 % By Ty oT ' By 88 °

we can write the specialized imbedding moment equations in the form

ax 3T 3x 3S i+1 T M1
S S e S
9y aT dy 23S io ?
a_T._a_'i.i_. ﬁ&: cBA
ox 3T ax 39S io ’
9B oB
oT °°1 . 38 °P1 _ _ . _
5y 3T F 5y 38 = Bi+1 CDiAb R i 0,1,2, ...

Here we have used Theorem 4.2 to set Bo(x,y) = Ao(x,y). From equations

(6.16) and (6.20) we have

1 i
4SS L= oA +eCA (6.21a)
—3Ci aci

ar TS 38 T TCAA, s (6.21b)
BDi 3Di
3T + S Fra cBiAo R (6.21c)
—aBi SBi

5T + S 55 Bi+l —cDiA.o R i=20,1,2, .... . (6.214)

Now if a moment is independent of the coordinate S, {ts partial

derivative with respect to S will be zero. Adding equations (6.21a) and
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(6.21d) and using Corollary 6.5, we find that
A

from which it follows that

This shows that the specialized imbedding moment equations are independent

of S.
The proof of the second assertion of the theorem is made in a simi-

lar way using the R function equalities shown in Theorem 6.4. 1

If we now affect the transformation to the variable T in the
imbedding

specialized imbedding moment equations and in the specialized

equations we arrive at the sets

LA = - A @ +cC (D AD (6.22a)
2o M =A@ a@ (6.22b)
A,(0) = A (E,8) =/ k(s*) al(s) ds* (6.22¢)

0
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00

C, (&,8) =f k(s?) al(s?) ds” , i=0,1,2,..., (6.22d)
0

¢, (0)

1 R (T58) = ¢ R (T,9) 2(D) (6.23a)

“a% Rpy (Tr8) = -a(s) R (T,s) + ¢ Rp, (T,s) Ap(T) (6.23b)

Ry, 0,8) = Ry (E,5,6,8) =1 (6.23c)

Ry, (0,8) = Re(£,6,8,8) =1 . (6.23d)
Here we have made the reidentifications

RRX(T’S) = RR(X’X’Y’S) ’ (6.23)

Rpy(T:8) = Rp(¥y,x,¥y,8) . (6.25)

In the process of transforming these equations we have reduced them in
number by half because of the equalities shown in Theorem 6.4 and its
Corollary 6.5. Equations (6.22) and (6.23) are now in the form of an
initial value problem. This is the form used to compute the examples
in the section on numerics. We have not yet shown the existence and
uniqueness of solutions to these sets. We now carry out a further
transformation which allows the application of the results in [3].

We first write equations (6.22)and (6.23) in matrix form:

2 (- 0w () - @
3%(21)“ (28 RRZ) Ao - éés) 8)(:3) . (6.27)
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If we define the function £(T) by

T

f(T) = ¢ f Ao(t) dt (6.28)
0

and assume for the moment that it is known, then the two vectors

cosh £ sinh £

sinh £ cosh f

each satisfy the homogeneous equations associated with equations (6.26)

and (6.27). For example, since

d

aT f(T) = ¢ AO(T) , (6.29)
we have
d <%osh f) (sinh f) c A
dT \sinh £ cosh £ o °
Y
The matrix

_ fcosh £ ginh £
D (f (T)) = (sinh f  cosh f) (6.30)
is a fundamental solution matrix for the homogeneous parts of equations

(6.26) and (6.27). Using this matrix we define an infinite sequence of

'

U
vectors ( 1 through the relations
i

D(f) i=0,1,2... (6.31)

54



p
and define the vector (zl> by
2

RRy 1
= D(f) . (6.32)
Z
Rrx 2
Applying a variation of parameters technique to the systems (6.26) and
U
(6.27), we can show that the vectors (Vi> satisfy the equations
i
U (T)) U, .. (T)
d ( i ( i+l
Y = B f(T)) R (6.33a)
ar \V4(® Vis (D
df (T .
4D -y, cosh £(T) +V, sinh £(T) (6.33b)
f0) =0 , (6.33c)
U, (0) =v,(0) = fk(S‘) al(s”) ds- , i=0,1,2,..., (6.33d)

0

z
and that the vector (zl) satisfies
2

d zl(T) zl(T)
Ir ZZ(T) = a(s) B(f(T)) (zz(T) . (6.34a)
zl(O) = 22(0) =1 . (6.34b)

where the matrix B(f(T)) is defined by

- cosh? £(T) - sinh £(T) cosh £(T)

B (f (T)) = (6.34¢c)
sinh f(T) cosh £(T) sinh2 £¢T)
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Allen and Kyner [3] have given a local existence and uniqueness
proof for systems of the type (6.33). Specifically, they show that

systems of this type are equivalent to the functional differential

equation

Lo rg,n) @ (egsD) , telegpty] , £(gg) = £y

with

Z 0% (e,e030 o

® (t,to;f) =
k=0
E](o) = E, the identity matrix s
0 &) (tytysf) = B(f(t’)> D(k)(t’,co;f) ac” .
‘o

The ak are finite dimensional vectors related to the initial conditions

of the equivalent problem of the type (6.33). They prove for appropriate

norm and appropriate o

Theorem 6.7. Suppose I|B(£(Ti>||-s K and let [to,tl] be short enough so

that

o]

3 (rereg) e

j=0
Then there exists a unique solution to the equation

&£ o re,0 ® (t,egsD) 5 e = £, teltgt]

Proof: See [3].
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For our problem

U, (0)
j=<%w> ’

F(£,T) [cosh £(T), sinh £(T)]

The conditions of Theorem 6.7 are fulfilled because the norm of the
matrix (6.34c) is easy to bound if T is restricted and the condition
on the sum is a consequence of Corollary 5.2. 1In order to show the

latter we note that we may take for the norm on a

|

o0

||°‘jl| = Max {IUj(O)I s [Vj(O) ]} = fo k(s") aj(s’) ds”| .

The radius of convergence, R, of the series in the statement of the

theorem is then determined from

00 ]_/j
Kj ] k(s”) aJ(s‘) ds”
1l _ lim sup 0
R j+o 1
co ]_/j
l k(s”) as (s”) ds”
_ 4 lim sup
=Ky 3t
so that
1 K
RS X-%

by Corollary 5.2. Since X - Y is non-~zero we are assured that the
series of the theorem has a non-~vanishing radius of convergence, and

hence, the specialized imbedding moment equations have a unique solution.
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It is remarked in [3] that the moment method probably cannot be
applied in the absence of a growth constraint on the initial conditions
aj. This appears to be the case since, if restriction R3 is omitted, a
counter example can be given which shows Theorem 5.1 invalid.

Given the unique solution assured by the theorem, the function £(T)
is known and the existence and uniqueness of a solution to equation
(6.26) follows from the theory of ordinary differential equations. It
is further shown in [3] that the solutions of the truncated system will
converge to the solution of (6.26). This completes the justification
of the moment algorithm as it applies to the specialized imbedding moment
equations. Given the solution to these equations, the existence and
uniqueness of a solution to the specialized imbedding equations then
follows via equation (6.32).

It remains to prove the existence and uniqueness of a solution to
the' imbedding moment equations and also to show that the solution of the
truncated problem converges to the solution of the infinite set.

The infinite set of imbedding moment equations

G, =-G, +cC, G

5 i+ 1 %o i=0,1,2,...

can be written in the form

- =-ol' + £(t) (6.35)
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where T and f(t) are the infinite vectors

G
e, \
¢
r = G2 (6.36)
and
C (t
¢, (t)
f(t) = Cz(t) CGO(t) ’
(6.37)
and o is the infinite matrix
0 1 0 o0 o
0 0 1 0 0 o 4 e
g = 0 0 0 1 0 .« o o . (6.38

59



Let n be a fundamental matrix for the system (6.35); then n can be

written in the form [5]

n=e°" (6.39)
Using this, we define a new variable O by the transformation

r=e%%% . (6.40)

Then

I"

!
|
Q
(1]
Q
ot
(0]
+
©
1
Q
rt
O]

]

|
Q
e}
+

(1]

i

@

\

Using equation (6.35) we find

e-OtG‘ = f(t)

or
- ot
0 =e f(t) , (6.41)
ot -gt .
where e  is the inverse of e and is given by

2.2 3.3
t
cr+ot + 25 v .. . (6.42)

ot
€ 21 31

The solution to equation (6.35) is then given by

t
r = e_ctFO + e—ct/ eowf(w) dw

0

(6.43)

We now isolate the first component of equation (6.43). First we

find the product of e-ctecw:
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l -¢
0o 1
e %[0 o
0 o
1 w-t
0 1
= o 0
0 0
eo(w—t)

23
2! 3
t —tz
2!

