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LEGAL NOTICE

This report was prepared as an account of Govern-
ment sponsored work. Neither the United States, nor the
Commission, nor any person acting on behalf of the Com-
mission:

A. Makes any warranty or representation, expressed
or implied, with respect to the accuracy, completeness, or
usefulness of the information contained in this report, or
that the use of any information, apparatus, method, or pro-
cess disclosed in this report may not infringe privately
owned rights; or

B. Assumes any liabilities with respect to the use
of, or for damages resulting from the use of any informa-
tion, apparatus, method, or process disclosed in this re-
port.

As used in the above, “person acting on behalf of the
Commission” includes any employee or contractor of the
Commission, or employee of such contractor, to the extent
that such employee or contractor of the Commission, or
employee of such contractor prepares, disseminates, or
provides access to, any information pursuant to his em-
ployment or contract with the Commission, or his employ-
ment with such contractor.
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ABSTRACT

A time-dependent solution to the radiative transport equation is ob-
tained which is valid for an optically thick medium. Its principal value
is that it can be used to determine, for a given value of OT/dt in the
case of the energy density or dp/dt, (Zb)/(zw), and JT/dt in the case of
the flux, the approximate boundary of the region of matter temperature T
and matter density p for which the radiation remeins in local thermody-
namic equilibrium with the matter, Numerical results for the radiation
relaxation time, c'lAt, for hydrogen in the temperature range 1 kev < kT
< 16 kev are obtained. These results can be transformed to apply to new
temperatures or different elements., The upper range of validity of this
method is thought to be p ~ 10° g/cm: and kT ~ 64 kev. However, the
transformation equations can be used to obtain a rough estimate of re-
sults for higher densities and temperatures, Although it might be ex-
pected that p2At would go as p in the low density limit where Compton
scattering is expected to be dominant, it is found that for low densities
pgmt4>const': pQAa/25O, where p2Aa is the high density value for pgA

t
due to @bsorptive processes alone.
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GLOSSARY OF NOTATION

. 8Kt
lSthE

a
n

A
b(kT)

B(v,T) \

Qo
T
B(T) =fo B(v,T)dv = Ef:?.
B

(o4

BE

E

m

E(v) = c-l\/;l(v,s)dn
00

€ = E(v)dv
0

g = -hn:c'aAtaB(T)/bt

E(P,t)

AE(P,t )

radiation constant, Egs. (23) and (26)
expansion coefficient defined by Eq. (36)
constant defined by the first of Egs. (49)
quantity defined by Eq. (59)

Planck intensity, Egs. (3)

Egs. (22) and (23)

constant defined by the second of Egs. (49)
velocity of light

electron kinetic energy in units of mc2
matter energy density

energy density of radiation of frequency V,

total rediation energy density, Eq. (22)

first order time-dependent correction to
the radiation energy density

total radiation energy density at the spe-
cific point P and time t_, Egs. (61) and
(63)

the part of E(P;to) coming from X > x  vhen
no boundary exists at x , Egs. (617 and (63)

O



ATE(Pyt )

F (v) =U/“n e sI{v,s)dn
n Q~ ~ ~

(0 0]
Fn =b/; bn(v)dv

It

2
&pp(Z3/KT,0)

E”"bfn(zg/kq:"U’)

I(v,s)

L{v)

¢ (v)
zp(v)
lq(V)

c'llt(v)

the part of E(P,t,) coming from x > x, when
account is taken of the boundary at x,,
Eq. (61)

flux of radiation of frequency v in direction
'1;1) EqSo (l)’ (28), and (30)

total radiation flux in direction a,

first order time-dependent correction to
the flux

free-free Gaunt factor
bound-free Gaunt factor
Planck's constant

specific intensity of radiation of frequency
v traveling in direction 5

Boltzmann's constant

to be consistent with the notation of other
authors, we use Ky in this report to designate
conductive opacity. Unfortunately, in S, we
used K, to designate opacity due to Compton
scattering

mean free path for photons of frequency v

coefficient in the solution for I(v,s) which
is shown to be approximetely equal to £(v)

coefficient in the solution for I(v,s) which
is shown to be approximately equal to £{v)

coefficient in the solution for I(v,s) which
is shown to be approximately equal to £(v)

relaxation time for photons of frequency v,
also equal to the time equipartition of
energy between photons of frequency v and
the matter

-10=



21(v) = 2,(v) + 2(v)

z*(v) defined by Eq. (15)

2 direction cosine, Eq. (S,18), Eqgs. (37) to (k2
m mass of an electron

Mi atomic weight of element i

n(v, s) occupation of the radiation oscillator cor-

responding to frequency v and unit Propagation
vector s, Eq. (6)

n(v,T) the occupation of the radiation oscillator
corresponding to frequency v when thermal
equilibrium exists at temperature T,

Egs. (3)

n expansion number, Eq. (36); also principal
quantum number (57)

n unit vector

N(P) density of electrons with momentum P

1 oo 2
N = 2r f az f N(P)P“dp density of electrons
-1 0

P magnitude of electron momentum; also a par-
ticular position

P momentum of an electron

a{E,n,T,u - u,) degeneracy factor, Eq. (66)

Q(q,T) corrective factor to account approximately

for the effect of electron degeneracy on
the Compton opacity, Eq. (67), Table 3

4]

position relative to point P

unit vector in the direction of photon
propagation

pd/]

~1l-



X
n

y = ut,(v)

2y

o = q + me2/KT

symbol denoting an earlier paper by the
author (Sampson, 1959)

time

relaxation time for electrons, Eq. (5-26),
page T8 of Spitzer (1956)

time of equipartition of energy between
electrons and ions, Eq. (5-31), page 80
of Spitzer (1956)

a specific value of time t

matter temperature

aversge radiation temperature, second of
Egs. (26)

temperature of radiation of frequency v,
first of Egs. (26)

reduced frequency
speed. of an electron

locel maecroscopic velocity of the matter

probebility that a photon with random direc-
tion located at P at time tg5 will be a dis-
tance r from P at time tq + jc"'lAt, Eq. (62)
distance along the X axis from P of the

boundary of a region of appreciebly dif-
ferent temperature, density, or composition

a quantity defined by Eq. (48)
Eq. (50)
atomic number of element 1

1/kT times the relativistic chemical po=-
tential

-12-



o,

i
B =v/e
Y = hv/m.c2
5{u,T)
3

T
4]
)\O = 'fl/mc
A
A

a
A, = l/ch
As

c'lAt
ué(V)
phe(v)

by elv)
i.(v)

mole fraction of element i

a second order term defined by Eq. (45)
symbol indicating partial differentiation

1/kT times the nonrelativistic chemical po-
tential for electrons

scattering angle, polar angle
Compton wavelength

average photon mean free path given by the
Rosseland mean of £(v)

Rosseland mean of [u;(v)]-l

equivalent mean free path arising from
electronic heat conduction

Rosseland mean of [us(v)]-l

average photon relaxation time or relaxation
time for the total radiation; also equal to
the time of equipsrtition of energy between
radiation and matter. 1t is given by the
Rosseland mean of c-llt(v), Eq. (24)

absorptive contribution to £y(v) and £(v).
It is the usual absorption coefficient re-
duced by the factor {1 - exp(-u)] to take
into account induced emission and is defined
to exclude Compton scattering

contribution to pl{v) due to free-free
transitions, Eq. ?h6)

contribution to u!(v) due to bound-free
transitions, Eq. ?57)

qu?ngity shown to be approximately equal to
p_(v
s

..]_3..



up(v)
uq(v)
e (v)

welv)

Q

quantity shown to be approximately equal to

n(v)

quantity shown to be approximately equal to

us(v)

contribution to l(v)-l due to Compton scatter-
ing

contribution to lt(v) due to Compton scatter-
ing

frequency

matter density

scattering cross section
Thomson scattering cross section
summation sign

azimuthal angle

solid angle

~1lh-



I. INTRODUCTION -

We define local thermodynamic equilibrium to exist between matter
and radiation of frequency v at a point P whenever the vector flux and

radiation energy density at P are given with sufficient accuracy by the

equations

E(v) = - 2 () g(v,T) (1)
and

E(v) = 2% B(v,m), (2)

respectively, in which £(v) is the photon mean free path, T is the tem-
perature of the matter in the neighborhood of P, and B(v,T) is the Planck

intensity given by

B(v,T) = =5~ n(v,T);

(3)

n(v,T)

I
&
nlg
L
]
Ll
L

«15-




Ordinarily, whether or not the radiation field is in local thermo-
dynamic equilibrium with the matter is determined by whether or not the
system is optically thick. In this report, we consider a different sit-
uation, one in which the system is optically thick, but the time rate of
change of the matter temperature T is so great that the radiation field
may not remain in thermal equilibrium with the matter. It is thought
that the results obtained might be of particular interest in a detailed
theoretical treatment of the most rapid stages of stellar evolution,

For most material densities at very high temperatures, a large fraction
of the energy density and energy flow is radiative, Thus any appreciable
departure of the radiative flux or energy density from their equilibrium
values will have a significant effect on the matter temperature end rate
of energy production.

