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ABSTRACT

A time-dependent solution to the radiative transport equation is ob-

tained which is valid for an optically thick medium. Its principal WLue

is that it can be used to determines for a given value of ~T/& in the

case of the energy density or ~/~t, (~p)/(~), and &l?/& in the case of

the flux, the approximate boundary of the region of matter temperature T

and matter density p for which the radiation remains in local thermody-

namic equilibrium with the matter. Numerical results for the radiation

relaxation time> c-lAt$ for hydrogen in tie temperature range 1 kev < M!—

< 16 kev are obtained. These results can be transformed to apply to new

temperatures or different elements. The upper range of validity of this

method is thought to be p * 103 g/cm3 and kT * 64 kev. However$ the

transformation equations can be used to o_btain a rough estimate of re-

sults for higher densities and temperatures. Although it might be ex-

pected that p2At would go as p in the low density limit where Compton

stattering is expected to be dominantj it is found that for low densities

p2At + const ~ p2Aa/2’30>where p2Aa is the high density value for p2At

due to absorptive processes &lone.
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GLOSSARY OF NOTATION

8m5k4T4
a==

a
n

A

b(kT)

B(v>T)

J

co 4
B(T) = B(v)T)dv = -~.

o
B

c

E

Em

J
~(v) = C-l I(v,@

sl

E(P,to)

At(P,to)

radiation constant, Eqso (23) and (26)

~ansion coefficient defined byEq. (~)

constant definedby the first of Eqs. (49)

quantity definedby Eq. (59)

Planck intensity, Eqs. (3)

Eqs. (22) and (23)

constant

velocity

electron

definedby the second of Eqs. (49)

of light

kinetic energy in units of mc2

matter energy density

energy density of radiation of frequency v>
Eqs. (2) and (21)

total radiation energy density, Eq. (22)

first order time-dependent correction to
the radiation energy density

total
cific
(63)

radiation energy density at the spe-
point P and time to2 Eqso (61) ~d

the part of ~(PJto) coming fromx >
no boundary exists at xo, Eqs. (61~

-9-



A’E(P,to)

J’
co

Fn = Fn(v)dv
o

Z2/kT,u)gff( i

~ &;/kT,u)

h

I(v,~)

k

Kc

l(v)

Ir(v)

lP(V)

lq(v)

C-lqv)

the part of 5(P,to) coming from x > X. when
account is taken of the boundary a% Xo$
Eq. (61)

flux of radiation of frequency v in direction
~ Eqs. (1), (28), Snd (30)

totsl radiation flux in direction ~,
Eqs. (29) and (35)

first order time-dependent correction to
the flux

free-free Gaunt factor

bound-free Gaunt factor

Planckfs constant

specific intensity of radiation of frequency
v traveling in direction s

Boltzmann’s constant

to be consistent with the notation of other
authors, we use Kc in this report to designate
conductive opacity. Unfortunately, inS, we
used Kc to designate opacity due to Compton
scattering

mean free path

coefficient in
is shown to be

coefficient in
is shown to be

coefficient in
is shown to be

for photons of frequency v

the solution for I(v,s) which
approximately equal b- l(v)

the solution for I(v,s) which
approximately eqyal t~ l(v)

the solution for I(v,s) which
approximately equal b- I(v)

relaxation time for photons of frequency v,
also equsl to the time equipartition of
energy between photons of frequency v and
the matter

-1o-



l’(v) = It(v) + l(v)

1*(V)

m

‘i

n(v,:)

n(v,T)

n,

n

N(P)

N= “L&Jm”@’p2~

P

r

s
-J

defined byEq. (15)

direction cosine, Eq. (s,18), Eqs. (37) to (42

mass of an electron

atomic weight of element i

occ~ation of the radiation oscil,latir cor-
responding to frequency v and unit propagation
vector:} Eq. (6)

the occupation of the radiation oscillator
corresponding to frequency v when thermal
equilibrium exists at temperature T,
Eqsc (3)

expansion number, Eq. (36); also principal
quantum nwiber (57)

unit vector

density of electrons with momentum P

density of electrons

-tude of electron momentum; SJ.SOa part-
icular position

momentum of an electron

degeneracy factor, Eq. (66)

corrective factor to account approximately
for the effect of electron degeneracy on
the Compton opacity, Eq. (67); Table-3

position relative to point P

unit vector in the direction of photon
propagation

-11-



s

t

tc

t
eq

to

T

T~ = lfJ!/mc2

Tr

Tr(v)

u= hv/kT

v

~

W(~,to + 3c-lAt)

x
o

Xn

Y= Ult(v)

‘i

a = ~ + mc2/kT

syrtiboldenoting an eazlier paper by the
author (Sqpson, 1959)

time

relaxation time for electrons, Eq. (5.26),
page 780f Spitzer (1956)

time of equipartition of energy between
electrons and ions, Eq. (5-31), page 80
of Spitzer (1956)

a specific value of time t

matter temperature

average radiation temperature, second of
Eqs. (26)

temperature of radiation of frequency v,
first of Eqs. (26)

reduced frequency

speed of an electron

10CSL macroscopic velocity of the matter

probability that a photon with random direc-
tion located at P at time to will be a dis-
tance~ fromp at time to+ 3c-lAt, Eq. (62)

distance slong the x sxis from P of the
boundary of a region of appreciably dif-
ferent te~ratme, density, or composition

a quantity defined by Eq. (~)

%. (50)

atomic number of element i

l/kT times the relativistic chemical po-
tentisl

. .

-12-



u.
1

P = v/c

7 = hv/mc2

8(u,T)

a

n

Q

A. = ii/me

A

Aa

Ac = l/PKc

mole fraction of element i

a second order term defined by Eq. (45)

synibolindicating partial differentiation

l/kT times the nonrelativistic chemical po-
tential for electrons

scattering angle, polar angle

Compton wavelength

aversge photon mean free path given by the
Rosseland meanof l(v)

Rosseland meanof [U&(v)]-l

equivalent mean free path arising from
electronic heat conduction

As

C-lA%

fl:(v)

I.+fb)

k$f[v)

l+)

Rosseland meanof [Vs(v)]-l

average photon relaxation time or relaxation
time for the total radiation; also equal to
the time of equipartition of energy between
radiation and matter. It is given by the
Rosseland meanof C-llt(v), Eq. (24)

absorptive contribution to It(v) and l(v).
It is the usual absorption coefficient re-
ducedby the factor [1 - exp(-u)] to take
into account induced emission and is defined
to exclude Complxm scattering

contribution to v’(v) due to free-free
transitions, Eq. ?46)

contribution to u:(v) due to bound-free
transitions, Eqo ~57)

qu~tity shown to be
us(v)

-13-
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I-@)

I@)

v

P

a

quantity shown to be
us(v)

quantity shown to be
11#)

approximate y

approximately

equal to

equsl to

contribution to I(v)-L due to Compton scatter-
ing

contribution to It(v) due to Compton scatter-
ing

frequency

matter density

scattering cross section

Thomson scattering cross section

summation sign

azimuthsl angle

solid angle

-14



I. INTRODUCTION

We define local thermod~sm,ic equilibrium to exist between matter

and radiation of frequency v at a point P whenever the vector flux ad

radiation energy density at P are given with sufficient accuracy by the

equations

and

(1)

8(v) = $ B(v,T), (2)

respectively, in which l(v) is the photon mean free path, T is the tern.

perature of the matter in the neighbotiood of P, and B(v,T) is the Planck

intensity given by

2hv3
B(v,T) =—

C2 n(v,T);

[ 1
-1

n(v,T) = exp(~) - I .

(3)

-15-



Ordinarily, whether or not the radiation field is in 10CS2 therm-

dynsmic equilibrium with the matter is determined by whether or not the

system is optically thick. In this report, we consider

uation, one in which the system is optically thick, but

change of the matter temperature T is so great that the

may not remain in thermal equilibrium with the matter.

a different sit-

the time rate of

radiation field

It iS thought

that the results obtained might be of particular interest in a detadled

theoretical treatment of the mst rapid stages of stellar evolution.