1 - t ° .
0 l [ ] L]
@9 w0
2! 3!
(w—t!2
w=t 21
1 w-t
0 1

Ii}

£

wli.‘
-] W

IS
1\
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The integrand of equation (6.43) is thus

2
e w-t)
1 w=-t 31 o o o Co
0 l W—t o o . Cl
Iy =lo 0 1 C e c, c G
0
é’ c (w-—t)j \
c G E ; -;L—r—-
0 it
j=0
® R
.G Z Cj-*-n—l(w t)
0 j! ¢

From (6.43) and this result,

© t[ j

. C.(0) C.(w)(w = t)

G, (t) = z (-1)7 ‘%I—tj +<f J T Gy(w) dw . (6.44)
j=0 0 |j=0

This is a Volterra integral equation of the second kind in GO with kernel

©o

_ C. (w) (w - £)]
Reewd = ) o . (6.45)

j=
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It is a consequence of Corollary 5.3 that the series for Ekt,w) has
radius of convergence at least X - Y. Since we are concerned only with
values of (w - t) which are less than this value, we can assert that
K(t,w) is bounded. From the theory of Volterra integral equations [10]
we can then conclude that (6.44) has a unique solution. Given this
unique GO’ the remaining Gi are also unique for they are determined

iteratively by the relations

1 0 0°0
Gi-i-l = —Gi + ¢ Ci G0 .

We now show that when we truncate the systems (6.35), the solutions
to the truncated system approach the solution of (6.35). We treat only
the convergence of G0 since this is the only moment we require. At the
end of the proof we indicate how the proof can be extended to all the
G,. By carrying out the equivalent procedure on the truncated system,

i

we find that
o‘nt
0 = e fn(t) (6.46)

where the n indicates that the system (6.35) was truncated by setting
Gn+i equal to zero for i equal to 1,2,... etc. The solution to the

truncated system is thus given by
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-0 tow (w-t)
e e =e
and
<L, (w-t)?
¢ G0 !
j=0
—Un(W—t) n-l C _*_n l(w—t)J
e fn(t) n,OZ
¢ Gn,O Cn—l /

From this we find

k| J t/ n j
(-1)°C.(0) t C, (W) (w-t)
0" e (DT ) o e

j=0 0 j=

=}

so that

© J J
( -1 c.(0Ot
- j
(G - Gn,O) 'Z 3t
nt+l

C (W)(W-t)
[GO(W) - Gn,O(w)] dw

C, <w) (w—t)J
/ Z G (w) dw

j=nt+l
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In this equation the infinite series which appear are the tails of
uniformly convergent series by Corollaries 5.2 and 5.3. Also Go(t) is
bounded in [0,t]. Therefore, letting n approach infinity we conclude

that the difference G0 - Gn 0 approaches the solution of
9 \

“L ¢, W) @-t)3
y(t) =/( Z—L—g.——- y(w) dw . (6.50)

0 j=0

This is also a Volterra integral equation of the second kind with

f(t) = 0; hence, it has the unique solution

t
y(t) = c/ K(t,w) f(w) dw =0
0

o

showing that

> o0 .
Gn,O G0 as n >

We have proved the following theorem.
Theorem 6.8. Under the same hypotheses for which Theorem 5.1 holds the
imbedding-moment equations, (3.11), have a unique solution and the
zeroth order moment, Gn,O’ from the solution of the truncated imbedding-
moment equations converges to the zeroth order moment, GO’ of the solu-
tion of the imbedding-moment equations.

For the remaining moments we can arrive at equations similar to
(6.49). The argument used above can be made for each of these equations
provided we can make the infinite series appearing in the first and last

terms arbitrarily small. These series involve C instead of Cj and

j+k

can be majorized by the derivatives of the series

0

Z Max lcj] ¢3 (6.51)
[0,t] T ‘

3=0
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That the series (6.51) converges for t < X - Y follows from the proof

of Theorem 5.1 and the definition of the moments, C Since it is

j.
absolutely and uniformly convergent inside its circle of convergence the
series (6.51) may be differentiated term by term and the resulting

series will also converge for t < X - Y,

This completes the justification of the method of moments.
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VII CASE WHERE y(z) IS A STEP FUNCTION

We approach the case where yv(z) is a step function by first con-
sidering the problem when y(z) has a single discontinuity. This is
then extended to multiple steps. We attack the single step problem by
considering it as the juxtaposition of two problems of the type treated
in the last section, one for each value of y(z). Results are derived
as if y(z) were non-constant wherever possible. For clarity we will
discuss the problem as if it were a transport problem in a double slab.
However, this in no way affects its generality.

From the pseudo-transport equation correspondence, we know that
there exist left and right reflection and transmission operators and
that the pseudo flux, N(z,x,y,s), can be written in terms of these
operators. We will examine these operators for a slab extending from

y to x. We introduce the quantities u and v defined by

u(z,x,y,s) = N(z,x,y,s) sy 8>0 , (7.1)

v(z,X,¥,58) = N(z,X,¥,8) , s<0 . (7.2)
Thus v(z,x,y,s) and u(z,x,y,s) represent the left-moving and right-
moving fluxes at the point z in a slab with left edge at y and right

edge at x. From equation (2.11l) we have

z

u(2,%,5,8) = k(s) / Yz nlat,xy) (0T g
y

+ h(s) 2(8)0-2) , s>0 (7.3)
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X

v(z,%,¥,8) = k(s) J/~ Y(z7) n(z’,x,y) e2(8) (z-z7) d

z

+ £(s) 2™ s<0 . (7.4)

In these equations h(s) is the right-moving flux entering the slab at
¥, while £(s) is the left-moving flux entering at x. n(z,x,y) is the
solution of the integral equation (1,1) when the limits of integration
correspond to y and x. This solution is given in terms of £(s), h(s)

and the R functions by-equation (2.17),

0 o
n(z,x,y) =f £(s”) Ry(z,x,y,87) ds” +/ h(s”) R (z,%,y,87) ds” .
- 0

(2.17)

When equation (2.17) is substituted into equations (7.3) and (7.4),

we find, after changing the order of integration,

0 z
u(z,%,,8) = k(s) / £(s”) ds'f v PETD poax,y,87) a2

y
+ k(s) / h(s”) ds[ ¥(z") 2(8) (z7-2) R (z7,%,¥,s7) dz”
y

+ h(s) (80072 . (7.5)

0 >4
v(z,x,y,8) = k(s) [ f(s7) dS’f y(z7) 2(8)(z-27) Rp(z7,%,y,87) dz”

—00 Z

+ £(s) 2(8) (&)

oo rx _ . ) ) )
+ k(s) / h(s”) ds” j 'Y(Z’) ea(S) (z-z ) R'L(z ,XsY58 ) dz .
° z (7.6)
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We consider the slab split into two slabs at z. The left-hand slab

extends from y to z and the right-hand slab from z to X, We now have

four expressions from equations (7.5) and (7.6) for the fluxes at the

point z:

0

2
u,(z,2,y,s) = k(s)/ £,(s7) ds’/ y(z*) &2(s) (z-z )RR(Z’,z,y,S‘) dz”
— y

00

+ k(s) f

z -
h(s”) ds” f v(z") &2(8)(z7-2) R (z7,2,,s") dz”
0

y
+ h(s) ea(s) (y-2) ) (7.7a)
u)‘_(z,x’z’s) = hz(s) > (7.7b)
vy (2,2,5,8) = £.(s) , (7.7¢)

0

V (Z,X,z,8
’L(,,,)

k(s) /

-—00

X
£(s7) gs- / y(z™) ea(s)(z-z‘) RR(Z‘,X.Z,S’) dz~
Z

+ £(s) &2(8)(zX)

o X
+ k(s)/ hz(s’) ds’/ v(z") ea(s) (z=27) RL(z’,x,z,s’) dz~ .
0 2

(7.74)
Here fl(s) is the flux entering the left-hand slab from the right, and

h2 (s) is the flux entering the right-hand slab from the left,
Transport theory allows us to write two further expressions for the

fluxes at z in terms of the reflection and transmission operators.
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ug‘(z’z’y’s) = Tl(z,y,s) °h(s) + R/L(Z’Y,S) ° VQ(Z,Z,Y,S) ’ (7.8a)

V,L(Z,X,Z,S) = Rg(z’x,s) °u,L(z,x,Z,s) +7/-L(Z’x’s) ° f(s) . (7,8b)

These equations are the statement of the principles of invariance for a

finite slab, The principles are shown by Chandrasekhar in [4], By com- K
paring these equations with (7,7), we can write expressions for the .
operators appearing in equations (7.8) L
© z
T,(2,,8) © = k(s) /( <s'>}ds‘/ v(z) 2 ED g (57,2,y,5%) d2”
g g
+ ( ) o e2(8)(y-2) (7.92)
0 z
R,y(2,5,8) ° = k(s) ] (e )ds'f ¥ 2ETE g ay,e) a2t
-0 y
(7.9b)
o b'e
Rg(z,x,s) o = k(s)./.< (s’)) dsi/ﬁ Y(z7) ea(s)(z—z ) RL(z’,x,z,s’) dz~ ,
o] z
(7.9¢)
0
T)L(z,x,s) o = k(s)/ ( (s?) )ds'f Y(z7) ea(s)(z—z ) RR(z’,x,z,s') dz” |,
—o z
+ () e 2B (7.9d) )

The notation ( D) ) denotes the change of variable to s’; the action
in this case is by integration over s*. The symbol "( ) o " denotes

direct multiplication,
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At this point it perhaps would be well to indicate how the coupled
palr of iIntegral equations (7.8) can be used to solve the problem of a
slab when Y(z) is a function having a single step, Let z be the point
at which the step occurs; then using the results of Section VI, we
can compute the R functions appearing in (7.9) since y(z) is constant
on each of the two pleces. By the continuity of the flux in the com-

posite slab we must have

h2(s) = un(z,x,z,s) = uz(z,z,y,s) ’ (7.10a)

fl(s) = vz(z,z,y,s) = vn(z,x,z,s) (7.10b)
so equations (7.8) provide a coupled pair of integral equations for
hz(s) and fl(s). If these equations can be solved, then the solution

to the integral equation is given by one of the equations

¢ (w) fl(s') RR(w,z,y,s') ds” +L[m h(s”) RL(w,z,y,s’)'ds‘ (7.11a)

—c0 0

or

¢ (w) f(s?) RR‘w,x,z,s’) ds‘-i/m)hz(s’) RL(w,x,z,s’) ds” (7.11b)
- 0
depending on which side of the step the point w lies.