First we obtain an explicitly time-dependent solution to the equation
of rediative transport. From this, we get first order time-dependent cor-
rections to expressions (1) and (2) for the radiative flux and energy
density. These results can be used in borderline cases to extend the
conventional treatment of radiation. However, the range of conditions
for which first order time-dependent corrections are both significantly
large and velid is fairly narrow. Thus our principal purpose in obtain-
ing these results is that they can be used for given values of the time
and space derivatives of matter density p and matter temperature T to
determine the approximate boundary of the regions of p and T for which

the radiation stays in locel thermodynamic equilibrium with the matter,

=16~




For the energy density of radiation of frequency v, we find that this
boundary is determined by a knowledge of lt(v) or for the total radiation

by A e The quantity c'lzt(v) and its Rosseland mean value ¢ “A, can ap-

t
propriately be called the relaxation times for photons of frequency v and
the totel radiation, respectively. For the radiative flux, this boundary
is a function of £(v) as well as zt(v).

When scattering is not treated explicitly, it is a trivial matter to
determine zt(v). It is simply equal to the photon mean free path £(v).
The motivation to carry out this work came when, by treating scattering
explicitly, we obtained the integral equation [Eq. (9), section II] for
"t(v)’ the scattering contribution to lt(v)-l. As a consequence of the
omission of the cos@ factor which occurs in Eq. (10) for ps(v), the
scattering contribution to x(v)"l, it was immediately seen that ut(v)
<< ps(v). Thus when ué(v) << ps(v), where pé(v) is the absorptive con-
tribution to 2;1(1:) and 271 (v) » it is apparent from Egs. (8) of section II
that zt(v) >> g{v). Since the condition ué(v) << us(v) applies for most
densities at high temperatures, it was thought that possibly at high tem-
peratures the photon relaxation time c_lzt(v) would be large enough that
in some cases with large OT/dt the radiation would not remain in local
thermodynamic equilibrium with the matter,

Much of the theory and many of the equations we use are identical
or similar to some of the theory and equations in an earlier paper

(Sampson, 1959) in which the time-independent transport of radiation

~17-



is considered and results for £(v) are obtained when Compton scattering
is dominant, We shall refer to this earlier paper as S, and equation n

of S will be designated Eq. (S,n).

IT. A TIME-DEPENDENT SOLUTION TO THE RADIATIVE TRANSPORT EQUATION

If one adds a term c‘lal(v,g)/at to the left-hand side of Egs. (S,5)
and (S,10), they are also valid for the time-dependent case. The latter

equation can then be written

OI(v,s)
12 v g Y = -] Tlvg) - B(,T)]
a1+ nlvaesy)] W
s do(v,y5,0,P) 3
..j f N(P)dg[_v_g-f_:l]dﬂe 2h12/ P 8
P Q, 2 c
nlvyg,)[1 + nlv,g) | explu, - w)

(&)

where the reduced frequency u is defined by

(5)

[
14
g
-

and the occupation of the radiation oscillator corresponding to frequency

v end unit propagetion vector s is defined as

2
n(v,’%) = S 3 I(V’i)o (6)
2hy

-18-



In Eq. (4), p;(v) is the absorption coefficient multiplied by the factor
[1 - exp(-u)] and defined to exclude Compton scattering, which is taken ine
to account by the integral term; the subscript 2 refers to the final state
of photons with initial intensity I(v,s) after being scattered through an
angle 6 by collisions with electrons of momentum P; [dx:(v,f",e‘,'lz)/dﬂg]ds’z2
is the differential scattering cross section; and N(P) is the relativistic
Maxwellian electron distribution function. The only assumptions made in
writing the radiative transport equation in this form are that the matter
has distribution functions characteristic of thermal equilibrium at tem~
perature T, and electron degeneracy can be neglected.,

Assuming the medium to be optically thick and the space and time
derivatives of T and p to be sufficiently small, we can expand the eque-
tion for the intensity about the Planck distribution, Egs. (3). In making
the expension, we choose terms of order (n + 1), which involve derivatives
of order (n + 1), to be given by the nth order terms after they are acted
upon by the operator (c-la/ gt + 5 * Z) and multiplied by unknown coeffi-
cients Zi(v). Writing explicitly only those second order terms which
give first order time-dependent corrections to the flux, we have

I(V}E) = B(V,T) - 2(v)£ . ZB(V,T) - C-lit(v) aB(?t/; T)

+ c-lzr(v)'% . YT [zt(v) + z(v)] aB(zzT)

+ c-llp(v) [—a.é—(()—v_) E . YB(V,T) %%

o1, (v)
+ C_lﬂq(v) [ %pV} [aBg;,T)]g . go. ()

«1Qm



By YIL‘ scting on a quantity, we mean that we determine the space gradient

of the quantity only through its dependence on T or the time derivative
of T, i.e., we hold p constant. The last three terms in Eq. (7) arise
from the guentities c‘la/at[z(v)g . gB(v,T)] and c"lg . z[lt(v)aB(v,T)/at:I
after they have been rearranged as three separate terms proportional to
(s - gT)(BT/bt), (s ° y;r)(ap/at), and (s ° Vp)(3T/dt), respectively, each
one multiplied by a different coefficient,

When we substitute Eq. (7) into Eq. (4), the zero order terms cancel
on the right-hand side, and we find by similar arithmetic to that used in

S

[l(v)]-l
[, 00]™
]

prlv) + u (v);

ut(v) + u(v); (8)

ui(v) + u (v);

etcs In these equations,

do 1 - exp(-u) RN
e (V) =j;f92N(P)d£3:Q'£ 2, [1 - exp(-ue)]\il TR v} )

and p.s(v) is given by the same expression if the quantities in the brackets

are replaced wi’chl

IMis 1s the seme result for ng(v) as was obtained in S; however, Eq. (S,16)

is not quite logically correct, because one should meke approximations
(s,A) and (S,B) before replacing (vz§2 « V) (vg - Z'I')'l with v2(v)"1cose.

=20~



[l - exp(-u) :' [l - v2£(v2)§'2 ) Z’l‘]~ 1 2 cos® (10)
1- exp(-ua) vi(v)s « VT - v *
In writing the expression on the right-hand side, we have made approxima~
tions (S,A) and (S,B) and have used the result obtained in the appendix
of S that (v2§2 « VT)(vs 2‘?)-1 has an effective value v2(v)'lcose.

The expressions for p.r(v), pp(v), and pq(v) are only slightly more
difficult to obtain. Neglecting for the moment second order terms ine-
volving products of first order derivatives of B(v,T) or n(v,T), we obtain

the following equation in lr(v) analogous to Eq. (S,1k) in £(v):

5 YJP[I'(V) %’éﬂ]: p_é(v)lr(v)g . Y.T[E'(V) BB(; T)]

+ £ (v)s o ym[gu(v) BBTE}L’;&]LJ; N(P)d{%%; de,
~ 2

e 3
1+ n(v2,T)[l - e}m(u2 - u)]

o< >,
£ (v.)s, » V. l2'(v.)d T)/3t
. vo'%e "‘T[ (v2 n(v2, / ] [-n(v,'l‘) + {1 + n(v,T)}eXP(u - uil
t.(v)g * gr[z'(v)an(v,T)/at] 2
. (1)~
where
£r(v) = Zt(v) + 2(v). (12)

Assuming we cen write T = g(x,y,z)f(t), it is epparent that

v (Z)-rigm & (13)



Then using Egs. (3) and (5), we obtain

. , on(v,T) |~ u  exp(u) * . oT
g gl ]y TR ) R,

in which
NORPLILON ,.(v){u[g,_:g%_f_ﬂ -2} (15)

Substituting this result into Eq. (11) and again using the second of

Egs. (3): we can reduce the part in the large braces to

*
1-exp(-u) J, _ vplelvp)t (v)) [512 ) ZT] . (16)
1 - expl-uy) vi (M (v) LR X

Then solving Eq. (11) for zr(v) and using Eqs. (8) and (16), we get the
same result for “r(V) as was obtained for us(v) if z*(ve)/z*(v) is re-
Placed with unity. Similarly for ‘J'p( v) and “q( v), we get the same result
as we got for us(v) except that [l(vg)ﬁ;"2 . 2?]/[l(v)£ . 2?] in Eq. (10)

is replaced with

lp(ve)az(ve)/ap 5, * ¢
£(vIdt(v)/dp |5 YT

and

lq(ve)azt(ve)/ap 5, 0 P
£q(v)3£t(v)/ap s eyp’

respectively. Since the theory given in the appendix of S is obviously

equally applicable if 2? is replaced with VP, the epproximations



2*(v2) bz(va)/ap agt(vg)/ap
vy — S/ =BTV = 1 (17)

lead to

1) > 2 (v) > zq(v) ~ 2(v). (18)

When these approximations are made, Eq. (7) for the intensity can be re-

written as

I(v,8) = B(v,T) - c-llt(v) él%}é-’-‘r—) - 2(v)g » 2[}3(\','1‘) - c-ltt(v) QES:%"‘T-)'
+ ) F [pvg - BT |+ oo (19)

For temperatures below the kilovolt region, approximations (17) are very
good because v ~ Ve For higher temperstures, they become increasingly
worse as temperature is increased. Even at very high temperatures, they
are still good if 1*(v), dL(v)/dp, and azt(v)/ap vary slowly with fre=
quency. It turns out that this 1is the case (with the exception of a few
low frequencies unimportant in determining frequency averages) for the
densities at which we are able to obtain results for ¢ t(v).

