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ABSTRACT

Difference equations for the displacement components of & heated,
inhomogeneous, orthotropic material are obtained from a variational
principle. Including boundary terms, the matrix of the resulting
linear system of equations is positive semi-definite, a property which
assures solution by many iterative techniques. The equations are
solved for an infinite hollow cylinder of isotropic material in which
" the temperature varies inversely with the radius, vhose inner surface

is stress free, and whose outer surface is fixed.






INTRODUCTION

For meny problems in plene thermal elasticity which cannot be
treated by classical analysis, a numerical method of general applicability
consists of replacing the linear differential equations and boundary
conditions by linear difference egquations. The matrix of the system of
linear equations obtained by this direct differencing has usually such
a complex structure that the choice of a successful method for solving
the system is extremely difficult. In this paper it is shown that the
uncertainties of direct differencing can be avoided by deriving the
difference equations from a variational principle. For a wide class of
thermal elasticity problems, the variational approach yields a linear
system with a positive semi-definite matrix, which permits iterative
methods to be used with confidence.

The use to which a code based on the variational difference equations
was to be put required that the basic equations describe anisotropic,
inhomogeneous materials in multiply connected regions. A formulation of

the thermal elasticity problem in terms of the displacement vector met



these requirements as well as allowing boundary conditions of all types
to be imposed in e simple manner. The differential equations and
boundary conditions in terms of displacement components are derived by
the variation method in the first section of this report. The second
part contains a discussion of the stress-strain relation for orthotropic
materials, a type of anisotropic substance of sufficient generality for
the purposes of the code. The third part is a derivation of difference
equations from the variational principle. The last section contains a
comparison of an example calculation with the exact solution for the
stresses and displacement in an infinite hollow cylinder of isotropic

material in which the temperature varies inversely with radius.




I. THE BASIC DIFFERENTTAL EQUATIONS

For thermal stress problems a variational principle based on the
Helmholtz free energy is a convenient means of obtaining both the
differential equations and the difference equations for the displace-
ment components.

The free energy F is assumed to be & function of the temperature
T and the strain tensor eij(i,j = 1,2,3). From the combined first and
second laws of thermodynamics for isothermal processes, the rate of

change of the free energy equals the negative of the rate at which

work W is being done by the stresses o,

K
de

aF AW _ ij

& - " a - %y & T (1)

From the assumption of the dependence of F on T and eij’ it is evident

that

#A1l vectors and tensors will be referred to a rectangular cartesian
coordinate system. The summation convention for repeated indices will
be employed; e.g.,

a..b = a..b

13%k = 21301k T %p5®

ok + a3jb3k°

T
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Consider the following variational principle for the case of no body

forces:

6‘/pFﬂV 'k/;i Bu,ds = 0, (T 3)

A St

where the variations of the displacement components u; are carried out
isothermally and T{ are stress vector components prescribed on & part
of the surface S'. Integration by parts and the use of Green's formule

yields

- ! - = *
f'ri 8ui as f T} Bu, dS f "13,3 Bu,dv = 0. (T &)
S St \'

The surface integral is split as follows:

- ]
fTiSuidS fTiBuidS+fT18uidS+fTi5uidS. (T 5)
S a

Sy St
The first integral is over that part of surface where the displacements
are specified and vanishes with the du

i
integral, over a symmetry boundary on which no work is done, also

appropriate there. The second

vanishes. The third part is cancelled by the corresponding term in

(T 4). Thus the Equation (I 4) reduces to

* d0,
L

13,3 8?"1

o =
J




. ;. du, dvV = 0. 6
foiJ)J 1 (1 6)
\')

For suitable functions oij and arbitrary Sui, we obtaein by standard

arguments the equilibrium equetions,

%5,5 " 0. (TN

The boundary conditions are the natural conditions for surface

tractions,
Ti = Ti(“:ﬂ):
(a,B, are surface parameters); specified displacements,

u, = ul(a,B); > @9

h

and symmetry conditions,

This last condition can be simplified by observing that for any symmetry
boundary the normal component of the displacement must vanish. Since
the tangential component of the displacement is still arbitrary, we can

conclude that the tangential component of the stress vector must also



vanish if no work is to be done on a symmetry surface. Thus the
symmetry boundary conditions are mixed - - partly specified and partly
natural.