The direct solution of (7.8) is formidable. We attempt to simplify
these equations by using integral identities. To this end we define

z a(sl)(z’-z)

o(z,y,sl,sz) = k(sl)/ v(z°) e RR(z‘,z,y,sz) dz® , (7.12)
y
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z a(sl) (z"-z)

t(z,y,sl,sz) = k(sl)f y(z?) e RL(z’,z,y,sz) dz- , (7.13)
y

* a(s;) (z-z")
r(z,%,5.,5,) = k(s;) ¥(z°) e R (z7,%,2,8,) dz° (7.14)

z

' a(sl)(z—z') ) ’
T(z’x’sl’sz) = k(sl) y(z7) e RR(z ,x,z,sz) dz . (7.15)
z
‘These functions are the kernels of the reflection and transmission
operators defined by equations (7.9). Using these definitions

we can write the equations for hz(s) and fl(s) in the following

form:

(o o]

0
h2(8) =/ fl(S') 0(z,y,8,87) ds” + h(s”) t(z,y,s,s”) ds”

c?"“\

+ h(s) ea(S)(y-Z)

fl(S) = f

-—C0

’ (7.163)

0
f(s7) 1(z,x,8,87) ds” + J/“>h2(s’) r(z,x,s,s8”) ds”
0

+ f(s) ea(s)(z~x) . (7.16b)

We need to derive integro differential equations for the reflection and
transmission kernels of equations (7.12) through (7.15). Before start-

ing these derivations we prove some relations which are needed in the

procedure.
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We first note that the R functions satisfy the following integral

equations
RR(z Xy¥,8) = e2(8) (z-x) +-j[x K(z,z") RR(z‘ X -
1 XYy ’ »X,Y,8) dz ’ (7.17)
y
X
RL(z X,¥,8) = ea(s)(y-z) +:/( K(z,z") RL(z' X -
XYy > +X,¥,8) dz . (7.18)
y

Then we can show
Lemma 7.1 The R functions and the reflection and transmission kernels

are related by

(o]

RR(z,z,y,s) = 1 f]. p(z,y,s",s) ds” . (7.19)
0

RL(z,z,y,s) = ea(s)(y—z) +J. t(z,y,s”,s) ds” . (7.20)

0
RR(z,x,z,s) = ea(s)(z-x) +‘J. T(z,x,8",s) ds” s (7.21)
0

RL(z,x,z,s) =1 +[ r(z,x,s”,s) ds” . (7.22)

v 0

73



Proof: From (7.17)

Z
RR(z9zsy’5) 1 +f K(z,z") RR(Z',Z’Y’S) dz”

y

Z Lo
1 +Jﬁ vz dz’.f k(s,)ea(s’)(z'-z) RR(z‘,z,y,s) ds”
0

S Z

1 +J’ ds' k(s’)Jﬁ Y(z7) ea(s’)(z‘—z) RR(z’,z,y,s) dz”
0 y

1 +jmp(z,y,s’,s) ds”

0

which shows equation (7.19). The remaining three relations are proved

analogously. §

Lemma 7.2 The reflection kernels satisfy the exchange relations,

k(sz) p(z,y,sl,sz) = k(sl) p(z,y,sz,sl) (7.23)
and

k(sz) r(z,x,sl,sz) = k(sl) r(z,x,sz,sl) . (7.24)
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Proof: Some manipulation shows that

p(z,y,8 1’S )y [? i a(sl)(Z’-Z) ‘ )
k(s _J ¥(z%) e R.(z7,2,y,s8,) dz
y
(2 a(s;) (z"-2) [ a(s,) (z'-2)
= ¥(z”) e e
Jy

z a(s,) (z,-2)
+ Q(z’szz9za}') e de dz~

a(s ) + a(s )] (z7~z)

y(z7) e dz”~

fy
a(s ) (z"=2) 2 a(s,) (z,-2)
J. dz~ v(z7) Q(Z’,zz.z,y) e dz,
y

a(s )+a(s )] (z7-2)
Y(z?) e dz~
y

rZ a(sl)(z’-z)
+ e dz~

% a(sz)(zz-z)
X Y(z,) Q(z,527,2,y) e dz,
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and

p(2,758,,8,) z a(s,) (z ~2)
= Y(z”) e RR(z’,z,y,s) dz”

k(sz) y

/" als) (z"2) { a(s,) (z"-z)
= Y(z7) e e
y

a(sl)(zz-Z)
+ Q(Z’,zz,z,y) e dz, dz”

‘a(sl)+a(sz)](z’—z)

v(z*) e dz”

\N %,\_\&

z a(sl)(zz—z)

e dz

+ 2

a(sz)(Z’—Z)

X v(z”) Q(Z‘,ZZ,Z,Y) e dz” .

%““‘5 i?“‘\ ~

This establishes (7.23). Relation (7.24) is proved similarly.}

We now derive equations for p(z,y,sl,sz) and t(z,y,sl,sz). For
these two functions we are interested in equations which can be
started at w = y and integrated to z. From equation (7.8a) and the

definitions of p and t, we have
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0
u(w,w,y,s) =/ fl(S‘) p(w,y,8,87) ds”

T{aah(s‘)t(w,y,s,s‘) ds” + h(s) ea(s)(y—w) . . (7.25)
0

We set h(s) = 0 to obtain

0
u(w,w,y,sl) =/fl(s')P(W,Y,Sl,S') ds” . (7-26)
Hence,
0 J
ul(WsW,y,Sl) + “2 (w,w,y,sl) =/ fl(s’) WD(W,y,Sl,S’) ds” . (7027)

From the pseudo-transport equation we have
uy (0, w,y,81) = —alsy) u(w,w,y,8;) + k(s)) v(W) n(w,w,y) . (7.28)
From (2.17) we have, since h(s) = 0,

]
n(w,w,y) =/ fl(s‘) RR(Waw’YaS‘) ds~ ,

and by Lemma 7.1

0 0

N(W,W,y) =/ fl(s') l+f p(wsy,8,,87) ds, ds” . (7.29)
=00 0
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We insert (7.26)and (7.29) into (7.28) to get

.0
ul(w,w,y,sl) = —a(sl) ] fl(s‘) p(w,y,sl,s’) ds”
0 o
+ k(sl) Y (w) f fl(s’) 1 +f p(w,y,sz,s’) d82 ds” .
—00 0
and obtain finally
0
ul(w,w,y,sl) =./. fl(s') ds” 1-a(sl) p(w,y,sl,s’) (7.30)
+ k(sl) Y (w) ]:+./. p(w,y,sz,s‘) d32 . (7.30)
0

To get an expression for uZCw,w,y,sl) we differentiate the pseudo-
transport equation with respect to x., It is established in [1] that
this operation is permitted and that the order in which the differen-

tiations are done can be interchanged. The result is

u;,(2,%,5,8) + a(s) u,(z,%,y,8) = k(s) v(z) nz(z,x,y)

-vlz(z,x,y,S) + a(s) v,(2,%,¥,8) = k(s) v(z) nz(z,x,y) >

|
o
-

uz(y,x,y,S) =

V2(x9x9y,s) = _Vl(X,X,y,S) . (7.31)
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Equation (7.31) is a problem exactly analogous to the original trans-—
port problem and its solution can be written down immediately from

equation (7.5), i.e.