Let us now consider the effect of neglecting second order terms of
the type l(v)lt(v2)[2 . SB(v,Ti][aB(vg,T)/a#]. No terms of exactly this
form appear on the left-hand side of Eg. (4) when Eq. (7) is substituted
for I(v,s); however, these terms are proportional to (s « VT)(oT/3t), so
they should obviously be included in the equations involving Jlr(v). This

adds to the part in the large braces in Eq. (11) a term

-23-



{!t(ve)l(v)[g . zn(v,T)]an(ve,T)/Bt + Z_t_‘(v)lz(vz)l:'%2 . 'an(v,T)]an(v,T)/at}
lr(v)'% . z-l'(v)an(v,T)/Bt]

. [l - e:@(u2 - u)],

which we must show is small compared with unity, the approximate value of
the part which has already been included. We rewrite this with the use

of Egse (3), (5), and (14) as

£t(v2)£(v) I: £,c‘(v)£(v2)'§'2 .?”Til u, exp(ue)
[exp(ue) -1

v 1 - exp(u, ~ u)

Zt( ve) u, exp(ug)

= ;x-(v) [exp(uz) - 1]2

{1 - exp(u2 - u)} R (20)

where in writing the right-hand side, we used approximations (18) and
have neglected the second term in the large brackets on the left-hand
side, because it goes approximetely as cos® and thus has an effective
value near zero. Noting that 3£'(v)/dT is always positive and that the
quantity in the braces of Eqe (15) is equal to or greater than unity, we
see from Egs. (12) and (15) that &£ t(v) is always smaller (usually much
smeller) than l*(v). For large u, the remaining part on the right-hand
side of Eq. 20 has the small value ue[exp(-u?) - exp(-u)i', whereas for
smell u, it has the value [u/u2 - l], which, according to the anelysis

of section IV, is about kT/mc2 when the integrations over angles and

e



and electron energies are performed. The part in the braces of Eq. (20)
is generally small enough that the whole quantity is also small for in-
termediate u, i.esy, u ~ Lo Thus we conclude that neglecting these terms

is valid for all frequencies until very high temperatures are reached.

III. TIME-DEPENDENT EXPRESSIONS FOR RADIATIVE ENERGY DENSITY AND FLUX

Multiplying Eqe (19) by ¢ and integrating over solid angle and

frequency, we get

¢ = o [ 1,90 = 2 [305,1) - o) BLD] (2
Q

and

@ I -1 3B(T)
‘a-_-fo e{v)dv = =L [B(T) - e T] (22)

©

for the radiative energy density of frequency v and the total radiative

energy density, respectively., Here
o ca‘l‘4
B(T) = '/(; B(V,T)dv = TII—- F) (23)

and A_ is the Rosseland mean value of It(v):

fo'0) -2
At = -lfr% j;) Zt(v)ubr exp(u)[exp(u) - l] du. (2k)

-25-



Using the approximations OE(v)/dt ~ lmc"laB(v,T)/a‘b and O/t
~ hc™ 3B(T)/3t, which are valid if the form given by Egs. (7) and (19)
for the intensity is valid, we see from Egs. (21) and (22) that c-lzt(v)

and c"lA can appropriately be called the relaxation times for photons

t
of frequency v and the total radiation, respectively. With these ap-

proximations, we can rewrite Egs. (21) and (22) as

3E(v) _ bme™B(v,T) - B(¥)

ot c-llt(v)
(25)
o _ lHrc-lB(T) - £
3t T -1, *
¢ Ay
Defining the radiation temperatures 'l‘r(v) and T by the equations
3 -1
8rhv hv
w0122 {2+ ool }
(26)
£ = al_ ,
we get for small T - Tr(v) and T - T
o () [T - Tr(v)]
= ’
ot c-llt(v)
(27)
T (T -1T)
r _ T
3 T T .
A



From Egs. (27), we see that c-llt(v) and c'lAt are the times of equi-
Partition of energy between matter and radiation of frequency v and
total radiation, respectively, analogous to the teq of Spitzer [1956,
page 80, Egs. (5-30) and (5-31)], in which teq 18 the time of equipar-
tition of energy between electrons and ions. The fact that energy
equipartition times and relaxation times for the radiation are equal
arises from the fact that the photons interact only with the matter,

not with each other.2

Again using Eq. (19), we get for the flux of frequency v across a

surface with unit normal n

F (v)

[z -+ gvgan
Q

- 33’-‘ 2(v) {~ . Z[B(V,T) - c-llt(V) dB(v T)]

When ps(v) << p.é(v), we see from Egs. (8) that £(v) ~ us(v)"l. Then, as
seen from the results in S, 32(v)/dp ~ -0~12(v) ana 3£(v)/dT ~ 0. Fur-
thermore, £(v) is a very slowly varying function of v. Hence it is a
good approximation in integrating Eq. (28) over frequency to remove £(v)

from the integration of the second and third terms and replece it with

°In this paper, "relaxation time" refers only to the time it takes quans
tities of a given kind to reach their characteristic thermal distribution,
For ions or electrons, this time is the t, of Spitzer (1956, p. 78).

-27-



its Rosseland mean, A, We obtain

(o 0]
F = j;) Fn(v)dv

L -1, aB(T)
~ - -3’5{1\5 . z[B(T) - T, T]

=1
- c-lAz[ll- - _p_ﬁ)_[_b_‘t_}_] -t %TE n e ZB(T)} 5

31/ 5t

7\& >> 1, (29)
s
-1 -1

where A_ end A_ are the Rosseland meen values of [ ps(v)] and [u;(v)] R
respectively., In obtaining the term proportional to Ae, we used Egs. (13)
and (23). For densities a little lower than the highest for which Eq. (29)
applies, one can replace A everywhere with A_. Also unless l(p'lap/ ot)
/ (T-la‘l’/ dt)| >> 1, we can neglect the term proportional to G because,
as noted in the latter part of the Introduction, ! t(V) >> 2{v) wvhen
ps(v) >> p.;(v). Under these conditions, one can also neglect the last
term in Egse. (19) and (28) for I(v,g) and Fn(v). Then we have the same
results for radiative intensity, energy density, and flux as in the time-
independent case, with the exception that B(v,T) and B(T) have everywhere
been replaced with [B(V,T) - c-lltaB(v,T)/at] and [B(T) - c” AtaB(T)/at],
respectively.

For higher densities and lower temperatures, both ps(v) and ué(v)
are significant in determining t(v); however, p’t(V) can usuelly be neg-

-1
lected in determining lt(v), i.e., lt(v) ~ [pé(v)] . Before proceeding

-28-



with the derivation of the approximate expression for the total flux

which is valid in this case, it is convenient to rewrite Eq. (28) in the

following way:

F(v) =- %? £(v)n « B(v,T)
( A
[0 + s {u[ 2222 b 2 8 [0+ 100] 1
° ]l - L aT¥
* 5. (v) Ta c ot(?
2. (v s Vp
t ~ N o2(v) TS ;at
+[p ap pEoY‘T-"p 8; p’.‘I).‘ t]
L J
(30)
where we have again used Eq. (13). We also used the relation
B(v,T) _ -1 (w) + 1\ 3B(v,T)
el Ecorsikall (31)

which is easily derived from Eqs. (3) and (5). We assume that t(v) is
the free-free sbsorption coefficient given by Eq. (46). (See section IV.)

