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EAXLY RADIU FLASH

A IDW-ALTITUTXAIR

by

B. N. Suydam

ABSTHACT

FRuM

BURST

This report reworks an earlier theory of the “

early part of the radio flash from a 10W air burst

by extending the results to quite general gamma ray

vs. time histories, and to times about ten times

longer than the earlier theory. The previous theory

is also improved in that error estimates are

for all approximationsused. Typical signal

are presented.

given

shapes

I. INTRODUCTION

Some time ago a method, called

CY approximation,was developed for

the high-frequen-

calculating,ana-

lytically, the early part of the radio flash from an

air burst~ 1) Subsequentlythe method was extended

to a ground burst.
(2)

The first of these references,

however, suffers from two defects, nsmely: (1) it

is classified,and (2) in it many approximationswere

made in order to obtain simple results without any

estimates as to the limits of validity of the approx-

imations. It has accordinglybeen deemed advisable

to rework the theory removing as far as possible the

defects.

Our analytical theory of the radio flash re-

quires three classes of approximations:

1. Analytical approximationsto the

temporal and spatialbehavior of

the source functions,J and o.

2. An approximatetreatmentof Maxwell’s

equations,arrived at by dropping

certain troublesometerms.

3. The evaluationof certain integrals

which express the solution of the

simplified set of Maxwellts equations.

In Section II we derive the equations of the

high-frequencyapproximation,first in full general-

ity, and then specializedto the low-altitudeair

burst. In Section 111 we discuss the source func-

tions J and u in sufficient detail to indicate that

the analytic form we assume is sufficientlygeneral

to cover all practical cases. ‘Thusitem 1. abeve “

presents no problem. In Section III we also calcu-

late the radial E-field which is needed in the next

section.

Section IV contains our results, namely ana-

lytic expressions for the radiated signal, together

with typical curves. These results are, of course,

based on our high-frequencyapproximation. This

approximationMSY be viewed as the first term of a

series expansion of the solution to Maxwellfs

equations. We have made the usual heuristic esti-

mate of the limitationsof the theory by calculating

the second term of this expansion and noting under

1



tihatconditions it is negligibly small. The details

of this calculationare in Appendix D. Generally

speaking, we can be confident in the first micro-

second of the calculatedpulse. In order to express

the solutions to our equations in simple closed form

aPProxtiate expressions must be found for certa.in

integrals. These approximations,together tith re-

mainder terms, are worked out in Appendices A and B.

AS the remainder terms given are exact, there can be

no question as to the range of validity of our ap-

proximations;at the expense of more complicatedfor-

mulas, correction terms of any desired precision can

be added to our formulae.

Finally in Section V we discuss our results.

In this section it is pinted out why one may ignore

operator,tl/cdr. It is reasonable to assume that the

ssme is true of the field quantities,at least for

the early part of the signal. The high-frequency

approximationconsists in ignoringfj/,)rGf V=~ouS

field quantities compsred with 4/o-h of the same—— —
quantity. The dropping of such ~mall terms must,

however, be done wit,hcircumspection,first noting

all cancellationthat may exist among large terms

before small ones axe dropped.

The easiest way to see how the high-frequency

aPProxhation works in detail is to write out the

full set of Maxwell’s equations in polar coordinates,

(r,e,Q),and in terms of the proper time, T, rather

than ordinary time, t. Under this transformation,

Maxwell’s equations take the form

s11 nonlinear effects, as we have done

this work.

II. THE HIGH-IIU$QUENCYAPPROXIMATION

throughout

The Compton current, J, and the electrical

conductivity,o, are both produced by a short pulse

of gtuumaradiation whicn expands radially outward

from the burst point with the speed of light. It is

tnereforeappropriate to describe events in terms of

ProPer time, T, rather than ordinary time, t

[2.1) T= t-r/c ,

(2.4)

wnere r is distance from the burst point. When ex-

pressed in terms of proper time, r, and position,~,

!,heCompton current and the conductivityhave approxi-

mately the forms

[

J= j(~)f(T)

(2.2)

where f and c represent extremely short pulses.

Clearly,

.fhereA is the &mma-ray mean-free-path. Now A/c is

about2fjmicr6second and the pulses, f and g, are con-

siderably narrower than this. Therefore the operator,

,)/dr,operating on J or a, is much smaller than the

P

~ dBr 1

[

dE6 a(sin A )
.— 1%,-&Xrsin*~- 36

The first step is to eliminate Be and BQ by formally

integratingthe last two equations

.

.

2
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(2.5)

1

rB8 =
-rEQ ‘&

J

rEpcdr

-co

T

--m

T T

rB

LoI =rEe+~IErcdT-$JrE,cdT-m -m
Then substitutingthese results into the two

equations for E~ and E. gives

and

So far everything is exact; Eqs. (2.5), (2.6) and

(2.7) together with the first and fourthof

Eqs. (2.4) are equivalentto the original Maxwell

equations. Note that in Eqs. (2.6) and (2.7) the

cancellationof the two large radiation terms has

taken place.