0
u2(w,w,y,sl) = k(sl) / [—vl(w,w,y,s’)]ds'

-00

v a(s;) (z"-w)
X v(z") RR(Z"W’}"S’) e dz” ’
y o
so by the definition of p(w,y,sl,s’)
0
u,(w,w,y,8,) = -/ v, (W,w,y,87) o(w,y,8,87) ds” . (7.32)

The value of vl(w,w,y,s ) can be taken from the pseudo-transport equa-

tion so
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u,y (W, W,¥,5,) =/Q p(w,y,sl,s‘)[-a(s‘) v(w,w,y,s7)

—00

+ k(s”) v(w) n(w,w,y)] ds”
0
=/ P(W,Y,Sl,s’) —a(s‘) fl(s’)

0
+ k(s”) Y(w)/ fl(sz) RR(w,w,y,sz)ds

g - -]

0

=/ £, (s ’)[ -a(s”) o (w,y,sl,S’)

ds”
2

0
+ v (w) RR(w,W.y,S’)/ k(sz) p(w,y,sl,sz) "ds, | ds”

-0

Finally using Lemma 7.1
0
uz(WaWay’sl) =/ fl(s’) -a(s”) p(Wsy,Sl, s%)

(oo}

+ y(w) {l +/ p(w,y,s3.S‘) ds3
0

X/‘O k(s2) p(w,y,sl,sz) dszl ds~

t

- J
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We put our expressions for the two derivatives into equation (7.27)

which results in

0 0
/ fl(s‘) .aiw p(w,y,sl,s’) ds” =[ fl(S') —a(Sl) O(W,Yaslas')

-—C0 =00

I’ 00
+ k(sl) y(w) ll +] o(w,y,sz,S‘) ds, -a(s”) p(w,y,sl,S’)
0

N

(¢

0
+ Y(w) | 1 +[ p(w,y,s3,s’) ds3 / k(sz) p(w,y,sl,sz) d52 ds”
0

- C0

The value of fl(s) is arbitrary as far as the left-hand slab is con-

cerned, hence, we conclude in the usual way that

3 P(0,3,50,8,) = -[als)) +alsy)| o(w,y,sy,8)) Hk(sy) Y0

0 -
+ yv(w) f k-(s3) O(W,y,sls83) dS3 1 +f p(w,y,s4,sz) ds4 ’

—c0 0

p(y’Yssl,Sz) =0 . (7.34)

We can reduce this integro differential equation to a differential equa-

tion by using Lemmas 7.1 and 7.2. Applying the relation (7.3) yields
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3
e p(w,y,sl,sz) = - [a(sl) + a(sz)] p(w,y,sl,s?_)

0 ©
+ k(s) Y(W) 1 +f D(W,y,83,sl) dS3 1+ f O(W,Y,S4s82) dS4 ’
-0 0
and from (7.19)
2 o _
3w P(WsYs8.,8,) = - [a(sl) + a(sz)] p(w,y,8;58,)
k Wl 3%WaeJo b
+ k(s;) v(w) Ry (w,w,y sl) R (W,%,Y,8,)
P(¥s¥58:58,) =0 - (7.35)

For y fixed this is an ordinary differential equation with constant
coefficients provided the RR function is known. However, these values
are exactly those generated during the integration of the specialized
imbedding equations, so at least for y(z) a constant, equation (7.35)
can be integrated simultaneously with these equations.

To get a similar equation for t(z,y,sl,sz), we again use equa-

tion (7.25), but now with fl(s) equal to 0, so that,

0

a(s.) (y-w)
u(W,W,Y,Sl) =[ h(s”) t(W’Y,Sl,S') ds” + h(sl) e 1 (7.36)
0
and
ul(Wswsy,Sl) + uz(waw’y’sl) = [ h(s”) -:_W t(W:YsS:L’S’) ds”
Jo
a(s,) (y-w)
“h(s)) als)) e 1 . (7.37)
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From the transport equation

ul(w,w,y,sl) = -a(s;) u(w,w,y,sl) + k(sy) vy(w) n(w,w,y)

a(sl) (y-w)

—a(sl)[/ h(s”) t(w,y,sl,s') ds” + h(sl) e
0

(-}

+ k(sl) Y(W)/ h(s?) R (w,w,y,s") ds”
0

a(sl) (y-w)
= -a(sl) h(sl) e

(s o]

+/ h(s”) [-a(sl) t(w,y,8;,8")

0
+ k(sl) y(w) KL(w,w,y,S’)} ds” >

and from equation (7.20)

a(sl) (y-w)
ul(w,w,y,sl) = -a(sl) h(sl) e + h(s”) y-a(s;) t(w,y,5;,5 )
0

+ k(s;) v(w) {:ea(s‘) (y=w) +/ t(W,¥,8,58") dsz} ds”
0

(7.38)
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The argument used to derive equation (7.32) still applies, but the

value of vl(w,w,y,s) has changed, hence,

0
u, (W,w,y,8,) = —f vl(w,w,y,S’) o(w,y,81,8‘) ds”

0
= /“ Pp(w,y,s ,S‘) _a(s‘) V(W,W,y,S‘)
J 1 [

«-00

+ k(s*) v(w) n(w,w,y)} ds”

00

0
=/ P(W»Y,Sl,S') k(s?) y(w) ];h(sz) RL(w,w,y,sz) ds”

since

v(w,w,y,8 ) = fl(s) =0

This gives finally

uz(w,w,y,sl) =[ h(s") ea(s')(y—w) +[t(w,y,s2,s') d52
0

0
X Y(w)/ k(sz) O(w,y,sl,sz) ds2 ds” . (7.39)

- OO

Putting (7.38) and (7.39) into equation (7.37) and cancelling the two

non—-integral terms we arrive at
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o) co

f h(s”) 53;; t(w,y,sl,S’) ds” =/ h(s”) | -a(sy) t(W,¥,8,,8")
0 0

+ k(s;) Y (W) e2(87) y-w) +f t(W,¥,84,57) ds,
0

+ y(w) ea(s’)(y-w) +/ t(w,y,s4,s') ds4
0

0
X/ k(SS) p(w,y,sl,ss) ds5 ds

-t 00

And by the usual argument, we have

5 a(s,) (y-w)
3w tW:Y,8,,8,) = -—a(s)) t(W,y,s,,s,) + e

0
+/m t(W,y,s3,sz) ds3 k(sl) y(w) + Y(W)/ k(ss) p(w,y,sl,ss) d85 .
0 -00

(7.40)
Again we can reduce this integro differential equation by using Lemmas

7.1 and 7.2 we obtain

3 .
-a_w_ t(w’Y’slssz) = _a(sl) t(w,y,sl’sz)

0
+ RL(w,w,y,sz) k(sl) y(w)| 1 +/ o(w,y,ss,sl) dsg

-—C0
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So

)
3o t(w,y,sl,sz) = -a‘(sl) t(w,y,sl,sz)

+ k(s) v(w) RL(w,w,y,sz) Ro(w,w,y,8,0

t(y’YQSl’sz) =0 . (7.41)

Like the equation for p(w,y,sl,sz), these equations can be integrated
simul taneously with the specialized imbedding equations.

We now need to obtain similar equations for r(z,x,sl,sz) and
T(z,x,sl,sz). Integration of these equations should start at w = z
and continue to w = x. When the necessary equations are derived we
discover that they are integro differential equations as are equations
(7.34) and (7.40), but they cannot be reduced by relations similar to
those in Lemma 7.2. The interested reader may find the derivations
in Appendix B.

It is still possible to solve the problem if we approach it in
a different way. We derive equations for r and T for integration from
W =% to w = z and use the symmetry properties of the R functions for
constant y(z) to carry out the integrations. The derivations parallel

those used to obtain equations (7.34) and (7.40), and the results are




(o]

3% r(w,%,8;,8,) = [a(sl) + a(sz)] r(w,X,5:,8,) -|1 +f r(w,X,5,,8,) ds,
0

k(sy) y(w) + Y(W)f k(sy) r(w,x,8.,8,) ds, ,
0

r(x,x,sl,sz) =0 (7.42)

and

T(w,x,sl,sz) = a(s;) T(w,x,sl,sz)

a(s,) (w-x)
-le + 'r(w,x,ss,sz) ds3 k(sl) Y(w)
0

v

—~

Xl1 +f r(w,x,s',sl) ds | ,
5 0

T(:x,x,sl,sz) =0 . (7.43)

We nlpte that these two equations are identical to (7.34) and (7.40)

except for a sign. Using the results of Lemma 7.1 we find that

pom r(w,x,sl,sz) = [a(sl) + a(sz)]r(w,x,sl,sz)

—k(sl) Y(w) RL(W’X’W’SZ) R-L(W,x’wssl) (7.44)
and
3%- 'r(w,x,sl,sz) = a(sl) 'r(w,x,sl,sz)

—k(s;) v(w) Ry W,%,w,8,) RL(w,x,w,sl) . (7.45)
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If we can find a way to get the R function values needed, we can inte-
grate (7.44) and (7.45). We now investigate this problem.

Consider the two slabs shown in the figure below

zZ W, X z W, X
Fig. 3 Integration on vy from z to x and on v, from x to z.
We assume that
wl -z=x-W, .

The slab on the left represents the integration from z to x. This is
the direction used in Section VI to compute the R functions. The

slab on the right represents the integration from x backwards to z.
What we want is to find expressions for RL(WZ’X’WZ’S) and RR(WZ’X’WZ’S)

in the right-hand slab in terms of the functions RL(wl,w sZ,8) and

1
RRCwl,wl,z,s) which we compute for the left-hand slab. For the case

y(x) = constant, the R functions at the edges do not depend on the

locations of z, w,, w, and x, but only in the widths of the slabs.

1> "2

Therefore, if

then the values at the left edges are the same. This means




RR(Z,Wl,Z »8) = RR(WZ’X ,W29S)

and
RL(z’wl’z’s) = R-L(Wzsxswzss) .

Thus, it is possible to integrate the equations for r(z,x,sl,sz)

and T(z,x,sl,sz) backwards from x to z while simultaneously integrating
the special imbedding equations forward from z to x. When these identi-
fications are made in equations (7.44) and (7.45) and, further the re-

lation from Theorem 6.4,

RR(X’X’Y,S) = R.L(Y,X,}’,S) s

is used we obtain equations identical to the equations for p(z,y,sl,sz)
and t(z,y,sl,sz), except for a sign. Since the integration step is
negative, we finally find that we really have identical equations;
hence, the same algorithm which computes the kernels p and t may be
used to compute the kernels r and T.