Then we have

alt(v) nt(v)
P > = -22a(v); W <1l (32)
and
m, (v)
rd [0 + 10)] =2 [1,00 + 2] = o; Eg:'(% «< 1. (33)
Also
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Y 1 £2(v)
o 2 _ 2 [n0) + W] =) - Y,

[us(v) + ué(v)]

where £ = [p.;'(v)]—l. Approximation (33) mey at first seem invalid if

one is used to seeing za(v) written as a function of u rather than v as

in Eq. (46); however, in the case of hydrogen, approximate values for

£, (v)™'md2_(v)/3T &t u = 8 are 0.28 and 0.23 for temperatures of 0,25

and 1 kev, respectively. This gives a contribution only about 2 or 2.5%
of the contribution of the first term in the large parentheses of Eq. (35).
Substituting these results into Eq. (30), we have an expression which is

a function of £(v) and £a(v). These quantities are generally known quite

well from opecity work. Integrating over frequency, we obtain

exp(u
A
_[l()_*_l(v) %@>T }. 7&2:1’ (35)
a

in which a bar over a quantity means that the Rosseland mean of that

—_— —_— Tn « ¥V,
e {1 .t z(v)[la(v) + l(v)][us}—m'éi}-:—i - l] - I(ija,(V) 'S'H;

quantity has been taken., At very high densities, ps(v) is negligible,
and £(v) can be replaced with za(v) everyvhere in Eq. (35). If the
terms in the large parentheses in Eq. (35) nearly cancel, approximation

(33) should not be made.
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IV. METHODS OF CALCULATING THE RELAXATION TIMES c‘lzt(v) AND ¢~

Solutions to Eqs. (8) and (9) for lt(v) are obviously very difficult
to obtain in general. Here we obtain an approximate solution by fitting
zt(v) to a polynomiel and expanding in powers of y = hv/mc2 and B = v/ec,

where v is the electron speed., We assume

ult(v) = E anun (36)

n

and substitute this expression for uzt(v) into Eq. (9). As in S, we find
it convenient to perform the integration over solid angle dﬂe in the
primed system in which the electron is at rest, because in that system
the differential scattering cross section is exially symmetric., The re-
lationship between cross sections in primed and unprimed systems is given
by (S,19). Using that equation and choosing dol and dP as in Egs. (s,22)
and (S,24), we get

2n 1

0o 1
N(p)Pap | &L ap' [ (1 - pr)d({cose’)
~[J_ 2 Jo jil

L
m(v) = Ezjtﬂ' au” fo
u n
2 dot
y { -(2) }aﬁ; ’ (57)

-1
where approximation (S,A), [l - exp(-u)] [l - exp(-uz)] ~ 1, has again
been made., Making use of the well-known relation between initial and

scattered frequencies in the primed system,
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vl
2 _ 1
2. (38)

1+ y'(1 - cos@') ?

together with Egs. (S,18) relating frequencies and direction cosines in

primed and unprimed systems, one obtairs

u \* (1 + pe)?(1 - )"
(_1%) = = n? (39)
2 n
(1 -p89) [l + 7t(1L - cose')]
in which
. -1/2
yr= s (-0 -8) g (10)
me

Combining the last of Egs. (S,18) with the first of Egs. (S,21), we have

1/2
1y = $=B- cosor + sine'[? - (;?{}{gz)é] cos(] - @').  (41)

We substitute the Klein-Nishina formula, Eq. (S,17), for do'/dné into
Eq. (37); use Egs. (39), (40), and (41) to express all angular functions
in terms of £, cos6', and @'; and make an expansion in powers of B and 7.
After integrating over @', cos®', and ! and performing some tedious al-

gebre, we get the following result to order Bh', 527, and 72:
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1 21 1 u B
at ' ¢y do! 2
f_ 5 ap (1 - Be)d(cose ——é-[l - (_l_l_) :|

1 0 -l
2| 1 2 2 g°
= no_ 7-(3+n)-3— - 35| (Tn + 35)7° - (Lin +8hm+137)—3—7
5,02 B
+ (7Tn” + 4on“ + 85n + 66) = | [ (42)

in which o_ is the Thomson cross section (81t/3)(e2/mc2)2. The only
tricky part in obtaining Eq. (42) is in the evaluation of the contribu-
tion of various powers of Bf é arising from the expansion of Eq. (39).
Hence we will give the results for those quantities. Using Eq. (41),

2
we find after integration over ¢' that B! é and (B £ é) have the values

oty = BE=) coser;

(B2})® =

62(2 - 6)2 (3 cosO! - l)+ (1 - cosge) 2
5 5 5 By
(1~ pBe)

whereas (ﬁwé)3 gives no contribution to order B4 because it is odd in
cos®', After performing quite a bit of arithmetic and integrating over
cos®' and L, as well as @', one finds that the effective value of (Bﬂé)4
is simply al*zl* to order B)‘L.

Using a relativistic Maxwellian distribution function for N(P), we

find



Combining Egs. (37), (42), and (43), we finally obtain

1 kT n
= Ni — - -0 T) + oee }'lJ{‘
ke (v) DA o, ~ 2 nz na ufu - (n+3) - 5(u,T) 1> (k)
5(u,T) = KT 5 [(7n + 55)u2 - (llm2 + 8in + 137)u
10 me

+ (700 + hon + 6on - 9)] . (45)

We assume that ionization is complete and that it is permissible to
neglect all absorptive processes other than free-free transitions. Then
if we neglect electron degeneracy and insert numerical values, the usual
expression for the free-free dbsorption coefficient in units of cm.-l be-

comes

~S(xev)~ 72| 0201r)-7/2
pé(v) ~ p,%f(v) = [2.782 cm (kev) ] P (kT% [l - exp(-u)]
moles u
(§ aizi) 2 2
"y o m 2 L 04Zgep(2;/KT,u), (46)
(1 aiMi) :



where kT is in kilovolts and p is in g/cma. Here 7, M,, gff(zi/kT,u),

and Q, are the atomic number, the atomic weight, the Gaunt factor for

free-free transitions, and the mole fraction for element i, respectively.

Using these same units in Eq. (44), substituting Eqs. (4k4) and (46) into

the second of Egs. (8), multiplying through by zt(v), and using Eq. (36),

we get

where

%, a X =1; (47)

X =4 {Bu(n‘l‘) [ - exp(-u)]§ 0, 258 (22/KT, )

+ ™V L (s 3) - s(u,ce)]} , (48)
L a.Z,
-l cm® i
A= (7.8)4-32{10 m—) kaZaM K
ii
1 (49)
_ 3 (kev)9/ Com® o
B = [3051{-7 x 10 moles

572 .
(k1) zi:aiMi

These equations can then be solved numerically to obtain the a . In do-

ing this, we took a finite number of terms (usually 7 or 8 with values of

n between -0.5 and 1.25) on the right-hand side of Eq. (36), evaluated

the corresponding Xn of Eq. (48) for specific values of u between O.1

and 30, and used Eqe. (47) to make numerical fits for the a_ and hence

zt(v) on an IBM 704k computer,



If we neglect the second order scattering term, 5(u,T), and combine
Egs. (8), (36), (44), and (46), we can also obtain the second order dif=-

ferential equation

2
&y.q ﬁ) dy , 5 12 - e:;p(-u)]

1
z a, Zigff(z 2/xT,u) y - o
du u i

(50)
y =t (v).

This equation can then be solved by numerical integration. We decomposed
it into two simultaneous first order differential equations as described
by Margenau and Murphy (1943, pe. 473) and used the Runge-Kutta method of
numerical integration. Before discussing the results obtained by these
methods, we derive some transformation equations which considerably de-

crease the quantity of results needed.

V. TRANSFORMATION EQUATIONS

When 8(u,T) in Eq. (44) is neglected, results pi[{t(vl)] for one

temperature, T , can be transformed to results p2[ (v 4

l,

corresponding to a new temperature, T

end density, Py

and density, We consider Tl

02 Roe

and ‘I'2 fixed and transform between "corresponding densities,” Py

By "corresponding densities," we mean that p, is chosen such that the

and 92'

ratio of absorptive to scattering contributions to lt(v)"l for a given

value of u are the same at Po and T, as they were at Py and Tl’ then the

2

=36-



2 t(v) versus u curves for the two sets of densities and temperatures

have similar shapes., From Egs. (36), (47), (48), and (49), we see that

9/2 Z 0,23 gﬁ.(Z /k‘I‘ su)
) = ;
Pelve) = o1 ( > Z a Zisff(Zi/kTe,u)

o7y .
[lt(ve)] ) = 32-(_\17’12 [zt(vl)] l: (51)
T.v
21
Vo = T,

Combining these two equations, we get the more convenient relation for

our purposes

7/2 L oz gff(z 2/t o)
2 2 i 2
Da(va)[lt( Ve)]z = <T_> pl[l_t(vl)]li

2
1 E aiZigff(Zi/k‘I’a,u)

(52)

Similarly, one can calculate results for one mixture (subscripts 2
end j) from those for another mixture (subscripts 1 and i). In this case,
it is best to choose 'I.‘2 = Tl so the relative contribution of the second
order scattering term, 8(u,T), is the same for both mixtures. We get
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2
. § oM, zE oz, Z Q. zigff(z /kT,u) ,
o5 2,0)] = : - - . o3 44(¥)] 5 (53)
2 2 My ; 2y ; ajzjgff(zj/k‘]?,u) 1

2 2
2. oM, Z @, Z 8o (Zs/KT,u)

J i
Po(v) = o) 2 3 ’
2 oM ? oﬁzjgff(zj/kT,u)

P A §
i

(54)

The frequency dependence of pe(v ) and p2(v) is very small and can
be eliminated by a slight adjustment of the results for pe(v)[ (v ):I
and p2(v)[£ (v{] » respectively, without introducing much error, If the
appropriate averige values are used for the Gaunt factors, Egs. (51) to
(54) also apply with the frequency dependence of p, removed and zt(ve),
2 t("l) » end £, (v) everywhere replaced with A e We find empirically from
the results in the next section (in Table 1) that the value of u for which
the Gaunt factors equal their appropriate aversge values increases from
slightly less than 0,5 in the low density limit to about 7.5 in the high
density limit, The exact value used isn't very critical, because the

ratio of free-free Gaunt factors varies so slowly with frequency,
For frequencies above all sbsorption edges, the contribution to the
ebsorption coefficient due to bound-free transitions, uéf(v),has almost

the same frequency dependence as the free-free contribution, u%f(v).