The equation for displacements is next found from (T 7) by express-
ing the stresses ¢

13
strain relation. For thermal stress problems in which the temperature

in terms of the displacements through a stress-

changes and strains are not large, the free energy can be approximated

(1)

by an expansion

F(T,eij) = F(To) ey eij(T-To) + 1/2cijkz ey Sxpr (I 9)

The coefficients c,, are anisotropic coefficients of thermal expansion;

i3
the cijkﬁ are anisotropic elastic constants. The stress from (T 2) is
o5 cij(T'To) S aph %l (T 10)

The equilibrium equations (I T7) may now be written in terms of the dis-

placements,

(°13kz uk,z),J + [°1J(T‘To)],j = 0. (T 11)

The boundary condition for a specified stress vector can also be
written in terms of the displacements. For an outward normal with

components n,, the stress vector components are

i)

10




T, = O;5 By = 5 nj(T-To) + ¢ xb %, 4 By (T 12)

For symmetry boundaries the normal component of the displacement must

vanish,
u=uin=0, (T 13)
and the tangential component of the stress vector must also vanish,
T=0'..njt=0, (T 14)

where ti is any vector lying in the tangent plane. If the material is

isotropic, it can be shown that (I 13) and (I 14) together imply that

55 = O (I 15)

If the material is anisotropic, only (I 14) can be used.

Differential Equations (I 11) plus the boundary conditions (I 8),
(I 22), (I 13), and (I 14) constitute a displacement formuletion of
the thermal elastic problem for anisotropic materials. In the next
section the equations will be specialized for a material with ortho-

tropic symmetry and for the case of plane strain.

11



II. THE STRESS-STRAIN REILATIONS

Several aspects of the stress-strain relations (I 10) need to be
discussed. First the form of the relation specialized for materials
with orthotropic symmetry is to be determined. Also the positive
definiteness of that part of the free energy quadratically dependent
on the strains must be established. Finally the inequalities releating
the elastic constants are to be obtained as conditions for positive
definiteness,

A material is said to have orthotropic symmetry if under reflection
through any of three orthogonal planes the material tensor components,
cijkﬂ’ do not change their values. In a single reflection a component
of a tensor has a change in sign if the index of the effected coordinate
gppears an odd number of times. Since all coordinates may be reflected
in an orthotropic material, all components with an odd number of indices
mist vanish if the tensor is to be uneffected by reflection. Taking
this into account and using coordinate lines which are the intersection

of the symmetry planes, one has for the free energy

12




2

= 1
F=3le ®11 " C1122 11 ®22 * C2211 22 ®11 * %1133 11 ©33

1111
c e,, e.. +¢ e+ c e, e.,+ ¢ e2

3311 "33 11 1212 712 2112 "21 12 2121 “21

c e.,€e,, +C e2 + c e., €, + ¢ e,, e
1221 "12 21 2222 "22 2233 22 "33 3322 "33 22

2 2
2323 ®23 ¥ 3003 %32 €23 * 3030 ®30 * Cozzn ©p3 %ap

c 82 + C 62 + C e e + C 32
3335 33 1313 “13 © ‘1331 “13 %31 7 %3131 ®m

C3113 31 e13] +epq ell(T-To) + ey e22(T-To)

Cs3 e55(T-To) + F(To). (1T 1)

The symmetry of the strains and elastic constants reduces (IT 1) to

- 1 2 2 2
F=3le)y1q 0q + Coppp Spp * Cuaz3 x5 * 2C1100 €17 €op
+ 2¢ e,. e.. + 2¢ e e, + he e2 + he e2
1133 ®11 €33 2233 ©0p ©33 1212 %12 1313 %13

+ b 21+c

Coz03 €3 1 ell(T-To) + ey e22(TJTO) * Cyx e53(T-To)

+ F(To). (11 2)

The stresses obtained by (I 2) from (II 1) are

13



11 7 ©1111 €11 * C1100 ©02 * C1133 S35 * 01 (T-T,)
oo = C1120 ®11 t Copop ®op t Copzz 33 t coo(T-Ty)

Og5 = 1133 €11 ¥ Copxz Cpp * Cxzaz O35 * Cx3(TT,)

95 =2¢155 €p

o’l3 = 2c1313 el3

g (11 3)

23 2°2325 €03

These equations take a more familiar form when solved for the strains

in the following manner:

E, e = 0

117 911 " Vig 9op T Vi3 T35 * By % (T-T)

D Cpp = Vo O3 t Upp = Vpx Tz + E, ay(T-T)

E3 €55 = “V3y Opp = Vo Opp + 033 + E3 GB(T'TO)
o - .12
12 ~ 2p12
o o A3
13 21.113
_ 23
€3 21123' (IT 4)

1k




The E, and vij are Young's moduli and Poisson's ratios, the “ij are

i

shear moduli, and the @, are coefficients of thermal expansion. By

regarding the cij

the stresses, one finds

kg 2 coefficients obtained from solving (II 4) for

€111 © EJ.(l"'zj"ae)/A

C1100 = BplVy5tVy3Van) /A = By (v v v, ) o

C1135 = EglVyz+vioVns) /8 = B (va+v, va,) /o

Capop T ‘“32(1"'13"51)/A

Copzs = Ex(VastVayvys) /A = By(vagtvy v, )/

C3355 = Es(l-vleval)ﬁa

€1212 = ™12

C2303 = Moz

©1313 ~ 13

cyq = '{_El a.l(l-v23v52) + E, a,2(v12+v32v13) + E3 l5+v23v12)}/A
Chp = -{El a +V3lv23) + E, a.2(l-vl3v31) + E3 23+v21v15)}/A
Cys = (v31 - 32) + E, a.e(v52+v31v12) + E a (1 VooV 21)}/A
A=1 Vio¥sy - VisVsy " VosVsp " Vio¥os¥51 -‘v21v52v15. (I 5)