The high-frequencyapproximationconsists now

in taking the awkward set of equations (2.5), (2.6)

and (2.7) and ignoring terms in d/&, as compared

with those in ~/CdT of the same quantity. Consider,

for example, the first two terms on the right-hand

side of Eq. (2.5). We see that

T T

(2.8) rE9=-&
f ‘EqcdT “ & f

rE cd’ ,
P

and so on. We thus obtain

T
.

rB la
e
=-rE-—

v
“1

Ercdr ,
sin Cl~

-(m

(2.9

T

rB = rE
9+% J Ercdr ,

P

-al

1 dBr
‘2sini3~’

d(rE )
1 c%~ + 2xa(rEQ) = -2nrJQ + — —

2sini3*

[

where we have written

-m

for short. We do not drop the smaller integral in

this case because it introducesno complication. On

the other hand, it does extend the range in time over

which the approximationis valid. All transverse

field components can readily be obtained from

Eqs. (2.9) and (2.10) once the longitudinalfield

componentsare known. For these components we have

the equations

#-
~ i3E

r
+ 411uE = -4nJr +&:x r

J
-co

J
-m

3



How these equations are solved depends on whether we

are concerned with a ground burst or an air burst.

For the ground burst, the operator,~be, becomes

very large near the ground and this allows am approx-

imation scheme discussed in detail in Ref. 2.

In this report we confine our attention to a

low-altitudeair burst, in which case there are

three possible asyumetrie~:

a. Asymmetry of the bomb itself.

b. Asymmetry resulting from vertical

gradients of atmosphericproperties

such as density end water vapor

content.

c. Tne geomagnetic field.

All three of these are small effects, the second be-

cause atmosphericgradients are small, end the third

because Compton electron range at low altitude is

much shorter than its Larmor radius in the geomag-

netic field. As the asynraet.riesare small, so also

are the transverse components. Moreover the angul&-

derivativesare small operators, of order l/r or

smaller. The result of tnis is that the transverse

fields may be neglected in the radial E-equation

giving

~ dii
(2.I.2) :#+4mYE = -4xJr ,r

whicn is immediately integrableby quadrature.

Formal integrationof the radial B-equationyields

.

(2.13) rBr=&$

J

Eecdr

--m

1C3
-am .

Using this in the remaining equations,we see that

the new terms involving integralsmay be dropped for

exactly the same reason as could the others and we

have

Thus our procedure is first to solve Eq. (2.I.2)for

Er, next to calculate% from Eq. (2.1O) and then

Eqs. (2.14) are soluble by quadraturea.

Note that the geomagneticfield enters solely

through the quantities,J8 and J , whereas the other

asymmetriesenter solely throughV&/dO andd~/cYp.

Furthermorenote that ~ till be a function of atmos-

phere density, p, of water vapor content, W, and Of

bomb asymmetry,2. Thus we may write

In other mrds, the right-hendmembers ofEqs. (2.14)

can be broken into a series of terms each of which

expresses a single asymmetry. The same is therefore

also true of the fields. Me shell consider sepa-

rately the individual asymmetries,knowing that the

resulting signals may be combined linearly to obtain

the total signal in the complex real situation.

III. TNE SOURCE FUNCTIONS

The gamma rays from en explosion result from

inelastic scatteringof neutrons in the bomb materi-

als themselves end in the air tiediately surround-

ing the explosion. Other sources of gamma radiation

such as neutron capture end fission fragment decay

are of too low intensity to be of any importance to

the prompt electromagneticsignal. During the reac-
CZT

tion the neutron population in the bomb rises as e

and, after the peek which we convenientlydefine to
-6T

be at r = O, falls exponentiallyas e . Eoth a and

6 are of order 108/sec. The prompt gamma rays follow

this same time hiatary at the source. Fast neutrons—. —
which escape scatter in the air and, with every ine-

lastic collision emit a gamma photon. It is easily

seen that this population also decreases exponen-
-K27

tially with time, say as e , but as air density

is much lower than that of bomb materia.1.aK2 is much

less than 5, typically around 10°/sec. !fheair ine-
-~2Tlastic gamma rays also very with time aa e . The

Compton electron current is proportional to the

gamma-ray flux and therefore variea as

(3.1) J = -$(r,fi,Q)f(T),

●

r

(2.14) <

kd( rEQ) 1
+ 2no(r ) = -2nrJp + —

%
&

dr 28ini3~”

4
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{

aTfOr T<O,e

(j.2) f(T) =

~-6T
-K T

+ ce 2 i-orr>o,

near the explosion.

The electromagneticsignal, however, comes

mainly from a region which is 5 to 10 gamma-ray

mean-free-paths,i.e. a distance of 1 to 2 kilome-

ters, from the explosion. At such distances scat-

tering stronglymodifies the time history and the

intensityof the gamma rays end the Compton current.

A convenientway to describe these modificationsis

in terms of a build up factor, B(r), which is the

ratio of scattered to direct radiation at a dis-

tance, r, and of a response function, u(r,’r),which

describes the time history of arrival of scattered

gamma rays at a distance r from a 6-function source.

Then at a distance r from the explosion,we have

where $ includes the exponentialabsorption end

l/r2 attenuationof the unscatteredbeam.

A fair approximationb the ~gs+onse function,
o

u, is the simple exponential,~oe , where K is
o

constant in T and varies slow~ with r. In this

case Eq. (2.3) read_ilyworks out to be

I[’+~lp’for’<o

[1

~-6T ~COB ‘K T
+ KoBe

o-—
6-K0

(j.~) J=-?

[

1 1 e—- —
a+lc o +FL_uo ICO-K2 1

[

K BCo+— e-’27 forT>o.
‘o - ‘2

‘f@CCiln K.
7is of order 10 so that it is consider-

ably larger than K2. At the large distances which

intereat us, the build up factor, B, is quite large,

of the order 10, and thereforewe see that J falls

as e-’o’ rather than <’r throughoutmost of the

prompt period.

