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ABSTRACT

It has long proved convenient to describe the elastic scattering of
nuclear particles by nuclei in terms of an equivalent two-body potential --
the optical potential. Recent experiments have indicated an apparent
discrepancy between the experimentally observed values of the optical
potential and the theoretical values predicted by the simple first-order
theory. 1In this paper the leading multiple scattering corrections to the
first-order theoretical potential are calculated, and the resulting second-
order potential is evaluated for two nuclear models for incident pions
and nucleons. It is found that the inclusion of such corrections can bring

the theoretical and experimental potentials into agreement.
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I. INTRODUCTION

The optical model description of the scattering of a nuclear particle
by a nucleus is concerned primarily with the replacement of the many-body
interactions of the incident particle with the nucleons in the target
nucleus by the interaction of the incident particle with an equivalent
potential -- the optical potential. The term "optical model" is by analogy
to the corresponding problem of the propagation of light in a medium, where
the many-body interactions of the light with the particles of the medium
may, in a certain approximation, be replaced by attributing an index of
refraction to the medium as a whole.

For low energy incident particles the problem of determining the equiv-
alent potential has been treated primerily as phen.om.enological,l’2 although
there has recently been some progress in the relation of the low energy
optical potential to the underlying two-par%icle interactions.3-5 For high
energy incident particles Watson and his collaborators6-9 have shown that,
to a good approximation, the optical potential may be directly related to
quantities characterizing the scattering of the incident particles off free
nucleons. The approximate evaluation of such an optical potential has been

carried through by many authors,lo_lh and the comparison with experiment

has been reasonably satisfactory.



15,16

An epparent discrepancy has recently been noted, however, between
these calculated values and the measured values of the optical potential
for pions having an energy of a few Bev. This discrepancy seems to indi-
cate that, at 3 Bev, for instance, the imaginary part of the potential is
sbout 20% greater in magnitude than the calculated value. It is shown in
this paper that corrections of such megnitude may be obtained by an evalu-
ation of higher order terms in Watson's theory of the optical potential.

It has long been known that such corrections depend on the structure

17

of the scattering medium.
8,18

Such corrections were estimated by Francis

and Watson to illustrate the general theory of the optical model po-

19

tential. More recent studies have been made by Glauber™™ and, in particular,
by Béé.ao These studies do not seem, however, to have emphasized suf-
ficiently the sensitivity of the results to the nuclear model assumed.

In this paper we shall discuss this problem more generally and demonstrate
explicitly the relations between the various models.

The formal theory of Watson's optical potential will be reviewed in
Section II, and an evaluation of the second-order potential is carried
through in Section III. Sections IV and V are concerned with the second-
order potential for pion-nucleus and nucleon-nucleus scattering, respec-
tively, and Section VI treats corrections to the first-order theory due

to the nonlocality in coordinate space of the optical model potential.

We choose throughout units such that h=c=1.




IX. FORMAL THEORY OF THE OPTICAL POTENTIAL

We wish to describe the elastic scattering of a particle from a
nucleus of mass number A and charge Z. By "elastic," we mean that
scattering which does not change the energy state of the nucleus. To
accomplish this, we introduce the nuclear Hamiltonian HN with the complete
set of eigenstates g_(t) -~ where t is some complete set of nuclear co-
ordinates and g7(§) =< t|y > -- and the corresponding energy eigenvalues

W_« The
y 30}

e, &) =W g (), (2.1)

and we choose WO to be the nuclear state of lowest energy ~- the ground
state. Similarly, the free state of the incident particle is described

by a Hemiltonian h possessing the eigenstates q>q()?) and associgted energies
eq. The interaction of the incident particle with the nucleus i1s assumed

to be of the form

A
vV = E Vao (202)
o=1



The Schrodinger equation which describes the scattering of an inci-

dent particle in the particle-nucleus barycentric system is then

(B, + V)Y =EY,, (2.3)

where

HO=HN+h, E, =W + € . (2.4)

Here WO and eo are, respectively, the energies of the nucleus and particle
in the particle-nucleus barycentric system. Equation (2.3) is to be
solved subject to the boundary condition that, at large distances of the

incident particle from the nucleus,

R SORNCE (2.5)
The Mygller wave matrix O may then be introduced as usual,

Y, =a gy (¢) @qo(?c’), (2.6)

and the Schrodinger equation (2.3) for ¥_ with the boundary conditions
21

(2.5) may be converted into an integral equation for Q in the usual w

9=1+§v9,

(2.7)
8. = Ea + irl - HO-




(Here N is a positive, infinitesimal parameter introduced for performing

the integrations across the pole of a™t.)

Wa.tson6 has shown that equation (2.7) for © formelly has "multiple-

scattering" solutions of the form

A
Q=1+% Eu;n,
a aa

=1

A
_ 1 E '
aa =1 + Py ﬂ:BQB, (2.8)
Bfo=1

For the study of elastic scattering8 we are interested in the matrix
elements of the scattering operator T = VQ between nuclear states of
equal energy. Introducing the notation < «ee¢ > to designate such matrix

elements, we define quantities
T,=<T>, a, =<a>, F,=<8,>, (2.9)

operators on the coordinates of the incident particle. Note that Fc is

independent of the index "@," as we are dealing with completely anti-

symmetrized nuclear wave functions.




If we can find a "potential" @ such that

1

T =<VQ>=06Q =0+ ¢
C C 0

then equation (2.7) reduces immediately to a two-body equation for the

scattering of the incident particle by the potential &

0, =<8> =1+ gy <VO> = 1+ 5. 00, (2.11)

corresponding to a Schrgdinger equation

(h + 0)q>qo = c—:oq>qo. (2.12)
O is the so-called "optical potential,” by analogy to the treatment of
the coherent scettering of light by a medium in terms of an index of
refraction. Clearly, & depends on the initial state of the nucleus,
here taken to be go(é) s and, in general, depends on the complete solution
of the many-body problem .22 For high energy incident particles, however,
¢ may be, to a good approximation, related to the scattering of the in-
cident particle off free nucleons and to quantities describing the initial
state of the nucleus.

To determine &4 we note

A
Ve Zv Q Zv (1 + g u;a)aa Zﬂ;aaa (2.13)
o=1




by equations (2.2) and (2.8). Introducing the projection operator P.

ND
off of the initial nuclear state,
- =9 2.1)4-
(1 PND) 87(§) 7037(5)’ ( )
we mey write
A A A
- - = + - L]
T, =<VQ> E <u;ana> E <'u;aPNDQa> E <u;a(1 PND)Qa>
o=1 a=1 o=l
(2.15)
Defining Gy by
P, = (Ga - 1)(1 - PN.D)Qa, (2.16)

SO

= +
Gd 1l

ol

A
PNDﬁ:B GB, (2.17)
Bé—l

and substituting into equation (2.15), we find

A A
T, = E < ﬁ:aGa(l - PND)Qa > = E <G, > F, = U'Fc. (2.18)
o=l o=l

Fc satisfies the equation




A
_ _ 1 2'
Fo =<8y > =1+ —5r— <y, > (2.19)

° Bfa=1

Surming over & and using equation (2.15),

1

= At —— -
AF, = A € Fin-n (a l)Tc’
we obtain the equation for Tc,
- 1 1
T, U+ 2/€o FIn T (1 - K)Tc' (2.20)

If A is sufficiently large that we may disregard terms of order A'l,

we see, upon comparison of equations (2.20) end (2.10),

A
O=U= E < ®,G, >, (2.21)
a=1

where we use equation (2.18) for ¢/ and G, is given by equation (2.17).
To keep terms of relative order A'l, define a pseudopotential v and

an associated scattering operator T,

. (2+22)

v=al, T =aT , a=1-

Then the equation for T is, from equation (2.20),

1 1
o= - -+ = St t—remep——— ° °
TeaT =al ayeo'*in-haTc VEY e LR T (2:25)



Thus, T is obtained by solving a Schrodinger equation for scattering from
the pseudopotential v, given by equations (2.21) and (2.22)+ The actual
scattering amplitude Tc end the differentlal cross section g—;) (in the

c

particle-nucleus barycentric system) to be compared with experiment are

then given by

-1
1
Tc (l - K) T,

2
-2 €W
do - 1 4 2 00
aoa A = (l - A‘) (31) ITI <E5+—w‘a> » (2.2’4)

where we have used equation (A-6) of Appendix A.
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IIT. EVALUATION OF THE SECOND-ORDER OPTICAL POTENTIAL

From equations (2.17) and (2.21) we see that

A
= + oy e e =
/4 Z/i +V2 E <olt,c,lo>
o=l
A A
1
= >+ — >+ () ) e
_S_ <O|ﬁ‘.a|0 é <0|1ta aPNDﬂ:BIO
=1 =1
(3.1)
and so is expressed as a series of scattering operators -- describing the

scattering of the incident particle by the ath bound nucleon -- averaged

over the ground state of the nucleus.
For high energy incident particles, we may maske the so-called “impulse

approximation“23

in which we replace the bound scattering operators in
equation (3.1) by the scattering operators for the scattering of the inci-

dent particle by a free nucleon. The relative error incurred from this

approximation is7’2u
Biv bl
%% = () (3.2)




Where Bav is the average binding potential of a nucleon in the nucleus,
f is the scattering amplitude, and X is the reduced de Broglie wavelength
of the incident particle. For high energy incident particles this error
is expected to be small.