For most material densities at very high temperatures, a large fraction

of the energy density and energy flow is radiative. Thus any appreciable

departure of the radiative flux or energy density from their equilibrium

vslues will.have a significant effect on the matter temperature and rate

of energy production

First we obtain an

of radiative transport.

rections to expressions

density. These results

explicitly time-dependent solution W tie equai~on

From this, we get first order time-dependent

(1) and (2) for the radiative flux and energy

csn be used in borderline cases to extend the

conventional treatment of radiation However, the range of conditions

for which

large and

ing these

and space

determine

cor-

first order time-dependent corrections are both significantly

valid is fairly narrow. Thus our principal purpose in obtain-

results is that they can be used for given

derivatives of matter density p and matter

the approximate boundary of the regions of

vslues of the time

temperature T to

p emd T for which

the rsdiation stays in locsl thermodynamic equilibrium with the matter.

-16-



For the energy density of radiation of frequency v, we find that this

boundary is determined by a knowledge of It(v) or for the total radiation

by At. The quantity c-1 -1It(v) and its Rosseland mean value c At can ap.

propriately be cslled the relaxation times for photons of frequency v and

the total radiation, respectively. For the radiative flux, this boundary

is a function of l(v) aswell as IA(v).

When scattering is

determine It(v). It is

The motivation to carry

explicitly, we obtained

b

not treated explicitly, it is a trivial matter to

simply equal to the photon mean free path l(v).

out this work csme when, by treating scattering

the integral equation [Eq. (9), section II] for

IIt(V)Sme Scatteriw contribution ~ ft(v)-l. AS a consequence of the

omission of the COSQ factor which occurs in Eq. (10) for Ms(v)~ the

scattering contribution to l(v)-l, it was immediately seen that Mt(v)

<< ~s(v). Thus when y:(v) << us(v), where pi(v) is the absorptive con=

tribution to 1~1(v) and l“l(v), it is apparent

that It(v) >> Y(v). Since the condition v:(v)

densities at high temperatures, it was thought

peratures the

in some cases

thermodynamic

from Eqs. (8) of section II

<< us(v) applies for most

that possibly at high tem-

photon relaxation time C-Lit(v) wouldbe

with large ~T/~t the radiation would not

equilibrium with the matter.

large enough that

remain in local

Much of the theory and many of the equations we use are identical

or similar to some of the theory snd equations in an earlier paper

(Ssnu?son,1959) in which the the-independent trsnsport of radiation

-17-



is considered and results for l(v) are obtained when Compton scatteri~

is dominant. We shall refer to this earlier paper as S, and equation n

of S will be designated Eq. (S,n).

II. A TIME-DE.PENDENTSOLUTION TO THE RADIATIVE TRANSFORT EQUATIO1{

If one adds a term c-l~I(v,~)/~t to the lef~h~d

and (S,10), they are also volid for the time-dependent

equation can then be written

side of Eqs. (S,5)

case. The latter

7

(4)

where the reduced frequency u is defined by

hv
u=—

kT~

and the occupation of the radiation oscillator corresponding

v and unit propagation vector ~ is defined as

(5)

to frequency

~2
n(v,~) S — I(v,~).

2hv3

-la

(6)



In Eq. (4), ~&(v) is the absorption coefficient multiplied by the factor

c1 - exp[.u)~ and defined to exclude Comptonscatterhg, which is taken in-

to account by the integral term; the subscript 2 refers tQ the final state

of photons with initial intensity I(v,~) titer being scattered through an

angle e by collisions with electrons of momentum l?;[~(%9%:V~2]@J2

is the differential scattering cross section; ad N(P) is the relativistic

Maxwellian electron distribution function. The only assumptions made in

writing the radiative transport equation in this form are that the matter

has distribution functions characteristic of thermal equilibrium at tem-

pel”atureT, and electron degeneracy can be neglected.

Assuming the medium to be optically thick and the space and time

derivatives of T and P to be sufficiently small, we can expand the equa.

tion for tie intensity about the Plack distribution, Eqs. (3). In making

the expansion, we choose terms of order (n + 1), which involve derivatives

of order (n + 1), to be given by the nth order te?ms after they are acted

upon by the operator (c-l~/&t + ~ ● ~) and multiplied by unknown coeffi-

cients 1i(v). Writing explicit&y only those second order terms which

give first order time-dependent corrections to the flux, we have

I(v,~) = B(v,T) - l(v)~ ● yI(v#) - C“%t(v) *.

+ C-%r(v)~ “ XT![,t(v, + w]W}

[
al(v)

+ C-llP(V) -T : ● IJB(v,T) ~

+ C-%p[.zjq [z$&l]E .,,0

-19-
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By VQ mting on a quantity, we mean that we determine the space gradient

of the quantity only through its dependence on T or the time derivative

of T, i.e., we hold p constant. me last three terms in Eq. (7) arise

from the quantities c-% at l(v)~
/[ 1● ‘i@v$T)

[ 1and C-lg s ~ lt(v)W@)/M

efter they have been rearranged as three separate terms proportional to

one multiplied by a different coefficient.

When we substitute Eq. (7) into Eq. (4), the zero order

on the right-hand side, and we find by similar arithmetic to

s

terms cancel

that used in

[I(V)]-l = v:(v) + I@);

[()] -1
ltv = P:(v) + I.it(v);

[()]lr v
-1

= v:(v) + +&

(8)

etc. In these equations,

and us(v) is given by the ssme expression if the qu~tities in the brackets

are replaced withl

‘This is the ssme result for vs(v) as was obtained in S;
is not quite logically correct, because one should make
(S,A) and (S,B) before replacing (v* s ~)(v~ ● ~)-1

however, Eq. (s,16)
approximations
with v2(v)-lcos0.

-20-



[

1- exp(-u)
1 - eQ(.u2J .1

v2&p2 ● y
1- ‘2- 1 - — Cose.

vl(v)~ ● VT — v (lo)

In writing the expression on the right-hand side, we have made approxim%

tions (S,A) and (S,B) and have used the result obtained in the appendix

of S that (VA . ~)(v~ ● w) -1
has an effective value v2(v)-lcos0.

The expressions for Kr(v), VP(V)) and Mq(v) are only slightly mre

difficult to obtain. Neglecting for the moment second order terms in-

volving products of first order derivatives of B(v$T) or n(v,T), we obtain

the following equation in lr(v) anslogous to Eq. (S,14) in l(v):

[
s “ ~ l’(v) *’]= V:(v)lr(v):- Q V&(v) -*]

[
+ lr(v): “ ~ l’(v) .* IJVN(P)dY& ~2

: Q2 2

([ 11+n(v2,T) 1 - ~(u2 - U)

where

l“(v) = It(v) + l(v).

Assuming we can write T = g(x~YSz)f(t)s it is apparent that

(I-1)

(12)

(13)

9

-21-



Then using Eqs. (3) and (~), we

in which

obtain

u=— exp(u)
l*(v)(g “ ~:$ (14)

T* [exp(u) - 1]2

Stibstituting

Eqs. (3), we

this result into Eq. (11) and again using the second of

can reduce the part in the large braces to

Then solving Eq. (n) for lr(v) and using Eqs. (8)

ssme result for Wr(v) as was obtained for Ms(v) if

placed with unity. Similarly for VP(V) ~duq(v)s

as

is

(15)

(16)

J

and (16), we get the

l*(v2)/l*(v) is re-

we get the sane result

[ 1[•~/~(V)S ● m inEq. (10)we got for ps(v) except that l(v2)~2 ~
rum J

replaced with

and

respectively. Since the theory given in the appendix of S is obviously

equslly applicable if ~ is replaced with

-22-
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lead to

lr(v) : lP(V) *

When these approximations

written as

(18)

are ~ade, I@. (7) for the intensity can be re-

.
= B(v,T) - C-A

W(V T)

[ 1

~B(v T)
I(v,~) It(v) +- 1(v)5 ●~B(v,T) - c-l~t(v) ‘~

+ c-%(v) & [ 1
I(v)% ● y3(v#) + ... ● (19)

For temperatures below the kilovolt region$ approximations (17) are Very

good because v ~ V2. For higher temperatures, tieY become increasi@Y

worse as temperature is increased. Even at very high temperatures, they

are still good if l*(v), ~l(v)/Jp, and ~lt(V)/~P vary slowly with fre-

quency. It turns out that this is the case (with the exception of a few

low frequencies unimportant in determining frequency averages) for the

densities at which we are able to obtain results for It(v).