Thus at low temperatures, one can include the bound-free contribution by
making another transformation similar to those described above, In this

case, we get

T
p(V) = pl[é + ;%f(;é] ; (55)
and
2 ( 2Ly () mpp(v) -
p2(v)[2t v)]2 = pl[lt v ] 1+ W R
(56)
T, =T, =T,

vhere for ! f(v)/p.%f(v) we use the approximate equation

walv) 5 z n-Baizl;{ben(zi/kT;u)exP(Zje_ Ryd/n°kT)
yd i,n

T =
THRED) kT

. {57)
?gff(zg/kT’u)

e
Here quantities with subscripts 2 and 1 refer to results with and without
Thy f(v) included, respectively; g, fn(Z?/k’.l?‘,u.) is the bound-free Gaunt fac-
tor for element i in initial bound state with principal quantum number n;
and Ryd designates 1 Rydberg. These transformation equations also apply
with At replacing £ t(v) and Pp constant when an average value is used for

the slowly varying function ”éf(V)/“i‘f(V)' Equations (55) to (57) are



valid only for frequencies with energies greater then the ionization

energies of all levels., Thus the integrated form of these equations
applies only when this includes all frequencies important in determining

A The range of conditions is small for which this is true and also for

_t.
which uéf(v) 1s significantly large; however, this transformation is still
useful for low temperatures, because the correct results for p2At and p
always lie between those obtained with and without its usage.

Of course, for most of the relatively low temperature region for
which bound-free and bound-bound absorption is important, scattering is
not important. Then Atf: A= l/pK, vhere K is the Rosseland mean opacity.
Even when scattering makes a significant contribution to K, one can usually
maeke the approximation At:: l/pK', where K' is the opacity with the scat-

tering contribution omitted, because p,(v) is of the order p_(v)kT mes.
) £ s

VI. RESULTS

In view of the existence of these transform equations, there is no
need to compute results for more than one element or for temperatures be-
low that for which 8(u,T) in Eq. (44) becomes insignificant. This occurs
at ~ 1 keve Using the first method described in the last section, results
were calculated for hydrogen at various densities in the temperature range

1 kev < kT < 16 kev,

=ltOw-



As a check, some of the results obtained this way were used as ini-
tial starting values for y = uf t(v) in integrating inward on an IBM 704
to solve Eq. (50) by the Runge-Kutta method. The latter method gives
more accurate results when applicable but consumes more computing machine
time, even though a double precision code was used in obtaining results
by the first method. When u is large, y ~ constant. Thus dy/du is very
small, and its starting values are not needed with great accuracy. We

used the equation

1 1 u
&y ~= - . (58)
large u A[u - & (u - 4)3]

If the initial values of y were chosen slightly too large (or small), y
became large in magnitude and positive (or negative) for small u. By
this method, one could obtain accurate results only down to the values
of u for which tt(v) began to decrease rapidly as u was decreased and
-1
approached the value [pé(v)] o At KT = 1 kev, it was found by this
differential equation method that, with the exception of very low fre-
. 2
quencies, p“£,(v) was equal to 2.522/u, 2.351/u, 2.324/u, and 2.321/u

=11

for the densities 10'7, 10-9, 107, and 1073 g/cma, respectively. Thus

we conclude that

(v) = RED g, (59)

lim p2s . s

p->0

where the constant b{(kT) has the value 2.32 when kT = 1 kev, A comparison

e




of results for different temperatures indicated that b(kT) has essen-

tially the same temperature dependence as peAa, the Rosseland mean of
-1

pe[ué(V)] .

The final results for pe(kT)—7/gA in units of g2 kev'7/2/cm5 are

t
given in Table 1. It is expected that the numerical errors in these re-
sults are within 2, 3, 4, 6, and 8% for kT values of 1, 2, 4, 8, and

16 kev, respectively. For low densities, the error is probably less

than this. The numbers in parentheses were obtained with the second
order scattering term 5(u,T) of Egs. (44) and (48) neglected.

The results obtained for pezt(v) in units of gz/cms are presented
in Table 2, The error arising from the numerical methods which were
used is less than 5% (usually much less) with the exception of the points
u= 0,1, p= 107 g/cmB; u= 0.2, p= 1072 g/cmB; u= 0, p= 1072 g/cms;
and u = 0.6, p = 107" g/cm’ which have uncertainties of 40, 60, 20, and
10%, respectively.

The results given in both tables for p > co were simply obtained by
setting lt(v) = [pé(v)]-l. Since Eq. (46) was used for pé(v), degeneracy
was ignored. Table 1 is not complete on the high density side for kT 2:&
kev, because in this region the electrons are partially degenerate.

In obtaining the results given in Table 2, the second order tern,
5(u,T), was neglected., Its maximum effect is to increase £t(v) by aebout
10 or 12% at the points p = 1 g/cm5, u= 30 and p = 10 g/cm;, u = 30;
however its effect is usually much less than this. The approximate meg-

nitude of the effect of &(u,T) on pezt(v) is indicated in Figure 1 where

=42



Teble 1

Values for p2(k.’l‘)-7/21\t for Various Temperatures and Densities

of Hyﬁrogen*
kT (kev)
o)
(g/ca’) 1 2 L 8 16
o 158. 171, 181. 189. 195.
10° 91.1 31.0 7.75
(85.4) (26.9) (6.34)
107 1082 39.4 10.09 0.8
(101.6) (37.0) (9.09) (2.53)
10t 11k, 51.2 13.73 361 1.2
(49.8) (13.10) (3.50) (1.347)
10° 6346 19.1 o7k 1.68 0.982
(0.957)
107t 26.3 6.56 2.0k 1.05 0.813
1072 9.11 2.58 1.156 0.8354
(1.152)
107 3435 1.3k 0.867
.y
10 1.57 0.910 0.755
10~ 0.989 0.764
10'6 0.782
10”7 0,700
0 .64k 0.664 0.679 0.691 0.703

¥
Entries in parentheses have been computed with the effect of the second

order term 5(u,T) omitted. A, is in units of cm.

U3



Table 2

Values for pzl t( v) for Hydrogen at a Temperature of 1 kev

h o (g/cn)
u 2 m—
kT . 10t 10° 107t 107 1072 107t 107 107

0.1  2.02x10™  2.02x10™  2.02x10™0  2.02x107  2.02x107  2.021070  h.o0x10”r  1.05x07  2.25x10%
0.2  1.00x10~2 1.00x102 1.00x1072 1.00x10™°  1.00x107°  4.00x10°2  L.o1x10°  1.20 1.33
0.4 5438 5.38 5.38 5.38 6.30 1..81x10° T+30 7.92x10° 6.93x10°
0.6 :L.soxJ.o'l 1.50x10'l 1.50x10‘1 1.5o><10'l 4.00x10~* k.55 6.76 5.62 L .67
0.8  3.19 3.19 3.19 3.19 1.62x10°  6.05 5.81 k.31 3.50
1.0 5.84 5.84 5.8%4 6.40 3453 6.58 k.08 3.49 2.81

L 1.2 9.71 9.71 9.71 1.31+x100 5455 6.61 4,33 2.93 2.34

T 14 Lsbac®  15wac®  1swac®  2us4 T.31 641 3.82 2.53 2.01
1.6 2.23 2.23 2.25 4,35 8.67 6.13 3.1 2.22 1.76
1.8 3.16 3.16 3436 6.62 9.67 5.8 3.07 1.98 1.56
2.0 k.35 4.35 4,86 9.25 1.03X10°  5.50 2.80 1.78 1.1
2.2 5.79 5479 T.00 1.21x10~ 1.07 5.20 2.57 1.62 1.28
2. T7.63 T.63 9.50 1.48 1.10 4,93 237 1.h49 1.17
2.6 9.8 9.82 1.25x10%  1.76 1.11 467 2.20 1.38 1.08
2.8 l.olxi0t  1.28a0°  1.59 2.00 1.11 Ik 2.05 1.28 1.01
3.0 155 1.61 2.00 2422 1.10 b2 1.92 1.19 9.140x10'l
3.2 1.91 2.03 2.49 2.41 1.09 k.03 1.81 1l.12 8.81
3.4 2433 2.47 3.02 2.58 1.08 3.85 1.7 1.06 8.29
5.6 2.8 3,00 3.59 2.73 1.06 3,68 1.62 9.97x10™F  7.83

