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ABSTRACT

A description of a time-dependent radiation transport code is
given. The transport equation is written in a form such that the
flow of radiation is along the characteristics in space-time. En-
ergy conservation, the equation of state, and the hydrodynamic
equations are written in a finite difference form.

Numerical results to several problems of varying degrees of

complexity are given.
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1. INTRODUCTION

There will be described in this report a time-dependent radia-
tion transport code which has been written for the IBM 7030 (Stretch)
computer. Numerical results for several representative problems
are presented.

It 18 known that radiation transport phenomena in the pres-
ence of black body sources (and hydrodynamic motions) are described
by a system of coupled non-linear equations. The monochromatic
intensity of radiation at a space-time point travelling in a speci-
fied direction is the sum of three terms in the general case. The
first is the unabsorbed and unscattered radiation reaching that
point while the remaining two contributions arise from radiation
scattered into the beam and emitted from the matter into the beam.
The contribution to the intensity from the matter depends non-
linearly on the lbcal temperature, while the temperature itself

depends on various angular moments of the intensity.



An additional peculiarity of the description of radiation
transport arises in the present work due to the fact that we
write the transport equation in an Eulerian framewhile writing
the equations of hydrodynamics in a Lagranglan coordinate system
fixed in the matter. To be consistent, it is preferable (and,
indeed, necessary) to transform the description of phenomena to a
single frame. If one refers the radiation to the Lagrangian
frame associated with the matter, the result is to introduce
terms of order v/c ralsed to various powers. A cursory discussion
of this point 18 given below together with references to more
complete expositions.

When discussing the coding of the various equations of
transport, the question of notation arises. We have not used any
particular notation consistently in the report, preferring to
write equations in a form which, hopefully, brings out most clear-
ly the physical significance.

In Section 2, the equations of radiation transport are
written down and put into a form suitable for transition to mesh
equations. The latter are discussed in Section 3, and simplified
flow diagrams are included. The presentation and discussion of

numerical results is the content of Section 4.




2. EQUATIONS OF TRANSPORT

As radiation passes through matter, some of it is absorbed
and some 1s scattered. That which i1s absorbed gives rise to a
temperature distribution in the matter; emission at the local
temperature then takes place. The pressure within the matter
changes according to an equation of state relating the pressure
and temperature. As the pressure builds up, hydrodynamic motions
ensue. Energy in the system of matter plus radiation is con-
served, the governing equation being the first law of thermo-
dynamics. Thus, when speaking of radiation transport, a system
of equations is needed.

Under the assumption of azimuthal symmetry, the space-time
behavior of the intensity of radiation is governed by an equation
of the form

/
v —~
éa—i- +(1-Vrcr)fv=0‘;78yra;/k(/“),“')fgl/u’. (2.1)

In equation (2.1), IV = IV(x,u,t) is the monochromatic intensity
of radiation of frequency in the interval dy about y which is at a
point x at time t, travelling in direction ,, ¥ cos §; c is the
velocity of light; o = cav + o4, where cav is the absorption cross
section of the matter for radiation of frequency yp corrected for
stimulated emission, and O is the scattering cross section. The

quantity BY is taken to be a black body source at a temperature T;



BV_ 2hy? Ji
T c* ghvkT_,

(2.2)

The quantity k(u,u') is the single scattering law. If this be
assumed isotropic, then the integral on the right hand side of

(2.1) reduces to
/
v, . 2.1
é /FI dﬂ : ( a)
-t

while 1if the Rayleigh (Thomson) law 18 assumed to hold, one has

!

Jera)= 2 (csp /[ Ap' + Cspt) /1"[ FANCRIS

o
We have considered only these two scattering laws. Finally, the
operator,l'V' appearing in (2.1) is geometry dependent. For plane

geometry, one has

- 9 .

LV=ps= s (2.3a)
while for spherical geometry, the form is

X x  ou (2.3b)
(In this last relation, x is a spherical position coordinate.)

There are certain quantities which are of importance in a

discussion of radiation transport, and which will now be defined.




The radiation energy density is defined as

o

/
Eptntr 2 [ay [ 14y (2.4)

(] =/

The flux of radiation is defined as
/

F(X,f’):Zﬂ‘/dV//A[Vd/J. (2.5)

-~/

The mean intensity of radiation is defined as
/

://x,é)=/dy/[dlu_ (2.6)
fo] -

/

Finally, the radiation pressure is given by the relation

% /
° —~{

The pressure is connected with the temperature and density with-

in the matter by an equation of state; i.e.,

b = fep,T). (2.8)

For the cases which we have considered thus far, we have used a

perfect gas law such that

= bp 1, (2.8a)

with b defined as the gas constant in units of energy per unit
mass per degree.
There 1is one additional matter which deserves mention. When

one considers multi-group problems, it is necessary to define



some sort of average of the absorption coefficient over finite
frequency groups. Suppose that we integrate equation (2.1) over

a range of frequencies from y to y,. Calling
" ;
v
\Z/‘I dv = I (x)/.(,,f'),
(]

equation (2.1) is ,
V,

Lol o)l ot V/o;”(e“-[’}dwg el e
f =1

If it were possible to compute a mean-absorption coefficient

defined by
— 4
7 (8?—17)=/0‘;*’(3“_[")d,,, (2.9)
14

!

then the transport equation, integrated between two frequencies,

would take the form ,

L9, (10) 1), G 8= B o [ rTap

!

(2.10)

Mean absorption coefficients other than (2.9) have some validity.
Chief among these are the well known Rosseland mean, valid when
the approximations of diffusion theory hold, and the so-called

Planck mean given by

Y,
7t 81 = / ¥ BYdv. (2.11)
Y
[




It {s the mean defined by equation (2.11), valid when mean free
paths are long, which we have used for the most part. The question
of how best to define a mean which will be valid in both the short
and long mean free path limit is being considered by both

B. Wendroff and W. D. Barfield of LASL.

Since the frame to which the matter is attached (by means of
a Lagrangian coordinate descripfion) will be moving with some
velocity 3, it is necessary to look into the question of the
effects which such motion will have on the transport equation when
it 1s referred to the matter frame.

This problem was discussed by L. H. Thomas (1), and more
recently by A. N. Fraser (2)., In addition, Ledoux and Walraven
(3) have material bearing on such transformations in their
Handbuch article.