Thus, if the initial momenta of the nucleon and particle are ?a 0 and
;0 s respectively, and the scattering leads to the final state I—%‘ and a
we may write

-

= - - =
4
| Ro» % > 8(B, + 3

-
- Pao - qo), (5‘3)
where ta is the free nucleon scattering amplitude, defined only on the
"momentum shell." It is frequently convenient to consider t, end t, as
operating on the nuclear coordinates but as functions of E and ?0' When
we wish to do this we write
- -

% =1t (Q.: qo): ta = ta(q, qo) . (301*‘)
By carrying out the Fourier expansion of the initial nuclear wave

function in the momentum of the @'’ nucleon and using equation (3.3), one

obtainseh
-i(d - ) - 2, iz,
0> =e tlo>=e o>, (345)

where E.; is the coordinate of nucleon “o," and t , Still operates on jo>
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through its dependence on.f5>

20 is in terms of

-
« This dependence on gzo

relative momenta only, however, so for E; much greater than the average

nucleon momentum in the initial nuclear state we may ignore the dependence

—

of ta on 310' Then ta operates on IO > only through its spin and isospin

coordinates.

The calculation of the first-order optical potential <'allgla; >,
defined between momentum states E?and a; of the incident particle, now

foliows directly:

A A -~
iKez
<ULIgy > = D <ol (@ Flo>= Y <ole %1 (@ Plo>.
a=1 =1
(3.6)
Introducing the nucleon density distributions
P@ =<ols@-lo>  [Fxr@ =1, (3.72)
L
o(X) = v, B, fa5x 0@ =v, = Fr, (3+70)

and employing the notation (Oltalo) to designate matrix elements of ta

between the nuclear ground state spin and isospin wave functions, we obtain
—)
<313 > = (ole(d oL [ a2 o@) FE
A

= (o|(3, ) lo) a c([R), (3.8)




-
Z

.=
c(|<]) =fd3z p(z) e**°%, (3.9)

Since p(Z) is sensibly different from zero only for l?l < RA’ c( I?l) will

be small unless
e 1 1
Rl = |2, - Q| =2q, sin 5 < = 85 —=— (3.10)
o o TR ERRY WFy

wvhere © is the angle of scattering in the barycentric system. Thus, for

9 large, © mey be small enough that
(@, ) = (S, 3y) =t%q,)- (3.11)

If we assume this, we may obtain the coordinate representative of

2/]'_ as follows:

<AY[3,> = [<3T> P2 <Y, >

~1(3-qy) z

1%
- 0 A e 3 3
= (0]%(qp)10) (‘K)f(_a)_f/'?"d afe oDz
iq X
= (2x)? (0]t%q)[0) (&) o(@) Eur . (3.12)
. % v, (2x)”2




14

But
ig. %'
<RIYIZ > = [ <R > e <0G, > = [<RYR> ot gy
(3.13)
Comparing equations (3.12) and (3.13), we find
<RIY R > = @07 0]ty [0) () o) (X - X")
A
=G (X -2, (3.14)
From equation (A-9) of Appendix A:
0] -1 O
t(q,) = £i(a,), (3.15)
% (2n)< € L%

0

where fg(qo) is the laboratory forward-scattering amplitude for the in-

cident particle on & free nucleon. Then

U@ =v, o(),

1

2 A 0
N B G e, (5.16)

Vl depending parametrically on gy the momentum of the incident particle.

To evaluate the second-order potential, we use equation (2.1%) for

P\ in equation (3.1) to obtain



<47 l5, > = é, %/e+w+m-eq.-w7

X <olth, (a7 > < 7]y (@,) |0 >.

(3.17)

We first simplify equation (3.17) by neglecting the energy difference
(wo - Wy) in the denominator. For sufficiently high energies this is

Justified, since the resulting error is of the ordereu’25

o
2
Wi =
e
m
o |3

(3.18)
where Kav % 30 Mev is the average kinetic energy of a nucleon bound in
the nucleus. Employing closure to DPerform the sum over ¥y in equation

(3.17) and using equation (3.5), we find

3 '
<qLIZ,> - % St

-i(f' O-Z_)a‘*‘k‘ .?B)
X | < Ole

t(453") t,(d",5) o >

i e

- 2 ~iK ez
- <ole e (@3 ]o><ole P t(d", ) lo >]

(3.19)
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where

-)

—)
K'=Q-3', -K-)=-<-1)' Q.

- g (3.20)

We now utilize a technique due to Lax and Feshba.c:ha,""26

for the
evaluation of matrix elements such as those occurring in equation (3.19).
The quantity tatﬁ is a matrix in spin and isospin space, but is no longer
an operator on the nuclear coordinates ~- by our assumptions following
equation (3.5). For each of the four possible states of the nucleon pair
(a,B), we may expect a distinct pair-correlation function. The evaluation
of the desired matrix elements involves giving the sppropriate weight to
each such state of a pair (x,8). For simplicity, we shall follow Lax and

2k ,26

Feshbach and assume only two correlation functions: one for space-

symmetric and one for space-sntisymmetric states.

Let Paﬁ be the space-exchange operator which interchanges ?a and -z';3 3
and write
[s>=%(1+2 )]o>
2 B ?
la>=%(1 -2 )]o>. (3.21)
2 oB

Then, if 0‘03 is an operator symmetric in (@,B) we have

<o|o'aﬁ|o> =< s|0'08|3> +<a|0&6|a >, (3.22)




7

We introduce the corresponding pair distribution functions

2 3N %<o|(1 + Pog) 8(?-?0‘) 5(X* - E’ﬁ)lo >,

Pou(® ®) = 5<0l(1 - B) (R - ) 8@ - D)o >, (5.23)

which may evidently be written in the general form

= =y - - - - o
P, (2, ZB) = P(z,) [P(ZB) + ez, - 2gs ZB)] s
= S - - - = o
Paa(T ) = B [2(@) + (7, - 2, )] (5.24)

where P(Z) is defined by equation (3.7), and the functions Q; and Q repre-
sent conditional probability distributions. For a sufficiently large

nucleus we would anticipate being able to set

- - - - —» —
Qs(za - Zgs ZB) = P(ZB) Gs(za - ZB)’
- = =y - - -
Qa(za - Zg; ZB) = P(zﬁ) Ga(za - zﬁ)- (3.25)

We now identify the operator 006 of equation (3.22) with the ex-
pression
(R 7 4Kz

B
e tat 8
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in equation (3.19). In evaluating equation (3.19) we must then consider

terms like
-i(f{)' o?a'ﬂz’o-z-’ﬁ)
< sle tatBls >
o S N
~1(K'ez 4K oz
= i o4 B’ 33 26
= (sltatﬁls)fPES(za’zB)e a zad zB. (3 )
Now

3 4 5 -iK'Z ~iK
d7q Q= 3 B o
‘f€0+ e fd z @ P(za)fd zge P(zB)(s]tatBls)

Ols), (3.27)

~ 0
~ B(sltatﬁ

where

3q1 - -
BE/ o ‘;n‘l_ oy c(lx*]) c(|x]). (3.28)

Here ¢( IR’I) is defined by equation (3.9), and we have made use of the

approximation of equation (3.11) to set tcx = tg and tB = tg.

It is convenient to introduce

A

3 1

- d’q 3 3 - - =3 -

J = E fe T a7z & Zg P(za) Qs(za- ZB’Zﬁ)
afs=1 = © 4

-i(-i). .E)a-i‘?.%) e i 4 e 4 -
X e (SIta(q,q') tB(q',qo)ls) (3.29)

and a similar quantity Ja for the space-antisymmetric states. Then, if
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we define a quantity A,

A
A= 2 [(oltgtglo) - (oltglo)(oltglo)] , (3.30)
ofp=1

equation (3.19) may be rewritten as
- -
= + . .
<Yl >=3a + 3, + 3, (3.351)

To simplify Js and Ja’ let

r=z -2z z=z
o B’ o’

Then

3 -i(a"a—)o) .? d.5 % Rl .—)
Js'éfdzP('Z)e f€o+ e

in - eq,
2 -igy T
X[ > (slta(a’o,'i')tﬁ(a",a’o)ls)} &r e (D),  (3.32)
a#p=1

where we have replaced E)by 7;')0 in the scattering operators because of
the first factor in the equation and the arguments leading to equation
(3.11)« For incident particles of energy high enough that qus >> 1 and

IR, >> 1, where R, and R, are defined by equation (3.34) velow, Jg and

Ja may be approximately evaluated to give




[
{4

-i(Ta )2 (2n)’e A
f d3z P(—Z) e % T!—(-)VA_O. Rs(a 5 (Sltgtg s),
=1

(3.33)

A

-_(—-)_—)).'—) (2 )36
J@aem T 0 n @) ; (altgtgla),
=1

o
n

19%'a

vhere we neglect terms of relative order (qus)'a. Here we have intro-

duced "correlation lengths" R_and R_, defined by

1 ® A=)

TR = [ e 04,3,

Le @ = [ ar g, k)
V;Ra(z = . era(rqO,z . (3.3

Except for small nuclei, equation (3.25) should be a good approximation,

and we may write

] f ) Gs(r)d.r,

R =
(o]
R, = fo ¢, (x)ax, (3435)

independent of z.

Writing

A
2
(0'1;21:8'0) = ——Aﬂ_——a- S,
=1 (21() €O



I 0,0 l ) A2
(o]t’t. P 0) = —=p—5 S
@B b (2n) eg ™

=1
we obtain
A o
(sltgtg s) = _ér'é -;— (s +s),
71 (2x) €5
A 2
(altgegle) = —B— Z(s -5 ).
=1 (2x) €5

(3.36)

(3.37)

Finelly, using equations (3.37), (3.35), and (3.33) in equation (3.31)

the result is obtained

v
< ?{I?/'alaz >=Ba + [(2:)5] c(|q - az)])va,

where

(2 )2 A 2
2 = 2i€2qo (VKJ [kRs+ Ra)s + (Rs- Ra)sr] *

Thus, equation (3.1) becomes (valid to our approximation)

v
<l > = (T - g, 1) [(?A;—;] (V,* V) + BA.
14

The term involving B is cumbersome to use. Since it is of order A~

(3.38)

(3.39)

(3.40)

1

compared to V2, it may be discarded for large nuclei. It may also be
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transformed into a more convenient forme. To see this, let us introduce

equation (3.40) into equation (2.20) and iterate once.