Let us now consider the effect of neglecting second order terms of

[
]~B(v2,T)/~t]. No terms of exactly thisthe type l(v)lt(v2) ~ ● ~(v,T)

form appear

for I(v,~);

they should

adds to the

on the left-hand side of

however, these terms are

obviously be included in

part in the large braces

Eq. (4) when Eq. (7) is substituted

proportional to (~ “ ~T)(bT/~t), so

the equations involving lr(v). This

in Eq. (11) a term

-23.



~t(v2)~(v)[g •~n(vsT)]~n(v2>T)/bt+ ~t(v)~(v2)[~2 1● t&(v,T) &(v,T)/~t

[
lr(v)~ ●X l’(v)&(v,T)/at

[
“ 1-

1
exp(u2 - u) ,

which we must show is small compared with unity, the approximate vslue of

the part which has already been included. We rewrite this with the use

of Eqs. (3), (5), and (14) as

lt(v2)l(v)

[

@l(v2):2 “XT 1U2 em(u2)
1+

l*(v)lr(v) 2t(v2)f(v~E “XT
_ [, - eXP(u2 - u,]

lt(v2) U2 e~(u2)
N *

{2 1- }
e@(u2 - U) s

‘1 (v)
[ 1
Q(U2) - 1

(20)

(18) andwhere in writing the right-hand side, we used approximations

have neglected the second term in the large brackets on the left-hand

side, because it goes approximately as cosO and thus has an effective

value near zero. Noting that alt(v)/~T is always positive and that the

quantity

see from

smsller)

side of Eq. 20 has the small value u2pxP(-u2)- Jexp(-u) , whereas for

small u, it has the value
[“/u2 “ 11$

which, according to the anslysis

of section IV, is about kT/mc2 when the integrations over angles and

in the braces of Eq. (15) is equal to or greater than unity, we

Eqs. (12) and (15) that ~t(v) is always smaller (ususlly much

than I*(V). For large u, the remaining part on the right-hand
r 1
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and electron energies are performed. The part in the braces of Eq. (20)

is generslly small enough that the whole quantity is also smsll for in-

termediate u, i.e., u - 1. Thus we conclude that neglecting these terms

is vslid for sll frequencies until very high temperatures are reach”ed.

111. TIME-DEPENDENT EXPRESSIONS FOR RADIATIVE ENERGY DENSITY AND FLUX

Multiplying Eq. (19) by C-l and integrating over solid angle and

frequency, we get

E(V) = C-l JI(v,@ =$
[
B(v,T) - C-lIt(v) .*.] (a)

Q

and

(22)

for the radiative energy density of frequency v and the total radiative

energy density, respectively. Here

J
a) r14

B(T) = B(v,T)dv =$& ,
0

(23)

and A is
t

the Rosseland mean va.lueof It(v):

J
cm -2

‘t =$ o [
lt(v)u4 exp(u) exp(u) - 1

1
du. (24)

-25.



.
Using the approximations dE(v)/~t ~ 4fic-%B(v,T)/iM and a~/~t

~ 4xc-l~(T)/~t, which are valid if the form given by Eqs. (7) aud (19)

for the intensity is vslid, we see from Eqs. (21) and (22) that c-lIt(v)

and C“LAt can appropriately be cslled the relaxation times for photons

of frequency v and the total radiation$ respectively. With these ap-

proximations, we can rewrite Eqs. (21) and (22) as

4fic-lB(v,T)- 8(V)
9

C-llt(v)

4XC-%(T) - ~ .

C-1A4
b

Defining the radiation temperatures Tr(v)

‘(v) ‘% {-’+ e~[%a

E
4= aTr ~

we get for small T - Tr(v) and T - Tr

[~r(v) ‘- ‘r(v)1
T=

9

C-llt(v)

aT (T - Tr)

+ = C-lA “
t

(25)

and Tr by the equations

-1

}
>

(26)

(2’7)

-26-



From Eqs. (~), we see that c
-1
~t(v) md C-lAt are the times of equi-

partition of energy between matter and radiation of frequency v and

totsl radiation, respectively, analogous to the t
eq

of Spitzer [1956,

Page 80, Eqs. (5.30) and (5.31)], in which teq is tie time of equipar-

tition of energy between electrons and ions. ‘Ihefact that energy

equipartition times and relaxation times for the rsdiation are equsl

arises from the fact that the

not with each other.2

Again using Eq. (19), we

surface with unit normal n

.

photons interact only with tie matter,

get for the flux of frequency v across a

-~ [ 1}
C-14(V): ● ~B(v,T) . (28)

When ps(v) << M:(v), we see from Eqs. (8) that l(v) ~ Vs(v)-l. Then, as

seen from the results in S, ~l(v)/bp & -P-ll(V) and &(v)/~ ~ O. Fur.

thermore, 1(v) is a very slowly varying function of v. Hence it is a

good approximation in integrating Eq. (28) over frequency to remove l(v)

from the integration of the second and third terms and replace it with

21n this paper, “relaxation time” refers only to the time it takes quanm
tities of a given kind to reach their characteristic thermal distribution.
For ions or electrons, this time is the tc of Spitzer (1956, p. 78).
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its Rosseland mean, A. We obtain

J

m
Fn = Fn(v)dv

o

A
+> 1,
s

(29)

[. l-lmd[@!-l~
where As and Aa are the Rosseland mean values of M (v)

respectively. In obtaining the term proportional to A2, we used Eqs. (13)

and (23). For densities a little lower than the highest for which Eq. (29)

as noted in the latter part of the Int?mduction,

us(v) >> I.l:(v)oUnder these conditions, one can

term inEqs. (19) and (28) for I(v}:) and Fn(v).

results for radiative intensity$ energy density,

independent case, with the exception that B(v,T)
r .

applies, one can replace A everywhere with As. Also unless (P-laP/bt)

>>1, we can neglect theterm proportional to A2 because,

It(v) >> l(v) when

also neglect the last

Then we have the ssme

and flux as in the time-

and B(T) have everywhere

1been replaced with B(v$T) - c
1[

‘@B(v,T)/~t and B(T) - C‘lAt~(T)/&],

respectively.

For higher

are significant

densities and lower temperatures, both Ps(v) and w~(v)

h determining I(v); however$ w+(v) cs.nusu~ybe neg-
“

[1
-1

lected in determining It(v), i.e., It(v) & v:(v) . Before Procee~
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With the derivation of

which is valid in this

following way:

the approximate expression for the total flux

case, it is convenient to rewrite Eq. (28) in the

e

.

1-

1

where we have again used Eq. (13). We also used the relation

#B(v,T) = T-l [(u )

em(u) + 1 &3(v T)

~T2 exp(uj - 1l+>

(30)’

(31)

which is easily derived from Eqs. (3) and (5). We assume that M:(v) is

the free-free absorption coefficient given byEq. (46). (See section IV.)