3.8  3.37 3.60 L9 2.84 1.0k 3.53 154 9.45 T2




Table 2, Continued

hv o} (S/ ij )
u =
kT © 10+ 10° 1071 1072 107 107t 107 1076

b0 hooxiot koot k810t 2.95x0%  1.03xa0f  3.39a0°0  1.47a® | 8.98a0-k 7.05x10™%
55 5,95 6.35 632 3.13 9.7100°  3.08 1.51 7.99 6.27
540 8.48 8.90 T.73 3.23 9.30 2.82 1.18 T.19 5 6k
5.5  L.TxX10°  1.21x10°  8.98 3.07 8.8k 2.61 1.08 6.5k 5.13
6.0  1.57 1.58 1.0000%2  3.28 8.k2 2.2 9.94107F  6.00 4,70
6.5 2.06 1.98 1.09 327 8.03 2.26 9.20 5 454 .34
T+0 2.65 2,39 1.16 3423 T.67 2.12 8.56 5415 4,03
L Te5 3436 2.81 1.22 3.19 Te3h 2.00 8.01 L.81 3476
% 8.0 ka9 3421 1.27 3.1k 7.03 1.89 T.53 4,51 3453
8.5 5.16 3460 1.30 3.08 6.75 1.79 T7.10 4ok 3432
9.0 6.29 3497 1.33 3.02 6.49 1.70 6.71 k.01 3.1k
10.0 9.01 462 1.36 2.90 6.03 1.55 6.06 3.61 2.8z
11,0 1.25x10°  5.16 1.37 2.79 5.63 1.43 5,52 3,08 2.57
12.0 1.69 5459 1.37 2.67 5428 1.32 5.08 3.0L 2.35
13.0 2.22 5494 1.36 257 4 .08 1.25 4,70 2.78 2.17
1.0 2.86 6.20 1.35 247 sl 1.15 4,37 2.58 2.02
1540 36k 6.1 1.33 2.38 b 7 1.08 .09 2.41 1.88
20.0  9.80 6.8 1.1 2.01 3.57 8.32x10°F  3.09 1.81 11
25.0 2.15x101* 6.70 1.10 174 2.99 6.79 2.48 1.45 1.13

30.0 3498 6.25 1.00 1.53 2.58 574 2.07 l.21 9 J+2><10-2
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Figure 1 A plot of cp2 times the photon relaxation time, c-llt(v) , versus u for various den-
sities and a temperature of 8 kev. Here Ly(v) is in units of cm and p is in g/cmd.
Results are for hydrogen.




peft(v) versus u is plotted for various densities at a temperature of

8 kev, The results with and without &(u,T) included are represented by
solid and dashed curves, respectively. As one would expect from Egs. (44),
(45), and (48), it was found that for "corresponding densities" defined
above Eq. (51), the megnitude of the contribution arising from &(u,T) to

either pgzt(v) or p2A increases approximately linearly with temperature

t
from zero at kT = O. Thus in obtaining results for pezt(v) or pgAt for
new temperatures, one should apply Egs. (51) and (52) to the results in
Teble 2 or Taeble 1 with 5(u,T) omitted and then add the appropriate cor-
rection, if significant, as determined from inspection of Figure 1 or
Table 1.

In obtaining all results for £t(v) and A,, the numerical velues of

-t’
Karzas and Latter (1958) for the free-free Gaunt factors were used. Their
results are in good agreement with those of Berger (1956) where they over-

lap.

VII. DISCUSSION

Noting that pé(v) given by Eq. (46) is proportional to 92, while
“t(V) is proportionel to p (if the density dependence of £t(v2)/£t(v) is
neglected), and that pé(v) goes as about v-B, while “t(V) has & much
weaker frequency dependence, we interpret our results as follows: At
very high densities, pt(v) is negligible, and we see from the second of

-1
Egs. (8) that lt(v) = [ué(v)] . Then p2At = peAa, and, insofar as
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electron degeneracy can be neglected, peA

& and pzlt(v) are independent
of density. As density is lowered, pt(v) makes a signficant contribution
first at high frequencies and then at lower and lower frequencies, Since
the correct physical solution has positive a, and n for the major terms
in Eq. (36), we see from the dominant part of Eq. (44) that pt(v) is
negative for small u. When the density is low, “é(V) is small except
for very small frequencies. Thus for low densities, if lt(v) is to be
positive when ut(v) is negative, we see from Egs. (8) that pt(v) must be
very small in magnitude. As seen from Eq. (9), this occurs when utt(v)
is very nearly independent of frequency. It must also be very large and
proportional to p-2 because ué(v) and u%(v) are nearly cancelling and
pé(v) is proportional to p2. Thus we obtain the result expressed by

Eq. (59). Since this equation epplies for all but negligibly small fre-

quencies, we can integrate Eq. (24) and obtain

1im p°A, = 0.2776b(kT). (60)

p>0 b

As seen from Egs. (3), when the temperature is increasing (or de-
creasing), the number of photons of every frequency must increase (or
decrease) if a distribution close to a Planck distribution is to be
meintained. The total number of photons can be changed only by absorp-
tive and emissive processes, not by scattering. Thus in the low density
region for which Egs. (59) and (60) apply, the controlling factor is the

rate of production or destruction of photons, vhich is proportional to
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ué(v). This is the physical reason why pelt(v) and ;:)21\t again become in-
dependent of density at low densities. Compton scattering redistributes
the photons. This causes the p2£ 1_‘(v) versus u curve to be very different
in shape from the pz[ué(v)] - versus u curve, but it has a maximum effect
on p2A £ of only reducing it to about l/ 250 times its high density value
peAa.

This is completely contrary to the result one would obtain, for
instance, if he assumed that the radiation had a Planck distribution at
a temperature Tr ;4 Te With this assumption, the scattering contribution
on the right-hand side of Eq. (4) becomes independent of sbsorption. It
then goes as p, while ué(v) goes as p2. Thus at very low densities, ab-
sorption can be neglected, and one gets a time of equipartition of energy
between radiation and matter which is proportional to l/p rather than l/p2
as obtained by our method. However, as just pointed out below Eq. (60),
it is inconsistent in a time-dependent problem to assume that a Planck
distribution is maintained by scattering alone.

For high densities, this method leads one to obtain a time of equi-
partition of energy between radiation and matter equal to [cﬁé(v)]-l rather
then c-lAa as obtained by ozr method, where ]Ié(v) and A are the Rosseland
means of u!(v) and [u&'l(v)]- , respectively, [ cﬁ; (v)] -1 is always less
then c"ll\a unless p.é(v) = const., In the case of free-~free absorp-
tion by hydrogen at 1 kev, [cﬁé(v )] " ~ c'lAa/ 25. For high densities,
the error in assuming a Planck distribution at Tr # T is seen by inspec-

tion of the sbsorptive term on the right-hand side of Eg. (4). Ve see
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that the time rate of change of the radiative intensity is proportionel

to p!(v)[B(v,T) = I(v)] . Thus when I(v) and B(v,T) are nearly equal,
small deviations in I(v) from a Planck distribution are very important.
Now we expect I(v) to be most near to B(v,T) at the frequencies for
vhich the interaction between radiation and matter is large, i.e.,

2 t(v) smell. This effect is taken into account in Eq. (19), whereas

it is not by assuming I{v) has a Planck distribution at T.. The reason
Tor pointing out the fallacy of this approach in dealing with an opti-~
cally thick medium is that one might be tempted to use it, because it
makes the energy exchange rate between radiation and matter easy to
compute. Also one might expect it to be valid by analogy to the sit-
uation where ions and electrons are not in equilibrium. In the latter
case, it is usually a good approximetion to assume that ions and elec-
trons each have a Maxwellian distribution, but at different temperatures,
because these particles exchange energy most readily with other particles
of the same kind. On the other hand, photons interact only with the
matter, not with each other, and for this reason tend toward a Planck
distribution only at the matter temperature (the electron temperature
when ions and electrons are not in equilibrium).

It is interesting to note that the form given by Eq. (60) is per-
fectly general in the low density limit regardless of the particular
form of the frequency dependence of ué(v) or whether or not the expen-
sions leading to Eq. (4k4) for p.t(v) are velid, However, if the driving

termn f-‘é("’) went as a positive power of v, Eq. (59) would hold for all

=50



but very large rather than smell values of u. In this case, the n's of
the dominant terms in Eq. (36) would be small in magnitude and negative,
S0 p.t(v) would be positive for smell u and nigative for large u, and

] 1_'(v) would have the limiting velue [p;(v)].. at large rather than small
U,

We consider now the validity, for various conditions s of the approx-
imations made in obtaining our solution to the radiative transport equa~
tion.