15



Symmetry of the coefficients in the equations for the stresses, (1T 3),

implies symmetry of the coefficients in (II 4) as follows:

Vi E2 = V21 El’ vl3 E3 = v31 El’ v23 E3 = v32 Ea,
Vio¥as¥s1 = VorVss¥1s® (IT 6)

Since the properties of the differential and difference equations
for the displacement components, (I 11), are governed in part by the
magnitudes of the elastic coefficients, it is important to find
additional information about these coefficients. The requirement of
stable thermodynamic equilibrium in terms of the free energy provides
the needed fects. For the free energy given by (II 2) the requirement
of stability is met if the quadratic part of F is positive definite.(e)
Necessary and sufficient conditions for positive definiteness of the
quadratic form are the positiveness of the principal minor determinants

of the 6 x 6 matrix associated with the form. These conditions for the

cijkﬂ are

(8) ©1937 Cpopnr 33337 12127 13137 Cazes O

2
(®) e1313 Cpopp = S1122 ~ O

2
1111 %3333 T 1133

> 0,

2
®a002 %3333 " C2233 ~ O

16




2
(e) e1137 Copop 3333 * 21100 o033 C1133 - 1111 2033

2 2
= Ca03p ©1135 ~ 3335 1100 > 0. (I 7)

The three inequalities in (b) are symmetric forms equivalent to A > O,
and (c) is independent of (&) and (b). The inverted form of the stress-
strain relations (II 4) must also have a positive definite matrix and
yields the inequalities

E

12 Bpr By Byns Hyzy Hoy >0,

1~ Vis Yoy 1l - v23 v52, 1- v13 v31 >0,

A > 0. (IT 8)

A necessary condition of positive definiteness is that the sum of the
coefficients of the matrix be positive. Application of this condition

to the first three equations of (II 4) with T = To implies that the

bulk modulus, k, defined by

1 %k 1 1 1 Yz Vi3 Ym Yas Vs Ys2
k -p E, E, E3 Ey E, E, E, E3 E3
(1T 9)
be positive and therefore
E, E2(l-v3l-v52) +E) E3(l-v21-v23) + E, E3(1-v12—v13) > 0. (IT 10)

17



Applied to the second order principal minors, the same arguments give

>0 (i, j not summed). (IT 11)

i

E.+E. +v, .E, + v,  E
i J— 1§ 73— 4%

Inequalities (II 11) in conjunction with the symmetry conditions (II 6)
give inequalities for the individual Poisson's ratios in terms of the

Young's moduli,
E,+E
|
o > ]vijl. (IT 12)

From (II 6) it should be noted that Vi3 and Vi

If the orthotropic elastic constants of a particular material in

always have the same sign.

terms of the ¢ yb OF Eis by satisfy the inequalities (II T) or

3 Y1y
(IT 8), it can be concluded that the material tensor is positive definite.
If the constants do not satisfy the inequalities, the constants are
thermodynamically inconsistent and may not have been determined correctly
by experiment, or the model which assumes the free energy to have the
form (II 2) may not be physically adequate. In the latter case the
material cannot be orthotropic, and a new form of the free energy must
be found.

As is well known, positive definiteness of the free energy is also
sufficient for the uniqueness within & rigid body motion to the boundary

value problems of elasticity.(S)

The differential equations (I 11), for the displacement components

18




in an orthotropic material can be written explicitly

+

(e1107 9,00 1 * (Camp iy o) o ¥ (eyx 0y ) 5

+ (eq300 u2,2),l *eymp ¥y q) o

+ ( + (

1153 ¥5,5) 1 * (Cizz ¥5,0) 5+ ey [T0D) 4 =0,

(e1pp Wy 0) 1+ (epipy 5) 5

+ ( + (

C1212 u2,1),1 Copop ua,e),e + (epzps “2,3),3

* (Cppgs Uy 5) o+ (Cpgpz Uy o) s+ (e[0T ) 5 =0,

(erm15 %1,5)0 1+ (Crazz 0 1) 5

* (Cop5 Up 5) 5+ (Cppzs uy 1) 5

*(egzyz U 0) g ¥ (epgpg ug 0) 5+ (eguzs ug o) 5

+ (033[T-T0]),5 = 0. (IT 13)