Then we have

at(v) I@) <<1

p T: ‘21a(v); iq’n (32)

[ l~T+[’a(v)+ ’(v)l~O’ $%. ’33)
T+ ~t(V) + 1(V)

Also
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al(v) 1
‘=r--=- [2 L@ + ala(v) 1

12(V)=-l(v) -“~ >

[ 1

(34)

I@) + V:(v)
a

[1

-1
where 1 s

a W:(v) ● Approximation (33) mRy at first seem invalid if

one is used to seeing la(v) written as a function of u rather than v as

in Eqo (~); however> in the case of hydzmgen} approximate Values fO?2

.
la(v)-LT~la(v)/~T at u= 8 are 0.28and 0.23 for temperatures of 0.25

and 1 kev, respectively. This gives a contribution only about 2 or 2.5%

of the contribution of the first term in the large parentheses of Eq. (35).

Substituting these results into Eq. (30), we have an expression which is

a function of I(v) and la(v). These quantities are generally known quite

well from opacity work. Integrating over frequency, we obtain

MS(V)

in which a bar over a quantity means that the Rosseland

quantity has been taken. At very high densities,

and I(v) can be replaced with la(v) everywhere in

terms in tinelarge parentheses in Eq. (35) nearly

(33) should not be made.

mean of tiat

is negligible,

(35)

Eq. (35). If the

cancel, approximation

-30-



Ivm METHODS OF

Solutions to

CALCULATING THE RELAXATION

Eqs. (8) and (9) for It(v)

W C-%t(v) AND C-lAt

are obviously very difficult

to obtain in genersl. Here we obtain an approximate

~t(v) to a Polynomi~ and expanding in powers of y =

where v is the electron speed. We assume

2’ n
Ult(v) = anu

n

solution by fitting

hv/mc2 and p = v/c,

(36)

and substitute this expression for Ult(v) into Eq. (9). As in S, we fi.nd

it convenient to perform the integration over solid angle d!22in the

prtied system in which the electron is at rest, because in that system

the differential scattering cross section is axially symmetric. The re.

lationship between cross sections in primed and unprimed systems is given

by (S$19)0 Using &at equation and choosing dfd~and ~ as in Eqs. (S,22)

and (s,24), we get

[ 1[ 1

-1
where approximation (S,A), 1 - exp(-u) 1 - ew(-u2)

been made. Making use of the well-known relation between

- ~l)d(cosO’)

(37)

* 1, has again

initisl and

scattered frequencies in the primed system,
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together with Eqs. (s,18) relating

(38)

frequencies and direction cosines in

primed and unprimed systems, one obtai=

(39)

n

()
‘2 =

(1 + @l;)n(l - pl)n

ii ~s

(1- P2)n[1+7’ (1- cOse’)]

in which

-1/2

Y’ = ~=(l. f31)(l. #) 70 (40)
mc

Cofiining the last of Eqs. (s,18) with the first of Eqs. (S,21), we have

We substitute the KLein-Nishina formula, Eq. (S,17), for h ?/dQ~ into

Eq. (37); use Eqs. (39), (40), and (1+1)to emress S.1-l~~~ functions

b terMs Of f, cOset, and q‘; and make an expansion h powers of 13and 7.

After integrating over (p?,cosfl’,and 1 and performing some tetious sJ--

gebra, we get the following result to order p4, @27, and Y*:

-32-



=nu o{[
7-

+

in which co is

tricky part in

(3+n)J$
1[
- * (’i’n+ 35)72 - (14.’ + 84m + 137) g Y

1}
(Tn3 + 42n2 + 85n + 66) ~ , (42)

2
the Thomson cross section (8n/3)(e2/mc2) . The only

obtaining Eq. (42) is in the evaluation of the contribu-

tion of various powers of @l~ arising from the expansion of Eq. (39).

Hence we will give the results for those quantities. using Eq. (41)>
2

we find after integration over cptthat ~1~ and (p l?) have the values
2

($1;)’ = p’(1 - ~)’ 3 COse’ - 1

( )
~ (1 - COs’e) ~’,

(1 - pi)’ 2 2

whereas (f31;)3gives no contribution to order p4 because it is odd in

cOset. After performing quite a bit of arithmetic and integrating over

cose~ and 1, as well as 99 4, one finds that the effective value of (~1~)

is sin@y ~414 to order p4.

Using a relativistic Maxwelliau distribution function for N(P), we

find
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74 flco2

J

2
—=—
3N0 ()

~N(P)P2dP= ~-; ~ + ●**;
mc mc

~= E2+. eoa
() 2
mc

Combining Eqs. (37), (42), and (43), we finally obtain

(43)

I-@ =+pfo5>n.n[u- (n+3)-5(.JT)+...l, (~)

n

5(u,T) =2
10 mc2

-1-(7n3 +

[
(7n+ 35).2 - (14n2 + 84n + 137).

1
42n+60n -g) . (45)

We assume that ionization is complete smd that it is permissible to

neglect all absorptive processes other than free-free transitions. Then

if we neglect electron degeneracy and ~ert numerical values, the usual

aression for the free-free absorption coefficient in units of cm-L be-

comes

[

‘5(kev)cm -7/2
v:(v) : u;f(v) = 2.782 2

moles 1,qkT)-7/2
.3

[1 - e2ql(-u)]
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where kT is in kilovolts and p is in g/cm3. Here Zi, Mi, gff(Z~/kT,u),

and ai are the atomic number, the atomic weight, the Gaunt factor for

free-free transitions, and the mole fraction for element i, respectively.

Using these same units in Eq. (44), substituting Eqs. (44) snd (46) into

the second of I@. (8), multiplying through by It(v), snd using Eq. (36),

we get

ZaX =1;
nn

Xn =
{

A BU(n-4)[1 - e~(-u)] ~ aiZ~gff(Z~/kT,u)
i

+ nu(n-l)

}
[u - (n+ 3) - 8(u,T)] ,

where
Z aiZi

A=
( )7*843 x 10-4 cm2 .mde-kev pkT ~ “

~ a:M4 ‘
-r -(..L
-L

[

9/2 3
B= 3.547 x 103 (ke;~le~=m

1 (kT)9/:~ a M
ii

i

(47)

(48)

(49)

These equations can then be solved numerically to obtain the an. In do.

ing -this,we took a finite number of terms (usually 7 or 8 with values of

n between -0.5 and 1.25) on the right-hsnd side of Eq. (~), evaluated

the corresponding Xn of Eq. (48) for specific values

and 30, and used Eq. (47) to make numerical fits for

of u between 0.1

the an and hence

It(v) on an IBM 704 computer.
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If we neglect the second order scattering term> ~(uST)$ and combtie

%SO (8)s (36)$ (44), and (46)$ we can also obtain the

ferential equation

fi=(l-$~+B~
(1 - em(-u)l ~ ~iz~gff(Z$/kT,u)

du2 U5 i

second order dif-

Y-~ Au >

(50)

Y = Ult(v).

This equation can then be solved by numericsl integration. We decomposed

it into two shil.taneous first order differential equations as described

by Margenau and Muqphy (1943, p. 473) and used tie Rqe-Kutta method of

numerical integration. Before discussing the results obtainedby these

methods, we derive some tr~sfo~ation equations which consider~ly de-

crease the quantity of results needed.

v. TRANSFORMATION EQUATIONS

When 5(u,T)

temperature, Tl,

corresponding to

and T2 ftied and

By “corresponding densities,” we mean that P2 is chosen SUCh ~at the

ratio of absorptive to scattering contributions to it(v)-l for a given

vslue of u are the same at P2 and T2 as tiey were at pl and Tls then the

[1
in Eq. (44) is neglected, results p: It(vl) for one

1

[1
21(V)and density> P1~ can be transformed to results p2 t *

2
a new temperature, T2, and density> P2. We consider T1

transform between “corresponding densities,” P1 and P2.
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It(v) versus u curves

have similar shapes.

for the two sets of densities and temperatures

From Eqs. (36), (47), (48), and (49), we see that

;

(51)

4.

‘2”1
‘2 = —*

‘1

Combining these

our purposes

two equation9, we get the more convenient relation for

(52)

‘2

T2V1

‘-q--

Similarly, one can calculate results for one mixture (subscripts 2

and j) from those for another ndxture (subscripts 1 and i). In this case,

it is best to choose T2 = T1 so the relative contribution of the second

order scattering term, 5(u,T), is the same for both mixtures. We get
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(54)

‘1 =T2=T.