Our results for radiative intensity, energy density, and flux apply
in the system stationary with respect to the material medium. In & time-
dependent problem, we expect the local macroscopic velocity y' of the
matter to vary with space and time, Thus, in contrast to the method
outlined by Thomas (1930), the system in which our results apply is not
in general an inertial system. This introduces an error in the higher
than zeroth order terms in our expression (19) for the intensity. The
condition for the velidity in this respect of our approach is that the
magnitude of the variastion of Y/c must be small compared with unity over
2 space or time interval such that T a.nd/or p change by & large fraction
of themselves. Due to the large value of c, this condition is Probably
always satisfied,

Since it has been emphasized that the solution obtained here is
valid only for an optically thick medium, we should specify more pre-

cisely what “opticelly thick" means. When ebsorption is dominant,
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A= At’ and it is clear that in order to be optically thick, a medium
must not change appreciebly in temperature, density, or composition
within a distance of & few mean free paths in any direction. The mean~
ing is not so clear when scattering is significant. We consider the
extreme case where scattering is very important. Since then At >> A = As,
we investigate the time-dependent part of the solution to the radiative
transport equation., This indicates that the radiation spectrum at posi-
tion P at time to is determined in the immediately prior time interval

equal to approximately 30-11\ where the choice of the exact factor 3 is

.t,
somewhat arbitrary. If it assumed that the boundary of a region with ap-
preciebly different characteristics with regard to temperature, density,
or composition is perpendicular to the x exis at a distance xo from P,

then in order that our solution be valid at P and to, it is necessary

that the following condition be satisfied:
ATE(Pyt ) = AE(Pyt )| << E(P,t,), (61)

where A'E(P,to) and At(P,to) are the portions of the total radiation
energy density E(P,to) calculated to originate from x > Xy when the
presence of the boundary at Xy is taken into account and when it is
ignored, respectively, We assume that condition (6l) is satisfied for
values of x  such that AE(P,to)/E(P,tO) is small, In order to obtain an
approximate value for At(P,to)/E(P,to), we solve the inverse problem of

obteaining the probsbility that photons originally at P at time to will be
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at x > X, at time to + 3c'lAt. An approximate value for this, in turn,

can be obtained from the well-known solution to random flight problem
given, for instance, by Eq. (87), page 1%, of Chandrasekhar (1943).
Since photons travel with velocity c and have flight lengths A = AS s
the number of random flights taken by a photon in time interval 3c"l/\t
is 3At/ 5 If this number is large (it always is when A ~ As), the

Probability that photons at P at time to will be a distance r from P at

. -1, .
time to + 3c At is
Wir,t + 3¢A,) = (eman )=2/2 r° (62)
Lty + 3¢ "AL) = t's ex‘p-QA_bAs'
Thus
AE(P,to) 0o 0o x

ode('x\:, t, + 3c-lAt)
0o

m:l-f;oody -wdzi

*o -1/2 x>
=1 = ax(2rA, A ) exp ( - . (63)
t's 2A A
-Q0 ts
. 1/2
This gives a value 0.05 for Az(P,to)/z(P,to) when x = 1.65(AA )%,
It As is replaced with A, this goes smoothly into the approximate result
expected when A = At‘ Thus it is probsbly quite accurate to say that
the solution to the radiative transport equation obtained in this report

is valid & distance one or two times (AAt)l/ 2 from the boundary of a

region of appreciebly different characteristics » and an optically thick



medium is one which is a few multiples of (AA,G)l/2 or greater in thick-
ness., We note that in reaching this conclusion, the value of the rate
aE/St did not enter. Thus it elso applies to the time-independent sit-
uation treated, for instance, in S,

Since the interaction of the radiation with the matter is only
through Compton scattering and free-free transitions (in treating the
latter, the nuclei are assumed stationary), our basic assumption that
the matter has distribution functions characteristic of thermal equi-
librium really only applies to the electrons. For the total radiation,
the criterion for the validity of this assumption is that tc << c'lAt,
where t_ is the relaxation time for electrons given by Eq, (5-26), page
78 of Spitzer (1956). This criterion is met. For, although the curves
in Figure 2 are only approximate in the region of electron degeneracy as
indicated by dashed lines, we see that the curve c_lA_b/tc = 10 lies some=
what above the curve Ac/A = 10, and much gbove the curve Em/5 = 10, which
indicate the approximate upper boundaries of the regions for which radia~
tion flux and radiation energy density are significant., Here Em is the
kinetic energy density of the matter and Ac is the equivalent mean free
path arising from electronic heat conduction, i.e., A, = (ch)-l, where

K, is the conductive opacity treated by Marshak (1940), Lee (1950), and

Mestel (1950).3

3Uni‘ortuna.tely', we used Kc in S to designate the opacity due to Compton
scattering.
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various approx-
imations apply. In treating the radiation, it can be assumed
that the electrons are in thermal equilibrium with themselves
below the curve c-lAt/tc = 10 and are also in equilibrium with
the ions below the curve c-lAt/teq = 10, Below the curve
Aa/As = 12, a simplification in the time-dependent expression
for the flux is valid., Electron degeneracy can be neglected
below the curve 1 = =1, The radiative energy density and flux
become relatively unimportant above the curves E,f¢ = 10 and
Ac/A = 10, respectively,




Below the curve c-lAt/teq = 10, where teq_ is the electron-ion time

of equipartition of energy given by Eq. (5-31), page 80 of Spitzer (1956),
we can assume electrons and ions to be in local thermodynamic equilibrium
with each other, Above this curve, the T in our radiation equations re-
fers to the electron temperature,

Below the curve Aa/As = 12 in Figure 2, the approximation to the
flux expressed by Eq. (29) is applicsble. Usually the term proportional
to A2 can be omitted and A replaced with As' We designate as F' the first
order time-~dependent correction to F, i.e., the part of the flux propor-
tional to OT/dt and Jp/dt; then along the curve Aa/As = 12, use of Eg.
(29) results in values for F' which are too small in magnitude by about
25%, Along a line through the points p = 0.9 g/cm3, KT = 0.5 kev; and
p =25 g/cm?, kT = 1 kev, corresponding to At/Aa~: 0.83, use of Eqg. (35)
causes one to overestimate the magnitude of F' by about the same amount.
In the region for which Eq. (29) applies, F!'/(F - F') and ¢!'/(2 - ¢'),
vhere g!' is the time~dependent correction to the energy density given by
the second termm in Eq. (22), usually have sbout equal megnitudes, whereas
in most of the region covered by Eqe. (35), F'/(F - F') is significantly
larger than E'/(E - ¢') in magnitude, The reason for this is as follows:
The Rosseland mean of a quantity which goes as o is roughly equal to that
quantity eveluated at u = n + 4, The products of £'s occurring in the
large parentheses of Eq. (35) go as considerably higher powers of u than

2

£(v) when gbsorption is dominent. Thus they are large relative to A%,

the rough approximate measure of the comparative importence of %',
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Above the curve 3 = -1, electron degeneracy becomes important.
Neglecting degeneracy along this curve causes one to underestimate the
magnitude of F' by about 20 or 25% and A or At by about helf that amount.
Here 1 is the usual chemical potentisl multiplied by 1/kT. It is equal
to the @ in S minus mcz/k‘l‘.

The curves in Figure 2 all pertain to hydrogen. From a study of the
expressions for the various gquantities involved, we conclude that for an
element with atomic number Z and atomic weight M, these curves should be
shifted approximately as follows: Considering points at the same tem-
“Ia by

= 10 and Aa/As = 12, so they pass through new densities, p,, related to

perature for both elements, we shift down the curves c'lAa/ t,~c

the old densities, p,, by the equation p, = Mpl/Ze. For the curves
Ac/A = 10 and n = -1, the new densities should be equal to Mpl/Z. In

the case of the curve E /¢ = 10, p, = 2Mp,/(Z + 1), The curve c-lAt/teq

= 10 should remain unchanged except that the bend resulting when A " de-
parts a.pp;eciably from Aa should occur at a higher temperature, T
2/5

2
~ (z /M) T,.
It is interesting to consider the conditions under which matter is

2

most likely to run away from the radiation, i.e., T becomes much greater
than the average radiation temperature Tr’ defined by the second of

Egs. (26). At high densities, c-lAt = c"lAa: Ap‘2T5'6, vhere A is a
constant., At low densities, when Egs. (59) and (60) apply, Ay~ Aa/250.