If Equations (II 13) are written in the general form (I 11), the

terms containing the highest derivatives are

19



Since the quadratic form associated with the coefficient metrices is
the free energy, which is assumed positive definite with respect to
the strains, and if rigid motions are excluded, the form is also posi-
tive definite with respect to gradients of the displacement components.
The differential equations associated with this form are therefore
elliptic.(u)

Tn the case of plane strain, which will be investigated in detail,

the strains satisfy

&5 = O : (I 15)

The stress-strain relations for an orthotropic material reduce to

031 = ©1919 Yy 3 * G110 Yo o+ S (TTG)s
9o = 1100 Wy,1 Y Coomo Vo2 T Cop(TT.),
015 = Sty o¥ 4) (IT 16)

The equilibrium equations in terms of displacements are




+ (

(e1313 u1,1),1 €1212 u1,2),2

+ ( + (e

1]
o
.

C1o1p Y2,1) 2 1122 Yp,2) 1 * Loy (T-T)T 4

(100 Wy 2 3 * (Cy9pp u1,1),2

+ (

1
o

Cipp Yo 1)1t (Coppp Up o) o ¥ [epp(T-T )] 5 (I 17)

The Helmholtz free energy is for plane strain

l( 2 2 " 2 )

F=30c1911-%11 * Copon ®on + 283900 €11 Con T *Cy010 C1n

ell(T-To) + c (T-To) + F(To) (IT 18)

Tl 22 22
In the next section the free energy (II 18) will be used to obtain

difference equations which approximate the differential equations (II 1T7)

and the boundary conditions (I 8), (I 12), (I 13), and (I 14), appro-

priately modified for the plane case.

2



III. THE DIFFERENCE EQUATIONS FOR PIANE PROBLEMS

The difference equations for the plane problems will be derived
from a variational principle equivalent to (I 3). In addition to the
advantage of giving a positive semi-definite matrix, this approach
offers a uniform method for forming the equations for the boundary
points. For the current IBM TO90 code the boundary of the plane region
is approximated by straight segments consisting of grid lines as shown
in Figure 1. Futﬁre codes will approximate the boundaries by straight
lines which are not necessarily grid lines. Difference equations for
both boundary treatments will be presented although the current scheme
will be examined in more detail. As before the coordinate surfaces are
taken to be parallel to the planes of symmetry in the orthotropic
material.

Using Greek indices to signify integers 1 or 2, we can write the

veriational principle as

1 -
S . _ .
JZ[;GB?S Uy 8,5 ¥ Cop ua’B(T TO)]dA ?[Tauads 0, (III 1)
S

22




where the first integral is over the entire plane region and the second

is over that part of the boundary curve on which the stress vector is
specified. The coefficients of the material appearing in (III 1) are
those in (IT 16) and (II 18). The variation, as before, is made on
the displacements at constant temperature.

To obtain difference equations from (III 1) it suffices to approx-
imate the integrals by sums and to approximate the derivatives in the
integrand by differences. Application of the necessary conditions for
a stationary value of the sum with respect to the displacement components
yields the difference equations.

For the first scheme in which only square mesh cells appear, the
free energy of a single cell with corner points denoted by (i,3),
(i+1,3), (i+1,5+1), and (i,j+1l) is a basic quantity. With material
properties evaluated at the point (i,j) and with the derivatives at
(i,j) obtained from fitting u_ by 2 plane through (i,3), (i+1,3), and
(i,3+1), the energy in the cell with sides of length h is approximated

by

W[, /P11 Mi 9\ + 20 D 3+13 7M1 Vv o1 j41 T 21N
1? 11121\ 2 11221 3 h ) h R

‘e 21 +1 21 ] 2
20021

2
+ he igr1g u21+13‘u2ij>2
12121 3 Sh oh y
u., . 10 SRR WA, s -0, =
1i+lj "1ij y 2ij+l "2ij y 2
* °111£: h )(T Todis * Copp h (T To)ij}h - (11T 2)

23



Because the material tensor is positive definite with respect to the
strains, (III 2) is semi~definite with respect to the displacement
components. The energy in this cell could as well have been approximated
by quadratic forms evaluated at the other corners (i+l,j), (i+l,3+l),

and (i,j+l). A symmetric and still positive semi-definite form is

obtained by averaging these four contributions to give the energy

centered at (i+,j+k)

1

~ 2
U+l g4d = 2[0111113(u1i+1j'u113) * 20955 30y 4 4 5) (Vg 540 =0y 4)

' 2 2
* °222213(u213+1'u213) * °11111+1j(u1i+1j‘u1i3)

* 2°11221+1J(u11+13'u113)(“2i+13+1‘u21+13)

2 2
®op2i413 P14 341 0014130 * Cr111541 561 (Mae1 01 a41)

N 2°11221+13+1(u1i+13+1‘u113+1)(u21+13+1‘u21+13)