The frequency

be eliminated by a

[1
and P:(v) %(v) >

appropriate aver~e values are used for the Gaunt factors, Eqs. (53.)to

(54) also apply with the frequency dependence of p2 removed and lt(V2),

lt(vl), sad It(v) everywhere replaced with At. We find empirically from

the results in the next section (in Table 1) that the vslue of u forwhic.h

the Gaunt factors equal their appropriate aversge values increases from

slightly less than 0.5 in the low density limit to about 7.5 in tie high

density limit. The exact value used isn~t very critical, because the

ratio of free-free Gaunt factors varies so slowly with frequency.

For frequencies above all absorption edges, the contribution to the

absorption coefficient due to bound-free transitions, ~f(v), has a3most

the sane frequency dependence as the free-free contribution, V$f(v).

dependence of p2(v2) and p2(v) is very small and can

[1

slight adjustment of the results for p;(v) lt(v2)

2
respectively, withou-t introducing much error. If the

-%-



Thus at low temperatures> one can include the bound-free

making another transformation similar to those described

case9 we get

[1%f(v) ‘1
02( v) =Pll+.~J ;

contribution by

above. In &is

and

[ ]2=f’IJw]~+&~2
P:(v) It(’)

(’5)

‘1 =T2=T,

where for l$f(v)/M&(v) we use the approximate equation

X n-3a Z4
i i~fn(z~/W~u)-(Z~ Ryd/n%T)%f(v) 2 Ryd i,n

‘~) = kT ● (57)
z Q z2gff(z&qu)iii

Here quantities with subscripts 2 and 1 refer to results with and without

v&(v) included, respectively; ~ti(Z~/kT,u) is tie bound-free Gaunt fac-

tor for element i in initial.bound state with principsl quantum nunibern;

and Ryd designates 1 Rydberg. These transformation equations

with At replacing It(v) and p2 constant when an average value

the sluwly varying function k$f(v)/ll;f(v)o Equations (55) to

also apply

is used for

(57) are
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valid only for frequencies with energies greater than the ionization

energies of sll levels. Thus the integrated form of these equations

applies only when this includes all frequencies important in determining

At. The range of conditions is small for which this is true and also for

which ~f(v) is significantly large; however, this transformation is still

useful for low temperatures, because the correct results for p2At and P

always lie between those obtained with and without its usage.

Of course, for most of the relatively low temperature region for

which bound-free and

not important. Then

Even when scattering

bound-bound absorption is important, scattering is

‘t=A=
l/pK, where K is the Rosseland mean opacity.

makes a significant contribution to K, one can ususlly

make the approximation At- l/pKt, where K? is the opacity witi the scat-

tering contribution omitted, because IJt(V) is of the order vs(v)kT/mc2.

VI. RESULTS

In view of the existence of

need to compute results for more

low that for which 5(u,T) in

at =1 kev. Using the first

were calculated for hydrogen

1 kev~ kT < 16 kev.

Eq.

these transform equations, there is m

than one element or for temperatures be-

(44) becomes insignificant. This occurs

method described in the

at various densities in

-40-
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As a check, some of

tial starting values for

to solve Eq. (50) by the

the results obtained this way were used as ini-

Y= Ult(v) in integrating inward on an IBM 704

Runge-Kutta method. The latter method gives

more accurate results when

time, even though a double

by the first method. When

applicable but consumes more computing “machine

precision code was used in obtaini~” results

u is large, y * constant. ‘Ihusdy/du is very

small, and its starting vslues are not needed with great accuracy. We

used the equation

dy

[

11 u
x “x ‘n--

large u- 1(U-4)3 “
(58)

If the initial values of ywere chosen slightly too large (or small), y

became large in magnitude and positive (or negative) for small u. By

this method, one could obtain accurate results only down to the values

of u tor tiich it(v) began to decrease rapidly as u was decreased and

[1

-1
approached the value v:(v) ● AtkT= 1 kev, it was found by this

differential equation method that, with the exception of very low fre-

quencies, P*It(v)

for the densities

we conclude that

was equsl to 20922/u, 2.351/u, 2.324/u, and 20321_/u

10-7, 10-9, lo-u, and 10-13 g/cm3, respectively. Thus

b(kT)lim P*It(v) == ; U+o,
P+o

(59)

where the constsmt b(kT) has the value 2.32 when La = 1 kev. A comparison



of results for different temperatures indicated that b(kT) has essen.

tially the same temperature dependence as p2& the Rossele.ndmean of

[1

-1
P2 V:(V) ●

- /2‘l’hefinal results for p2(kT)-7/2At in units of g2 kev 7 /cm5 are

Civen in Table 1. It is expected that the numericsl errors in these re-

sults are within 2, 3, b, 6, and ~ for kT values of 1, 2, 4, 8, and

16 kev, respectively. For low densities, the error is probably less

than this. The numbers in parentheses were obtained with the second

omier scattering term 5(u,T) of Eqs. (44) and (48) neglected.

The reshts obtained for p21t(v) in units of

in ‘fable2. The error arising fmm the numerical

used is less than 5$ (usually much less) with the

0.1, p = 10-4u= g/cm3; u = 0.2, p = 10-3 g/cm3;

g2/cm5 are presented

methods which were

exception of the points

u= 0.4, p = 10-2 g/cm3;

emdu= 0.6, P = 10‘2 g/cm3 which have uncertainties of 40, 60, 20, and

1O$, respectively.

The results given in both tables for p+co were simply obtained by

[1

-1
setting It(v) = p:(v) . Since Eq. (46) was used for vJ(v), degeneracy

was ignored. Table 1 is not complete on the high density side for kT> 4

kev, because in this region the electrons are partially degenerate.

In obtaining the results given in Table 2, the second order term,

b(u,T), was neglected. Its maximum effect is to increase it(v) by about

10 or 1~ at the points p = 1 g/cm3, u = 30 andp = 10 g/cm3, u= 30;

however its effect is usually much less than this. The approximate msg.

nitude of the effect of 15(u,T)on p21t(v) is indicated in Figure 1 where
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Table 1

Vslues for P*(W)
-7/2

~ fOr Various Temperatures and Densities

of Hydrogen*

kT (kev)
P

(Ehm3) 1 2 4 8 16

w 158. 171. 181. 189. 195 ●

~03 91 ●1 31 ●0
(85.4) (26.9)

7 ●75
(6 .34)

102 104.2 { 39,4 10.09
(10106)

2.%
(3790) (9.09) (2.53)

101 11.h. 51.2 13.73 3.61 1.422
(4$?.8) (13010) (3.40) (1.347)

10° 63.6 19.1 4.74 1.68 0.982
(0.957)

10-1 26.3 6.56 2.04 1.05 0.813

10-2 9 ●. 2.58 1.156 0.834
(1 J52)

10-3 3 ●35 1.34 0.867

10-4 1.57 0.910 0●755

10-5 0.989 0●764

10-6 0.782

10-( 0.700

0 0.644 0.664 0.679 0.691 0.703

*
Entriesin parentheseshave been coqputedwith the effectof the second
orderterm 5(u,T)@tted. At is in ~its of ~.
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P*It(v) Versus u is plotted for various densities at a temperature of

8 kev. The results with and without b(u,T) included are represented by

solid and dashed curves, respectively. As one would expect from Eqs. (44),

(45)$ and (48), it was found that for “corresponding densities” defined

above Eq. (51), the magnitude of the contribution arising from 5(u,T) to

either p21t(v) or p2At increases approximately linearly with temperature

from zero at kT = O. Thus in obtaining results for P*It(v) or p2At for

new temperatures, one should apply Eqs. (51) and (52) to the results in

Table 2 or Table 1 with 5(u,T) omitted and then add the appropriate cor-

rection, if significant as determined from

Table 1.