The use of the two scattering laws which have been assumed
valid in this report introduces an important simplification when
discussing energy conservation; namely, the scattering cancels
out exactly. (For temperatures high enough so that the Klein-
Nishina formula is the only valid one, this is not.so.) We can,
therefore, discuss energy conservation starting with a transport

equation in the form

L, Tvr’ ¢ (g-1")

o

Q1h1

)
c (2.12)



Recalling the definitions (2.4) and (2.5), it will be seen that
the result of multiplying (2.12) by 2 and then integrating over

all |, and y is to form
oo

g%rV-F = /o;"dv (¢7r8"-c£r'}). (2.13)

The right-hand-side of (2.13) is a measure of the heat added to

(-]

the material per unit volume per unit time. A difficulty arises.
Equation (2.12) 1s written in Eulerian form. We shall follow the
material via the Lagrangian prescription. The material will, in
general, be flowing with some velocity v relative to the fixed
Eulerian frame. The radiation flows with the speed of light.
Intuitively, one feels that corrections of the order of v/c will
appear if (2.13) is now transformed to a frame fixed in the
matter. This is, in fact, the case. However, the ratio of v/c
will be no greater than 1/300, and will be, in general, much less.
Thus, we shall ignore the correction terms. Then (2.13) can be

written in the form

’E, 4Q
—X " F = —
5tV e’

which, by the first law of thermodynamics becomes

S p %) pp 4R}




Using the continuity equation, and the equation of motion, one

can write this last in the form

0{ E 4 E + i V2 _L —
At = 'ﬁ 2PV ) = “p V-(F ep.v), (2.13a)
where E = pc T for a perfect gas and #%pv® is the specific
kinetic energy of the material. The quantity pT is the total

pressure, given by
Br =Pm t Pt Py,

Concerning the viscous pressure, more will be said later.

Using a Lagrangian coordinate system, the mass per zone is a
con;tant. Knowing the pressure from the equation of state,
forces on a unit area of a zone interface can be computed. Know-
ing the (constant) mass, we can then find the acceleration of the
material. By integrating, the velocity and position of inter-
faces at some later time can then be found. Knowing these last,
we can then compute new densities and temperatures through the
system and once again find new pressures from the equation of state.
The finite-difference equations for hydrodynamics will be dis-

cussed in Section 3.



It is the intent of this section as mentioned earlier to put
the system of equations into a form suitable for numerical manipu-
lation. We have used equation (2.13a), together with the hydro-
dynamic equations in finite-difference form. The equation of
radiation transport, (2.1), will now be discussed further.

Whether the operator ZV has the form (2.3a) or (2.3b), we make

the substitution

Lo, 7o =
T fv= 4L, (2.14)

This is equivalent to insisting that the independent variables
X, p, t depend on the parameter s. The expressions for
x(s8), p(s), t(s) are the equations of the characteristics along

which the radiation flows in space~time. In plane geometry,

d 1 2
= a—t_—f—lqa—;

ds ¢

implies that

and that (2.15)

10




The solution to the set (2.15) yields

X(s) =X, _‘.Ius)

2.16
6(5):%0 ¥ S/c ( )
/L((S/—:./(o,
In spherical geometry,
4 _ L2 2, (1=u2) 9
ds ~ ¢ It CHaxt “f‘"a'; ’
implying that
dt _ d x
as S c 1 g5 THC
(2.17)
and that
du_ . (=p?)
ds x
The solution to the set (2.17) is
//2
x(s) = (x,,lfszxzx,,,a‘,s)’
tG)= t,t s/, (2.18)

/((5) = (/aoxo .fs)/xfs).

with the substitution (2.14), equation (2.1) can be written as

di , ¢ = ;8 + o KL, (2.19)
ds

where K is a scattering operator. Thils can be integrated between

11



two points on a characteristic. One has

_)O‘dg 0[‘d§ Vs
I(x(s),rus),t(w)- Lexesp,pispbisne ™+ je s {0;5 N'SKI-}"‘S- (2.20)
s

The radiation transport equation in the form (2.20) has been coded
for use on the Stretch.

We now turn to a discussion of the mesh equations themselves.

3. THE MESH EQUATIONS AND FLOW D S
For the pirposes of numerical computation, we label the posi-

tion, angle, time and energy as X5 ppo t,, and ug respectively, where

3

the subscripts take on discrete values. The dependent variables

are then defined as

1
—
o

v
T (x,H,t) =

T(x,t) (3.1)

pox,t) = Peyy

and so forth. When quantities are computed at the midpoint of

zones, i—~i + %, with a similar statement holding for the time.
Because of the initial and boundary value character of the

problems, data along the lines x

= 0, t, = 0 must be given. For

i b
the sake of being definite, imagine that we are discussing a prob-
lem in plane geometry. Supposing further that no unbalanced

hydrodynamic forces are present, so that the relative positions of

12




the x,; are time-independent, a mesh such as is shown in Fig. 1 can

be constructed.

et
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Fig. 1
Mesh in the x-t Plane

The fact that initial and boundary value data are given is indi-
cated by the cross-hatching in Fig. 1. In Fig. 2, an enlarged
section of Fig. 1, the characteristics have been drawn into the

mesh, together with two angles, TRV

13



X‘_,, é

XQQF,
Fig. 2

An Enlarged Portion of the Mesh in the
x-t Plane

Suppose we wish to compute the intensity at the point X4, tj in
the direction (, . The characteristic, when drawn backwards,

intersects the vertical line x;_, at some instant of time

between t:j_1 and t,. To compute this value of the time, observe

i
that the distance which the photon has travelled is (xi-xi.l)/p,1

so that the time assgsociated with the point o is

{'(o(} = (_ —_ (K‘—:xl-l)- (3.2)
! T

14




Since a value of the intensity at position Xy, at time t(y) is

unknown, we use linear interpolation to obtain the approximation

) t: — t¢ :

I = L +(_J____:2)(I-_ -1,) (3.3)

& J ¢ J- J’°

J -t
On the other hand, angles such as j,, can exist, such that the

characteristic will intersect at the point 3. But
- - 3.4
X(ﬁ)—xc'“/uzc({/ ‘/"): ( )

so that, analogous with (3.3), we have

I =1L, « (ﬂﬁfﬂ/([‘_l, T ). (3.5)

A X =X,

We now want to develop the mesh equation for the intensity.

Equation (2.20) is S
y _jo-ydf
LVexcs), ptss, )= I Cxes,), a5, bisp)e ™ ©(2.20)

S
_jords .
*/e % ("B KT }ds!
5,

In the case of the characteristic intersecting at the point , we

have Xy Xy
XM,

id ~41 .- (3.6
7 =Ije—/"i//4§+ e—fs/(rjd;{@jgyv‘{/(i 7}0'5) (3-62)
4),4 o !

Xl—l//"/

15



where 15 is given by (3.3). If the point of intersection were 8,

one would have

i

o dds 0‘%d -

I%j —I? lt_, / 57 f[fa;?B?fgs-ij}dsf (3.6b)
ct

J-t

To evaluate the term KI (which is proportional to the mean
intensity) on the right hand side of (3.6a) or (3.6b), we have

used the double Gaussian quadrature formula; i.e.,

jj - Z q, Iej' (3.7)
£=0

Similarly, the equations for the (monochromatic) energy, the flux,

and the radiation pressure are

QD

Ej: ZITJ

o /

Fi- 2 } (3.8)

16




Table 1 contains the values of aps My for various values of k.