At the large distancesof interest to us,

electron-ionrecombinationis completelynegligible

and the conductivity,U, can be separated into

electronic conductivity,ae, and ionic conductivity,

ai, governed by the equations

[

da
-& + @ = -AeJ

e

\

(5.>) da.
-& + a(ui)2 = -A.J

1

1~..J + u.
e 1’

where @ is the electron attachment rate in air, p L

108/sec at S.T.P., and Ae is a factor depending on

electron mobility, pe, the number, v, of secondsxy

electronsmade by a primary, and the ComPton elec-

tron patn length in air, f, namely

(j.b) Ae= VPe/f .

The quantity, Ai, is the same thing but formed with

twice the ion mobility, 2Ki, instead of Me (two ion

species), and a is the ion-ion recombinationcoef-

ficient expressed in appropriateunits. On our

time scale it is quite accurate to set a = O. Be-
-1

cause the electron attachment time, P , is so short,

the conductivity,ae, follows the prompt source,

-AeJ, except for a short period of duration about !3
-1

after the peak. Thus u also rises as e‘TforT<o

and fal.lsas e_’OT at first. Later the conductivity

levels off to a broad shoulder falling, let us say,
-’27

ase. This leveling off may occur because air

inelastic gannnarays have caused J to level off. In

the absence of air inelastic gamma rays, u levels

off because of the build up of ionic conductivity.

As we indicated above, Koe_KoT is only a fair

aPprox~tion to the scatteringresponse function,

u(r,T). It can be made a good approximation,how-

ever, if we replace the constant, <0, by a time

dependent function, K(T,T). It follows, then, that

except for a very short period of order, (O<TC1/9),

the conductivitycan be accurately described by the

expressions

f
u =2 -(r,8,Q)eaT forr<o



with K a slowly varying function of r and r, q a

slowly varying function of r, and K2 a constant.

The T > 0 part of such a curve of a vs. T is shown

in Fig. 1. The quantities,~ end-+ , are allowed

h shoulder rEtiO, K~/q, is normally of the order of

100 at distances of interest to us.

Mith the above general expressionsfor a and

for J we can calculate the radial E-field. For this
.Lo differ; in

continuous at

fact they must be so chosen that J is

T-o. From Eqs. (5.>) we now find

we define two auxiliary quantities, S and Es, defined

by
T

(3.14) Sd:f
J

4*cadr

o

\

Jr =

(5.8)
Jr =

p+ly. arfor,<o
-~-=

and

(3. H) E.dSf-J/U .

}

‘K T

+ (b - K2)~e 2 fOr T>o. From these definitionswe readily see that

[
(3.16) S= 4XCZ+ I- e-p+~(l - e-K2T)

1
Continuity at r = O yields

{

~o(b - K. + :o/Ko) - f3 - K2

(5.9) 4-=>+ p+cz
}

‘~p+a ~ forr>(),

(S is Undefined for.< O), end

wnere dots u.eandfdr and

value at T = O. We have

zero subscriptsmean the

defined

[

Es=Ea= (f3+a)/Ae forr< O

{{ }

-K T

(~- K+li/iC)e-w +( b- K2)(~/K)e 2

(3.17) Es=+
e e‘v + (~/K)e

-K2T

(3.10) ~ ‘:f / KdT .

J
o

Men there are many air inelastic gamma rays, the

electronicconductivitylevels off before ionic con-

ductivity becomes importantand we hgve

fOrT>o.

All of our equations so far are accurate except for

a period of order (1/f3)after the peak. During this

T = ? (with air inelastic) .t5.11)

In the

and

(5.12)

period, that portion of the signal which arises from

asymmetry of Er is very small and sizeable percent-

absence of air inelastic gamma

.

rays ~ vanishes age errors here simply do nut matter.

We can now solve Eq. (2.12) for Er. In fact,

from our definition above of Es ve see immediately

that
T

-L
4$CCadT’ T

J
~r’kxcud,u

(3.18) Er= e- Ese-m 4ncud7’ .

-co
.~A

Ae [ 1+(P-KO) -(P- K)e-~ .

Thus, as (@ - K)AiiKAe is very small

As Es = Ea = constant for T c O we have immediately .

(3.19) Er(T) = Eal - e-4Kca/a]
[

for T<o.

= O (no air inelastic)

For r > 0 we break the range of integration at T = 0

and we split S into two terms, writingin the absence of air inelastic gamma rays. The peek

(J



,

?

e

.

( { -!( T

}

S1=4KCJ+ e-v-l(l. e 2,
‘2

and obtain

(5.21) E=(T) = Er(-o)e-s(T)

T

S1(T)

[

‘sl(T’)

+e E~(T’)f2 4nodl’ ,

J
o

where Er(-O) is given by evaluatingEq. (3.19)at T =

o.

Note that S1 becomes much smaller than So after
-1a period of a few times (<0) . During this short,

period when the two are comparable,.S varies but
s

little and this circumstanceenables us to evaluate

the integral of Eq. (j.21) to good precision, ob-

taining simply

(3.22) Er(T) = Er(-O)e-s‘%F-e-slJ
where EO is the value of Es obtained by evaluating

Eq. (3.17) at T = +0. The details of evaluating the

integral to obtain Eq. (3.22) are all worked out in

Appendix A. Even Eq. (3.22) can be simplified. A~

we shall see, at times in the neighborhoodof the

peak the signal comes from a very narrow region about

the point r = R~ where 2no = I/k, very nearly. In

this neighborhood,therefore,4nco/a is very small

and

(3.23) Er(-O)~Eo .$L <<E
o

so that the term in Er(-O) may be dropped, giving

(3.24) Er= Eo(l- e-s) .