In obtaining all results for it(v) and

inspection of Figure 1 or

‘t’
the numerical values of

Karzas and Latter (1958) for the free-free Gaunt factors were used. Their

results are in good sgreement with those of Berger (1956) where they over-

lap.

VII. DISCUSSION

Noting that w&(v) given by Eq. (46) is proportional to P2, while

vt(v) is P~Portional- to P (if the density dependence of lt(v2)/it(v) is

-3neglected), and that K:(v) goes as about v ,

weaker frequency dependence, we interpret our

very high densities, Wt(v) is negligible, and
.

[1

-1

Eqs. (8) that It(v) = p~(v) . Then p2At =

while Vt(v) has a much

results as follows: At

we see from the second of

p2Aa, and, insofar as
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electron degeneracy can be neglected, P2At and ~2~t(v) are independent

of density. As density is lowered, Vt(v) makes a significantcontribution

first at high frequencies and then at lower and lower frequencies. Since

the correct physical solution has positive

in Eq. (~), we see from the dominant part

negative for small u. When the density is

an and n for the major terms

Of Eq. (~4) that ~t(V) iS

10W, v;(v) is small except

for very small frequencies. ‘llmsfor low densities, if It(v) iS to be

positive when Vt(v) is negative, we see from Eqs. (8) that pt(v) must be

very small in m%nitude. As seen from llq.(9), this occurs When ult(v)

is very nearly independent of frequency, It must also be very large and

-2
proportional to p because ~~(v) and u;(v) are nearly canceling snd

v&(v) is ProPortionsJ-to pzo Thus we obtain the result expressedby

%. (59). Since

quencies, we can

this equation

integrate Eq.

applies for sll but negligibly small fre-

(24) and obtain

lim p2At =
p+o

As seen from Eqs.

0.2776b(kT). (60)

(3), when the temperature is increasing (or de-

creasing), the number of photons of every frequency must increase (or

decrease) if a distribution close to a Planck distribution is to be

maintained. The totsl number of photons canbe changed onlyby absorp-

tive and emissive processes, not by scatter=. ~uS in the low densitY

region for which Eqs. (59) and (6o) apply> the controlling factor is the

rate of production or destruction of phOtonsS ~~ich iS ProPortion~ ~
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v;(v). This is the physical reason why

dependent of density at low densities.

p21t(v)and p2At again become in-

Compton scattering redistributes

the photons. This causes the p21t(v) versus u curve
-1

in shape from the p2[v~(v)l versus u curve, but it
L

-.
-1

on pzAt of only reducing it to about 1/250 times its

p2Aa.

This is completely contrary

instance, if he assumed that the

a temperature Tr ~ T. With this

to be very different

has a maximum effect

high density value

to the result one would obtain, for

radiation had a Pl~ck distribution at

assumption, the scattering contribution

on the right-hand side of Eq. (4) becomes independent of absorption. It

then goes as p, while M:(v) goes as p2. Thus at very low densities, ab-

soq?tion can be neglected, and one gets a time of equipartition of energy

between radiation and matter whic.his proportional to l/p rather than l/p2

as obtained by our method. However, as just pointed out below Eq. (6o),

it is inconsistent in a time-dependent problem to assume that a Planck

distribution is maintained by scattering alone.

For high densities, this method leads one to obtain a time of equi.

[1

-1
partition of energy between radiation and matter equal to c~:(v) rather

than c-lAa as obtainedby our method, where ~:(v) and A are the Rosseland

[1
-1 -la

mesns of v~(v) and v&(v) , respectively.
[1
cii:(v) is always less

than c-lAa unlessv:(v)= const. In the case of free-free absorp-

[1
-1

tion by hydngen at 1 kev, c~~(v) ~C-lAa/25. For high densities,

the error in assuming a Planck distribution at Tr # T is seen by inspec-

tion of the absorptive term on the right-hand side of Eq. (4.). We see
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that the time rate of chsmge of the radiative intensity is proportional

to @(v)[B(v,T) - I(v)]. Thus when I(v) and B(v,T) are nearly equsl,

small deviations in I(v) from a Planck distribution are very important.

Nowwe expect I(v) to be most near to B(v,T) at the frequencies for

which the interaction between radiation and matter is large, i.e.,

It(v) smsll. This effect is taken into account in Eq. (19), whereas

it is not by assuming I(v) has a Planck distribution at T The reason
r“

for pointing out the fsllacy of this approach in dealing with an opti-

cally thick medium is that one might be tempted to use it, because it

makes the energy exchsmge rate between radiation snd matter easy to

compute. Also one might expect it to be validby analogy to the sit-

uation where ions smd electrons are not in equilibrium. In the latter

case, it is usually a good approximation to assume that ions and elec-

trons each have a Maxwellian distribution, but at different temperatures,

because these particles exchange energy most readily with other particles

of the ssme kind. On the other hand, photons interact only with the

matter, not with each other, and for this reason tend toward a Planck

distribution only at the matter temperature (the electron temperature

when ions and electrons are not in equilibrium).

It is interestingto note that the form given byEq. (6o)is per.

fectly general in the low density limit regardless of the particular

form of the frequency dependence of v:(v) or whether or not the expan.

sions leading to Eq. (44) for v (v) are vslid.
t

However, if the driving

term v;(v) went as a positive power of v, Eq. (59) would hold for sll
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but very large rather than small values of u. In this case, the n~s of

the dominant terms in Eq. (~) would be small in magnitude and negative,

so Vt(v) would be positive for small u and negative for large u, and
.

It(v) would have

u,

We consider

imations made in

tiono

Our results

the

now

[1
-L

Mmitingvalue v:(v) at large rather than small

the vslidity, for various conditions, of the approx.

obtaining our

for radiative

solution to the radiative transport equa-

intensity, energy density, and flux apply

in the system stationary with respect to the materisl medium. In a time.

dependent problem, we expect the local macroscopic velocity~ of the

matter to vary with space and time. ‘Ihus,in contrast to the method

outlined by Thomas (1930), tie system in which our results apply is not

in general an inertial system. This introduces an error in the higher

than zeroth order terms in

condition for the vslidity

_tude of the variation

our esqn-ession(19) for the intensity. The

in this respect of our approach is that the

of V~c must be small compared with unity over

a space or time intervsl such that T and/or p change by a large fraction

of themselves. Due to the large value of c, this condition is probably

always satisfied.

Since it has been emphasized that the solution obtained here is

vslid only for an optically thick medium, we should spcify more pre.

cisely what “optically thick” means. When absorption is dominant,
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A = Jft9 and it is clear that in order to be opticslly thick, a medium

must not change app~cisbly in temperature, density, or composition

within a distance of a few mean free paths in my tirection. me mean-

ing is not so clear when scattering is significant. We consider the

extreme case where scattering is very important. Since then At >> A = As,

we investigate the time-dependent part of the solution to the radiative

transport equation. !lhisindicates that the radiation spectrum at posi-

tion P at time to is determined in the immediately prior time interval

equal to approximately 3c-LAt, where the choice of the exact factor 3 is

somewhat arbitrary. If it assumed that the boundary of a region with ap-

preciably different characteristics with regard to temperature, density,

or composition is perpendicular to the x axis at a distance xo from P,

then in order that

that the following

our solution be valid at P and to, it is necessary

condition be satisfied:

I I
A’~(P,to) -A~(P,to) <<&(P,to), (61)

where Atz(P,to) and AX(P,to) are the portions of the total rsdiation

energy density ~(P,to) calculated

presence of the boundary at X. is

ignored, respectively. We assume

to originate from x > X. when the

taken into account and when it is

that condition (61) is satisfied for

values of X. such that Al?(P,to)/E(P,to)is smsll. In order to obtain an

approximate vslue for AE(P,to)/&(P,to), we solve tie inverse problem of

obtaining the probability that photons originally at P at time to wiXL be
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at x > x. at time to

can be obtained from

given, for instance,

Since photons travel

the nuniberof random

+ 3C-LAt0 An approximate value for this, in turn,

the well-known solution to random flight pzmblem

by Eq. (87), page 14, of Chandrasekhar (1943).

with velocity c and have flight lengths A . As,

flights taken by a photon in time interval 3c-lAt

is xt/As. If this number is large (it slways is when A N As), the

probability that photons at P at time to will be a distance ~ from P at

time to + 3c-lAt is

w(r#to+ 3C‘lAt) =
()

(2titAs)-3/2 exp -3 .
‘tAs

(62)

!RIUs

J
x

1- 0 dx(2titA~)‘1/2exp X2=

()

-—*
-a) ‘tAs

(63)

This gives a value 0.05 for A&(P,to)/g(P,to) when x. = 1.65(AtAS)1/2.