Zeros

.211 324 8654

.788 675 1346

.112 701 6654
.500 000 0000

.887 298 3346

.06943184420
.3300094782
.6699905218

.9305681558

.04691007703

.2307653449
.500 000 0000
.7692346550

.9530899230

Table 1
Table of the Zeros of the Legendre Polynomial and
the weight coefficient for Gauss integration in
the interval 0 < x < 1

17

Weight

.500 000 0000

.500 000 0000

.277 777 7778
444 444 L4404

.277 777 7778

.1739274226
.3260725774
.3260725774

.1739274226

.1184634425
02393143352

. 2844444444
.2393143352
.1184634425



zZzeros

.03376524290

.1693953068
.3806904070
.6193095930
.8306046932

.9662347571

.02544604383

.1292344072

.2970774243

.50000 00000

.7029225757
.8707655928

.9745539562

.01985507175

.1016667613
.2372337950
.4082826788

.5917173212

18

Weight

.08566224619
.1803807865
.2339569673
.2339569673
.1803807865

.08566224619

.06474248308
.1398526957
.1909150253
.2689795918
.1909150253
.1398526957

.06474248308

.05061426815
.1111905172
.1568533229
.1813418917

.1813418917



Zeros

Weight

k=8 continued

X,

Xop

X_.3

]

.7627662050
.8983332387

.9801449283

.01591988025
.08198444634
.1933142836
.3378732883
.50000 00000
.6621267117
.8066857164
.9180155537

.9840801198

.01304673574
.06746831666
.1602952158
.2833023030
.4255628305

.5744371695

[+
»

[+
(]

L

]
(o]

.1568533229
.1111905172

.05061426815

.04063719418
.09032408035
.1303053482
.1561735385
.1651196775
.1561735385
.1303053482
.09032408035

.04063719418

.03333567215
.07472567458
.1095431813
.1346333597
.1477621124

.1477621124



Zeros

k=10 continued

X

X

X

X

-4

]

L]

-1

-2

~3

.7166976970
.8397047842
.9325316834

.9869532643

.01088567093
.05646870012
.1349239972
.2404519354
.3652284220
.50000 00000
.6347715780
. 7595480646
.8650760028
.9435312999

.9891143291

.00921968288
.04794137181
.1150486629

.2063410228

20

Weight

.1346333597
.1095431813
.07472567458

.03333567215

.02783428356
.06279018473
.09314510546
.1165968823
.1314022723
.1364625434
.1314022723
.1165968823
.09314510546
.06279018473

.02783428356

.02358766819
.0534696630
.08003916427

.1015837134



Zeros

k=12 continued

Weight

%5 .3160842505 ag .1167462683
x, .4373832958 a, .1245735229
X, .5626167043 a, .1245735229
X, .6839157495 a_,  .1167462683
X_, .7936589772 a_,  .1015837134
X_g . 8849513371 a.,  .08003916427
X .9520586282 a_,  .0534696630
x .9907803171 a .02358766819

Equations (3.6a,b) can now be written in the form
S

s s
C_J;U?d;+ [e-jsa:?df{ 023 Ré .o Z a, L?}ds,f3.9)

o

where 5= OX/u, 1f Ax/ug < caty; and  s=cat

otherwise.
Specializing, for the sake of clarity, to the case for which s = AX/LLk
and to a one energy group problem with constant ¢'s (and, as

stated earlier, in plane geometry), we can now write (3.9) as

3 -sexqu (P
Loie Tije ¥ J e ax{aBrg2a,l ]

- x’ .-)‘_’
0 X flk )‘:J c*

(3.10)

21



The integral is now evaluated by Simpson's rule. One has

-oh
—"Ax/['*n+ %{X .k§-4~e‘r %(xi-flkl'l,{.j'g)‘&"'

i-lli)k'e LIJ, -O'AX/
te HK Xi-l( l’,J— AX/{ukC) ']
(3.11)

The quantity h = %ﬁi, where n is some even number; the substitution

I

AN

X = caB + csKI has been made. Now, values of x are not known at
each point between xi and xi_l. Linear interpolation of the inten-
sity between the two values is used to obtain an approximation.
Moreover, an iteration scheme must be used to obtain accurate
values of the intensity since the scattering contribution

is initially unknown. The iteration scheme which we have employed

is as follows. When temperature dependent sources are present,

(o)
we assume that L =B as a zeroth guess. Then, from (3.11)

(o)
) PR

. (o) ~ Tax/ <
I() I e r* N %.{’XlJ,k }. (3.11a)

i.'j,K L-l)j,k

When an equation of the form (3.1lla) is evaluated for each angle
My » the mean intensity J(l), the energy density E(l), and the flux
F(l) are evaluated according to (3.8). Then, the finite

difference form of the energy conservation equation is used to find
a new temperature distribution. From this last, a new source is
computed so that X(l) is known. From this, a new I(3> is computed

ijk
and the cycle repeats until appropriate convergence criteria are

22



fulfilled. These are on the mean intensity where we require that

Jnfl _’Jm

LT e, (3.12)
qu(JMtl‘n)
where n is the order of iteration, and on the temperature
ne i N
T, (3.13)

max(T"' "n) ~l
Although the methods used in problems involving spherical geometry
are similar, there are some peculiarities concerning the mesh.

Referring to equations (2.18), make the substitutions

X(s) = p(s) x(5),

§s)= xZui(s).

(3.14)

The mesh in spherical coordinates is constructed as shown in Fig. 3.

Fig. 3
Schematic Diagram of the Mesh in Spherical Coordinates

23



Fig. 4 is, again, an enlarged portion of the mesh, in which the
quantities Q, 9, are shown, together with other details pertinent

to the calculation of the intensity of radiation at the point xa(s)

X,(s)

| |
[ |
| i
| |
] 1
ol
X " |
x;s >

Fig. &4

Enlarged Portion of the Mesh in Spherical Coordinates

travelling in direction [, (s). Write the transport equation in a
spherical coordinate system as

A A
_ - -o¥x-x,)
[‘}(xz(s),fk,(s))f(swh I‘}(')E(s))‘u sy besy)e T (3.15)

. sze_ a-%()?,—x'){o;:} B}* U;qufl }dX:

X,

24




Again, a single energy group calculation with constant g's has
been assumed.

It is a straightforward matter to find expressions for :,
;, and t in terms of quantities which are fixed. From Fig. 3, for

example,

7(5): \/QIZ fgzz!

which, by relations (3.14) can be written as

_;( :\j(l,‘l'xl)lf)(:(h_"; )1. (3.16)
Further,

— « ——

OE X, /X (3.17)
can now be computed since all quantities on the right hand side of

(3.16) are known. As for t(s), it is given by
—_ A Q
L= tesy— KaXil, (3.18)
c

The intensity is not known at x(s), ;(s), E(sx but interpolation

in position, angle, and time can be made to find an approximation.
From this point on, the method of numerical analysis is identical
with that used in the plane geometry part of the code. It is worth-
while noting, however, that our experience has indicated that the
linear interpolation formulas we use make for rather slow convergence

of the iterative scheme.