<qlr |qo>=C(|q-qO|)[ )J(V+V)
21

1, [ Va :
+B{A+ (1 -K) |:(—2';)—3—V1:| }"' cee o (3eh1)

Now we attempt to obtain the same result by defining a new potential and

scattering operator:

V
<TiviZ, > = el [ 5] atvyrvy), (3 za)
T=v+v ————;————-T, (3.42p)
€O+ in - h
T = BT, (5-14‘20)

where @ and B are to be determined. In order that equations (3.42c) and

(3+41) be consistent, we must have

To first-order in A'l and in the potential strengths we find that

asel -« =+ . (5‘1*'3)
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aQ

experiment, we proceed in a fashion analogous to the discussion following

To obtain the differential cross section gg-) to be compared with
c

equation (2.23). We use the potential v defined by equation (3.42a) in

the Schrodinger equation (2.12) to obtain a differential cross section

dc
E e Then

do) . -2 do
aﬁ) for]

c L. (3.8)

Proceeding as we did in obtaining equation (3.16) from (3.8), the

coordinate representative of v is

<Ev[R' > = v&@) (X - 3, (3.45)

where
v(®) = v p(X) = v+ V) o(X) . (3.46)

v(Eb is now our general result for the second-order opticel poten-
tial, where we have neglected corrections of relative order A-a and

further terms of order

3
"~ X (A 2.3
5, = - (VA)(RS t Ra) £7, (3.7)
0%

and T is a8 typilcal particle-nucleon scattering amplitude.
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IV. THE PION-NUCLEUS OPTICAL POTENTIAL

Expressions for the pion-nucleus first-order optical potential in
terms of pion-nucleon scattering amplitudes have been given by several
authors .10, 11 These are of particular interest since the relevant
scattering amplitudes may be obtained directly from measured pion-nucleon
scattering cross sections with the use of dispersion relations.27’28

To evaluate the general expressions (3.16), (3.39), and (3.46), we
must consider in some detail the pion-nucleon scattering operators to.

It is convenient to project to onto the isospin substates corresponding
to I = 3/2 and I = 1/2. This may be effected with the respective pro-
Jjection operators A5/2 and Al/2’ so
0 0,3 o/l
= = + - . .
£ = t(5) Aspp () Ay pp (4.1)
The leboratory system scattering amplitudes for the I = 5/2 and

the I = 1/2 states are, respectively [from equation (A-9) of Appendix Al:

fg/2 = -(en)® eoto(%),
fi/2 = -(2:()2 eoto(Jé'-) . (4.2)
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In terms of these, we define

= *
f (f3/2 / )0 ()‘“3)

Then, from Appendix B,

2T
(olfglo) =rt-2r, (4 olt)

A T

+ -
where (t) refers ton or x mesons, respectively, and T, is the third

3
component of the nuclear isotopic spin; that is
T, =% (2 - N). (4.5)
3 2

Here N is the number of neutrons in the nucleus.
In addition to being scattered, a meson may be absorbed by a nucleus.
It is understood that the effect of this is also included in the optical

potential. The effective cross section for absorption, per nucleon, is
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conventionally ~ written as F(cd/a), where %3 is the cross section for

absorption on a deuteron and I' ® 4 (reference 30). The mean free path

for absorption of & meson in nuclear matter is then xa, wherell

g
%:vip?d. (4.6)
a




[In adopting this expression we are assuming ’.['5 = 0s This is Jjustified
since the contribution from equation (4.6) to V) is both small and poorly
known for pions in the Bev range.] Following the analysis of Cronin
et al.15 and of Beg,20 ve shall take

04 ® 05 X 10787 o (ko7)
for pions in the 1 to 5 Bev range.

The expression (3.16) for V, then becomes

27 I'o
vl(:rt, qo) = - % (\-,%) (f t —Aé £+ i %ﬂ—‘i) N (4.8)

t + -
where Vl(ﬂ 3 qo) refers to n or n mesons, respectively.
In Appendix B, the evaluation of the quantities S, ST, and A for
pion-nucleus scattering is presented. In terms of these results, our

expression (3.39) for V, becomes

Yp
+ - i(e )2 4 2 1 2
v2(n ,qo) 260“‘10 (V =) {- (RS+ Ra) [f (1 - K) - ff t T3 f fT:I

o7
+ (R-R) [Il; £2(1 - £A6- %fi + D¢ fJ} ,

and v of equation (3.46) is given as

f2
v(x"yqy) = [1 -x+e -%)} [Vl(nt,qo) + ve(ﬂ‘-“,qo)] : (.10)
£
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The real parts of the amplitudes f and fT may be evaluated using
the dispersion relations .27’28 The imaginary parts are given by the
optical theorem in terms of pion-nucleon scattering cross sections. We

find, then,
i
1 ,.+ - 9% , + -
= e 4 o —— +
f 5 (p D7) Bn (o g’ ),

T .Dp7) + %ﬂ- (6" = ™) (4.11)

+h
L}
=

(p

The emplitudes D' and D~ have been defined in references (27) and (28).
They are the real parts, respectively, of the forward scattering amplitude
of ni. mesons on protons in the laboratory system. o+ and ¢~ are the
corresponding total cross sections for :t+ or n proton scattering .51

+ -
The quantities D and D have been evaluated only up to 2.6 Be'\r.28

Since they are small at these high energles, we have extrapolated them

as constant in the range 2.6 to 5 Bev.

Equation (%.10) may now be evaluated. We write it in the form (to

order A-l)

t 10 1 T3 I,.1.I 453 1
V(=" q,) 3 [(VRoo+ EVort R Voo) * iVt EVoL TR Voo!
(R+R.) T T
1 a 1 + D I,.1,I +.31
YE T3 [("1:}.0+ Pty Vi) * LVt VTR Vyp)
(R_.-R.) T T ]
1 1 3 T Lol o413 T
N l:-l3a [(Vzo+ V1 TR Vae) * ilipgt £ Ve T R V)




Here A is related to the nuclear radius RA [equation (3.7b)] by

1/3 13

R, = L2077 x 107’ cm. (4413)

A
The quantities appearing in equation (4.12) have been evaluated for pion
kinetic energies in the range 1 to 5 Bev and are listed in Table I.

For a Fermi gas model of the nucleus, we determine the quantities

R, end R_« Evaluating equations (3.23) in terms of the single-particle
states
= -
ikl~zl

9,(1) = ;]%Ee 1,(1) s,(1), (4.14)
A

where it and sz are the isospin and spin eigenfunctions, respectively,

we have
Pog(a) = z Z [< o, (Lo (2|1 tp, ) 8(X - 7)) 8(X- Z,) |9, (1)o_(2) >
'
- <o,(Lg (2)|(1 tp, ) 8(X-72) 5(X'- z,) e, (2) (1) >] .
(4.15)
Defining
-1 -1(K, -E ) +(xx")
Gy = [ﬁ(ﬁ - 1)] et Tm T (4.16)
B 4

k‘;‘?

m
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TABLE I. The peremeters of the n:t nucleus optical model potential as
defined by equation (4.12). T, is the pion kinetic energy in
the barycentric system (T,( = €g - B), and Ry and R, are measured

in centimeters.

'1‘“( Bev) Vgo(Mev) Vlgl(Mev) Vge(Mev) Vgo(Mev) Vgl(MeV) V'ga(Mev)

1.0 11.9 -22.0 -25.5 -l7.0 Y7 17.7
1.1 7.8 ~12.0 23,7 -b5.5 39.0 6.2
1.2 6.2 =5.0 -22.5 =50.0 43,4 -k.0
1.3 9.k -7.8 -15.0 -50.5 br.0 6.7
1.k 13.5 -12.8 6.4 =-49.0 br.4 ~5.6
1.5 16.2 -16.0 =3.5 =46.5 L4.8 -3.1
1.6 15.6 -16.1 -6.0 =h2.9 .3 +2.4
1.7 12.6 -13.1 6.1 ~h1.7 bo.1 3.1
1.8 10.6 -11l.1 5.6 ~h.0 39.5 3.2
1.9 9.5 -10.0 -5.6 -40.5 39.0 3.3
2.0 8.6 -9.1 -5.9 -40.3 38.7 2.7
2.2 T4 ~7.7 -5.6 -40.5 38.8 1.6
2.4 6.7 -6.8 -5.6 -40.8 39.1 0.4
2.6 6.1 -6.1 5.4 k.0 39,2 0.0
3.0 5.3 -5.3 b7 =41.0 39.4 0.0
3.5 L6 k.5 =41 1.0 39.5 0.0
4.0 4.0 =4,0 ~3.6 41,1 39.6 0.0
k.5 3.6 3.6 3.2 =41.1 39.6 0.0

5.0 3.2 -3.2 -2.9 41,1 39.7 0.0




TABLE I (cont.)