If As is replaced with A, this goes smoothly into the approximate result

expected when A = A
t“ Thus it is probably quite accurate to say that

the solution to the radiative transport equation obtained in this report

is vslid a distance one or two times (Mt)l/2 from the boundary of a

regiOn Of appreciably different characteristics, and ~ optic~lY &ick
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medium is one which is a few multiples of (Mt)l’2 or greater in thick-

ness. We note that i.nreaching this conclusion, the vslue of the rate

~Z/& did not enter. ‘lhusit also applies to the time-independent sit-

uation treated, for instance, in S.

Since the interaction of the radiation with the

through Con@ton scatterhg and free-free transitions

matter is only

(in treating the

latter, the nuclei are assumed stationary), our basic assumption that

the matter has distribution functions characteristic of thermal equi-

librium reslly only applies to the electrons. For the total radiation,

.lAthe criterion for the vslidlty of this assumption is that tc << c t,

where tc is the relaxation time for electrons given byEq. (5-26), page

78 of Spitzer (1956). This criterion is met. For, sltiough the curves

in Figure 2 are only approximate in the region of electron degeneracy as
.

indicatedby dashed lines, we see that the curve c‘LAt/tc = 10 lies some-

what above the curve At/A = 10, and much shave the curve

indicate the approximate upper boundaries of the regions

tion flux and radiation energy density are significant.

IT/E c%= 10, which

for which radia-

Here E. is the
Au

kinetic energy density of the matter and Ac is the equivalent mean free
.

path arising from electronic heat conduction, i.e., Ac = (pKc)-L, where

Kc is the conductive opacity treated by Marshak (1940),Lee (1950),and

Mestel (1950).3

‘Unfortunately, we used Kc in S to designate the opacity due to Compton
scattering.
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Figure 2 Regions of density and temperature for which various approx-
imations apply. In treating the radiation, it can be assumed
that the electrons are in thermal equilibrium with themselves
below the curve c-~A~tc = 10 and are also in equilibrium with
the ions below the curve c-lA~teq = 10. Below the curve
A~As = 12, a simplification in the time-dependent aqmession
for the flux is valid. Electrmn degeneracy can be neglected
below the curve q = -1. The radiative energy density and flux
become relatively unimportant above the curves ~~
At/A =

= 10 and
10, respectively.
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of

we

Below the curve C-lA /t
t eq=

equipartition of energy given

can assume electrons and ions

10, where t is the electron-ion time
eq

by Eq. (5-31), page 80 of Spitzer (1956),

to be h local thernrxlynsmicequilibrium

with

fers

flux

each other. Above this curve, the T h our

to the electron temperature.

Below the curve As/As = 12 in Figure 2, the

rediation equations re-

approximation to the

e~ressed by Eqo (29) is applicable. Ususlly the term proportional

to A2 can be omitted and A replaeed with As. We designate as F~ the first

order time-dependent correction to F, i.e., the part of the flux pmpor-

tioti to @t and ap/at;

(29) results in vslues for

25$. JUOng a

Q ~ 25 g/c~33

causes one to

In the region

line through

then along the curve As/As = 12, use of Eq.

F’ which m too small in magnitude by about

the points p = 0.9 g/cm3, kT = 0.5 kev; and

kT = 1 kev, corresponding to At/As ~ 0.83, use of Eq. (35)

overestimate the magnitude of F‘ by shout tie ssme amunt.

for which Eq. (29) applies,

where Z‘ is the time-dependent correction

the second term in Eq. (22), ususXly have

Ft/(F - Ft) and ~t/(E - t’),

to the energy density given by

about equsl magnitudes, whereas

in most of the region covered by Eq. (35), F‘/(F - F’) is si~f icantly

larger than z~/(z - Kf) in msgnitude. The reason for this is as follows:

The Rosselsnd mean of a qutity which goes as Un is zmughly equal to that

quantity evaluated at u = n + 4. The products of 1‘s occurring in the

large parentheses of Eq. (35) go as considerdly higher Powers of u ~~

1(v) when absorption is dorninaut. Thus they are large relative to A2,

the rough approximate measure of the co~arative iuprtance of E f.
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Above the curve q = -1, electmm degeneracy becomes important.

Neglecting degeneracy along this curve causes one to underestimate the

_tude of F’ by *out 20 or 25% and A or At by about half Mat munt.

Here o is the usual chemical potentisl multiplied by l/kT.

to the c%in S minus mc2/kT.

The curves in Figure 2 sll pertain to hydrogen. From

It is equal

a study of the

expressions for tie various quantities involved, we conclude that for an

element with atomic number Z and atomic weight M, these curves should he

shifted approximately as follows: Considering points at the sane tem-

perature for both elements, we shift down the curves c‘lAa/tc ~ c-lAt/tc

=lOand A/A = 12, so they pass through new densities, p2, related to
as

tie old densities, PI, by the equation p2 = Mpl/Z2. For the curves

At/A =lOandq= -1, the new densities should be equal to Mpl/Z. In

the case of the curve E c =
$ Io$ P2 = *J(z + 1). me curve C-lA /t

t eq

= 10 should remain unchanged except that the bend resulting when At de.

parts appreciably from Aa should occur at a higher temperature, T2

in ,2/5

_(/)-Z=M T1.

most

than

Eqs.

constant. At low densities, when Eqs. (59) and (60) apply, At ~ Aa/250.

Thus from Eq. (23) smd the second of Eqs. (25) and (26), we get

It is interesting to consider the conditions under which matter is

likely to run away from the radiation, i.e., T becomes much greater

the average radiation temperature Tr, defined by the second of

(26). At high densities, c-lAt = c-lAa ~ Ap-%3”6, where A is a
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at _ )Q-ls&# “4$ ;
Tt– high densities,

(64)

-1 20.4N?
%=

103A~T ~; low densities,

in which AT = (T - Tr). Since

volume by the matter generally

the rate of energy production per unit

goes as a high power of temperature (un-

til some very large temperature is reached) snd as P2, it appears “Mat

runaway is most likely to occur at high temperatures snd fairly high

densities.
4 However, the effect of runaway is largest at low densities

and high teqperatuxes when most of the

‘Of course, the total rate R of energy

energy at equilibrium is

transfer per unit volume

in the

from

matter to radiation equals ~E/& + ~ . F. We have assumed that ~8/~t

>>sJ*g. In determining this rate whentJ ● ~~ a~/~t, one should in-

clude in Eq. (19) for I(v,~) the second order term 12(v)~ ● ~

[ 1
“ l(v)~ ●~(v,T) = E(V) of Eq. (S,12). For: c ~>> ~~/~t, this leads

(if the slight angular dependence of 12(v) is neglected) to R(v) andR

equsl to the right-hand sides of Eqs. (25) with 12(v) and A: reylacing

J

00 m
It(v) and At, respectively, where A; = c(v)dv

/J [ 1
C(V)/~2(V) dv.