25



The mesh equations for energy balance follow directly from

equation (2.13). In plane geometry, one has

(3.19)
(€ TeE fp +¥a)

= (QThe/pavh) ~at ¢ gl
r,j

uhyj e, e gen Gy

where f = F + vPyp, and the perfect gas equation Em = ‘Pc T has been
v

used. For spherical coordinates, the expression is

(3.20)

A

L ae) - (AF) 0,

Lrgjﬂ&

(Cvle /s)w f2) (¢, T+E// w’/z ."

h"ln Hi My,
3>

where A = 4.

szrddxnamics

The equations for hydrodynamics which we solve are, in
essence, used only to compute new interface positions as a function
of time. The Lagrangian coordinate system holds the mass constant
in any zone and allows the density to vary. We start from Newton's

second law in the form
i $ i
2,( ?’L-H, - Pu",_)A( /<M(¢ yt Wy ), (3.21)

where again i denotes position and j the time; 1:i is the accelera-
tion at the point x; at time tj’ while the p's are pressures, Ai is
an appropriate area, and the m's are the preassigned, constant

masses. To find the velocity of the material, we write

. oo | 11
xLJ'"1 - x‘5 ot + )<(j 2 (3.22)

)
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and on integrating once more, we have the positions according to

jfl { . Jf"z_

Ue ) ex” Tt (3.23)

The centering of these equations minimizes truncation errors.
In plane geometry, the Ag are constant areas, while for

spherical geometry, they are, as mentioned earlier,

Af =g (™ (3.24)

It is necessary to exercilse some.care in selecting the
time interval At; the need arises from the fact that 1f At is

too large, and if the velocities are high enough, the quantity

My

3 t

can become negative. Physically, of course, this is imposgsible,
but mathematically, it is clear from examination of (3.22) and
(3.23) that velocity and position are linearly dependent on At.

We use the Courant condition to fix a maximum on At; i.e.,
. 8t o, (3.25)

Here, g is the sound speed in the medium.

In addition, we introduce an artificial viscosity after
the fashion of von Neumann to smooth out oscillations within a
zone. It is turned on when the velocities computed indicate

that the material is collapsing. The form of the viscosity term
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is

4= ap (V.v)*ax)", (3.26a)

which 18 differenced as

00.(:("1,'3 = 4 9“!/})5 (V(,'“’J_I,z 1‘1'-'/1) (3.261))

in plane coordinates and in the same manner in spherical coordi-
nates with the proper expression for the divergence. The number
a is generally taken to be two. If the shock speed becomes
high, it 18 increased to four or more.

This completes the discussion of the mesh equations. Figs.
5 and 6 are simplified flow diagrams of parts of the code. They
do not handle in any detail the gsubroutines by means of which
quantities are computed, but simply indicate the order in which

things are done.
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Compute
pressure,
acceleration
velocity,
position,
density

Compute
intensity,
mean intensity,)
flux,

radiation
pressure

Test Compute Test
No onvergence Yes— Temp at conv., ofya~Yess] t + At ~ t
of J time t

Fig. 5

Simplified Flow Diagram of Time-Dependent Radiation
Hydrodynamics Code

This flow diagram assumes that there exists a fully converged

temperature distribution for a time (t-At).
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Apply boundary
conditions to

compute
I(x=o,f1.>o,s)

Y

Determine s as smaller of

Ax/p, , cAt. Compute
£ k -os 5 !
It,"x-" Lg)e t+ Jc_o.stS

for all (1, uk> o), and

(1, yp<o), applying
boundary conditions for

cases (1 = imax, uk<.0)

!

Compute mean intensity,
radiation pressure and
flux in gp. }

[

Conv.
~+——No check
on mean <:%xit to Temp. CalE;)
intensity
} Yes
y
Are
No all energy Yes »~ Compute integral
+1 -1 gps of J, P, F over
| converged? all I's
Fig. 6

Simplified Flow Diagram of Intensity Calculation
in Plane Geometry at Time t = tj
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4. NUMERICAL RESULTS

The problems discussed below are typical of many which may
be of interest to astrophysicists. The primary reason for their
inclusion is that each verifies the fact that a certain section
of the code is without error.

Milne Problem

The Milne problem has been thoroughly discussed by Mark

(4). The equation to be solved is
!

/Ag—% t Lo~ J Lxp')dp (4.1)
~1

A solution is sought in the semi-infinite half-space x> o subject

to the boundary condition,

I(O)'A>0)=O. (4.2)

A trial function,

E(x,}u)-_ %(x-lu), (4.3)

which satisfies (4.1), but not (4.2), was inserted as a zeroth
guess and the iteration was carried forward until the flux F

satisfied the condition
{

—

]‘:2“;‘[0{# = COHS’C- (404)

-1
That the condition (4.4) holds is readily verified by multi-

plying (4.1) by |, and then integrating over all |,. The constant
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3/2 was chosen in (4.3) to normalize the flux to 2r.

Table 2 is the listing. It will be observed that the flux is
not constant, varying about 15 parts in 600, with a particularly
sharp drop at the boundary x = 0. The reason for this is that a
quantity x,, known as the extrapolated length, has not been calcu-
lated with any great accuracy in the present case. If normalized
properly, the radiation pressure at x = o is given by

yz(o) = Xo= , 71044609 ..

To compare this number with our listing, we have

/,(o)._ z?zrxo = 146626 x107"°

so that

x,= .loto7
in error about one part in 70, Mark (4) has shown that the extrapo-
lated length must be known with extreme accuracy if the flux and
the mean intensity are to be accurately known. By juggling with
our trial function, we are able to arrive (slowly) at values of
the flux which are more constant than the one listed herein, How-
ever, the process is slow and an improvement in the method of energy
check (used in the following problems) will yield more rapidly con-

vergent (and constant) values of the flux.