T_(Bev) vfl‘o(Mev)f"l v, (Mev)2™ VS (Mev)e™ vio(raev)f'l vfl(Mev)r"l VIlz(Mev)f'l

1

1.0 -2.9 4.0 7.2 5.1 4.7 «2.7
1.1 -1.8 2.2 5.7 k.9 4,3 =0.5
1.2 -1.6 1.3 5.5 6.0 5.4 +1.7
1.3 2.4 2.1 3.5 6.0 -5.8 2.4
1.4 -3.3 3.2 1.2 5.4 5.4 1.8
1.5 -3.8 3.7 0.6 L.6 k.6 1.0
1.6 =3.3 3.h 1.5 3.8 -3.8 ~0.0
1.7 2.6 2.7 1.5 3.6 =3.7 -0.3
1.8 -2.2 2.2 1.3 3.7 3.7 0.4
1.9 -1.9 1.9 1.3 3.7 -3.7 «0.9
2.0 -1.7 1.8 1.3 3.7 «3.7 «0.3
2.2 -1.5 1.5 1.2 3.8 3.7 ~0.1
2.4 -1.3 1.k 1.1 3.9 -3.8 4+0.1
2.6 -1.2 1.2 1.1 3.9 -3.9 +0.2
3.0 -1.1 1.1 1.0 3.9 «3.9 0.1
3.5 -0.9 0.9 0.8 k.o -3.9 0.1
k.0 -0.8 0.8 0.7 k.0 4.0 0.1
k.5 -0.7 0.7 0.7 4.0 =4.0 0.1
5.0 0.7 0.7 0.6 k.0 4.0 0.1




T“(Bev) Vgo(Mev)f-l

e T
~N VU WO

NN !\) | ad
« N . -
AN &£ N O v @

3.0
3.5
k.o
k.5
5.0

1.0
0.6
0.3
0.5
0.8
0.9
0.9
0.7
0.6
0.5
0.4
0.4
0.3
0.3
0.3
0.2
0.2

‘0.2

0.2

VR

21(Mev)f'l
-11.4
-7.2
-6.2
-9.6
=~13.3
=15.0
=13.4
-10.k4
-8.6
-7.6
-6.8
6.0
5.4
k.9
k.2
=3.7
=3.2
-2.9
-2.6

TABLE I (cont.)

Vléz(ldev)f'l

-3.6
-2.9
-2.8
-1.8
-0.6
-0.3
0.7
0.7
0.7
-0.7
-0.6
-0.6
-0.6
-0.6
-0.5
0.k
-0.4
-0.3
-0.3

VIEO(Mev) £t

-1.2
-1.1
-1k
-1.5
-1.h4
«1.1
-0.9
~0.9
-0.9
-0.9
-0.9
-0.9
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
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Vo, (Mev)e™ VL (Mev)e™

20.4
19.7
24,1
24,1
21.6
18.3
15.2
10.4
1k.9
k.8
1k.7
15.0
15.4
15.6
15.7
15.8
15.9
15.9
15.9

1.3
0.2
-0.9
-1.2
-0.9
-0.5
+0.0
0.1
0.2
0.5
0.1
0.0
0.0
0.0
0.0
0.0
0.2
0.0
0.0
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we obtain
Pog = i2 |:l * i T o ﬁ.) ] 65’ Pog = -];2_ 1 - 68)’ (4.17)
Vv A"
A A
(3., (k1) 12
G (r) = X 3{:?; , (4.18)
r

where r = |X - X'| and ky is the Fermi momentum. Then 2

- _~(8/a) 3m
a 1+ (4/A) 5kF ’

L
Rs R

= 2 Ll
Ry - Ra. T+ (4/AY 5kF s (4.19)

so equation (4.9) beconmes

2
8r
V’Z(nt,qo) = j 2K ? (VA;) (f2 + 2f§ + —A}- ffT) 1 - (4/8)] 272

(4.20)

agreeing with the result of Be’g .20

It is interesting to note the effect of the Pauli principle on the
optical potential. Since the Pauli principle prohibits certain finel
states of the target nucleon in the nucleus which would be accessible
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to a free target nucleon, Goldberger has shown that, at lower energies,

the net effect of such exclusion is to reduce the effective pion-nucleon




cross section from its value for free pion-nucleon scattering, and
hence to reduce the magnitude of the imasginary part of the optical
potential.

At the higher energies being considered here, however, we see that
the effect of the Pauli principle may be in the opposite direction.
Thus, from equations (L4.8) and (4.20) (ignoring the A™Y corrections

and assuming f_ = 0),

k?
mv =2 () e L E (2B, (k.21)
eo YA I 5q0
where f = fR + ifI. From the optical theorem this may be written19
2
_ Ay % 2
Iva -—g (VA—) Eﬂ—{o"‘"ﬁ[ -( f) ]} ()4-022)

where o is the free pion-nucleon total cross section. Thus, if fR< fI’
as is the case at high energies, the net effect of the Pauli principle
is to increase the effective pion-nucleon cross section from its value
for free pion-nucleon scattering and hence to increase the imaginary
part of the optical potential.

The result of Wa.tson18 follows directly from the nuclear model in
which Ry = Ra' This assumes that the correlations are similar in
spatially symmetric and antisymmetric states.

Brueckner and Gammelju describe a wave function of the relative

coordinate of a pair of nucleons in nuclear matter. Using their results,
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we obtain

R, ®R_ = - 0.84 x 1071 cm (4e23)

desceribing the correlations due to the “herd cores" of the nucleon-
nucleon interaction. Some indication of a similar result has recently
been deduced from experim.ent.21+

The pion optical potentials for these two nuclear models (neglecting
the A-l corrections) are presented in Table II, where we have written
VF and VB for the Fermi ges model and the Brueckner model, respectively,

in the form

V'F(n:t,qo) = Re VF + i Im VF,

VB(th,qo) =Re V2 + £ Im V2, (4.24)

and we have assumed A = 1.

Longo16 has recently deduced from experiments with 3 Bev/c n+
mesons on various nuclel the values for the imaginary parts of the
optical potential listed in Table III. The real parts are small, and
the nucleon density distributions used are those inferred from electron
scattering experiments. The corresponding values of Im VF and Im VB
of equation (4.24) (neglecting the A" corrections and adjusted to
Longo's central density) have been listed in Table III for compaxrison.

Also included is the result for the first-order potential alone.
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TABLE II. The well-depths of the nt-nucleus opticael model potential
for e Fermi gas model of the nucleus (VF = Re VF + 1 Im VF)
and a Brueckner model of the nucleus (VB = Re VB + 1 Im VB).
T, is the barycentric kinetic energy of the pion. We have
neglected the A=l corrections.

T (Bev) Re V'(Mev) ImV'(Mev) Re V°(Mev)  Im V°(Mev)

1.0 ik.9 49,2 16.6 -54.3
1.1 9.4 -47.3 10.8 -52.4
1.2 7.2 =-52.6 8.8 =58.7
1.3 11.0 -53.4 13.4 =59.2
1.4 15.9 =51.7 19.1 «56.7
1.5 19.0 -48.5 22.5 -52.8
1.6 18.2 -4, 3 21.2 -47.9
1.7 14.6 <h3.1 17.0 -46.4
1.8 12,3 - 14.3 -45.9
1.9 10.9 -41.9 12,6 -45.3
2.0 9.9 -41.6 11.5 -45.1
2,2 8.6 k1.9 9.9 =45.4
2.4 7.7 42,3 8.9 -46.0
2.6 7.0 42,5 8.1 =46,
3.0 6.1 -42.6 T.1 =46.2
3.5 5.2 -42.6 6.1 -46.3
4.0 4.6 -42.7 5.4 46 %
4,5 L.l -k2.7 4.8 TR

5.0 3.7 42,7 4.3 46,4



TABLE IIT. Comparison of theoretical and experimental values of the
imaginaxry pert of the pion-nucleus optical potential for
xt with momente 3 Bev/c. Experimental data are from
reference 16.

Element Im VEXPEe (Mev) Im VB(Mev) Im V'F(Mev) Im Vl(Mev)
e’ -154 £ 9 -171 -133 ~117
c12 -59.4 T 4.0 6345 5T o4 ~53
A127 -5805 t hol "60 .Ll‘ -5)4-.7 "50 05

Cu 6947 lg :g 6041 5k o7 =50 45
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V. THE NUCLEON-NUCLEUS OPTICAL POTENTIAL

The nucleon-nucleus first-order optical potential has been eval-
uvated in terms of nucleon-nucleon phase-shifts by several a.u.th.ors.]"‘?'lbr
The highest energy at which a complete set of such phase shifts
presently exists is 310 Meve This energy is probably near the lower
limit of validity of our approximate evaluation of the second-order
optical potentisl V2, s0 the most accurate numerical evaluation of
V2 that can be carried through is for 310 Mev incident nucleons.
However, we shall attempt to estimate the order of magnitude of V2
for other energies.

The validity of the multiple scattering equations (2.8) in the
case of incident nucleons is not immediately evident, as the effect
of the Pauli principle on the incident and target nucleons has not been
properly considered. Takeds and Watsong have shown, however, that for
high energy incident nucleons the effect of the Pauli principle is pro-
perly accounted for -~ to & good approximation -- if one uses scattering

h nucleon only.

operators ta antisymmetrized between the incident and at
But such scattering operators are precisely those describing the
scattering from a free nucleon, so the analysis of Section II is valid

to a good approximation in this case also.