2 2
°22221+13+1(u21+13+1'u21+1j) + °111113+1(u11+13+1"u113+1)

2011901 341 (M141 341 % 1 5410 (Vo 341701 5)

2 2
Cooont 341 (s je1 050 * °1212i3(“113+1"“113+u21+13"u213)




+ c (u - +u -u, )2
12121+1 i1 5+1 " i41 5 ikl 21

2
+ °12121+1j+1(u11+1j+1"u11+1j+u2i+1j+1'u21j+1)
+c (u - +u, -u, )2
12121 341\ MLi g+l T A edl LT 21+
+hlegyy (g gy¥y) * Cop1 (Vs g1 tor 5) (TTo) 4 5

+ h[c111+1j(u1i+1j’u113) * °22i+1j<u2i+1j+1’u2i+1j)](T‘To)i+13

*hleg s g (Mg Maga) 0141541 (Ui 41 ot s) TTo) 141 54n

- - - . (11T
*hlegyssn (Mg ulij+l) ¥ °2213+1(u213+1 “213)](T To)ij+l (111 3)

The difference equations apart from the prescribed boundary terms are in
every case obtained by minimizing a sum of cell energles like qi+% j+%'

It is convenient, therefore, to obtain the partial derivatives of

qi+% 3+% with respect to ulij and uzij' An interior point (1j) haes

neighboring cells with energies qi+% j+%’ qi_% j+%’ qi_% 5

qi+% j-%' Taking partial derivatives with respect to udij of these

1, and
2
four energies, we have eight basic quantities from which difference

equations can be formed in & systematic way. The eight partial

derivatives are

25



‘°111113(u11+1j'u113) - °112213(u213+1‘u213)
-clllli+lj(uli+lj—ulij) - °11221+1j(u21+1j+1'u21+13)
'°121213(ulij+1’u113+uai+1j‘u2ij)
'°121213+1(ulij+1'u113+u21+ij+1'u213+1)

g5 5 (P-T) gy = Bey440 (TP )ipn g0

‘°1122i3(u1i+13’u11) - °2222ij(u2i3+1'u213)
‘°112213+1(u11+1j+1'u113+1) - °222213+1(u2i3+1’u213)
'°121213(u113+1’u113+u21+13‘u213)

'°12121+1j(uli+1j+1'u11+1j+u2i+1j‘ueij)

=he h

221 3T o)1y = Boopy 51 (TT)5 540 2

11111 5(% 15 M-15) clllli-lj(ulij-uli-lj)
+°112213(u213+1‘u213) * cll22i-lj(u21-13+1-u2i-lj)
'°121213(“1ij+1'u1ij+ueij'“21-13)
-cl2l2ij+l(ulij+l-ulij+u2ij+l_u2i-lj+l)
ey (BT ;5 + heyyy 5 5(TTo)g 50
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aqi_'l._*_l_
.. '°222213(u213+1'“2ij) - °222213+1(“2ij+1"u213)

21
"°112213(u113“u11+1j)' °112213+1(u113‘u11-13+1)
o013 (M1 541 M1 501 M0 1 5)
101013101 541 1015 01 5001 41 )
heons 5T T 15 = Boopg 341 (T-To)y 540
oq.
qliki;— = 1193 5(% 5 yay) 1111115 %1 550 5)

+°112213(u213'“213-1) * °11221-1j(u21-13'uzi-lj-l)
€9 0101 5(% 3 5704 5.1 01 5 U011 5)
*e10105 3-1(%11 5™ 1 51 01 51 Y01 -15-1)

*heyy15(PT0) i + 11315 (TTo)s gy

b} .

—E%&§§§% = Copopy §(Upy gy gg) ¥ © 20001 3-1 (U1 5701 5.2)
1008 5( Wy 5y gg) ¥ ©11001 511 52175 -1 51)
o101 5 (M1 5™ 5141 5 s 1 )
+c12121-1j(uli-lj’u11-13-1+u213'u21-1j)

ep1 3 (PTe) 55 + Bopp 5 (TT) 550

o7



_cllllij(uli-lj-ulij) - °11111+1j(u11+13'u113)
'cllaaij(uzij'ueij-l) - °11221+1j(uzi+13’u21+13-1)
1 o1 o1 5(0 1 57H1 jo1 o1 Vo1 3)
15101301 (%11 371 31400141 31 V1 1)

0y 13 5(T-T )55 = Beyq54q 5 (T-Todsiq 0

EE%E%;;é = °2222ij(u213'u213-1) * °222213-1(u213’u213-1)
190013541571 5) + C1100 501N 11 g1 M1 3-1)
~¢10121 3 (%11 57 1 3.1 %0141 5 01 3
1010141 5 (Ma41 5 M 141 51 V1413 V01 5