Gray Body Atmosphere

The equation under discussion is
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TABLE 2: LISTING FOR THE MILNE PROBLEM

! 1 {
INTENSITY ITER. NO. 1 DIFF=  3.09796-05 - — -/;d# %1-_7/‘#2,‘,# z,f#ld# DENSITY TEMP
T= 3.6000+01 NU= 1.0000+00 PROB.NO. 3. '3 T2 gl - -1
1 X1 L{MU1) 1(MU2) 1(MU3) IiMus) PLI) F(I)  RHDUI+1/2) TUI+1/2)

0. 0.0000+00 0.0000+00 0.0000+00 1.2211+00 2.1561400 |1.6886+0N 1.4630-10 <-6.1528+00 1.0000+00 0.0000+00
1. 5.0000-01 6.3068-01 1. 3224+00 2.0774+00 2.9594400 T3.4949+0" 2.4999-10 -6.2711+400 1.0000+00 0.0000+00

2. 1.0000+00 1.3581+00 2.1908+00 2.8508+00 3.7220+00 5.0608+0N 3.5483-10 -6.2952+00 1.0000+00 0.0000+00
3. 1.5000%00 2.1052+00 2.9666+00 3.6073+00 4.4763+00 6.5777+00 4.5990-10 -6.3002+00 1.0000+00 0.0000+00
4o 2.0000+00 2.8564+00 3.7237+00 4.3604+00 5.2290+400 8.0847+00 5.6502-10 =-6.3013+00 1.0000+00 0.0000+00

5. 2.5000+400 3.6084+00 404769400 5.1129+00 5.9813+00 9.5897+0M 6.7015-13 -6.3017+00 1.0000+00 0.0000+00
6. 3.0000+00 4.3605+00 52293400 5.8652+400 6.7336+00 1.1094+01 7.7529-10 -6.3018+00 1.0000+00 0.0000+00
T. 3:5000+00 5.1127+400 5.9816+00 6.6175+00 7.4858+00 1.2599+01 8.8043-10 -6.3020+00 1.0000¢00 0.0000+00

8. 4:0000+00 5.8649+00 6.7339+00 7.3698+00 8.2381+00 1.4103+07 9.8557-10 -6.3021+00 1.0000+00 0.0000+00
9. 4.5000+00 6.6172+400 7.4863+00 8.1221+00 8.9904+00 1.5608+01 1.0907-03 -6.3023+00 1.0000+00 0.0000+00
0. 5:0000+00 73695400 8.2386+00 8.8744+00 9.7428+400 1.7113+01 1.1999-09 -6.3024+00 1.0000+00 0.0000+00

ll. $%5000+00 8.1218+00 8.9909+00 9.6268+00 1.0495+01 1.8617+0° 1.3010-09 -6.3025+00 1.0000+00 0.0000+00
12. 620000400 8.8741+00 9.7433+00 1.0379+01 1,1247+01 2.0122+07 1.4062-09 -6.3026+00 1.0000+00 0.0000+00
13. 6.5000+400 9.6264+00 1.0496+01 l1.1132+01 1.2000401 2.1627+01 1.5113-09 ~6.3026+00 1.0000+00 0.0000+00
l4. 7.0000+00 1.0379+01 1.1248+01 1.1884+01 1.2752+01 2.3131+01 1.6165-09 -6.3026+00 1.0000+00 0.0000+00
15. 7.5000+00 1.1131401 1.2000+01 1.2636+01 1.3504401 2.4636+01 1.7216-09 -6.30264+00 1.0000+00 0.0000+00

16. 8.0000+00 1.1883+01 1.2753+401 1.3389+01 1.4257+01 2.6141+01 1.8268-09 -6.3025+00 1.0000+00 0.0000+00
17. 8.5000+00 1.2636+401 1.3505¢01 1.4141+01 1.5009+01 2.7645+01 1.9319-09 -6.3023+00 1.0000+00 0.0000+00
(W] 18. 9.00GG+00 1.3388+01 1.4258+01 1.4893+01 1.5761+01 2.9150+01 2.0370-09 -6.3020+00 1.0000+00 0.0000+00
w 19. 9.5000+00 1.4140+01 1.5010+01 1.5646+01 1.6513+401 3.0655401 2.1422-09 -6.3016400 1.0000+00 0.0000+00
20. 1.0000+01 1.4893+01 1.5762+401 1.6398+01 1.7265+01 3.2159+0° 2.2473-09 -6.3012+00 1.0000+00 0.0000+00
21. 1.0500+01 1.5645+01 1.6514401 1.7150+01 1.8017+01 3.3663+01 2.3524-09 -6.3006+00 1.0000¢+00 0.0000+00
22. 171000401 1.6397+401 1.7266401 1.7902+01 1.8769401 3.5167+401 2.4575-09 -6.2999+00 1.0000¢00 0.0000+00
23. 1.1500+01 1.7149+01 1.8019+01 1.8654+01 1.9521+401 3.6671+01 2.5626-09 =~6.2991+00 1.0000+00 0.0000+00
24, 1:2000+01 1.7901+01 1.8771+401 1.9406401 2.0273+01 3.8175+0! 2.66T7T7-09 -6.2981+00 1.0000+00 0.0000+00
25. 1.2500#01 1.8653+01 1.9522+01 2.0158+01 2.1024+01 3.9679+00 2.7728-09 -6.2969+00 1.0000+00 0.0000+00
26. 123000+01 1.9405+01 2,0274¢01 2.0909+01 2.1776+01 4.1182+01 2.8778-09 -6.,2956+00 1.0000+00 0.0000+00
27. 1.3500+01 2.0157+01 2.1026+01 2.1661+01 2.2527+01 4.2685+01 2.9829-09 -6.2942+00 1.0000+00 0.0000+00
28. 1.4000+01 2.0908+01 2.1777+401 2.2412401 2.3278+01 4.4187+01 3.0878-09 -6.2925+00 1.0000+00 0.0000+00
29. 1.4500+01 2.1659401 2.2528+01 2.3163+01 2.4028+01 4.5689+01 3.1928-09 -6.2907+00 1.0000+00 0.0000+00
30. 1:5000+01 2.2411401 2.3279+401 2.3914+01 2.4779+401 4.7191+01 3.2978-09 -6.2886+00 1.0000+00 0.0000+00
3l. 1.5500+01 23162401 2.4030+01 2.4664101 2.5529+01 4.8692+01 3.4026-09 -6.2864+00 1.0000¢00 0.0000+00
32. 1.6000+01 23912401 2.4780+01 2.5414+401 2.6279+01 5.0193+01 3.5075-09 -6.2839+00 1.0000+00 0.0000+00
33. 1.6500¥01 2.4663401 2.5531+01 2.6164+01 2.7028+01 5.1693+01 3.6123-09 -6.2813+00 1.0000+00 0.0000+00
34. 12700Q#01 2.5413401 2.6280+01 2.6914+01 2.7777401 5.3192+01 3.7171-09 -6.2784+00 1.0000+¢00 0.0000+00
35. 1.7500401 2.6163+01 2.7030+401 2.7663+01 2.8526+01 5.4691+01 3.8218-09 -6.2752+00 1.0000+00 0.0000+00
36. 1.8000+01 2.6912+401 2. 7779401 2.8412+401 2.9274+01 5.6188+01 3.9265-09 -6.2718+00 1.0000+400 0.0002+00
37. 1.8500+01 2.7661+01 2.8528+01 2.9160+01 3.0022+01 5.7685+01 4.0311-09 -6,2682+00 1.0000+00 0.0000+00
8. 1.9000+01 2.8410+01 2.9276+01 2.9908+01 3.0769+01 5.9181+01 4.1356-09 -6.,2644+00 1.0000+00 0.0000+00
39. 19500401 2.9158+01 3.0024+01 3.0654+01 3.1516+01 6.0676+01 4.2401-09 -6.2605+00 1.0000+00 0.0000¢00
40. 2.3000+01 2.9906+01 3.0770+01 3.1397+01 3.2263401 6.2168+01 4.3645-09 -6.2570+00 0.0000+00 0.0000+00