Following the discussion in Section IV, we project the nucleon-
nucleon scattering operator ta onto the isospin substates corresponding
tolI=1and I = 0. We use the respective projection operators Al and
A

0 to write

tO

9= tg(l)ﬁ + tg(O)AO- (5.1)

The scattering operators tg describe the scattering in the nucleon-nucleus
barycentric system, whereas the phase-shift analyses determine the scat-
tering amplitudes fga in the nucleon-nucleon center-of-momentum (CM)
systeme. The relation between these quantities is given by equation (A-9)

of Appendix A:

91) = —L (29 2 (1),

a (2:()2 ky

£9(0) = —L_— (qo) 2 (0), (5.2)
(21() € 0 :

to first-order in the angle of scattering. Here 94 and ko are the momen-

tum in the barycentric and nucleon-nucleon CM systems, respectively.
In terms of fc(l) and fc(o), define

[5f (1) + £%(0) 1,

£ = [21) - £9(0) 1. (543)
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Then, from Appendix C,

2T T
OIlo) = (22 [t 28 * (gt 2 ey x@T)] (5

where AO’ A_r, CC') s and C; -~ defined in Appendix D -- are to be evaluated

at zero angle of scattering, and X(E,?o) is defined in equation (C-9).
The presence of the spin-dependent term in equation (5.4) makes it

convenient to decompose Vl intp two terms, one spin-independent and the

other spin-dependent. .Accordingly, we rewrite equation (3.16) as
U@ = L@+ X @D 7L, (5.5)

where f is the orbital angular momentum operator of the incident particle.

Evidently the spln-independent part, Z(l(;:) s mAYy be written as in equation
(3 01.6) M

%@ = v (sq) o,

2T
00 = - @ (D (g t 2 a), (5:6)

+
where equation (5.4) bas been used. Here N  refers to incident protons
or neutrons, respectively.

As the spin-dependent term in equation (5.4) depends on the final

momentum g to obtain )ﬁl(i?) » the passage from the momentum representative



of )ﬁ to the coordinate representative -~ as effected in equations (3.12)

through (3.14%) -- must be reconsidered. By comparison with equation (3.8)
we write

4 -1(d-g,) 2
<RIAIR, > = —A— () (o1t 23 e x(23) [ae@e :

2
(2n)“e €oVa ko

(547)

Using the definition of X(E’,E’o) from equation (C-9) and the relation
i~ - ==
gl ez T 1% (5.8)

-
the V, may be teken outside the integral over q [see equation (3.12)1,

which may then be evaluated to give

- =
o iq *x
- — A 3 ot L= 2 51 e
<x|jllqo>= O(A)ko(c"l:T T)-_{-O (qoxvx) [D(mm] .
(549)
It p(X) = o(|X]),
g x9 [p@ e |2l B @G xDe O, (5.10)

Then, using

1q. %t

- -d pury — e
< xl)ﬁ lg.>= [ < xl)% [xX* > x! s
1'% f 1 e ¥ 2
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it follows that
AHA 12 )ﬁ D gy
<A R > = @E (X -2 T - L, (5.11)

where the angular momentum L has been identified: L = X X 5’0 fl(:‘c’) may

now be written in the familiasr form

ot 1,2 1 gp
AR =) O T2,

2
W (v ) = - 25 () ()

2T
+

[ §
(i 3

vhere the factor p is the pion rest mass (® 140 Mev) and has been in-

cluded in equations (5.12) so as to cause the dimensions of W, to be

1
those of an energye.
We write ?/é(;c’) as in equation (5.5):
V@ = Up@D + 4@ 7. T
=Up@D +W, 5 = $£3F.L (5.13)

n

The quantities S and ST of equation (3.39) are evaluated in Appendix C.

In terms of these results




ko

: ien)? 4,2 %2 2 1,3 . .3 . s
w0 sa0) = FE (27 @) [ wpr) [@2-2F+5P)t 277
- = 27
+(R-R)[ (1% + fﬁ Al'i t—ﬁéf‘T]} s
(5414)

where the desired spin-avereges of f and fT are given in equation (c-13).
The spin-dependent part w2 is obtained by a treatment anslogous to
that leading from equation (5.7) to equation (5.12), with the result
W (NE,) = (2") (A) (i)2 (R R}h, + (R!- R')h (5415)
o\ 19 5e k k s “ad s ‘a e|’ *
00 A 0]
where h, and h are defined in equetion (C-1h). Ré and Ra" are related

to the R, and R of equation (3e34%) through the equations

]
Rl =R, + G (o),

oo
t = o om— .
R! =R, qu G, (o)
The additional terms come from a spin-dependent sceattering in the inter-
mediste statees They are thus of order Gq. ~ (qus)'l and, in the spirit
of the high energy evaluation of equation (3.33), they may be discarded.

We thus set
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Using the expression for A from equation (C-15) (ignoring the
spin-dependent terms, as they vanish for forward scattering), v of

equation (3.46) is given es

+ %

¥
N
)

it = {2 -3 [+ 20 T [otieg « gotiey)]

W(Nt,qo) = {1 -% [1 + 32 ]} [Wl(Nt,qo) + W2(Nt,qo)} .
(5.16)

In Appendix C, the expressions for the f's and h's of equations (5.1%)
and (5.15) are given in terms of the parameters A, B, C, H of the nucleon-
nucleon scattering amplitudese Further, Appendix D gives expressions for
these parameters in terms of the nucleon-nucleon phase shifts (for small
angles of scattering).

Gammel and Thaler35 have found a set of potentials which match the
310 Mev phase shifts of Stapp et a1.36 for p-p scattering and which also
reproduce the n-p experimental date at the same energy. Kerman, McManus,
and Thalerlh have used the phase shifts deduced from these potentials to
evaluate the quantities A, B, ees, E_for 0 = 0° - 160° ( 0, being the
CM scattering angle) and for energies 90, 156, and 310 Meve Using their

results we obtain the values listed in Table IV for ec = Q.




TABLE IVe The nucleon-nucleon scattering parameters as defined in
Appendix De The numerical values are from reference (14).

90 Mev 156 Mev 310 Mev
AO 0592 + Oolhlihi Ol75 + 0.5011 04139 + 04791
A_ 0069 - 0.1691 ~0e006 - Qollli 0179 - 0.113i
cé 0.0888 + 0.26k1 04109 + 0.418i 04117 + 0.U480i
c; 0,054k + 0.,020i ~0.092 - 0.,011i 04072 - 0.0kli
Bo ~0+0158 - 0.00531 060279 -~ 0.01641 04052 « 00,0431
BT ~0e254 - 0,0676i ~0e257 - 001821 =04219 + 0.,0221
Hy O.114 - 0.07371 Oelll - 0.164i 0.160 - 0.1451
H O«l43 = 0.03%01 0126 + 0.0074 04128 + 0.005i.



Equation (5.16) may now be evaluated. We write it in the form

(to order A Y.

tig = 5 [0y e h eyt R -2 v}l 2 R 5
(R+R_) T .
1l s @ 1 3 1 3
+ T [(Uio + K'Ugl + 7[.dR ) + i(Uio + K'Uil £ 2
(R~R_) T T
1 s 8 1 3 L1 5
+;§ 1010 [(@20 +KUSJ. * 'A‘Uga) * i(Ulao b1 UIth A
W(N™,q,) = W+ £ -*rfé-wR)-l-i(wI + 1yt wa)]
2%’ =75 Moo T & Yor * A Yoe o0 " K1 * R Yoz
(R+R_) T T
1 s & 1 3 I ., 1.1
+;5 0 13 [(WEO+KWR *T“RJ.z) *ilWgy ¥ Wy
(R_-R) T T
1 5 “a 1 3 R S T )
"8 T [(WREO * Vg * Vi) ¥ il ¢ FVp * 3

(5417)

Here X is defined by equation (4.13). The quantities appearing in
equation (5.17) are listed in Teble V for incident nucleons of 90,
156, and 310 Mev kinetic energye

For a Fermi gas model of the nucleus, we use equetions (4e19) in

equations (5.14) and (5.15) to obtain



TABLE Ve The parameters of the nucleon-nucleus optical potential as
defined by equations (5.17)e Tp is the nucleon kinetic energy
in the nucleon-nucleus barycentric system, and Rg and Ry are
measured in centimeters. (f = fermi = 10-13 cmj

Tp(Mev) UROO {Mev) Ugl(Mev) I%Q(Mev) Ugo (Mev) U(I)l(Mev) Uga(Mev)
%0 ~39+3 (-1545) 931 =299 (-1130) 22.8
156 -3046 98.8 077 ~25.8 -224¢3 1he7
310 8.1 - 3e7 -21, -28. =59 1k,

Ul;o(Mev ) URll(Mev 1) URla(Mev 1) Uio(Mev h UL_(Mev e 1) Uia(Mev ¢

90 0466 -2k9 ~14.8 <0667 2640 ~3+86
156 T75 -9.15 ~4.59 ~1.32 1745 ~3.U7
310 1.8 1.5 3.7 2.8 645 b2

URQO(Mev 1 URal(Mev 1) URza(Mev 1) Ugo(Mev ) Ugl(Mev 1) U‘,Iaa(Mev £1)

9% 6.2 2.6 8.35 6.5 -2.7 Seh1
156 ~2429 31.0 L6 Lo37 -5+28 5e12
310 37 740 -Lok 1.6 11. 245

W o (Mev) Wy, (ev) W p(ev) Weo(Mev) g (Mev) Wep(Mev)

90 ka2 157. 0462 ~1.40 ~6ke 1.7

156 oo ~5. k7 ~0.18 -0491 8.3 154

310 1.8 3.7 032 -0.43 0k0 0453




TABLE V (conts)

T (Hev) Woev £ R (Mev £ W (Mev £71) VI (Mev £
90 ~Ouli2 0 o) 1.95
156 -0430 0.12 <040k 0463
310 -0.18 0.16 Oelk 0.10
W (Mev £71) Wg, (Mev £71) W, (ev £71) Wgo(Mev £~

% 0 -1.68 0.04 0.3k
156 0.03 <1.2 0403 -0.18
310 0.0k ~0e71 ~060k =040k
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The numerical evaluation of equation (5.18) gives (neglecting the At
corrections):
T, = 90 Mev: UF(x) = (58 - 111) p(x) + (hel = 2.41) ;13%%;16’ e L
- . )F = 1 2.7,
T, = 156 Mev: UF(x) = (=37 - 131) p(x) + (46 = 1o5i) ik % .1
T, = 310 Mev: UF(x) = (<7 - 251) p(x) + (149 - 0453i) fe—}l?%"? T,
(519)

where we have assumed A = 1, and Tp is the nucleon kinetic energy in
the barycentric systems
Using the values of R_ and R from equation (4+.23), deduced from

34

the work of Brueckner and Cammel,” we obtain (again assuming A = 1

and neglecting terms of order A-l),
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T, = 90 Mev: & B(x) =, (<40 - 29i) p(x) + (4.8 - 4oTi) :‘—2}(%6’ . T

al

TP = 156 Mev: Z/B(x) = (<4 - 241) p(x) + (5.0 - 1.01)-%5
M

X
R16

%
13
al

T, = 310 Mev: &/2(x) = (-11 - 351) p(x) + (2.1 - 0.61)
M

(5420)

Batty37 has analyzed the 310 Mev date of Chamberlain et a.]..5 5 on
012 » treating carefully the coulomb effects. Using a Gaussian charge
distribution for simplicity, and a modified Gaussian nucleon distribution
of the form

V' 2 2, 2

b x -(x%/a%)
p(x) = A (L+= =) e a = 1.635 fermi,
5“392 o 5 g2 ?