The extension to the case where Y(z) has n steps is now simple.
We first solve for the R functions and reflection and transmission
kernels for each section of the slab having a constant y value. We
denote the solutions pertaining to the jth value of p by the super-
script (j). Thus, RR(j), p(j), t(j), etc. refer to the values of
RR’ ps t in the section of the slab in which Yy assumes its jth
value. Once the R functions and kernels are computed we then solve for
the values of the fluxes at the points of discontinuity of y. For

these fluxes we have the following integral equation set analogous

to equations (7.16):
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0
L e (2) -
fl(s) = ./. fz(s’) t(z)(zz,zl,s,s ) d ﬁ/mhz(s Yo (zz,zl,s,s ) ds
- 0

(o]

a(s)(zl—zz)

+ fz(s) e .
° 1)
hz(s) = / fl(s') p(l)(zl,zo,s,s’) ds” + hl(s’) t (zl,zo,s s”) ds
—c0 0
a(s) (z,-z )
+ hl(s) e .

0
_l(s) = j( fn(s') t(n)(zn,zn_l,s,s‘) ds”

” a(s)(z__,-z_)
+-/ﬁ h (s7) Sn)(zn,zn_l,s,s’) ds” + fn(s) e n-l "o s
h (s) = /D 17 p(n_l) (2 _152,_928587) ds”
fh ‘) t(n—l) (zn-l’zn—Z’S’s‘) ds”
0
a(s)(z__ _-z__.)
h . (s) e n-s a-lt (7.46)

In equation (7.46) we have set the known input fluxes to the composite

slab equal to hl(s) and fn(s) and also

r(z,x,s,8") = p(x,2,s8,87) ,

T(Z,X,S,S’) t(x,z,s,s87)
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After the system (7.46) has been solved, the integral equation solu-
tions are obtained by carrying out the integration:
0
o) =f £,Gs) RS

=00

(w’zj’zj—l,s’) ds‘

(s

+f b (s") Réj)(w,zj,zj_l,s') ds” ., (7.47)
0

where it is assumed that

z Swsz,
J

j-1
In the next section we give some numerical examples of solutions

for both constant and step function v .
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VIII NUMERICAL RESULTS

We now turn to the numerical solution of the equations we have
derived. We will first give examples of how the computation is carried
out for the case

v(z) = constant
and then extend to the case where y(z) is a step function.

The computation of the solution of equation (1.1l) at the point
z by the imbedding moment method takes place in two steps. The first
step is to find the R functions at z while the second step is to carry
out the integrations of equation (2.17). This latter step is a straight
forward application of standard integration techniques. We describe an
implementation of the first step in which multiple interior points are
calculated for a fixed s. Needless to say all s points could be obtained
either by calling the described routine several times or by writing the
program to also calculate all s values as well as all z values.

The required values of RR(zi,x,y,s) and RL(zi,x,y,S) are obtained
as follows. The infinite sets of moment equations (6.22a) and (6.22b)
are truncated at some predetermined number N and a value of s is chosen.
Then starting at y the truncated sets of specialized imbedding moment
equations (6.22a) and (6.22b) are integrated to the first interior point,
zl, at which the solution to (1.1) is desired. At this point we also
begin to integrate a truncated set of imbedding moment equations (3.11)
along with the imbedding equations (3.12a) and (3.12c). Here we should
note that it is unnecessary to compute RL(z,z,y,s) since this value can

be obtained from the values computed for RR(y,z,y,s) by using
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Theorem 6.4. The initial conditions required for the new equations
are taken from the present values of Co(zl,y),RR(zl,zl,y,s) and
RL(zl,zl,y,s) which are available from the solutions of the

original equation sets. At each succeeding z point, z,, we pick up

i
a new truncated set of G moment equations and a new pair of imbedding
equations obtaining the initial conditions from the current values of
Co(zi,y), RR(zi,zi,y,s) and RL(zi,zi,y,s). The integration is complete

when the desired x value is reached. A flow chart of the calculation

is given below

Integrate (6.22) and (6.23) from w = z2g =Y to w = zq

Add equations (3.11), and (3.12) at w = zy

and integrate to Zit1

yes

Integrate (2.17) for each z

i

Fig. 4. Flow chart for solution of equation (1.1) when y(z)
is a constant.
On completion the R function values are stored and the procedure is
repeated for other s values. The values given in Tables 8.1, 8.2,
8.3 and 8.4 below were computed with this algorithm. In the
examples, the integration was done using a fourth order Runge-Kutta-

Fehlberg routine. This is the subroutine RKF given in [9]. The
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initial conditions (6.22¢) and (6.22d) were evaluated using the sub-

routine QNC7 [6]. All computations were done on a CDC 7600 computer.
In order to make comparisons, a more standard solution algorithm

is required. An iterative method based on the Neumann series solu-

tion of (1.l1) was used. The algorithm was

X

¢j(2) = g(z) +/ K(z,z")¢ j_l(Z‘) dz®
y
¢,(2) = g(2) . (8.1)

QNC7 was used to compute the integrals needed to evaluate the kernel

K(z,z”). At each step in the iteration a multipoint Simpson's rule was

used to evaluate the integral in (8.1). Iterations were stopped when
Tii,N ¢j(zi) - ¢j_1(zi)

became less than a preset value.

Equation (8.1) can also be used to evaluate the R functions since,
for fixed s, they satisfy-integral equations of the type (1.1). It
should be noted that while the imbedding moment method allows the calcu-
lation of the solution at a single point without affecting the accuracy,
the iterative method must always compute the solution at a large number,
of points.

The first numerical experiment was to investigate the dependence
of the computed solution on the number of moments used:! We give several
examples. In each an absolute and relative error of 10—10 was used to
control local error in the numerical integration. In the following

examples s is fixed at 0.5 and RR(z,x,y,s) is calculated for five
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values of z.

Example I.
1
K(z,z ") =./r e_sls‘| -7 {z=2"| ds”
0
y = -1.0 ’
x = 1.0 s
s = 0.5 .

Table 8.1 gives the values of RR(z,l,—l,.S) for this problem. Fourteen

momenti:s are sufficient to obtain no further change in the tenth decimal

place. This example was checked out for a total of thirty moments.

Example T1I.

1 2 ) )
K(z,z") =f 2%3/4 -sin® 57|z - 27[ds”
. le7]
y =-1.0 ,
x = 1.0 s
s = 0,5 .

Table 8.2 gives the results in this case. Thirteen moments were
sufficient to obtain no further change in the solutions.

Example III.

1 2
K227 / 8104 ols7 a2t g
0
y=-1.0 ,
x=10 |,
s = 0.5 .
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SOLUTIONS OF EXAMPLE I AS A FUNCTION OF THE NUMBER OF MOMENTS USED.

TABLE 8.1

RR(Z’]-"']-’ .5)

z position

No. of
Moments -1. -.5 0.
4 .68888 11719 .81584 68778 .96116 85493
5 .69045 52996 .81638 91668 .96144 57715
6 .69009 67120 .81629 04554 .96139 73096
7 .69017 25723 .81630 73167 .96140 56431
8 .69015 77211 .81630 46212 .96140 42578
9 .69016 04115 .81630 50248 .96140 44776
10 .69015 99595 .81630 49681 .96140 44446
11 .69016 00301 .81630 49756 . 96140 44493
12 .69016 00198 .81630 49746 . 96140 44486
13 .69016 00212 .81630 49748 .96140 44487
14 .69016 00211 .81630 49747 .
15 .
30 .

l.

1.1311
1.1315
1.1314
1.1314
1.1314
1.1314
1.1314
1.1314

47321
55237
80924
93729
91652
91969
91923
91929

1.3331
1.3342
1.3339
1.3340
1.3340
1.3340
1.3340
1.3340
1.3340
1.3340

52136
32226
94584
43496
34128
35794
35519
35561
35555
35556
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TABLE 8.2

SOLUTIONS OF EXAMPLE II AS A FUNCTION OF THE NUMBER OF MOMENTS USED.

RR(Z’]-’—]-,'S)

No. of Z POSITION
Moments ~1, -.5 0. .5 1.
4 2.9232 37336 3.0646 88711 3.1742 62560 3.2526 94929 3.2984 75346
5 2.9301 20804 3.0689 13137 3.1778 63469 3.2568 43607 3.3050 79670
6 2.9288 77622 3.0682 30673 3.1772 81652 3.2561 72761 3.3038 94251
7 2,9290 79323 3.0683 30325 3.1773 67504 3.2562 70853 3.3040 85552
8 2.9290 49683 3.0683 17057 3.1773 55890 3.2562 57772 3.3040 57570
9 2.9290 53654 3.0683 18678 3.1773 57335 3.2562 59373 3.3040 61304
10 2.9290 53166 3.0683 18495 3.1773 57169 3.2562 59192 3.3040 60846
11 2.9290 53221 3.0683 18514 3.1773 57187 3.2562 59211 3.3040 60898
12 2.9290 53215 3.0683 18513 3.1773 57185 3.2562 59209 3.3040 60892
13 2.9290 53216 3.3040 60893
14 . .
30 . .
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The results are given in Table 8.3, Here fifteen moments are required

to reach no further change in the tenth significant figure.
It appears, at least for the examples considered so far, that the
moment method converges quite rapidly. A maximum of fifteen moments

was sufficient to obtain ten significant digits in all computed results.