P, 76867518 p =.2132487




where B(T) is the temperature-dependent integrated Planck-function;

namely,

.00

B(r)» | BYav = £ T 4.6)
[¢]

Here, g is the Stefan constant;

= 5. 67,24 x /0-55,—75 /cmz_sec-('K/“.
It will be noted that x is dimensionless; it is, properly, optical

depth. The boundary conditions chosen were

I(/o)—,u)*g/.'.(/af3(/0)-///,4/)/. } 1)

[(o“a>c,/ =a,

The number q(10) = .71044609 is known as the extrapolated length.
One can determine the degree of consistency between the derived
temperatures T(x) and the constant flux F by application of the
relation (5)

FT‘&;}F.(ij) (4.8)
Calculations made using (4.8) to find T(x) show that the listings
of Table 3 are self-consistent to within a maximum difference of

a few parts in a thousand.

Time Dependent Gray Body Atmosphere

The solution to
ESr 1Mo I = B(TU) (4.9)
with boundary conditions (4.7) and initial data
Ltx,0)= Ttx,00 = 0 (x>0)

is required. As t - o , the solution to (4.9) must approach the
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TABLE 3: TIME INDEPENDENT GRAY BODY LISTING

T=1.4170+02 DT=2.0000-0I

19.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
il.
32.
33.
34.
35.
36.
37.
38.
39.
40.

OPTICAL DEPTH

x{i)
g.0ccCCO0+CO
2.50CC0C-C1
5.00000C-C1
7.50C0CC-Cl
1.CCCO0C+CO
1.25C000+C0
1.500000+CC
1.75CCCC+CC
2.0CC00C+CC
2.25CCCC+CO
2.500000+CC
2.75CC0C+C0
3.00C00G+CC
3.25C0CC+CC
3.50000C+CC
3.75C0CC+CC
4.00C00C+CO
4.250000+CC
4,50C0CC+CC
4.75C00C+CO
5.C0C00C+CC
5.25CCCC+CC
5.5000CC+CO
5.75C0CC+CC
6.CCLCCCHCC
6.25C000+C0
6.50C00C+C0O
6.75C000+00
7.00C00C+CC
71.25C00C+CC
7.50000C+CC
7.75CCCC+CC
8.CcCCCCC+CO
8.25000C+CC
8.50C00C+CO
8.,75C0CC+CO
9.00CcCCC+CO
9.25C0CC+CO
9.500000+C0
9.75C0CC+CC
1.00C000+C1

PROB. NO. 5

VELOCITY
vin
0.00CCOC+CC
0.CCCCCCHCC
0.00CCO0+CO
0.ccccco+Co
0.00CcCCO+(CC
0.CCCCCC+CC
0.C0CCO0+CO
0.C0CCO04CC
0.C0CCO0+CO
0.00CC00+00
c.ccccoc+ce
0.00CCCC+CO
C.C0CCCO+CO
0.000C00+CO
0.CCCCCO+CC
0.000CC0+CO
g.coccoc4Ce
c.Ccccco+ce
0.cccccc+co
0.00CCOC+CO
c.ccccoc+co
0.06CCO0+CO
o.CCCCCO+CO
0.00CC00+CC
0.CCCCCC+CC
C.CcoCco0+Co
0.C00C00+(0
0.CCCCCO+CO
c.coccoo+Co
0.000C0C+CO
0.CCCCOC+CO
0.00CCCC+CC
C.CCCCCC+CC
0.00CC00+CO
0.00CCCC+CC
g.CCCCOC+CO
0.000€00+C0
0.000000+C0
0.C0CCO0+00
C.CGCCOO+CO
0.C0CCO0+CO

DENSITY

RHO(1+1/2)
1.000000+CC
1.000000+00
1.0CCCCO+CC
1.C0CC00+00
1.0C0000+00
1.000C00+00
1.€C0000+00
1.000000+CC
1.0CCC00+00
1.0C0C00+00
1.€00000+C0
1.000C00+CC
1.0€0C00+CC
1.CCOC00+00
1.000C00+00
1.0000C0+CC
1.0C0000+00
1.000€00+C0
1.000000+CC
1.000000+00
1.00CCCO+00
1.000000+00
1.000CC0+00
1.00€C00+00
1.000C00+00
1.0000C0+CC
1.CCCCCO+0C
1.000000+CC
1.CCCCCO+C0
1.000C00+CC
1.000000+CC
1.CC0C00+00
1.0G0000+00
1.CCCCO04+00
1.6CCCCO+CO
1.0C0C00+00
1.000C00+CC
1.0006000+00
1.000000+CC
1.000000+00
0.CCOCO0+GC

TEMP (°K)
TiIe1/2)
4.619996+03
5.09C557+4C3
5.398528+03
5.645085+403
5.859901+03
€.C517244C3
6.22€6314+C3
6.387122403
6.53655C+03
6.676354+03
6.807884+03
6.932204+03
7.C50177+03
7.162511+03
T.269798+03
7.372537+03
Te471154+C3
7.566016403
7.657439403
T.7457C1+03
T.83104€+03
7.91369C+C3
7.992823+403
8.071617+03
8.147225403
8.220785+03
8.292422+03
8.362250+03
8.430371403
8.496881+03
8.561864+C3
8.6254C0+03
8.687563+03
8.748419+403
8.808030+03
8.866456+C3
8.923717+403
€.98CC48+03
9.034299+¢03
9.093737+03
9.117100+03

RADIATION
ENERGY DENSITY
E(1)
2.828505+00
4.392010+00
5.7453994C0
7.044945400
8.296987+C0
9.531255+C0
1.075796 401
1.198151401
1.320373401
1.442538+401
1.564680+01
1.686812+C1
1.8089404C1
1.931066401
2.0531914C1
2.175316+C1
2,297441401
2.4155664C1
2.5416914C1L
2.663816+C1
2.785940401
2.908065401
3.030190+01
3.152315401
3.274440+01
3.396565+01
3.518690+C1
3.64C814+C1
3.762939401
3.885064+C1
4.007189+01
4.129314401
4.251438401
4.373562401
4.495685+C1
4.617804+01
4.739913401
4.862012401
4.9840094C1
5.106234401
5.231214+4C1