(T-To) 13 + he

*hC 0 5 2013-1FFol1 -1 (III 1)

If the total free energy, Q, of the system is written as the sum

of all the individuval cell energies,

Q =ji;:{; Qg5 (IIT 5)

the difference equations for the point (1j) are
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Q

aij

-0 (III 6)

unless the point is on a line of symmetry. Since the only terms of Q
that can contribute to the expressions (III 6) are the eight partial
derivatives (III 4) of the energies in the four adjacent cells of an
interior point, the general difference equations for an interior point

(13) are

aql 1:,1 O0d: 1,1 od, 1.1 g, 1 1
it+5jis 4 1a+d 4152 Li+dsd _
-:;;J?}Ji e - e —?i;%Fjii = 0. (IIT 7)
aij aij alj ai)
To obtain natural boundary conditions (specified stress vector) it

is only necessary to note which types of cell energy can contribute
and form a sum similar to (III 7). For exemple, consider a vertical
boundary with the material on the left. The only energies which contribute
to the difference equations are q. and q, . The difference

4 LUda+d 0 Udyd

equations are, therefore,

-T % =0 (IIT 8)

where T& are averaged components of the specified stress vector on the
boundary of the two cells.

For a corner point on the boundary the cell energy contributing
The difference equations would be

might be qi+%j-%'
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da.
%Erzd_-é Tz - o. (IIT 9)

All the other specified stress cases can be treated in a similar way.
The boundary conditions at an internal line of symmetry can be
obtained by minimizing the energy with respect to the tangential dis-
placement vector only. As the most simple example consider again a
vertical symmetry boundary. For this case ulij = 0, and u is to be

213
varied. The difference equation is simply

g, 1.1 0q 1.1
giu"ij*’i * giu'EJ‘f =0 (III 10)
21 2i]

which with ulij = 0 form the boundary conditions.
For the more general situation where the symmetry line runs at

an angle through the mesh, the w and u, components are related by

w = wn +un, = 0. (TIT 11)

Variation of the energy in a cell mist take this constraint into
saccount. If w is taken to be the independent variable, only the
variation of the energy with respect to uy is taken. Consider again
the case where the symmetry line is replaced by & segment of mesh lines
and the cell whose energy contributes terms to the difference equation

is centered at i-3j-~3. The difference equation is then




dq. . i
4135 0% 154 N 9% 151 A 0. (IIT 12)
d i Oy n

Y113 3

The tangent vector at the point ij which approximates a boundary point

has components

t; = -n,, t, = n,. (11T 13)

dq,
13-4 & = o. (IIT 14)

Thus (IIT 11) and (III 14) are the approximate boundary conditions for
the case of a symmetry boundary not coincident with a mesh line. In
view of Equation (III 9) it is evident that (III 14) is an approximation
to the natural part of the symmetry boundary conditions (I 14)
Tt = odﬁnﬁta = 0.

Comparison by a Taylor's expansion of the interior difference
equations (III 7) with the differential equations (II 17) shows that
the error is of order h2. On the boundary lack of symmetry in the
difference equations gives an error of order h. Part of the boundary
error mist be ascribed to the distorted boundary which is used when all

mesh cells are required to be square. In order to reduce this latter

error, & modification of the boundary treatment will now be presented.
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The treatment proposed is based on an approximation of the boundary
by chords between points of intersection of the boundary curve with
mesh cells, Figure 2. In order to keep the number of possible config-
wrations to & minimm it will be assumed that the mesh size is so small
that the boundary curve does not pass through the sides of any cell more
than twice. That part of a boundary cell which belongs to the interior
is then a triangle, a quadrilateral, or & pentagon.

The quentity needed for the difference equations of points on or
adjacent to the boundary is the free energy associated with such
irregular shaped areas. The energy in a square cell was calculated by
averaging an energy associated with each of the four vertices. If each
of the four vertices is assumed to account for the energy in a triangle
consisting of the vertex in question and its two neighbors, then the
sum of the energy of all four possible such triangles is twice that of
the whole cell. The sum of the triangnlar energies is therefore
divided by two. A similar espproach is to be used for the irregular
regions.

The derivates of the displacements needed for the energy in a
triangular region can be obtained by passing a plane representing u
through the three vertices of the triangle. The displacements in the
plane can be represented by an expression of the term

- gl
Uy = 8y Xy * Dy (IIT 15)
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where 1 and j are indices locating what might be called the primary

vertex, and where (i+lj), (ij+l) are the other vertices. The derivative

of u_ at the point (13) is

uifs - aig, (III 16)

and the energy associated with this triangle becomes

T _fi 1342 13 13 1312
%5 = {?[°111113 a13)7 * 20730015 217 850 * Coopo13(32p)

ke

4-

i
121213(a12+a21 }

+

€111 11(TJT ) C1113 22(T'T )1é} 13° (IIT 17)

where Aij is the area of the triangle. Since there are three vertices

to the triangle, a more symmetric form of the energy is

qg.-i-qg"_ +q§.
q§+%j+% = ;13 gL (III 18)

For a quadrilateral the treatment is the same as that for a square,

the energies of the four triangles formed by passing diagonals through

the vertices are averaged,

T T
L . Gy * q1+lj q13+1 qi+lj+l.