[]

-1 0
Athigh densities, 12(v) = It(v) = N:(v) , while at low densities,

12(v) - l(v) << It(v). When 12(v) depends strongly on v, A; is somewhat

larger than the Rosseland meanof 12(v). Thus ifTJ “ ~~ ~??/Jt,R is less

for high densities and greater for low densities than it is whenFJ ● ~

<< ~l?/~tfor the ssme AT.
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radiation field. Furthermore, the densities for which the first of

Eqs. (64)applies are unlikely for k!l?~ 8 kev.

Actually, we have been implicitly assuming that the

trons are in equilibrium, i.e., that we are desling with

the curve C-LA/tt eq
= 10 in Figure 2. Above that curve,

nuclei and elec-

the region beneath

as seen from Fig-

ure 2, E is usually relatively small. Hence Et = -4fic-2At&l(T)/c%is

usually not too important. However, radiative flux is usually an impor-

tant means of energy trsnspert in this region, so the the-dependent

correction F’ to the flux is

the energy flow rate is less

the curve C-lA /t
t eq

= 10, we

processes by which energy is

important. Since Fr is generally negative,

than one might expect. In this region above

should distinguish between the case where the

being generated involve a significant amount

of gsmna emission and where they do not. In the latter case, the energy

generated first goes

sible for the nuclei

in the case of gamma

tron kinetic energy,

into kinetic energy of the nuclei; then it is pos-

to run away from tie eleclzmns. On the other hand,

emission, the energy is quickly converted into elec-

principslly by Compton collisions. This tends to

make the electron temperature led the ion temperature. Thus when gsmma

emission is dominant, the nuclei csmnot run away from the electrons. One

might expect the radiation to lead the electrons in this case. At the

high frequencies corresponding to the gsmma radiation, it does, but the

remainder of the radiation lags the electrons as indicatedby Eq. (21).

Since it appears that it would be desirable to have results for

higher temperatures than those covered in Table 1 and perhaps for higher
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densities as well, we look into the possibility of obtaining them. The

conckitionfor the vslidity of tie expansions leading to Eq. (44) fm

I@ is

(65)

a value greater than the kinetic energy of

choosing

most electrons,

the values of u for

= 8, 16, 32, and 64

determining At vary

which ~:a = 1 are 24.9, 11.2, 4.86$

kev, respectively. The values of u

with density. At high densities, the

Eq. (24) has a maximum at u -7, whereas for very low den.

Eq. (59)applies, it has a maximum at u ~ 3. However, h

where E is the electron kinetic energy in units of mc2.

E = 2kT/mc2,

we find that

and 2 for kT

important in

integrand in

si.tieswhere

the low density limit, the size of the constsnt b(kT) is determined pri.

marily at lower frequencies where Wt(v) is negative and there is near

cancellation between v:(v) and Vt(v). !lhisis substantiatedby the fact

that the ticlusion of 8(u,T) had essentially no effect on the results

calculated for p21t(v) and p2At at low densities when kT = 8 and 16 kev

and also by the fact noted at the end of section V that at low densities

the Gaunt factors equal their appropriate aversge values when evsluatx?d

at u slightly less than 0.5. Hence, the method used here to obtain re-

sults for At is probsbly valid until kT =64 kev as long as p ~ 103 g/cm3.

This is the upper density for which Eq. (60) approxtiately holds when
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kT = 64 kev. Accurate Gaunt factors are not available for 16 kev < kT

< 64 kev; however, no more than a

obtain results for this region of

Eqs. (51) and (52) to the results

of Gaunt factors equal to unity.

obtained for higher densities and

mation equations.

For taqperatures below about

50~ error is likely to arise ifwe

temperature and densityby applying

for kT = 16 kev and choose the ratio

Very rough estimates of At can sJ_sobe

temperatures by use of these transfer.

12 kev, the condition 2y~ < 1 applies----
UAUAA

for all frequencies importsnt in determining At for any density. In this

temperature region, the only difficulty at high densities is in the pzwper

handling of electron degeneracy and screening effects. Some wnrk has been

done on computing the free-free absorption coefficient at high and moder-

atelyhi~ densities by Tsao (1954),Zirin (1954),and Green (1958, 1960).

In the discussion section of S, we outlined the changes to be made in the

calculation of us(v) when electron degeneracy is taken into acco~t. They

are the ssme for Ut(v)o For conditions at which positron concentration

is negligible, the only change is that we replace N(P)P2dP in the integral

equation (S,25) for vs(v) and Eq. (37)for Vt(v) with

q(E,~,T,u - u2)dE

1/2
(E+ I)(E2+2E) dE=

[
4fi3A~exp(-~+ E/T’) + 1

1[ 1

$
exp(~ - E/Tt - u+ U2) -I-1

(66)
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where, as before, E and

temperature in units of

Eq. (S,41). As pointed

T! designate the electron kinetic energy and

mc2, and A. is the Compton wavelength given by

out in S, the integrations are then very dif.

ficult to perform as a result of the quantity (u - U2) occurring in q;

however, the average contribution of this quantity is probably very

small until very high temperatures are reached. Ifweset(u-u2)=0

in Eq. (66), there is essentially no increase in work in calculating re-

sults for Vt(v) in the region of electron degeneracy, except that one

must take into account the effect of degeneracy and screening on v:(v)

because Wt(v) depends on w:(v) through

tiEq. (9).

In the case of us(v), there is no

[
tie factor 1 - v21t(v2)/vft(v)

1

increase in difficulty in obtain-

ing

Eq.

for

results when the electrons are degenerate if we set (u - U2) = O in

(66), with the exception that one must, of course, calculate results

each value of ~. However, as pointed out in the discussion section

of S, the effect on vs(v) due to electron motion is small except at very

low frequencies. Thus when the electrons are degenerate, it shouldbe a

fairly good approximation h obtaining results for the opacity due to

Coqpton scattering simply to multiply the results obtained in S with de.

generacy neglectedby the factor

Q(T,T) =

●

J
m

o

J
(xl

o

1/2
(E+ 1)(E2+ 2E) dE -

[
exp(-~ + E/T?) + 1 E/Tt) + 1

(67)

-62-



Results for Q(~,T) corresponding to several values of q and kT are

presented in Table 3.

Table 3

Values for Q(q,T) for Various Temperatures and Degeneracy Parameters q

(kev)
I -3 -1 0.4 1.6 2.8 4 6 8

0 0.983 0.697 0.737 09569 0.432 0.336 0.238 0.183

8 0.983 0.898 0.741 0.575 oe)$~ 0.345 0.248 0.193

32 0.984 0.903 0.751 0.592 0.460 0.368 0.273 0.217

125 0.985 0.915 0.781 0.637 0.514 0.425 0.327 0.265

The values of the relaxation time c‘lAt determined from Table 1

are so small that we conclude that it is fairly unlikely that in any

astrophysical problems dealing with optically thick mediums, the radia-

tion fails to remain in local thermodynamic equilibrium with the matter.

This is certainly true if the density and temperature are nearly uniform

over large portions of the star under consideration. However, during

the rapid stages

of p, T, and the

below Eqs. (64),

erally goes as a

of stellar evolution, we expect fairly steep gradients

local macroscopic velocity~ to exist. As pointed out

the rate of energy generation by nuclear processes gen-

hi@ power of T and as p2. Thus in small regions in

which p and T happen to be appreciably higher than in neighboring regions,
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the criticsl vslues of p and T for which some nuclear process proceeds

very rapidly may be reached. Possibly in some instsnces, these snmll

sections of the star will then attain very high matter temperatures be-

fore cooling by e~ansion snd outflow of energy flux. The probability

of this occurring is enhanced if the time rates of change are large

enough that the radiation lags the matter appreciably. For then the

portion of energy which goes into the matter increases, thus increasing

the matter temperature and rate of energy production, while the outflow

of radiation flux is less for the ssme space derivatives of p and T

than it would be if radiation and matter were in equilibrium. Perhaps

in some cases, this is the way h which the very high temperatures needed

for synthesis of such elements as iron are reached, rather than by attain-

ing a very high temperature over large sections such as the whole stellar

interior.
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