As we shall see, carrying the term in ET(0) would

introduceno additional complication,but would not

contributenoticeably to the signal.

In order to evaluate the integrals required ta

calculate the radiated fields, it is convenienthere

to define a new function,k, by the relation

{

‘K T

(3.2>) kd~fS/o=4nc 1- e
‘y + (n/K2)(l-e 2 )

‘1’+ qe-K2T

}

J
Ke

so that Eq. (3.24) may be written as

(j.2~) Er(T)=EO(l - e-ko) for-r>o .

We see that k depends only weakly on position but

strongly on T.

To complete our evaluation of tne source func-

tion we need the time integral of Eq. (5.26). From

Eq.(j.16) we see that S, i.e. ku, is essentially

constsnt in T except for the first cuuple of gener-

ations

(3.27)

to good

varying

ly from

(3.28)

where Z

(3.29]

Clearly

t~fter the peak. Therefore we can write

T

/
ErcdT = Eo(l - e-ku)cT

o

precision, for when T is so small that ku i~

tnis expression does not differ significant-

zero. Thus we have

‘(E<C+(l-‘k”)‘EOzcTk”
is defined by

Z is about l/A and the correction term to Z=

would not be needed for CT << L. We keep the correc-

tion tem in order not to be restricted by such a

severe limitation. ‘!Tnesource function for atmos-

pheric end for bomb asymmetries is obtained by dif-

ferentiatingEq. (3.28), and is

‘[
dEo

(3.30) ~= ~- CT
-][’ - e-k”]

[(
+03 o -CT~

MO_-z~%E& )]koe-ko&- :)e 0 30

[ 1
-ka

+ QEOZCT ko - (ko)2 e .

forr>O. where we have written for snort



where
co

The terms proportionalta

Eq. (5.27), we shall call

are clearly of importance

ciable.

T, which arise from

the secular terms; they

only when c-iikis appre-

In deriving Eq. (3.30) we have allowed specifi-

cally for all effects of gamma-ray scatteringexcept

for one, namely the change of angular distribution

of Compton electronswith distarce and with time.

This effect can, however, be included by simply re-

defining the quantity, v, the effectivenumber of

secondary electronsper Compton electron, to be a

function of T and of r. This introducesadditional

r and r dependenceof Es, but we already have specif-

ically allowed Es to depend on these quantities.

Thus, with proper interpretation,our results are

quite general.

Iv. SPECIFIC SOLUTIONS

We have seen that the geomagnetic signal can be

discussed separatelyfrom the other signals. As

this signal has been discussed quite well elsewhere

and is well understood,(5,4,5) we content ourselves

here with deriving the basic formula which we do

simply for completeness. We consider a perfectly

symmetricalexplosion in a perfectly uniform atnms-

phere but in the presence of a uniform magnetic

Field, Elo. Choosing our polar axis in the direction

-B. we findor ‘“”
**

(4.1) JQ = #a J sin 19, J8=0,

wnere 1 is Compton electron range, a is its giro

radius in the geomagnetic field snd J is the radial

&xnpton current. Our only surviving field equation

is

whose solution is

(4.5) r
%

1 sin 8.—
2a

r

ex J rEse-%adr ,

0

(4.4) Xd:f f 2nadr .

J
r

At large distances we csn set r = co in the right-

hand side and obtain for the radiated signal

co

(4.5) rEq=-

J

The

R5,

0

factor, 2K7e-x, has

the point at which

rEse-%nadr .

a very sharp maximum at r .

This fact enables us to

details are given in Appendix B and, to lowest order

in k~s, we obtain tne well-known formula

.

evaluate tne integral. The

(4.7) rEQ=- . ~sEs(fis,T).

So long as~s is considerablylarger than h, Eq.(4.6)

above indicates that it is proportional to log u.

E5 is constant during the C&phase and changes rapid-

ly at the peak, dropping to a lower nearly constant

value during the K-phaSe. Thus the geomagnetic sig-

nal is a short, sharp spike having its peak slightly

before a reacnes maximum.

We now address ourselves in somewhat more detail

to the other asymmetries. We may ignore geomagnetic

effects, setting Jq = Je = O. It is convenient to

choose our polar axis vertical. If then we suppose

tnaL the bomb itself is azimuthallysymmetric, so

will be the field equations,which reduce to

which has the solution

0

X being the quantity defined above In Eq. (4.4). We

confine our attention to the distant field, writing

,

t

.

.

c1
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0

end shall refer to this as the radiated signal. If

we now substitutefor &/~9 the expressiongiven by

Eq. (5.30) we obtain

‘411) %=] QIk - e-k”le-xdr
o

co $$1r

G ii

where Ql, Q2, Q
5
are given by

L
We have defined Z and ~ in Eqs.

19

(ka)2]e-ku-xdr,

(3.29) and (3.31).

Now consider for a moment the second term of

Eq. (h.11). The factor, w exp [-lcY- x],is a rapidly

varying function of r with a sharp maximum at r = Rs,

that value of r for which

(4.12a) 2noy= Z , yd~fl+kZ/2n .