Thus from Eq, (23) and the second of Egs. (25) and (26), we get
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g_g ~ haLapP0 ¥ £ high densities,

(64)

%% ~ 103

":La.pg’l‘o'lL % H low densities,

in which AT = (T - Tr). Since the rate of energy production per unit
volume by the matter generally goes as a high power of temperature (un-
til some very large temperature is reached) and as 92, it appears ‘that
runaway is most likely to occur at high temperatures and fairly high
densities.h' However, the effect of runaway is largest at low densities

and high temperatures when most of the energy at equilibrium is in the

hOf course, the total rate R of energy transfer per unit volume from

matter to radiation equals J¥/dt + ¥V « F. We have assumed that JE/dt
>> ¢ ¢+ F. In determining this rate when V « F > 3%/dt, one should in-
clude in Eq. (19) for I(v,s) the second order term ze(v)g -V

-[z(v)g . gB(v,T)] = e(v) of Eq. (5,12). For V « F>> 3f/dt, this leads
(if the slight angular dependence of !2(11) is neglected) to R(v) and R
equal to the right-hand sides of Egs. (25) with 22(1/) and AL
l,c(v) and A, respectively, where Af = fooe(v)dv/j;)oo[e(v)/le(v)]dv.

-1
At high densities, £,(v) = £,(v) = [u‘;‘(V)T s while at low densities,

replacing

le(v) ~ (v) < £t(v). When 22(v) depends strongly on v, A} is somevhat
larger then the Rosseland mean of £,(v). Thus if ¥ + F > 38/3t, R is less
for high densities and greater for low densities than it is when VeF

<< 3E/d3t for the same AT,
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radiation field. Furthermore, the densities for which the first of
Eqs. (64) applies are unlikely for kT > 8 kev,

Actually, we have been implicitly assuming that the nuclei and elec-
trons are in equilibrium, i.e., that we are dealing with the region beneath

lAt/teq= 10 in Figure 2, Above that curve, as seen from Fig-

the curve c”
ure 2, ¥ is usually relatively small., Hence g' = ~4nc-2AtaB(T)/at is
usually not too important., However, radiative flux is usually an impor-
tant means of energy transport in this region, so the time-dependent
correction F' to the flux is important. Since F' is generally negative,
the energy flow rate is less than one might expect. In this region above
the curve c-ll\t/teq = 10, we should distinguish between the case where the
processes by which energy is being generated involve a significant amount
of gamma emission and where they do not, In the latter case, the energy
generated first goes into kinetic energy of the nuclei; then it is pos-
sible for the nuclei to run away from the electrons. On the other hand,
in the case of gamma emission, the energy is gquickly converted into elec-
tron kinetic energy, principally by Compton collisions, This tends to
make the electron temperature lead the ion temperature., Thus when gamma
emission is dominant, the nuclei cannot run away from the electrons. One
might expect the radiation to lead the electrons in this case. At the
high frequencies corresponding to the gamma radiation, it does, but the
remainder of the radiation lags the electrons as indicated by Eq. (21).
Since it appears that it would be desirable to have results for

higher temperatures than those covered in Teble 1 and perhaps for higher
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densities as well, we look into the possibility of obtaining them. The

condition for the validity of the expensions leading to Eq. (4k) fur

p.t(v) is
1/2 1/2
S o S
me me

where E is the electron kinetic energy in units of mce. Choosing

E = 2kT/m02, a value greater than the kinetic energy of most electrons,
we find that the values of u for which 27$ax = 1 are 24,9, 11.2, 4,86,
and 2 for kT = 8, 16, 32, and 64 kev, respectively. The values of u
important in determining At vary with density. At high densities, the
integrand in Eq. (24) has a meximum at u ~ 7, whereas for very low den-
sities where Eq. (59) applies, it has a maximum at u~ 3. However, in
the low density limit, the size of the constant b(kT) is determined pri-
marily at lower frequencies where “t(v) is negative and there is near
cancellation between pé(v) and. ut(v). This is substantiated by the fact
that the inclusion of S(u,T) had essentially no effect on the results

calculated for pezt(v) and. peA at low densities when kT = 8 and 16 kev

t
and also by the fact noted at the end of section V that at low densities
the Gaunt factors equal their appropriate average values when evaluated
at u slightly less than 0.5. Hence, the method used here to obtain re-
sults for A, is probebly vaelid until kT ~ 64 kev as long as p < 10° g/cm;.

This is the upper density for which Eq. (60) approximately holds when
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kT = 64 kev, Accurate Gaunt factors are not available for 16 kev < kT
< 64 kev; however, no more than a 50% error is likely to arise if we
obtain results for this region of temperature and density by applying
Egs. (51) and (52) to the results for kT = 16 kev and choose the ratio
of Gaunt factors equal to unity. Very rough estimates of At can also be
obtained for higher densities and temperatures by use of these transfora
mation equations,

For temperatures below ebout 12 kev, the condition gyéax < 1 applies

for all frequencies important in determining A, for any density. In this

t
temperature region, the only difficulty at high densities is in the proper
handling of electron degeneracy end screening effects. Some work has been
done on computing the free-free absorption coefficient at high and moder-
ately high densities by Tsao (1954), Zirin (1954), and Green (1958, 1960),
In the discussion section of S, we outlined the changes to be made in the
calculation of ps(v) vwhen electron degeneracy is taken into account. They
are the same for “t(v)° For conditions at which positron concentration

is negligible, the only change is that we replace N(P)PgdP in the integral

equation (S,25) for ps(v) and Eq. (37) for ut(v) with
o(E,n, T,u = u,)dE

(E + 1)(E° + o5) 2an

(66)
hnBAz[exp(-n + E/T') + l] [exp(n -« EfT* = u+ u2) + l] ’

6l




vhere, as before, E and T' designate the electron kinetic energy and
temperature in units of mce, and ho is the Compton wavelength given by
Eq. (S,41). As pointed out in S, the integrations are then very dif-
ficult to perform as a result of the quantity (u - u2) occurring in q;
however, the aversge contribution of this quantity is probably very
smell until very high temperatures are reached. If we set (u - u2) =
in Eq. (66), there is essentially no increase in work in calculating re-
sults for pt(v) in the region of electron degeneracy, except that one
must take into account the effect of degeneracy and screening on ué(v)
because “t(v) depends on u;(v) through the factor [l - vazt(ve)/vlt(v)]
in Eq. (9).

In the case of us(v), there is no increase in difficulty in obtain-
ing results when the electrons are degenerate if we set (u - u2) =0 in
Eq. (66), with the exception that one must, of course, calculate results
for each value of n. However, as pointed out in the discussion section
of S, the effect on ps(v) due to electron motion is small except at very
low frequencies. Thus when the electrons are degenerate, it should be &
fairly good approximation in obtaining results for the opacity due to
Compton scattering simply to multiply the results obtained in S with de~
generacy neglected by the factor

anm = [ (2 + 1)(2 + om)” S
0 [exp(-q + E/T') + 1 exp(n - E/T') + 1]

00 1/2
. j;) (E + 1)(E2 + 2E) } (67)

[exp( n+ E/T') + 1]
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Results for Q(n,T) corresponding to several values of n and kT are

presented in Table 3.

Table 3

Values for Q(n,T) for Various Temperatures and Degeneracy Parameters 7

T 1
(kev) -3 -1 Ouk 1.6 2.8 L 6 8

0 0,983 0,897 0.737 0.569 0.432 0,336 0.238 0,183
8 0.985 0,898 0.741  0.575 0.:40  0.345  0.248  0.193
32 | 0.98% 0,903 0.751 0.592 0.460 0.368 0.275 0.217
125 0.985 0.915 0,781 0.637 0.514 0,425 0.327 0.265

The values of the relaxation time c"lAt determined from Table 1
are so small that we conclude that it is fairly unlikely that in any
astrophysical problems dealing with optically thick mediums, the radia-
tion fails to remain in local thermodynamic equilibrium with the matter,
This is certainly true if the density and temperature are nearly uniform
over large portions of the star under consideration. However, during
the rapid stages of stellar evolution, we expect fairly steep gradients
of p, T, and the local macroscopic velocity'z to exist., As pointed out
below Egs. (64), the rate of energy generation by nuclear processes gen-

erally goes as a high power of T and as p2. Thus in small regions in

which p and T happen to be appreciably higher than in neighboring regions,
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the critical values of p and T for which some nuclear process proceeds
very rapidly may be reached. Possibly in some instances, these small
sections of the star will then attain very high matter temperstures be-
fore cooling by expansion and outflow of energy flux., The probability
of this occurring is enhanced if the time rates of change are large
enough that the radistion lags the metter appreciably. For then the
portion of energy which goes into the matter increases, thus increasing
the matter temperature and rate of energy production, while the outflow
of radiation flux is less for the same space derivatives of p and T

than it would be if radiation and matter were in equilibrium. Perhaps

in some cases, this is the way in which the very high temperatures needed
for synthesis of such elements as iron are reached, rather than by attain-
ing a very high temperature over large sections such as the whole stellar

interior.
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