Having examined this point we turn to the question of the accuracy
of the imbedding moment method. In Table 8.4 we list selected values of -
RR for the kernel of Example I, computed by the iterative method des-
cribed earlier, as a function of the number of divisions used in the
Simpson's rule integration. For this example we have reduced the z
interval by a factor of ten from that used in Example I; specifically

we treat the case

Example IV,

1
K(z,z") =/ e—Sls’| eﬂs‘llz_z‘lds'
0

y = -0.1 s
x = 0.1 ’
s = 0.5 .

We have used the smaller interval [y,x] because it is not possible in
the iterative calculation to store the matrix for K(z,z”) for equivalent
fineness of mesh on larger intervals. It will be seen from Table 8.4
that the values obtained by the iterative method appear to be converging *
to the imbedding moment values as the subdivision becomes finer.

The differences in computation time are appreciable. The time re-

quired to compute the values by the iterative method ranged from 45
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TABLE 8.3

SOLUTIONS OF EXAMPLE III AS A FUNCTION OF THE NUMBER OF MOMENTS USED.

RR(z,l,—l,.S)
No. of z position
Moments -1. =5 0. +5 1.
4 5.2553 49508 5.9469 50952 6.2935 47108 6.2961 33999 5.9453 13944
5 5.4833 93477 6.1421 88547 6.4823 90312 6.4898 59094 6.1682 03452
6 5.4316 76938 6.1004 17465 6.4419 54074 6.4483 89397 6.1178 38999
7 5.4421 44348 6.1084 02892 6.4497 17355 6.4563 20748 6.1279 90174
8 5.4401 75067 6.1069 80092 6.4483 25727 6.4549 06739 6.1260 87292
9 5.4405 17524 6.1072 15033 6.4485 57049 6.4551 40368 6.1264 17082
10 5.4404 62192 6.1071 78890 6.4485 21231 6.4551 04407 6.1263 63963
11 5.4404 70526 6.1071 84087 6.4485 26412 6.4551 09580 6.1263 71941
12 5.4404 69352 6.1071 83386 6.4485 25710 6.4551 08882 6.1263 70820
13 5.4404 69507 6.1071 83475 6.4485 25799 6.4551 08971 6.1263 70968
14 5.4404 69488 6.1071 83464 6.4485 25789 6.4551 08960 6.1263 70949
15 5.4404 69490 6.1071 83465 6.4485 25790 6.4551 08961 6.1263 70951
30 . . . .
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No. of
Simpson
Points

SOLUTIONS OF EXAMPLE IV FOR SEVERAL NUMBERS OF POINTS USING THE ITERATIVE METHOD.

TABLE 8.4

z position

RR(z,.l,—.l,.S)

-.08

.07

_003

.02

.03

.07

.08

41

81

121

161

201

.95266 20120
.95266 20055
.95266 20043
.95266 20039

.95266 20037

.95729
.95729
.95729
.95729

.95729

Imbedding-moment solutions

.95266 20034

.95729

88652
88587

88575
88571

88569

88566

.97600 58945
.97600 58880

.97600 58868
.97600 58864

.97600 58862

.97600 58859

<99975 48996
.99975 48931
.99975 48919
.99975 48915

.99975 48913

.99975 48909

1.0045 54216
1.0045 54210

1.0045 54209
1.0045 54208

1.0045 54208

1.0045 54208

1.0239 19308
1.0239 19302

1.0239 19300
1.0239 19300

1.0239 19300

1.0239 19300

1.0288 02958
1.0288 02951
1.0288 02950
1.0288 02950

1.0288 02950

1.0288 02949




seconds for 81 points to 278 seconds for 201 points. By contrast, it
required less than 5.5 seconds to compute the imbedding moment values.
This is not, however, a valid comparison since usually we require

not the solution for the R functions, but rather for the integral equa-
tion (1..1). We will make a better comparison later.

When the kernel K(z,z”) 1is oscillatory, care must be taken when
evaluating it numerically., This problem can apparently be avoided by
using the imbedding moment method since the integrals required are for
the initial conditions only and these may not involve oscillations. We

give the following examples.

Example V.
1
ey = [ I e e
0
y = -1,0 R
x=1.0 s
s = 0.5 .
Example VI.
1
K(z,27) = / SSlel g 10s ez | g,
0
y=-l'0 ’
x = 1.0 s
s = 0.5 .

Table 8.5 gives representative results. The computation times are the

times required to compute 41 z points by the imbedding moment method.
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TABLE 8.5

VALUES OF R, (z,x,y,.5) FOR COMPLEX EXAMPLES V AND VI

Example V Example VI
z *r *r
Real Part Imaginary Part . Real Part 'Imﬁgigagz Part
-1.0 ©.98295 74648  -1.27015 5927 0.17997 37410 -0.11603 84534
-0.8 1.08093 1388 -1.19886 3765 -0.11028 51397 0.23978 71305
~-0.6 1.16806 1621 -1.12162 2242 0.21600 17069 —-0.32475 39841
-0.4 1.24373 0120 -1.03941 6319 0.89002 72187 ~0.38928 04786
-0.2 1.39743 9640 -0.95325 93876  1.02228 9422 0.38787 80119
0.0 1.35881 6818 -0.86418 20522  0.29454 55710 1.02671 4905
0.2 1.39761 3741 -0.77322 10302 -0.68764 03659 0.79690 15768
0.4 1.42370 8010 -0.68140 82754 -1.08685 2831 -0.07499 61802
0.6 1.43710 1336 -0.58976 04572 -0.62413 01549 -0.56065 26009
0.8 1.43791 6727 -0.49926 89018 0.32733 57243 0.18440 11380
1.0 1.42639 4345 -0.41098 00948 -1.11974 1504 -1.04088 2114
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The computation times show that we do not completely avoid the computa-
tional problems associated with an oscillatory kernel.

We now consider examples when y(z) is a step function. The method
has been described in Section VII. Figure 5 is a general flow diagram for
the program used to compute the examples. This program computes only
one interior z point inside each step; this interior point could, of

course, be one of the discontinuity points of v(z).

Example VII.

1'
(z-1)
¢(z) = Ez—:T_‘l"*‘[ K(z,z") ¢(z7) dz~ ’
_1.

K(z,z") (8.2)

il
<
~
N
\
~
=
o
i
W
[+2]
v
o
1
2]
\
N
i
N
)
[= N
/]
v

v(z) (8.3)

1.5 , z>0

Note that here the function g(z) is given by the transform

1
_l .
‘_>_1/ ols7llzm1]
z -1
.

that is the f(s) in equation (2.10) is 1 and h(s) is zero.
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Y(z) = v 44
|

Integrate (6.22), (6.23) along with (7.44) and

(7.45) for all s values required from w = z 1

o = .
to w zi—lnterior

add (3.12), (2.28) and (2.29)

tow =2

integrate from w = 2, _interior i

no

i=1+1

no of steps

yes

Iteratively solve (7.46)

Integrate (7.47) for each z

i-interior

Fig. 5. Flow chart for the solution of equation (1.1) when y(z)
is a step functionm.
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An 81 point Simpson's rule was used to compute the iterative solution
of (8.1) while a 41 point Simpson's rule was used for the iteration
required to solve equations (7.16). Since the range of z is two while
the range of s is only one, this should yield comparable accuracies.

Table 8.6 gives the results for two internal points.

TABLE 8.6

SOLUTIONS OF (8.2) BY THE IMBEDDING-MOMENT METHOD AND BY ITERATIVE METHOD

Imbedding~Moment Lterative

z = (-.5) 1.0556315 1.0556368
z = (.5 1.3487203 1.3487364
time 8.368 sec 54.706 sec

The times in Table 8.6 are representative of the total procedure for a
step function. If y(z) is a constant function the imbedding-moment
method solution can be computed in about half the time while the itera-
tive method time will remain about the same.

As a further example of the method when v(z) is a multiple step
function we compute the solution to (8.2) with +vy(z) given by

Example VIIT.

1. , —1=2z< 1.8

1.1 sy =—=.8< z< -5

1.2 s =55 z<0,
v(z) =

1.3 , 0.2 z< .4

1.4 s 0.4 z< .7

1.5 sy 0.7 z< 1, (8.4)
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Table 8.7 gives the values of ¢(z) for six z points computed using the
imbedding-moment method, an 81 point Simpson's rule iterative method

and a 241 point Simpson's rule iterative method.

TABLE 8.7

SOLUTIONS OF (8.2) WITH y(z) GIVEN BY (8.4).