On the other hand P2 is a slowly varying function of

r and this enables one to evaluate the integral with-

out specifyingthe functional forms of p and of u.

In Appendix B this is worked out in detail, as are

also the first and third integrals. In this Appendix

expansionsare given out to third order in (A/Rs).

As this quantity is normally about 1/10, it normally

suffices to take tne first terms of these expansions

obtaining the result

[

92’ v5’
(4.13) r%= ‘~logy+=+_

2sy2 1 r=Rs

If higher order accuracy is required, additional cor-

rection terms will be found in Appendix B, along with

error estimates.

The quantity. k, ~Eq. (3.~>)1 iS a rapidly varY-

ing function of T end, at nmst, a S1OW1Y varying

functionof r. ‘1’hep’s,onthe other hand, vary rit

MOSt line~).y with T. Normally Q3 is of the same

order as the secular term of p2 and, as y becomes

quite large, the term in Q3 is a relative~ small

correction.

We c& now dispose of the Cz-phasein & general

way. Eu.ringthis period we have k = 4flc/a and Z is

very nearly l/A so that

(4s14)‘E,= ‘h @+ +% )‘%’ *

2c/a
+Q. ,,.

> (l+2c/aA);

But 2c@A<< 1 and the terms of 91, Q2, ~j which

are proportional to T are completely negligible at

this stage. Thus we may expand Eq. (4.14) and

obtain

where E. is the (constant) value of E. when T < 0.
u s

The signals which come later are clearly of order

AEo which is much larger then 2cEa@. We can there-

fore completely ignore the a-stage signal.

For T > 0 the radiated signal behaves essen-

tially like the first two terms of Eq. (4.13), the

third remaining always a small correction. Tnus,

aside from the secular terms, which are important

only when T approaches a microsecond or so, the

signal is given by a linear combinationof the two

functions of T, log y and zk/2ny. Over most of the

range of T, Zk/2Ycis large and these become slowly

v-ing functions of k and hence insensitiveto its

details. This becomes clearest if we examine these

quantitiesnot as functions of real time, T, but

rather as tictions of generation number, r, which

we define as

(4.16) rdgf(S@UT~[lOg(Upeti/U(T)]r=R .
L s

In Fig. 2 we have plotted the two functions

9



{

F(r) =

(4.17)

G(r) =

log (1 + k/2xA)

*

as functions of the generation number, r. Each was

calculated for two different cases, namely:

a. The solid curves are computed from

the u vs. T history of Fig. 1. This

case is described by a prompt burst

with K VSl@ng frOIUen illi,tidV6he

7of 2.8 x 10 to a final value of

5.8 x 10b, plus a long tail of air

inelastic gammas for which K2 =

b x 12. The peak to shoulder ratio,

(<o/q), is 70.

b. The dotted curves are computed for a

prompt burst of constant K, K = Ico=

2.24 X 107 and without any 10~ tail

to a.

The curves of case a. correspondto a a history

which Is far from being a simple exponential,yet

the dotted and the solid curves lie remarkably close

to one another. It is clear that for many purposes

. “universal”curves for the tkm functions,F end G,

would suffice. In addition, of course, one would

need a J vs. r curve to translate generationnumber,

r, into real time and for times not much less than

A/c the secular terms in T1 end q12wm.ld have b be

included.

We shall now proceed to discuss in detail

special cases. We have in every case retained all

the secular terms, including the small one in V5 but

have calculated only to lowest order in (k/RS),

which we have supposed to be 1/10. In all cases

calculationswere made for the two a vs. r histories

designated as a. end b. above. Curves are shown

(case a-solid, case b-dotted) for normalized signal

strength vs. generation number I’end also vs. real

tine, r. For the quantity, Z, itself, we have used

aimp~ I./L, but have used higher order terms to com-

pute dZ/dO.

A. Bomb Asymmetry Alone

lf the only asymmetry is that of the bomb it-

self, then J and a have identical angular dependence,

1(J

which may be written as

{

J= J(r,7) ‘u(13)

(4.18) a=a(r,~) .413)

n= &D/&e .

Thus E. is independentof .3;as there is no atmos-

pheric gradient it is also independentof r and

Eq. (4.13) reduces to

(4.19) rEe=
$“.:*{’+ *A}.

In case b. the secular term is completelyunimpor-

tant, in case a. it never exceeds 0.1, and this

only after 1 microsecond. ‘fhusthis signal 18

essentiallydescribed by the function, G. Curvea

are shown in Figs. 3 and 4 giving rE vs. gener-
0

ation number, r, end real time, -r,respectively.

B. Gradient in Water Vapor Concentration

Next consider a perfectly symmetric explosion

in an atmosphereof uniform density. However, owing

to a gradient in water vapor concentration,the

electron mobility, and hence a, varies with altitude.

If, for convenience,we take the variation to be of

the form

{(4.2o) IIe=lJoexII ‘;cos~
}

we find

[

Rs sin ~
Pl(Rs) = - Zh Eo~-&~<s ‘)]

Rs sin ~
(4.21)

[-( )1
2,k 2L Cos e

~2(R~) = 2h E. 1 - y l+r+ ~
s

Rs sin O

[ 1
Q5(RS) = ~h E. “~ 1+#-+- .

s

Assuming one is near enough to the equatorialplane

that Rs cos 4/h << 1, the radiated signal is

()Rs sin 8
(4.22) rEe= AEo Zh

{[l--$=J*dl-alOg‘1+’’2”)}‘

*

f

*

●



to lowest order in A/R~. Here the secular term is

of order .cT/Aand quite important at 1 microsecond.