(5.21)

which gives the best fit to the electron scattering data on carbon,59

he obtains

- =
g ¢ Le

X[
&I

U'(x) = (~10+5 - 29.9i) p(x) + (2.68 - 04321) 35
13

(5422)

In the absence of phase shift analyses of nucleon-nucleon scattering
at higher energies, we may try to estimate the megnitude of the second-

order potential U2 as follows. If U2 is assumed to be small, the




phenomenological optical potential 2/6 deduced from experiment is

approximately equal to U. From equation (546), if the corrections

of order A‘l are disregarded, AO may then be obtained from VO s and,

for a Brueckner nuclear model, from equation (5.l4) we see that U,

depends only on Ao. Thus, for this nuclear model, we can obtain an

estimate of U2. In our results below we normalize the experimental
Ué) to correspond to a central nucleon density such that A = l.
Nedzelb'o haes measured totel cross sections for 410 Mev neutrons on

e range of elements. He assumes Re Y = 0, and he finds that, to obtain

0
R A proportional to Al/ 3 >

R, = 1423 AL/3 « 15713 cm,

Im Z/(') & .25 Meve.
Then Im.AO ~ lel fermi, and Im U, = 1.3 Meve

Booth, Hutchinson, and Ledleyul have fit their data on 765 Mev
neutrons scattered from several nuclei to optical potentials with nucleon
density distributions teken from electron scattering experiments. They
assume the Re ”(') vanishes and the spin-orbit potential is purely reale.
Thelr results, together with our estimates of Im U2’ are presented
in Table VI(a).

Booth, Ledley, Walker, and Whitel‘L2 have measured the total and

differential cross sections for 900 Mev protons on C s Al, and Cu.




TABLE VI. The phenomenological optical potentials deduced by Booth

(2)

(v)

et al. and the resulting estimates of the second-order
potential. (a) 765 Mev neutrons [reference (41)];
(b) 900 Mev protons [reference (42)].

Element Inm ”O' (Mev) AOI( 10" cm) In U, (Mev)
ct? -43 2.2 4.9
Cu =45 2.2 k.9
Pb =45 2.2 k.9
ct? -36 2.0 542
A127 =52 2.9 11.0
Cu ) 245 8.1

Sb =46 2.6 8.8

51




pr

Assuming a rectangular density distribution with R, = 126 Al/ 3 X lO'13 om

A
they have determined the potential strength which best fits their

data. Assuming the real pert of VO is small, their results and our
estimates of U, are given in Table vI(b).

Coor, Hill, Hornyak, Smith, and Snawl‘L3 have performed a similar
analysis of their data on the scattering of l.4 Bev neutrons from
several nuclei ranging from Be and C to Pb, Bi, and U. They measured
the totel, absorption, and diffraction cross sections and found they
can be equally well fit to within the experimental accuracy by either
e rectangular or & Gaussian nucleon density distributione. With a
rectanguler well, they find a good fit to all their data with Ra =
1.28 Al/5 x 1072 cm, Re ?{; small, and Im Z{)' = <44 Meve Normelizing
to A = 1, this corresponds to Im % = 54 Meve Then Im A, = 3,7
fermi and Im U, ¥ 9 Meve.

Longol6 has performed a careful optical model analysis of his
data on the elastic scattering of protons with momente 3 Bev/ ¢ from
several nuclei. If Re ?{; is taken to be small, he obtains & good fit
to his data with Im VO ~ 63 Mev. Using the values Opp = Lo mb,

o] = 42 mb, quoted by Longo, we obtain a first-order potential

bp
Im Ul = 54 Mev. Attributing the difference between Z/(; and Ul to
the second-order potential, we find Im U2 ~ =9 Meve.
In general, these experimental results seem to be consistent with

the assumption that the real part of the optical potential is gquite

smalle. If we assume nucleon-nucleon interactions to be purely inelastic
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and spin-independent -~ for nucleons of kinetic energy somewhat greater
than 700 Mev -~ of the six parameters describing forward-scattering,
only Im A is nonvanishing. Since Im A may be related directly to
measured total cross sections, we may evaluate the corresponding
second~order imaginary potential.

In Figure 1 ere presented the results of such an evaluation -~ for
nucleon energies T00 Mev to 3 Bev -~ for both a Fermi gas model and
a Brueckner model of the nucleus. Included are the values from equa-
tions (5.19) and (5.20) above and the first-order imeginary potential =
covering the energy range 100 Mev to 3 Bev. The required total nucleon-
nucleon cross sections are taken from the review article by Hess.lm
The experimental values of the imaginary part of the optical potential
described above are included, as well as the values recently deduced
by Batty37 from the scattering of 420, 635, and 970 Mev protons from
c*2.

In summary, we see that the contribution of the second-order

optical potential to y(’)

first-order potential, even at the highest energies considered. This

constitutes e correction of 10 to 15% of the

correction may be reasonably well accounted for by utilizing equation

(4.22) == with T,

R = 0 == giving the dashed curve in Figure l.
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VI, NONLOCALITY OF THE OPTICAL POTENTTIAL

The assumptions leading to equation (3.11) allowed us to obtain
the expressions (3.16) and (3.39) for an optical potential local in
coordinate representation, In this section we propose to examine the
leading corrections to equation (3.16) due to the dependence of t(?f,a)o)
on the scattering angle, We shall find that the inclusion of such cor-
rections leads to an opticeal potential nonlocal in coordinate space,
but which may be written as a local potential with a nucleon density
distribution modified from that obtained by other means -- for example,
electron scattering.

This modification of the density distribution has frequentlyl5’ 20
been described as the inclusion of the effects of the finite range of
interaction of the incident particle with nucleons of the target nu-
cleus. As long as the energies are high enough that the free nucleon
scattering operators are applicaeble, the effect of the finite range of

interaction is properly included in these scattering operators. There-

fore, the modification of the nucleon density is more correctly described

as being & manifestation of the nonlocality of the optical potential.
In general, the scattering amplitudes in the two-body CM system

for small angles of scattering ec mey be written in the form
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£ (BE) = £20x,) + fgl)(ko)ei + (e} (641)

An explicit expression of this form for nucleon-nucleon scattering is
given by equation (D=-3) of Appendix D,
Employing the general relation between leboratory end CM scattering

angles -- for incident nucleons ==~

% %
2 tan — = ?6 tene, , (642)

where ko is the CM momentum, we see

2
2 (%).2 4
o -_-<k—o>eL + (el (6+3)
Thus we may write for the scattering amplitude in the laboratory system
£ (33, = £2(q) (1 = a qFe2) + o(ep), (64)

where, comparing with equation (6.1),

(1)

£ (k)

o= - _1§ = o . (6.5)
kg fc(ko)

For incident particles other than nucleons, equation (6.4) is still
valid, but the definition of ¢« in equation (6.5) is modified,

Writing

olt(@yay) o) = (o[t°(g ) o) (x - x®), (6.6)
% %




o7

where
e=3- 3
AN b
K2 = <2q0 sin -—2—-) = goaeg + O(GL), (667)

equation {3.12) becomes, using equations (3.15) and (6.6),

i%'i? o - =
- -l 0 Ae 3 o e RyamikeX 3 igez
<:?12/J'_lqo>- (2“)2% (O]fL(gOHO) Vs ol a“k(l = ox“)e 4’z0(2)e .

(648)

Introducing the relation
R e L= =
n2 ik eX _V}Zce-:.n (>4

into equation (6.8), we obtain

= =

1g0°x
<FZ1G>=—3 (012U a) o) & S—575 (207[0(@) + &Fo(R)] . (6:9)
) "eq A (2n)

(

But, in general,

e B
iq.*x"

<X\ "’>=f<—’2/' _>'>d3" € (6.10)
x| 1o x]d |x * (2“)372 ’
80

<K Y|x>= Y (EK)s(X - X) (6.11)
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with

Y (%) = -"—?—g— (VAX) (Ol fg(qo)lo)[p(i’) + av%(,?)] . (6.12)

Comparing this expression with equation (3,16), we see that the ef=-
fect of including the anglewdependence of t for small angles leads to a

modified density distribution of the form

B(X) = p(X) + VH(X). (6413)

Note that since the angle-dependence of the real and imeginery parts of
t may be different, o will be complex and thus the effective density
distributions of the real and imeginary parts of the optical potential
will be different,

An instructive exemple is provided by considering a Gaussian dene

sity distribution

VA _x2/a2

p(x) = ——375—3 e . (6.1)4-)
b 14 a

Then

v 2,.2 2
-y - A «x“/a baf3 _ x
plx) = =5 e . -;2<2 —a2> .