(TIT 19)
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The pentagonal boundary region presents s larger number of possible
subdivisions for computing the energy from its component triangles.
From the coding viewpoint the simplest expedient would be to readjust
the approximate boundary so that all pentagons are altered into quad-
rilaterals. Next in order of complexity would be a somewhat arbitrary
division of the pentagon into a quadrilateral and a triangle. A third
possibility, having less bias, would be to obtain three triangles
associated with each of the five vertices by passing lines from the
given vertex to all the others. Fifteen triangular energies would be
computed in this way whose sum was five times the energy of the pentagon.
If the vertices were labelled as in Figure 3, and the energies associated
with vertex one written q125, qlBh’ qlh5’ the total energy of the cell

becomes
P _ fom T T T T T T
4 = 1[5 245 * Gy, F 25t G5 T 25t st 2oy

T T T
+ qqp * 2q3u5 + q523}. (IIT 20)

To obtain the difference equations for regions made of triangles

one forms sums of terms like

39,14,
W*’Z‘J-*Z = 0. (III 21)

all
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This equation in turn is formed from the derivatives of the energies

in triangles according to (III 18). Thus the basic derivatives are

.
51,'1. - o. (1II 22)

aij

From elementary considerations the quantities a _ appearing in the

af
Equations (III 16) and (III 17) are

ij _| ) i ;
8 = L‘ﬁi+1j(x213+1 Xo13) Unse1 (%0141 3 x2ij)

5 5(%0s 541 %0141 3 )} / A7

i3 | i i} i
%22 T [ Uos 5411541570530 " Yore1 (K 501 *1g)

" Yoij (xli-*-lj —xlij+l)] / Ay

1J _

810 © l_ulij+l(xli+lj-xlij) = U505 5 501705 )

gy (X400 'x113+1)J /2A; 5
I I A%y =% ) =~ u,. . L (x =Xy <)
21 2ij+j Y 2ij+l 21 2i5+1 721+l 21

Uss 5(%0s 541 %0141 3 )] /28, ;- (11 23)
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From (III 17),

T iJ
aqi. = lc a ESC
T 111143 011 Su .. . C1122ij
ol aij
ij
+ ¢ aij aa22
ooo0ij %2 Ju_,
ail
1j
da.
13, 1\ 12
+ 8¢ él +a:J
12121312 2L\ S0 4
dald
+c (T-T ) .
1113 o1y Su_. .,
alj
But
i
%1 Oy i) 5 ,
Ut 5 24 ;5 al
id
Son _ Cyynseysa) 5 ,
Uyt g 24 a2
iJ
%y (x11+13'x113+1)8
= = 3
gumij 2Aij ol
ij
it _ (xzij+1'x21+1j)8
Euaij 2AiJ a2

13
S2n1
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.{cllllij[uli+lj(x2ij+l-x2ij) = 5501 (o1 57%01 )

- - - 5
ulij(x2ij+l x2i+lj)][x2i+lj x213+1] ol

-+

clleeij[u11+1j(xaij+1‘xeij) - “1ij+1(x21+1j‘x21i)

1 16

ulij(x2ij+l-x2i+lj) X1 5417 514157 P2
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13

- uzij(x1i+1j‘xli3+1)][x21+1j‘x213+1 ol
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- Uy 5(X5405 'x213+1)][xlij+1‘xli+1j] B2
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dq"
g—li =9 [u,; ,.(x X, ) - u. (% X, :)
Ty Y3413 21341213 11 3+1V  21+15 %21

B ulij(x213+l'x21+1j)][°1111ij(x21+1j'xeij+1)5a1

* cll22ij(xlij+1—xli+lj)6a2] ¥ [u213+1(x11+1j'x113)

- u21+1j(x1ij+1"xlij) - ueij(x1i+1j’x213+1)]

X

- - 5
ley1 001 5011501 54108 ¥ C2o0013 (X1 341 % 154150 Bun)

8

+

cl2l2ij[ulij+l(xli+lj-xlij) - uli+lj(xlij+l-xlij)
"5 00 ) * Ups415(Xpq 54105 5)

- u... - - -
213+1(x21+13 x2ij) u2ij(x2ij+l x21+lj)]

x[(x

13341 %4413)8

w * (x21+1j"x213+1)5a2]

+ - -
©1213(T To)ij(x2i+lj %01 3419 %1

* °2213(T"To)ij(xlij+1'x1i+1j)Sae /aAij' (III 25)