Curves of rEO vs. generation number, r, and real

time, r, are shown in Figs. 5 and 6, respectively.

c. Atmospheric Density Gradient

At low altitudes air density varies exponen-

tially with the altitude so that we may write

(4.2>) P=pO exp ~-r cos 13/H}.

The quantity, H, is called the relaxation height and

may be taken to be about 9 kilometers. In this sub-

section we shall always use the subscript O to indi-

cate the value of a quantity at burst altitude. As

electron attachment is a three-bodyprocess, the
2attachment coefficient,p, varies as n so that

(4.24) B= f30e-2r cOsd~H .

Now writing

(4.25) J= -$J(r,O)“ F(T) ,

we can write for $,

[ --+lexp[-ii’--l“’26)~=%~
so long as we confine ourselves to regions suffi-

ciently near the equatorialplane that Rs cos t3/H<<

1. The bomb yield expressed in appropriate units is

Y and b is a constant arising from an empirical fit

to the build-up factor. The details are given in

Appendix C.

In calculatingderivativesof Es from Eq. (3.15)

we shall ignore any dependenceof K, T, and Ae on

position as we do not at present know these. Thus

we write

With Eqs. (4.26) aml (4.27) and the relation, o =

J/ES, we can calculate the functionsTl, V2, andq3.

When the result of this calculationis set into

Eq. (4.13) we obtain

AOR5E0
(4.28) rEe=~sin e

.

[

%wwv’’++a
r

-Wm++w%-’)+=%
-:(2+*[*]+&&l)]}

correct through first order in k/Rs. As 60/AeEs ~ 1

end k/R5 ~ l/10 we see that the secular terms are

again of order cr/L. Curves of this signal vs.

generationnumber, K’,and real time, T, are shown in

Figs. 7 and 8, respectively.

v. DISCUSSIONAND CONCLUSIONS

We have shown how the early portion of the radio

flash from a low-altitudeair burst may be computed.

Use of the high-frequencyapproximationenables us

to obtain simple analytic expressions for the signal

starting from a quite general u vs. T history. A

question still unanswered remains, namely, for how

long a time is the approximation valid? To answer

this question we have used the solutions found to

estimate those terms of Maxwell’s equations which

were originally dropped. Inserting these estimates

into Maxwell’s equations, one can solve and obtain

first-ordercorrectionsto the high-frequencyap-

proximation. This process is carried out in detail

in Appendix D, where it is shown that the fractional

error involved in using the high–frequencyapproxi-

mations is about cT/Rs, Rs being our usual signal

radius defined by Eq. (4.12a), tnat is to say, the

approximationis good so long as

(5.1) CT<<R
s“

TyPically this means that we can have confidence in

about the first microsecond of the computed wave-

form. It should be pointed out here that condition

(5.1) was achievedby including the secular terms,

which our earlier theory did not do. Without these

secular terms the much more stringent condition

U



CT << A must be fulfilled.

The second conclusionwe wish to point out 1s

the limited variety of possible pulse shapes.

Leaving aside the geomagnetic si~al, we ssw that

all other asymmetrieslead roughly to signals which

are linear combinationsof two basic pulse shapes,

described by the functions, F and G, of Eq. (4.1”().

Because of the presence of the secular terms, this

is not strictly true; nevertheless,it is true in R

practical sense as illustratedin Fig. 9. In this

figure we have plotted as a solid line the atmos-

pheric asymmetry signal of Fig. 8 (solid line),

together with the dotted curve which 1s a linear

combinationof the bomb asymmetry signal end water

vapor gradient signal (solid lines) of Figs. k end

u. The linear combinationchosen is an improbable

one, but it does show that there are essentially

only two independentpulse shapes. Tnis should, of

course, have been obvious from the beginning, for

there are only ttm basic asymmetries,that of J and

that of a. Practically,this means that inclusion

of new effects, such as the spatialdependence of

Ae and of K, will introduceno new pulse shapes. It

also means that it is impossible to sort out the var-

ious asymmetriesfrom a given signal..

There is one effect which we have not included

in our calculationswhich might lead to en additional

wiggle in the curve, and tnat is tne effect of dif-

ferential scattering. Owing to the density gradient

of the atmospheremore of the gamma rays arriving at

some distant point r have been scattereddownward

than upward. This will produce a net current of

Compton electronsdownward at the point in question,

i.e.,a negative Je. The signal produced by this Je

is calculated exactly as was the geomagnetic signal

and will in fact resemble the latter signal, with

twn Important differences:

a. Because only scattered gemmas contribute,

the signal will be delayed end broadened

as compared with the geomagnetic signal.

b. The polariby of the signal will be posi-

tive regardless of magnetic bearl.ng.

A rough estimate indicates that the amplitude of

thix signal is small, but further considerationof

it is surely warranted.
(8)

Nunlln,.areffects have been omitted frbm our

Lhwry; in ~JicL they are negligibly small. As the

.il~ml twmf:ufrom a thin shell centered on r = KS,

iL tiu~l”lct;II tu confine our attention to this region.