But consider
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v 2, 2
I CY P — e /a(1m)
n3/2a3(1 + A.)3/2
For A small,

v 2,2 2
~ ‘A -x“/a 3 X
D'(X)=:37—2§ e l-?\<§-:2°>:

50 pt = p if we identify A = ha/ae. Therefore, the effect of considere

ing the angle dependence of the scattering operator is to increese the
1/2

rms radius of the density distribution from [(3/2)a?1 to

<rtS= [.2. (a2 + ua)] 1/2.

(6.15)
For the nucleon-nucleus spinedependent optical potential, a re-
sult similar to equation {6.12) is obtained, Using equation (6.6) in

equation (5.7), the integral term becomes

1gex .= =
fd5q-(_:_—;%;§ (1 - Bc5)3 (gr@zp(De™* 2, (6.16)
7T

Here B is the quantity for the spin-dependent scattering corresponding
to the q of equation (6.8). Using equation (5.8), equation (6.16) be-

comes

igex =
-:]f o e (?o@)fd%(—;‘;l?/é (1 - Bng)djzp(ae‘moz. (6.17)



Algebraic manipulations similar to those leading from equation (6.8)

to (6.12) end to those leading from equation (5.9) to (5.12) lead to

the results

A [ 2 () (2 e« T D](2) 22 [pt0 + 0] 6.9

h)

Comparing with equation (5.12) one sees that again the angle-dependence
of the spin~dependent scattering amplitudes leads to & medificetion of
the spatial dependence of the spin-orbit optical potentisl == & modifie
cation which is different for the real and imeginary parts. Cromer >
has recently obtained results similar to equations (6.,12) and (6.18),
but specialized to the case of a Gausslan distribution,

In Table VII are listed the values of A and C for 310 Mev nucleons
for a range of small angles. Using these, the following values of «

and B are obtained:

0.62 + 0,37i;

Q
]

1.2 + 0,29i;

Q
n

u

B = 0415i; B_ = 1.2 + 0.23i. (6.19)

The analysis by Fregeau 59

of the scattering of electrons from carbon
shows that for k- < 1.5 (8, < 17°) the Geussian density distribution,
equation (6.14), with a = 1.96 fermi provides a good fit to the data.
This corresponds to & rms radius < r > = 2,4 fermi, and we write it

p(x| < r>) = p(x|2.4)s Using the results of equation (6.19) in (6.15),




Teble VII. Angle-dependence of the nucleon-nucleon
scattering parameters for 310 Mev nucleons.
Data are from reference (1k4).

8, Re Ao(f) Im Ao(f) Re AT(f) Im A*(f)
2° 0.139 0.479 0.179 -0.1130
u° 0.136 0477 0.177 -0,1125
6° 0.132 0Lk 0.175 -0,111
&° 0.127 0.469 0.171 -0,110
8, Re 06(f) Im C4(£) Re c;(f) Im c;(f)
2° 0.117 0.480 -0.2865 - =0.175
4° 0.117 0479 -0,2853 ~0.171
6° 0.1167 0.480 -0.,28l41 -0.166

g° 0.1157 0.481 -0.2817 -0,160
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the optical potentiel for the scattering of 310 Mev nucleons from

carbon == equations (5.6) and (5.12) == may be written
Z{(x) = Re Ulp(x|3.6) + i Im Ulp(xli.l)

+ .ulé ;1{. a%z [Re Wp(x|24) + i In wlp(x|3.6)]. (6.20)

Kisslingeru6 has applied similar considerations to pion-nucleus scatter=
ing. He is concerned, however, with pions of lower energy such that

only S- and P-waves are expected to be important. Thus, he writes
- -
t(qyqy) = algy) + b(g,)cos (6.21)

as valid for all @, not just small angles. Using equation (6.21) =~
with cos@ = (l/qg)a) . E;) -- in equation (6.8) and carrying through

similar manipulations, we obtein his result

V(@ = @0 () [2@ - o) - 7). (6.22)

>

Baker, Byfield, and Raa.:'.nwa:berll'7 have found that to obtain large-
angle agreement with their experiments at 80 Mev, & potential of the
form (6.22) is necessary.

From comparison of equations (3.16) and (3.39) we see

<|<
= |ro

1

y ——— (602
o 3)
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Moreover, the sbove modifications of the nucleon density distributions
are proportional to 6° =~ (quA)'Q, by equation (3.,10). So considera-
tion of terms of order 62 in V2 will lead to corrections of order

(quA)"3 s which we have agreed to neglect [(see equation (3.47)].
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APPENDIX A
RELATIVISTIC KINEMATICS

The following basic relation between scattering operators and

differential cross sections has been given by Mg‘ller:48

(en)* k2] < K|t |E,F, > &

g = - - an = |£(e)]2 aa
(- %1% Ry x RIAHYEIGE - )l

(A-1)

for scattering into an element of solid angle dQ about l? of a particle
with initial momentum —1?0 s velocity _13]?, on & target of momentum l?O s
velocity _Jg. ‘ﬁ’i and '3;' are the corresponding velocities after scate

tering. Mpfller has also shown that the quantity
VerE® < ?,?ltl?o,?o > VeE (A-2)

is Lorentz~invariant, € and E being the energies of the particle and
target, respectively.
We are concerned here with three coordinate systems: +the labora-

tory system, the particle-nucleus barycentric system, and the
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particle-nucleon CM system.

In the particle-nucleon CM system:

F
"

Then equation (A-l) gives

€ F

£,(0) = =(20)% ¢ (eFs)- (a-3)

Similerly, in the laboratory system (for forward scattering) 3

=0 _ =21 _
u2 = u2 = Qe
O _ 2
£ = -(2r) trere (A-k)

Using equation (A-2) we find, for forward scattering,

0 -1 0 -1 K. 0
t, = £ = (=) £ . (A=5)
L (2n)2 € L (21\:)2 € kS e

In the particle-nucleus barycentric system:

- -
-0 - 2. Llp

=y 5 o lp.

1 B 2 EB (0] A0




Then, for forwerd scattering,

(2n)2 0 < > (A-6)

Expressing fB in terms of €. and using (A-2), we obtain (discarding terms

L
-2
of order A~ <)
2e_ -1/2 .
0 B 0
fB ~ (1 + T fL’ (A-T)

where M is the nucleon mass.

Combining equations (A<6) and (A-7) gives

t = (A-8)
B (2::)2

Thus, if we may neglect terms of order (€L/AM)2,
0 -1 o__ =1 Y
t D ——— Y = ( ) f e’ (A-9)
B (21‘)2 €B L (2“)2 eB

where qo and ko are, respectively, the momentum of the incident particle

in the laboratory and particle-nucleon CM system.
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APPENDIX B

EVALUATION OF THE PION-NUCLEUS SPIN-ISOSPIN AVERAGES

By the hypothesis of charge-independence, the scattering matrices
must be invarient under rotations in isospin space; that is, tg must

_)
have isospin dependence only of the form -f-I s Where f is the total
49

isospin of the pion-nucleon system. We introduce creation and

annihilation operators Ui 3 Uj (1,3 = 1,2,3) for the three types of

ions W, , W w
plon l’ 2.’

3

= A + A + A ( l)
U—a)lel a)2e2 w3e3. Be

It is easy to show that the quantity

T=1Tx0' (B-2)
transforms like a vector in isospin space, so we choose

- = =1t

I= %-?; +1UXU, (B-3)

where ?oz is the isospin operator of the ath nucleon.




The most general form of tg is then

0 -t = + - =
= . + . -
ty =AU+ T+1 Boff xT T, (B-k)

where AO and BO are independent of the nucleon spin for forward scet-

teringe One can verify the projection operators

A5/2 %(‘ﬁ?'U-lﬁﬁXU°T),
Ao = %(ﬁ’*-”’ + 10 xT D, (B-5)

ellowing the identification of AO and B0 with the two independent scate-

tering matrices

0 0,1
ty = (AO- BO)A3/2 + (Ao+ 2BO)A1/2 =t, (-Z—)AB/2 +t, (E)Al/a'
(B-6)

Since we assume only one pion to be present in the intermediate

state, we find

0,0 - 23, 7 aF = e -
« U+ +
tata =AU+ U iAOBOUxU'(Ta -rB)

2[R TR -2 BT ] e
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Using the results of Teble VIII -~ keeping terms of order A only -~ we

find (for unpolarized nuclei)

A

0,0y = 2t, 2 2 2 t, o 2
é (O[tatﬁlo) =T+ T [A(A-1)A7 - 28BC] + uiAAOBOB x T+ esTs,
=1

A
0,0 ot =2 1 1,22 2t 2 A
2 l(ol1:o‘1~.ﬁl>o‘ﬁlo) =0 +U [~ EA(A-16) -5 A%O] - 2LAABU'X U + 855,

A
0 _ -)1-. - -t =2 A
E (olta]o) =AU U+ 2iB U X U « &5, (B-8)
o=l
where we have used
_ 1 - - = .2
P =" F (1 + g, * UB)(l t T, Ta). (B~9)

To eveluate these expressions for incident charged pions, we intro-
L9

duce ~ the pion state vectors

ol =T l-/—_:— (0, + 1)), (B-10)

Then, using equation (B-6),




TABLE VIII.

List of spin-isospin averages. 2 and b are arbitrary
vectors. Terms of order 1 have been discarded.