¢(z) $(z) $(z)

_z _im. 81 point 241 point
-.9 .96128723 .96129136 .96128565
-.6 1.03355743 1.03356202 1.03355607
-.1 1.16411936 1.16412452 1.16411831

.2 1.25087242 1.25087766 1.25087140

5 1.34621973 1.34622488 1.34621865

.8 1.45254806 1.45255298 1.45254690
Time 11.620 sec 51.177 sec 452.758sec

The examples given above in which time comparisons are made show
that the imbedding moment method can offer substantial savings over the
iterative method. It should be pointed out that in each comparison it
was assumed that it would be necessary to integrate the kernel numeri-
cally. Since only a small fraction of all admissible kernels are
integrable in closed form, this is a valid comparison. However, if the
kernel can be evaluated analytically, the iterative method may be

faster of the two methods,

106



IX  REMARKS

In this dissertation we have developed a method to solve Fredholm
integral equations with a special class of displacement kernels as ini-
tial value problems. The method has been shown to be both accurate and
economical. One of the incidental ‘results is the demonstration that
the kernels of the reflection and transmission operators can also be
obtained as the solution of initial value problems for the class of
problems treated.

There remains one major unresolved question. That is: can the
moment: method be adapted to the general case where Y(z) is a piece-
wise continuous function? It may be possible to utilize the existence
of solutions for a step function y(z) to prove the existence for this
general case. Even with this settled the problem of developing an

economical integration algorithm could be formidable.
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APPENDIX A

Further Examination of the Moments

This Appendix is a continuation of Section IV. We first establish
two lemmas.

Lemma A.l. Under the assumptions of Lemma 4.1

Gy(zsx,¥) = Qz,%,%x,7) /y(x) (a.1)
Gy (z:%,¥) = Qx,2,%,y)/y(2) , (A.2)
Hy(2,%,9) = Qz,3.5,90/v() C@.3)
Hy(z,%,5) = Q(y,2,%,y) /y(2) . (A.4)

Proof: Equation (A.1) follows from Lemma 4.1 and the definition of
Go(z,x,f), equation (3.6). Equation A,2 then follows from A.l by an
application of the exchange property (4.1). The other two equations
are proved similarly.l

Lemma A.2. The derivatives of the resolvent kernel of the integral

equation (1.1) are given by

n

2 Q(t,r, x,y) = {sgn(r - t)}n -Y(r) / an(s') k(s”) e-a(s’)lt"rl ds*
t
0

X
+ ‘Y(r) f {sgn(Z' - t)}n Q(r,z’,x,y) ds”
Yy

x[ aMs) k(s e 22t 4o (A.5)
0

Proof: We use the Fredholm relation (4.7) to obtain
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Q(t,r,x,y) = y(r) / k(s”) e‘a(S')lt—rl ds”
0

©o

* -a(s”) |z"-t]|
+ / ¥(z*) Q(z°,r,x,y) dz’/ k(s®) 28 |2 ds*
y 0

Differentiating gives

x©

n -
8—;Q(t,r,x,y)= y(r){sgn(r - t)}n/ a™(s) k(s*) e 2(s ) |t-r| ds”
at 0

X oo
+/ v(z7) Q(z7,1,x,y) dZ‘/ a"(s”) {sgn(z‘-t)}n
y 0

k(s) e 2D 2-t] 4.

Applying the exchange relationship to the last term, we have

aI'l

o At rx,y) ={sgn(r-tz)}n Y(r)/ a"(s7) k(s”) e 28T |t-r| 4 .
at
0

X
+ Y(r)/ Q(r,Z’,x,y){sgn(z’ - t)}n dz~
y

xf a®(s°) k(s*) e 28 [z 4 .

0

which is equation (A.5). §

109



The proof of Lemma A.2 shows that the nth partial derivative of
the resolvent kernel exists whenever its associated integral equation
has a kernel of the form (1.1b). Since the resolvent kernel is piece-
wise continuous in the variables t, x and y (Lemma 2,2) and the right
member of equation A.5 involves only the integral of the resolvent
kernel, we can conclude that the nth partial derivatives are also
plecewise continuous with respect to t, x and y.

Corollary A.3. The A and B moments are related to the resolvent

kernel by the equations,

n
ooty [ L= (DR v A Gy
3t £ = x (A.6)
an
T Q(t,r,x,y) r=x = y(x) Bn(x,}') .
t £ =y (A.7)

Proof: Evaluate equation (A.5) at r = y and t = x. Since sgn(y - x) = -1

and sgn(z” - x) = -1 for all z , we have

110




o]

y - (-1 v(y) / a"(s") k(s”) e-a(s’) Ge-y) ds”
b'q 0

an
_n' Q(tsr’x’Y)
ot

=
[}

o0 X
+[ an(s‘) k(s”) ds’/ Q(y,z7,X%,y) ea(s’)(z’—x) dz~
0 y

©0

= (=D y(y) / a"(s") k(s”) ds” {e 2 XxY)
0

X

+/ Q(ysz7,x,y) ea(s‘)(z’—X) dz” .
y

The quantity in the curly bracket is RR(y,x,y,s’), (see equation (2.15) ,

g0

3n n mn

g ULE,Xy) | _ y = (-1)" vy a (s7) k(s”) Ry(y,%x,y,87) ds”
t==z 0

= (-1 v A (x,y)

using the definition of An(x,y). Relation (A.7) is proved in a similar

manner. |
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Corollary A.4. The G and H moments are related to the resolvent kernel

by the equations,

n

:? UL,y |, L= (DY@ 6y, (4.8)

N

;1' Q(t’r’xs}’) |t =y = 'Y(r) Hn(r’x’}’) . (A.9)
Proof: Since sgn (z° - x) = sgn(r - x) = -1, at t = x equation (A.5)
yields
n ® -
ey [ L, = (DT / a"(e”) k(s7) &2V 4o
ot

0

X ©
+/ Qr,z°,%,y) dz’/ a(s*) k(s) 2(8NETH) 4 .

y 0

= ( -1)" Y(r)/ a®(s7) k(s) ds-{e?(87)(r %)
0

x
'*'/ Q(r,z”,x%,y) ea(s’)(z‘-x) dz~

y

= ( -1" Y(r)/ a"(s”) k(s?) Ry (r,x,y,87) ds”
0

= (-1 y(®) 6_(r,x,y) .
Relation (A.9) is proved similarly.l
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Corollary A.5. The C and D moments and the resolvent kernel are

related by,

n
oattrmy |, = (DY Y@ C Gy (4.10)
ot £ =x
an
E Q(t,r,x,y) =y = v(y) Dn(XSY) . (A.11)
t=y

Proof: Equation (A.10) follows from equation (A.8) since Gn(x,x,y) =
Cn(x,y). Equation (A.1l) is obtained from equation (A.9) by setting

r =y, since H (y,X,y) = Dn(x,y).l

We can get further insight into the relationship between the re-
solvent kernel and the various moments by considering the Taylor's
series expansions of the resolvent kernel for special values of the
arguments. It is easiest to discuss this as if y were the left edge
of an imaginary slab and x the right edge. We fix x and y, and ask for
the Taylor's expansion for the kernel when one of the usual kernel vari-
ables is fixed at one of the edges. For these cases the kernel is a
function of a single variable and this variable, is in effect, the dis-
tance from the left or right side of the slab.

We start with Q(z,x,x,y) expanded about the left side.

The Taylor's series is:

[+

n
Q(zsxsx’Y) = Z ;l'__@__n Q(z,x,x,y) _ (z - Y)n .
n=0 § 3z Y
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Using (A.4), we find that

Aammy) = v® D LB -t . @)

n=0

Using the exchange relation (4.1), we also have

Qx,z,:,9) = v@ D 2 B Gy - »® . (A13)

n=0

If instead, we expand about the right edge, we obtain

Q(z,x,x,y) —Z — Qz,x,x,y) z = x (z - ",

and using (A.10) we have the two relations:

= n
Wy =y ) L e -0t @
n=0
and
LI
Qx,2,%,y) = v(z) L}-n—%z— c )z -x" . (A.15)
n=0
We can obtain similar expressions for Q(z,y,x,y) and Q(y,z,x,y).
Since
Q(z,7,%,y) = v_l_an Q(z,7,%,y) z -9, (4.16)
Z,y,YyX,y AOJ ! z 1Y+ X,y z =y y ) .
we have
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D (xa}')
v(y) Z (z - - (A.17)

Q(z,y,x,y) =
n=0
and
= D (x,}')
Q(y,z,x,y) = y(z) Z l—;—,—— (z - v . (A.18)
n=0
Also, since
d n
Q(z’y,x’}') =Z-I'%—! % Q(z,y,x,y) z = x (z - x)n s (A.19)
n=0 2
it follows that
=z n
Azyimy) = v ) A @y - o (8.20)
n=0
and
ad n
Q(y,z,x%,y) = v(z) Z S%)— A (x,y)(z - > (A.21)

n=0
The equations above also give relations between the moments in the
specialized imbedding moment equations and between the moments of the
imbedding moment equations. For example, using Corollary 4.2, we find

that

o

Somy) = 9 ER ¢ G - 00, (a.22)
n=0

GO(Z,X,Y). = Z% Bn(x’Y) (z - Y)n ’ (A.23)
n=0
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2 n
Hy(z,%x,y) = Z-L;—}L A (x,y) (z - x)" (A.24)
n=0

and

=]

Hy(z,%,y) =E -nl—! D (x,y)(z - »ntoo (A.25)

n=0

Equating (A.12) and (A.14) we find

0

> n
Z.Q_;_l';L C (xy)(z - x" =Z nl—, B (x,y)(z - N . (a.26)

n=0 n=0

Setting z = x and then z = y gives the following two relations;