UUiligLhf.~urmulns we have developed for Er at tnls

position wc GCC that this quantity is nirnplynot

lar~t.f.no~,hLu extract a significantfraction of

the Comptun electron energy. The transverse fields

are ineffectivein producing a transverseJ for tne
. B are very nearly a pure

‘imple ‘eason ‘hat %’ v
radiation field so that their effects on the Compton

electrons very nearly cancel. The only nonlinear

effect remaining is the field dependenceof the

electron mobility, Ue, and the attachment coefficient,

P. Over a wide range of field strength,P and Pe

depend on the electric field as
(6)

where numericallyPO = 10b and PO = 108 when E is

expressed in e.s.u. During the K-phase, the elec-

tric conductivitydepends on these parameters as

PO
(5.5) u=&=

PO-W”

It turns out that K is so much snwillerthan f3that

the nonlinearityof Ve is essentially cancelled by

that of @ and the field dependenceof a is so weak

that it can be safely ignored. During the a-phase

we do not necessarily have a << p. On the other

hand the radial E-field at r = Rs is very small

during this phase, around 0.03 e.s.u. or less. At

such low field strength the conduction electrons are

essentiallythermal and we, 0 are no longer field

dependent.

APPENDIX A - THE RADIAL E-FIELD

According to Eq. (j.21) the problem of calcu-

lating the radial E-field is solved once we evalu-

ate the integral

J -s
(Al) Idsf

j

“Ese lbnCfJdT’,

0

.

.

12



r r

which partially integratesto yield

m

‘(l- e-v) +(B.lb) ~=y
J( )

;’ (l-e-*)* .

r

Using Eq. (B.11), this may be written as

r

[

1 -e
-*

1
—*’dr ,

*

and we can integrate by parts again obtaining

.J[+(:j]’ [7+ log~+El(#)]dr ,

r

where 7 is the Euler-Mascheroniconstant, Y =

0.5772156 ““”.

Now put r=Rs into Eqs. (B.13) and(B.18) and

add. We obtain

co

(B.19)

J

,A.ti=[:{l++(!$ -;)

o

}1
(y+logl$) ““” .+

I-R
s

The remainder, indicated above by the dots, ia readily

estimated with the aid of the integrals of ],;qs.(B.1~)

and (B.18). The outer region contribut(:s

dr

Similarly the inner region contributes

Chandrasekhar(7)gives as tne value of this integral

whence we find

very nearly. The error is worst at late times such

that kz/ZW is large. Setting z 3 lIA the fractional

error is about

(B.=) ~T”t/Ii(w) s A2{-$+yt+)s +(9s} ~

s s

Fur ltilctions,p, which vary as some low power oi r

Lhis vrror is about 10$ if R is as Smd.1 as ~i.s



For yields of reasonablemagnitude Rs is more like

10A and the error becomes quite small. If to

Eq. (B.19) we add the correctionterm, Eq. (B.25),

t,heremaining error is of order (k/R~)3 and thus

small even for such tiny yields as Rs = 3A.

Applying Eq. (B.j) to Eq. (B.19) yields

a

(B.24)
[

Q(l - e-ku)e-xdr

As these quantities are used only i? correction

terms,,we do not need higher order accuracy.

APPENDIX C - CURRENT DENSITY IN A NONUNIFORMAWS-

PHERE Y

4
If we write out Eq. (3.3) specifically for a

uniform atmosphere we should have

~e-r/k
(Cl) J= -—(f(-r) +B(r)P(~)),r2

where we have written F(T) for the faltung integral

{
Q logy+
z ( 1}]%y+’og*)[K-s)’ogy+% R.

s

.
of Eq. (3.3) end Y represents the yield in appro-

priate units; A is of course.thegamma ray mean-,.
free-path. “Thebuild-up factor is quite well ‘repre-

Similerly, from Eq. (B.4) we have
sented empiricallyby

w

(Boa) JQ~(u)2e-vdr =

()

In order to calculate

b tne field quantitieswe

(C.2) m)= b(:) , ‘
. .

with b a constant. For distances such as r- 10A,

it turns opt that B>> 1 and we can in fact write

second-ordercorrections

also need I, and In as (C.j) J= -~(r) - F(T) , ,
. . .

,:,J. c
functionsof a running upper 11.mit;13 however is

needed only in correctionterms, which is why

it is given above to first order only. We have

already calculatedIi(r) end we can see that, as

Q(r) is presumed to vary slowly with r, we have to

fj,rstordtr

where

~ye-r/L
(C.4) $=7(:) . .,

Sometimes in fitting ~r), an exponential factor 18

included on the right-hand side of”Eq. ~C.2), but

this merely leads to a redefinitionof L in our

Eq. (C.4).

In an exponentialatmosphere,A is no ldnger a

constant but is given by

r

1A
Q r) e+(r)

for r s Rs
r r

(i3.26)
[

qe-v%adr =

J
o

where subscripts

frumEq. (d.5) it

r.

(n.27)

J

V(1 -

0

[

9 +(r)
+ forr>Rs,
s -.

(c.>) += Ae-r’cos o/H, “
‘o

means evaluation

follows that

atr=R Now
s“

.

e-ka)e-xdr .1+(WE1(%+=X ‘orr”s

2na x

%(y)-%(%+= forr2Rs.

*



.

In Eq. (C.k) r/A means the distancemeasured in mesn-

free-paths end tnerefore, in case of a variable den-

sity we must make the replacement

J(C.b) :-$ ~=
x.o:os Jl-e-rcOso’Hl “

o

Wnen this replacement is made, Eq. (C.4) is found to

correspondwith

(co-f’) g= YbH
[1-e

-r cos 3/H
1

r2Lo cos fl

[
exp -

A. :0s ti(1 - ‘r ‘Os “H) 1

in the case of the atmosphereof variable density.