A
1) E (o]7, » ?Blo) = <34

o#3=1
A
2) 2 (olE’a . E’alo) = -3A
o#B=1

A
3) 2 (olE’a- E’ﬁ Tr’a- ?ﬁlo) = <9A
o#s=1
k) 2 (0] 7y57g510) = -
A
5) 2 (Ol?a- ?ﬁ Ta3Tf33IO) = «3A
o=l

A
6) _5_ (o[pglo0) = - T A%+ A

o=l

A
7) _5_ (ol?ao ?B PaBIO) = . ?;Ae

oF#3=1

8) E (oloa- o, P Io) = - ?;Ae




9)

10)

11)

12)

13)

14)

15)

16)

TABLE VIII (cont.)

-
z (Ol'ra T To3 leo) A+ A
o#p=1

2
2(0' "05"85 Fogl® = -

A
> o 3 .2
2 (Olo % 43783 aﬁl 0) = - A
o=l

A
z (olE’a- n Pwlo) =0

o=l

A
2 (Ol?ao E’?B. PP |0) = - EAQ(E) %)
o#3=1

E (olq—05 PaBIO) = -AT,

-
E(olo-a’?-i’-r |0)=-AT(aob)




TABLE VIII (cont.)

o]

A
17) 2 (olE’a- 2y ?a- ?B Paﬁlo) =0
o#p=1

el
!

A
18) a*; (ola’a- Tpe B Ty Ty Bglo) = - 2255 - B)
=1

T2
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_ 2 1, 22,3
S-f(l-K)-KfTi % ffT,
o
_ 1.2 16, 1.2.°3
Sp=-pfl-F) -5 F 51,
A
o7
E(oltglo)= =% (fi—Azf_r),
v (2x) €
£ 72
A=-2A[——2-——] F) (B"’ll)
(2:1)60

where the upper (lower) sign refers to incident positive (negative) pions,

and f and f_are defined by equation (L.3).
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APPENDIX C
EVALUATION OF THE NUCLEON-NUCLEUS SPIN-ISOSPIN AVERAGES

By charge-independence, the nucleon-nucleon scattering esmplitude

0 in the two-particle CM system -~ must have isospin dependence

fac

of the form T o -I'), where

(c-1)

- - -
= +
I (7, To)

M=

is the total isospin of the nucleon-nucleon system, and ?a and :‘?O are
the isospin operators of the incident and o h nucleon, respectively.

The most general form of fac is then

(0} - -
= + M!? . . -
Tae SMy T My T T (c-2)

Here, for smell scattering angles, Ma and Mo'z have spin dependence of the

form (see Appendix D):




and the coefficients AO ,Co, coe ’H'r are functions of ko and © e = 0, the
momentum and scattering angle, respectively, in the nucleon-nucleon
CM systeme. ﬁ and ? are unit vectors in the directions (E’Ox 'ﬁ) and
(l?o'l' X), respectively.

One can verify the projection operators

A =3 (2 -?’a-?), (c-b)

in terms of which equation (C-2) may be written

f((‘))tc = (M * M})A, + (M~ M)A = fgc(l)Al + fgc(o)Ao’ (c=5)

where we have introduced the two independent scattering amplitudes f(1)

and £(0). Comparing with equation (5.3), we see that M, = £, eand

M& = f 'ra' Utilizing equation (A-9) s We obtain for tgtg, evaluated

between the state vectors of the incident nucleon 3
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+).0, 0 * 1 %,° !
(8|65 N°) = el {Mo}”’a * ¥ol's g3

+ Ma'}da'ras + M&wé [ A * 1(Tax?5)3] }, (c-6)

o+
where N~ refers to an incident proton or neutron, respectively.
It is convenient to trensform the terms with coefficient CO’ C,r

as follows:

W A L,  ExE
Co e ne=CO & ——m o (c-7)

ko sinec

But it is easily shown that

T T g
fXF_ %*e %, (c-8)
2 z 'R,
0 %
Therefore, defining
$ - 1 [ 1
Co = s1m_ Co’ Cr = sim6_ O’
[ (o]
T %
X(Qyag) =3 ¢ =5 (), (c-9)
qo 0]

we write




7

-> o A = t - —> -
cogen=c! X(q,qo), (c-10)

4
and Co

Substituting equations (C-10) and (C~3) into (C-6) and using Table

and C; are now of order 1 as 8, -0 (by Appendix D).

VIII to carry out the averages over the nuclear ground state, we find

(for unpolarized nuclei)

% 2 - - 2
S = (%) lgy *+ g X(ayq,) ] + o(e),
- % - - 2
5 = (1%) lg, + n, x(q,q,) ] + o(e),
\ 0 A q0 2T§ 2T3 - - ]
- PR LN — — —_— 4
E (o]t lo) = - oo (ko) [(Aot A *+(cd £ ==chx(a,q) |,
a=1 0]
(c-11)
where the spin-independent amplitudes are
— — yp
g = (B2 -5 (P +380) £ 2FT,
- _— _ 27,
g =-E (43D + (PP 2. (c-12)

Here we have written a superscript bar on the scattering amplitudes
[equation (5.3)] to indicate averages over the spin-directions of both

particles. That is,



T8

= - _ 2 _,2 w32 _ .2
f= AO’ f'l" = AT’ (f) AO’ (fT) AT’
2 2 2 2
= + - +
£ Ay 5130 aBoHO Hy
2 =22+32 .88 +52,
T T T T T T
= + - - + . -
£ AOAT 313031_ BOHT B _H, HOHT (c-13)

Finally, the spin~dependent terms are written

or
= v _ L t ' 2 't 4 '
hy = ACS - 3 [(Ao+ 130)0O + 3(AT+ BT)CT] t — (AocT ATCO),

= _ 1 ' ' 4 '
h, [(AO+ Bo)c0 + 3(AT+ BT)CT] + 1AL

T
T f— [(A0+ Bo)c; + (AT'*' BT)C(;] . (Cc-1k)

All the above expressions are correct through terms of order ec
and of order A™Y. In equations (C-6), (Cc-11), (c-12), and (C-14) the
(+) sign refers to incident protons or neutrons, respectively.

Finally,

- S —_
A= 2 (;0-) [£° + 5ff - (D)%) . (c-15)
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APPENDIX D

EVALUATION OF THE NUCLEON-NUCLEON SCATTERING AMPLITUDES

IN TERMS OF PHASE SHIFTS

The nucleon-nucleon scattering emplitude in the CM system msy be
written as a matrix in spin-space with coefficients which are functions

of the scattering angle and the momentum. We use the parametrization

of S’capp.5o
- =) -, - ~ - A A 1 - A A = -
= + + L4 * L] — . L] [ [
M(k,ko) A C(cl 0'2) D+ Boye no,e nt 5 G(ol mo,e m+ o)« Lo, L)
1l /= A A Sy 2
+ = . L] - [ ) .
5 H(ol mo,* m - gy 102 1),
(D-1)

where 1, ?, and m are unit vectors in the directions (E:)X %), (?O'*' x),

20 has given the genersl expressions

and (¥ - ]:?0), respectively. Stapp
for A, B, C, G, and H in terms of phase shifts for the I = 1 state.

For the present applications we are concerned only with small-angle
scattering: we need A and C to order 63; B, G, and H to order ec.

By using the small-angle expansions for Legendre polynomials,




P,(0) =1 - F £(2+1)6 + o(e"),
p{1)(e) = L (141 sine [1 -1 (z+2)(z-1)92] + 0(6”)
L 2 8 ’

Pﬁz)(e) = % £(2+2)(241)(£-1)62 + o(8™),

in Stapp's expressions, the following results are obtained:

A(Gc) = E—ii—o 2 (2241) [1 - llzz(zﬂ)eﬂ @,

£(even)

(D-2)

141
+ 2 [ 2 (2J+1)alj] [1 - %z(t+1)e§jl}+ o(ezc‘),

2(o0dd) - j=t-1

sin®
_ e 08+3 _on
cle,) = —x 2 L %041~ T %
2{(0dd)

L 2

= 3 s
sind  C (ec),

B(Gc) = h—ii (2 | l:(,t+]_)az’l+l + tal,l-l + V(“‘l)(l*ﬁ) al'i-l
2(odd

21-1 2(2+1) 1 2 4
- __al,l-l:l LASAE YA [1 -5 (ue)(z-l)ec] + o(ec)

(D-3)

+ Vi(1-1) a"'l] - _5_ (2“1)“1} + 0(6d),

L(even)




8L

cle,) = ﬁ—i Z [(‘*Q)Gz,zﬂ + (2t4l)ay, + (2-1)ay 4 )
£(0dd)

- V) (#2) of ™ - 12D a"l] -2 D) (arda, |+ o(ed),

L(even)

o 2
He,) = 5 [‘ Oy g - (2810, + (24L)ay )
2(odd)

+ 3 V() (2) o + 5 Y/2(2-1) a“l] +0(62) .
(D-k)

The a, ave most conveniently expressed in terms of the "bar"

phase shifts of Stapp36’5o as follows:13 for the singlet state

215 2ip,

and similarly for the triplet state with £ = j, while for the other

triplet states

2i§ . 2ip,

@y =e 23 cos 253 -e (§ = 2+1),

aJ = { sin QEJ [ei(aj"'l;j * 83-1:3)] s

and ?, is the coulomb phase shift.
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Comparing the above eguations (D-4), we see
G+H=2B+ o(ei). (D-5)

Using this in equation (D-1), we obtain the expressions given in
equations (C-3).

The coulomb scattering effects have been neglected here, as the
optical potential proper deals only with the purely nuclear part of
the scatteringe. The effects of coulomb scattering are then to be
considered when the scattering from the optical potential is calcu-
lated, as described by several a.uthors.51

The coefficients of the I = 0 scattering amplitude are also ob-

tained from equations (D-3) and (D-4) by interchanging “even" and
"odd."
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