Cqo(x5¥) =Z ;IJ-‘,- B (x,y) (x - o, (A.27)
n=0

BGoy) =D& oot . (4.28)
n=0

Similarly equating (A.17) and (A.20) give

(-]

= n
2 s ez - T =Y b -t A29)
n=0

n=0

and the two derived relations;

ByGey) = D L Gy - (8.30)

n=0

and
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DGy =D A -t (a.31)

n=0
In fact we can get expressions for all the moments from equations
(A.26) and (A.29). Differentiating (A.26) with respect to z, and

setting z = x, produces

[}

( -1)k Ck(x,y) = Z om = 1)...(n - k+ 1) Bn(x,y) x-9" , (A.32)

n!
n=k

and setting z = y produces

oo

Bk(x,y) =Z nfn-1...n - k + 1) Cn(x,y) (x - y)n . (A.33)

n!

n=k

Similarly from (A.29)

(DA Gy =y Bes Do kP D p gy, a38)
n=k

[+

D Gry) =) BB kF D), o yem gt (a.35)

n!
n=k

The relations for the resolvent kernel suggest an alternate method

of calculating the R functions. We start from the definition of

RR(Z,X,}’,S) ’

X
I%{(z,x,y, g = ea(s) (z=x) +/ Q(z,z7,x,y) ea(s) (z7-x) dz . (2.15)
y

Evaluating equation (2.15) at z = x and using equations (A.13) and (A.15)

gives
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X )
RR(x,x,y,s) =1 +f (2" Z'( ;%)n Cn(x,y) (z* - )P ea(s) (z°~-x) dz”
y n=0
(A.36)
and
X =)
Rp(®,x,y,8) = 1 "’/ Y(z") Z -nl!- B (x,y)(z" - )" Q2 (@7x) .

y n=0
On the other hand, evaluating equation (2.15) at z = y and using expres~

sions (A.18) and (A.21) yields

Ry (¥:%,y,8) = ea(s) (y-x)

X ©
+/ y(z") ZBIT Dn(x’y) (z* - y)n ea(s) (z"-x) dz -
y n=0

(A.38)

and

RR(Y’X9Y, s) = ea(s) (y-x)

X oo
n »
y

n=0
(A.39)
From the definition of RL(z,x,y,s),
X
RL(z,x,y,s) = ea(s)(y—z) +/ Q(z,z",x,y) ea(s) (y-2") dz” (2.16)

y
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we obtain in a similar fashion the four relations:

RL(x9x9y’S) = ea(S)(y—X)
vl
y

RL(X,X,Y,S) = ea(S)(y-X)

X -
n 4
v(z%) ES—;}LCH(X’Y) (z© - x)n ea(s)(y—z ) dz”

n=0

(A.39)

X [«
+/ Y@ D B G - )t 2EO07E) 4T
n=0

y
(A.40)
X -]
R (y,%,y,8) = 1 +/ v(z) Z %. Dn(x’y) (z* - y)° 2(8) (y-z7) dz-
y n=0
(A.41)
and
X ] n
Pi(y,x,y,s) =1 +/ v(z") Z (_;:!LL An(x’y) (z* - )" ea(s) (y-z°) dz” .
y n=0
(A.42)

If it is assumed that these series can be integrated term by term,
then all the edge values of the R functions can be obtained directly
from a knowledge of either the An(x,y) and Cn(x,y) or of Bn(x,y) and
Dn(x,y) by summing a series of integrals. Since the values of the R
functions are wanted for several balues of s, this technique might repre-

sent & saving of computational effort.
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We have carried out a number of formal operations on various

power series. In Section V we have shown that these power series have
at least radius of convergence X - Y. It then follows that there exists

some region in which the Taylor's series for the resolvent kernel

converge and in which term by term integration and differentiation

are legitimate.




APPENDIX B

Derivation of The Equations for r(z,x,sl,sz) and T(z,x,sl,sz)

In this appendix we derive the forward integration integro
differential equations for the reflection kernel r(z,x,sl,sz) and the

transmission kernel T(z,x,sl,sz). In the following we are interested

in beginning the integration at w = z and integrating to w = x.

We take as our starting point the following equation which is
obtained from equation (7.9a2) and the definitions of r and t°
0
v(z,w,z,sl) = J[ f(s?) T(Z,w,sl,s') ds‘*‘f(sl) e
=]

a(sl) (z—w)

@

+:/~ hz(s’) r(z,w,sl,s‘) ds” (B.1)
0
We first set
f(s) =0
so that o
v(z,w,z,sl) = J{ hz(s’) r(z,w,sl,s‘) ds” (8.2)
0
and

-y 9 - .
vz(z,w,z,sl) =./~ h2(s ) sa-r(z,w,sl,s ) ds . (B.3)
0

We use equation (7.31) to get an expression for v2(z,w,z,sl).

This time we find from equation (7.6)
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0
vz(z,w,z,sl) = k(sl)f —vl(w,w,z,s') ds”

-0

\"J

a(s;) (z-z7)
%/. vz e R (z7,w,2,87) dz”
z
a(s,) (z-w)

—vl(w,w,z,sl) e 1 (B.4)

Using (7.15)
0
v2(z,w,z,sl) =[ [—vl(w,w,z,s') 'r(z,w,sl, s')] ds”
a(s;) (z-w)

—vl(w,w,z,sl) e
and using the transport equations

0
vz(z,w,z,sl) =./. T(z,w,sl,S') [ -a(s”) v(w,w,z,s”)

-0

+ k(s”) v(w) T1(w,w,2.)] ds® + [—a(sl) V(w,w,z,sl)

)} ea(sl) (e (B.5)

+ k(sl) Y(W) n(W,W,Z

But
v(w,w,z,8) = f(s) =0

and

n(w,w,z) =f hz(s’) R.L(w,w,z,s') ds” . (B.6)
0
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So

0
vz(z,w,z,sl) =f T(z,w,sl,sz) k(sz) Y(w) dsz

©0

xf h2(s') %(W,w,z,s') ds”
0

a(sl) (z~w) ) )
+ k(sl) Y(W) e h2(s ) RL(w,w,z,s ) ds”
0

(o0 ]

= [ hz(s') k(sl) Y(w) RL(w,w,z,s') e

a(sl)(z-W)

0
+ RL(w,w,z,s‘) Y(w)[ k(sz) T(z,w,sl,sz)ds2 ds” .

“-=00

Putting this in equation (B.3) we find

o

/ hz(s’)% r(z,w,sl,s’) ds”
0

- . 3 a(sl) (z~w)
= hy(s7) | k(sy) Y(w) R (w,w,z,87) e
“0
0
+ R (W,w,2,8°) y(w) / k(s;) T(z,w,8;,8,) ds, ds”

- OO

and by the usual argument

Tgav—] r(z’wsslssz) = RL(W’W’Z’32> y(w) k(sl) e

7.2

a(sl) (z-w)

+ y(w) k(s3) T(z,w,sl,s3) ds3 . (B.7)

-—0

To reduce this further we need relations similar to those in Lemma

for 1(z,w,s 2) but such relations do not appear to exist.
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We now derive a similar equation for 'r(z,w,sl,sz).

Again we use (7.39) but with

hZ(S) =0 .

Thus
0
] a(Sl) (z-w)
v(z,w, z,sl) = £(s) ™ -r(z,w,sl,s’) ds” + f(sl) a(sl) e s
- (B.8)
0
s ) ) a(s;) (z-w)
v2(z,w,z,sl) = f(s?) v T(Z,W,Sl,s) ds” - f(sl)a(sl) e .
- (B.9)

The expression for vz(z,w,z,sl) 1s obtained as before and is equation

(7.56), however, we now have

w(w,w,z,8) = £(s)
viw,w,z,8) = j.o f(s”) RR(w,w,z,s‘) ds” . (8.10)
So

0
v, (25W,2,8,) = / (z,w,8,,8°) | —a(s*) £(s-) + k(s-) y(W)

[+

0
./;m f(Sz) RR(W’W’Z’SZ) d82 ds-

a(sl) (z-w)
- a(sl) f(sl) e

a(s;)(z—w) 0
+ k(sl) Y(w) e [ f(sz) R.R(w,w,z,sz) d82

(e}

or
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_ a(sl) (z-w)
v2(z,w,z,sl) = —a(sl) f(sl) e

0
t]r f(s?) | -a(s?) T(z,w,sl,s )

-0

0
+ y(w) RR(w,W.z,S')f k(s,) ™(z,v,5,,8,) ds,
a(sl) (z-w)
+ vy (w) RR(W.w,z,S’) k(sl) e ds”

Putting this in (B.9), canceling the non-integrated term and using
the usual argument leads to
é% T(z,w,sl,sz) = —a(sz) r(z,w,sl,sz)

a(sl) (z-w)
+ y(w) RR(w,w,z,sz) k(sl) e

0
+-j( k(s3) r(z,w,sl,ss) ds3 (B.11)

-0

The same integral is seen to occur in this equation as appeared in
(B.7). A search for exchange relations for the transmission kernels

similar to those given in Lemma 7.2 was unsuccessful.
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