In the end this quantity end its derivatives

will be evaluated at r = R . At low altitudesR iss
considerablyless then H. Moreover the

frequentlyobserved near the equatorial

that

(C.8) RSCOS13 <<H .

When this is true we can expend some of

tials simplifying~ to

s
signal is

plane so

the exponen-

(C.9) ?=$[+
-wlex’[-~ (l-+)]

which is Eq. (4.26) of the main text.

APPENDIX D - LIMIT OF VALIDITY OF THE

APPROXIMATION

HIGH-FREQUENCY

In making the high-frequencyapproximation,cer-

tain terms were dropped from Maxwell’s equationsbe-

cause they are unimportantat early times. Now that,

we have obtained such a zero-orderapproximationto

the fields, we can use these results to calculate tne

values of the terms dropped from Maxwell’s equations.

These additional source terms enable us to calculate

first-ordercorrectionsto the fields, and in princi-

ple one could continue,writing

[

Er=E~)+E$)+eoe,

t

(D.1) Ee = ~E(”) +E(:)+ ... ,

~ =B(0)+B(l) +... #
9P P

We shall carry out this program as far as the cor-

rection E~l) to the radiated field. uur aim in

this calculationis not to achieve higher order

accuracy of the fields but rather to define the

time interval for which the zero-order solution is

valid. Thus we shall content ourselves with same-

what rough evaluationsof the integralswwich will

arise.

C)WiIIg %0 the terIUproportional to CT, the te~

in q2 is normally larger than the rest. As we are

only estimating en error it suffices to consider

this term alone, i.e. we may choose a model in

which

[
CP2=$QEO(1 + cT/A) ,

typical of our worst cases. To achieve tnis we nave

oEo/09 = O, whence from Eqs. (3.29) end (2.9) we ob-

tain

{( %+%(D3) rB(0)=~AEOQ 1+
Q

+ 2CT

}

-ku
~ka e ,

end

(D.4) p
r ln~$[sing “ ‘By)]

=~{(’+w%k+?’”}=k”
where



In all our cases n is of the form ~ sin 0 whence

U’ = 2C cos 13,where E is a small asymmetry factor

whose exact form depends on the type of @unetry

under consideration. In all cases, however, Q* <<

1. Equation (D.4) gives the source function for

thecorrection E~)to Er, i.e. ~

J(De) E~l)= e-s ‘r2es @))cdT, ,&(s-iq 3rB
sin L!

o .. . ~..

Now the’quantity k/2xAy is tiwaysY& thah ~ity

but is very nearly one for all appreciablevalues

of r. Similarly,ka is nek.rlyconstant.yor”such”

values of T and we have
. .

[

~2T2
(D.7) E~l) = ‘e-ko CT +=

,1
(l+2ka) ,

2r2

to adequate accuracy, and tnerefore

J1) ~@

(D.8) ~~=_
o e-ka

[

C2T2

2 de 1
_-(l+2ku)

4r2
CT + 2L

+ O(F) .

The terms in 0(~2) vanish identicallywhen ~ = n/2

and are in general small. We have defined

(D.9) sfl= d@de .

This correction to E induces a correctionto
(~1).Ii.wnich we shall call Ee It Is given by

J(11.lo) +=-;-:%.

o

Uetting Eq. (D.8) into (D.1O) &ivei

. . ,

“(D.11) rE~ll) =
%+~~F”J

o

plus terms of higher order’in (A/Rs). Partial inte-

gration and the results of Appendix B show that the

above integral is simply l/Rs to lowest order and we

have

(m=~[c,+sq,(D.12) rEe

whereas

(1).lx rip
‘%1+%1*”

Clearly“thecorrection term is negligible for small

values of r; it rem&ins negligible just so long as

(D.14), : ; <<
s

In addition

order correction

the term

1.
..”

~ E$ll) there is another first-

terrn,E~u) , which has as its source

This is readily calculated to be

( D;lb)
~(2) =wcT+ we-k” “

“ { ~+2’’’Qz2z@a)21}l})

kyw

1:
co

JI (2)
(D.17) rE~u) = e-xdr .

,., , ‘.
Cl

t

b

,

.

When we set Eq. (D.16) into Eq. (D.17), all of the

integrals are given in Appendix B except for that

18



involving the term in ~20/i3r2.

we have

Writing ~ = ka + x, REFERENCES

1.

R~ R~

(D.18)
J

e-$~ . [re-*l:’ -
f

rye-*2nadr ,

0
2.

as the result of partial integration. Now using

Eq. (B.19) of Appendix B, we

Rs

(D.19) r
-1e-~dr = 7Xe ,

J
o

when we make use

this result plus

(D.20) rE~H) =

oL’the fact

others from

h2Eofi

--r
(

CT +

obtain

that $s ~ 1. Using

Appendix B we obtain

3.

4.

5.

b.

The worst case is that of the atmospheric

gradient for which 0= r2. Then the term

dominates the rest and we have

density

involving

From Eqs. (D.14) and (D.22) we can conclude that the

high-frequencyapproximationis valid for all times

such that

(D.23) C’T<< Rs .

Note that this conclusionis essentiallyindependent

of the magnitude of the secular term.
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