RADIATION
PRESSURE
PR{IL)
1.156€91+C0
1.556774+4C0
1.658€£92+C0
2.366C66+C0
2.773151+4C0
3.180242+00
3.587327+CC
3.994411+4C0
4.401494+CC
4,8C8576400
5.215€658+CC
5.622740+00
6.02G5€22+CC
€.4365C3+4C0
€.843585+CC
7.251C67+00
T7.658149+00
8.065231+4CC
8.472212+C0
8.879294+00
9.28€477+4CC
9.€53559+C0
1.010C644C1
1.050772+C1
1.C91481+4C1
1.132189+C1
1.172€97401
1.213€05+4C1
1.2542144C1
1.295C22+C1
1.335730+01
1.3764384C1
1.417147+C1
1.457€554C1
1.498563+01
1.536272+C1
1.57998C+C1
1.62C689401
1.661393+C1
1.702126+C1
1.7435344C1

FLUX

FL1)

~4.88004C+1C
~4.88CC42+1C
-4.880045+1C
~4.880048+1C
-4.880C5C+1C
-4.8BCC53+1C
-4.88005¢+1C
—4.880058+1C
-4.8800€1+1C
-4.880064+1C
~4.EECCEEL+LC
-4.88CC65+1C
-4.88C071+10
—4.880073+1C
-4, 68CCT6+1C
-4.880078+10
~4,88008C+1C
-4.880082+1C
~4.88C084+1C
-4,88C08E+1C
-4 ,88CO8T+1C
-4.880085+1C
-4.880091+1C
~4,E80CS2+1C
—4 EECCSA+1C
-4,880095+1C
-4.,880C96+1C
-4,88CC97+1C
-4.880099+1C
-4.8801CC+1C
-4.88C10C+1C
-4.88C1C1+1C
-4.8801C2+1C
-4.8801C2+1C
-4.6801C2+1C
-4.88C1C4+1C
-4,880105+1C
~4.8801C5+1C
~4,880105+10
-4.8801C6+1C
~4.880106+1C

NET FLUX

NET F(I)
-2.463864404
~2.627702+04
-2.67667C+04
—2.697407+04
-2.695386404
~2.678056+04
—2.648788+04
-2.609922+04
-2.563099+04
~2.509584+04
-2.450397+04
-2.3686387¢04
-2.318277+04
=2.246690404
-2.172176404
~2.095218+04
~2.016246404
=1.935649404
~1.853771+04
~1.770930+04
-1.687409+04
=1.603469+404
-1.519347+04
~1.435259+0¢4
—1.351403+04
~1.267961+04
-1.185C98+04
=1.1C2966+04
~1.C21705+404
~9.414427403
-8,622931+03
-7.843609+03
=7.077349+03
—€.324857+403
~5.586500+03
~4.862168+03
-4.149288+403
—3.449000+03
~2.713753+03
~2.131463+03

€.0CCO0CC+00




solution to the problem just completed. The listings of Table 4
can be compared with those of Table 3; they are virtually identical,
Table 4 being taken from the listings at a time late enough so that
equilibrium had been reached. Fig. 7 is a plot of the temperature
distribution as a function of position for the times indicated and
shows the way in which the temperature approaches its equilibrium

value.

Time Dependent Gray Body with Hydrodynamics

The problem is similar to the last one solved, with the
exception that hydrodynamic motions are now allowed. Again, we

want the solution to
z g—f ko g—f ¢ pox,tIL= ext) B, (4.10)

where B is the integrated Planck function. The initial data are
ja(x, t =0) =5x 10"® ecm1; T(x,0) is given (it is unimportant
and will not be listed here); each of twenty zones had an initial width
of 107cms. In addition, a gravitational acceleration of magnitude
g = 105 cm/sec? was inserted, resulting in the addition of such a
term to the acceleration equation (3.21) (in the direction of
negative x) and in the addition of a term ~/ZI at (1ci“3+y?j*&)/i
to the right-hand-side of the energy balance equation (3.20).

The listings are lengthy and somewhat unsatisfactory in the

sense that small oscillations in position, velocity, and other

dependent variables persisted from a time t = 100 sec to t = 336 sec.
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TABLE 4: TIME DEPENDENT GRAY BODY LISTING: EQUILIBRIUM STATE

T= 14480 +02

19.

25,

27.
28.
29.
30.
3.
32.
33.
34,
35.
36.
37.
3a.
39.
40,

DT= 2.0000-0t

OPTICAL DEPTH
x(0)
0.000000+00
2.500002-01
5.000000-01
7.50000C-01
1.0000G0+00
1.,2500C0+00
1.500000+CC
1.75C00C+CC
2.000C00+00
2.250000+00
2.500000+00
2.75000C+G0
3.0C0C00+00
3.256000+00
3.530Q00+00
3.750CC0+00
4,00C000400
4.250000+CC
4,500000+CC
4.7500CC+C0
5.CCC00C+0C
5.25CC00+40C
5.500000+00
5.750000+4CQ
6.CCCC00+00
6.250000+0C
6.500060+0C
€.75C0C€0400
7.000C00+490
7.250000+0C
7.50000C+CC
7.75C0CC+00
8.000CC0+90
8.25006C€0+00
8.5000€C+C0O
8.750CCC+00
9.00€0GC+00
9.250000+00
9.500000+CC
9.750CCC+00
1.00C000+01

VELOCITY
vl

0.00€C00+00
0.000000+00
0.€00000+00
0.000000+00
0.0CCC0C+00
0.00C000+00
0.000000+00
0.000000+00
0.0C€000+00
0.000600+00
0.000000+00
0.00000C+00
0.006G00+00
€.00€000+00
0.000000+00
0.000000+00
0.0CCC00+00
0.900000+00
0.2000004+00
0.000C00+00
0.€CCC00+00
0.000000+00
0.000000+00
0.00C00C+00
0.06C600+00
0.000000+00
0.000000+C0
0.000600+C0
0.000000+00
0.000000+00
0.000000+¢0
£.0CCC00+00
0.000000+00
0.000000+00
0.000000+00
0.0CC000+00
0.000000+00
0.000000+00
0.000000+C0
0.0CCCOC+00
0.000000+00

PROB. NO. 6

. DENSITY
RHO(LI+1/72)
1.000060+00
1.000000+00
1.000000+00
1.60000C+00
1.£C0000+00
1.060000+00
1.000000+00
1.000000+00
1.6€C00C+00
1.CC0000+00
1.000000+00
1.000000+00
1.C00000+400
1.006060+06
1.000000+00
1.000000+00
1.000000+00
1.000000+00
1.000000+00
1.000000+00
1.0000C0+00
1.00006G+00
1.000000+00C
1.00€000+0¢
1.£00060+00
1.000060+00
1.000000+CC
1.0000CG+00
1.£00060+00
1.000060+00
1.000000+09
1.£0000C+00
1.060000+00
1.000000400
1.00€000+00
1.00000+00
1.GC0000+00
1.060000400
1.0000C0+00
1.€00000+00
0.-0C0000+00

TEMR°K)
TI+1/2)

4.619982403
5.090542403
5.398512403
5.645069+03
5.8598854+03
6.051708+03
6.226296+03
6.387106+02
6.536534+03
6.676339+03
6.807869+03
6.93219C+03
7.050163+03
7.162u95+03
7.269785+03
7.372525402
7.471142403
7.566004+03
7.657428+03
7.745690+03
7.831036+03
7.91368G403
7.993814+03
8.071608+03
8.147217403
8.2206777403
8.292415+03
8.362243+03
8.430365403
8.496875403
8.561859+03
8.625396403
8.687559+03
8.7464164G3
8.808026+03
8.866453+03
8.923715+03
8.980046+03
9.034297403
9.093735403
9.117100+03

RADIATION
ENERGY DENSITY
Etn)
2.828472+00
4.391959+00
5.749333+00
7.044866+00
8.296898+00
9.531155+00
1.075786+01
1.198139+01
1.320360+01
1.4482525+01
1.564667+01
1.686798+01
1.808926+01
1.931052+01
2.053177+01
2.1753C1+01
2.297426+01
2.419551+401
2.541676+01
2.663801+401
2.785926+01)
2.908C51+01
3.030176+01
3.152301+01
3.274426+01
34396552401
3.518677+01
3.640802+01
3.762928+01
3.885053+01
4.007179+01
4.129304401
4.251430+01
4,373554+01
L.495677+C1
4.617797+01
4.739908+01
4.862007+01
4.984005+01
5.106231+01
5.231213+01

RADIATION
PRESSURE
PRI}
1.156878+00
1.559757+00
1.958671400
2.366C40400
2.773122+00
3.180210+00
3.587292+00
3.994373+00
4.40 1453406
4.808534+00
5.2156 14400
5.62269%+00
6.029775+G0
6.436855+UC
6.843936+0C
7.251618+00
7.658G699+00
8.065181400
8.472263+00
8.879346+00
9.286428+C0
9.693511+00
1.010059+u)
1.05C768401
1.001476401
1.132185+01
1.172893+C1
1.213601401
1.254310401
1.295018+G1
1.335727+01
1.376435+01
1.517164401
1457852401
1.49856 1401
1.539270+01
1.5799784G1
1.620687401
1.661392401
1.7¢21254C1
1.743533401

FLUX
F(I)
-4 ,879985+1G
-4.879991+10
~4.879997+10
-4.880003+10
~4.880009+10
-4.880016+10
-4,.880022+10
-4.880028+10
-4 .88003441C
-4.880040+10
-4.880046+410
-4 ,880052+10
-4 .,880057+10
-4.880063+10
-4.,880068+10
-4.,880073+10
-4,880078+10
-4,880083+10
-4.880C87+10Q
-%.880091+1C
-4.880096+10
-4,880100+10
-4.880103+10
-4.880107+1C
-4.88011C+10
-4,880113+1C
-4.880116+1C
-4,880119+10
-4.880122+10
~4,380124+10
-4.,880126+10
-4.,880128¢10
-4,88013G+10
-4,880132+10
-4,880133+10
-4.880135+10
-4.,8801356+10
-4.480137+10
-4.880137+10
-4,880138¢10
-4.880139+10

NET FLUX
NET F{I)

-5.753598+04
~6.136185+04
~6.250528+04
~6.298946+04
-6.294220+04
~64253745+04
-6.185395+04
-6.094630+04
~5.985284+04
-5.860313404
-5.722097+04
~5.572618+04
-5.413564+04
=5,246394+04
-5.072387+04
~4.8926T4+04
~4,708260404
-4,520048+04
-4,328849+Q4
-4.135399+04
-3.940363+404
~3.7U4348+04
-3.54T7907+04
~3.351547+04
~3.155729+04
-2.,960877+04
=2.T767377+04
~2.575586+04
-2.385830+04
~2.198404+04
-2.,013578+04
-1.,831593+04
-1.652660+04
“1.476942404
~1.304524404
-1.135385+04
~9.689149+03
-8.053883403
-6.336977+03
~4,977252+03
0.000000+00



S
<
° |O3 — —
pd N N
(_) - ~
- - -1
oo B _
@
oz - x —1
'._
n N
e
&J [
D o =
g - ]
o N R
a i
& - 4
w
= = ~
-
Z -~
w
e
Z
a 1o -
uOJ —
" ‘ VALUES OF t N
W IN SECONDS -
i °© 0.2 7
e 4.80 ~
X 9.8
v 1398 7
10° | ] I | | | ]
o | 2 3 4 5 6 7T 8 9 10

OPTICAL DEPTH x

Fig. 7

The Time Behavior of the Temperature "Wave'" in a Gray Body
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The oscillations in the velocity were of the order of 10 meters/sec,
while the peak velocity, as seen from Fig. 8, was of the order of

30 - 40 kms/sec for most of the outer zones. The temperature distri-
bution at 336 seconds was within a percent or two (for all x) of the
equilibrium distribution of the time independent gray body atmos-
phere. Fig. 9 shows the time development of the temperature toward
its equilibrium value. The density, originally a constant for the
initial distance of 2 x 10® cms, showed the time behavior given in
Fig. 10. The oscillations in values of the demsity within any zone
were of the order of a few percent about the values shown at t = 170
sec. The oscillations in the flux were rather more serious than
those in temperature, density, and velocity. Thils 1s to be expected
since the flux is proportional to the fourth power of temperature.
Nevertheless, at t = 357 sec, the extreme values of the flux were
4,69894 x 101%ergs/cmd - sec and 4.855346 x 101° ergs/cm® - sec, the
values tending to concentrate about 4.82 x 1010 ergs/cm® - sec. The
last value quoted is about one percent lower than the 4.88 x 101°
érgs/cm? - sec found in the two problems immediately preceding the
present one, while the maximum spread from minimum to maximum values

of flux is of the order of 3.2%.

5. CONCLUDING REMARKS

Future work with the code described herein will be pointed

toward making many of thesubroutines more general than they are at
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present. For example, we shall use more general equations of state,
together with variable specific heats. Although an earlier 7090
version of this code was able to read a variety of input data from
tape, the present one must have such a feature built into it.

We want to conduct numerical experiments designed to test the
relative amount of time required for convergence of a problem with
given hydrodynamic input when linear versus quadratic viscous
pressures are used. Another numerical test of some significance
which will be investigated is the one which involves assuming the
temperature a constant only for purposes of computing absorption.

That is, if one must evaluate the integral,
Aax/

p= | o (Tt -2))dx7,
°
which occurs in the form e-¢, we can, if Ax/p is not too large,
use T at the point %E as an approximation for T throughout the zone.
This would make computation somewhat faster. Other ways of speed-
ing the operation of the code are envisaged, but will not be discussed

here.
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