T T
Expressions for qu 13 /Bumi 3 and Bq_l 3 +1/3uq’i 5 can be obteined in a
similar manner to form the complete derivative of the cell energy
T .
Bq_l % 3 %/auai 3 It is apparent at this time that the price paid for a
more careful boundary treatment is not only a much greater complexlty

in the coefficients of the difference equations but also & proliferation
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of possible combinations of cell arrangements at the boundary with an

attendant difficulty in the logic of coding any automatic routines for

setting up the mesh and the difference equations.
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IV. NUMERICAL CAICUIATION OF THE STRESSES IN AN INFINITE HOLLOW CYLINDER

In order to test the difference equations of plane elasticity
derived in Section III, the following example problem was considered.
An infinite hollow cylinder of isotropic material was assumed to have
a temperature distribution varying inversely with the radius. The
inner surface was stress free; the outer was held fixed.

For the numerical calculation a section of the annulus between O
and 60o was chosen for the region of integration. Thus there was one
symmetry boundary coincident with the x-axis, and the other symmetxry
boundary was at 600. Because the basic mesh cells for the difference
equations are square, the displacement specified, 60° symmetry, and
stress free boundsries were zig-zag. In Fig. (4A) the segment of the
annulus and in Fig. (4B) its approximation by zig-zag and straight
boundary sections are shown. The boundary for the numerical solution
is identified by numbers 1 - 9 and letters A - U. The letter "O"
identifies interior points, the letter "V" exterior points. The numbers

and letters on the boundery tell the automatic set-up code which type




of boundary condition (stress, displacement, or symmetry) is in effect
and which of the cell energies are going to contribute to the difference
equations for the point. Fig. (4) is a reproduction from film taken of
a plot with a Benson-Lehner 4020.

The analytic solution to the hollow cylinder problem is in polar

coordinates,
B e) g sp g MG G-D)
2 vy *tira 22 -1
R f(;-:)(g)e @)
2o ﬁ;-:)(‘é)a[“(%)a] - &%) (v )

In the above formulae a is the immer radius, b the outer, Ti the tem~
perature at a. The isotropic elastic constants, E, v, and o, have the

usual significance. The cartesian components corresponding to (IV 1)

are

W =u, cos e,

u, = u, sin 9,

g ) c

——%—J‘- = EI-‘- 00320 + EQ- sin29,

L1



o. 9
sin @ cos 5 - —-E-:->,

(¢} c
—-E— sin®e + —% cosee. (IV 2)

1}

Q Q
O

The components w and u, of (IV 2) are to be compared with the dis-
placements calculated from general difference equations (III 7) and the
various boundary difference equations (III 8), (III 9), etec. The
stresses of (IV 2) are to be compared with stresses obtained by diff-
erencing the numerical displacements to form approximate strains and by
use of the stress-strain relations (II 16) with isotropic constants.
The approximate strains, computed from displacements at the corners of
square mesh cells, are centered at the centroid of each cell. The
stresses obtained are therefore not to be compared with the boundary
stresses of the analytic solution but with analytic stresses slightly
removed from the boundary.

The numerical problem wes solved for the following values of the
parameters:

a = 5,0 cnm,

b

|

10.0 cn,

h = 0.25 cm,
o

T, = 5000°C,

v = 0.3,

8 x 10’6/°c (IV 3)

2
U
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The method used for solving the linear system of equations was

(5)

successive over-relaxation with extrapolation. No attempt was

made to optimize the extrapolation parameter @ in this particular cal-
culation, although the value of w, equal to 1.6, was chosen on the
basis of an earlier set of problems. The computer program consists of
a8 mesher, which will set up the boundary and interior points and their
difference equations, a relaxation code for the displacements with a
check on residuals, and a stress calculator. All of these programs
were written by L. Stein in Ivy, a compiler-assembler at LASL for the
IBM 7040 and IBM 7090. The number of calculated mesh points was 691.
Running time until the maximum residual was reduced to lO-8 was about
25 minutes or 750 cycles on the IBM 7090.

The results of the calculation of displacement are compared with
the analytical radial displacement in Figures 5-7. The calculated
stress is compared with the analytic stress on each of the four bound-
aries and in the interior on a radius of h5°. These are shown in
Figures 8-22. While the displacement is sufficiently accurate on the
boundary and in the interior, the stress is naturally less accurate,
particularly on the boundary.

Considering the fact that the zig-zag boundary was assumed
to satisfy the same boundary conditions that are correct for the true
boundary, the loss of accuracy at the boundary was not unexpected.
Smoothness of the stress and displacement in the interior suggested

that values could Be extrapolated to the zig-zag boundaries which could

k3



then be used to obtain an improved solution partiéularly neaxr the
boundary where the effect would be greatest. Adjustment of the dis-
placement boundary conditions at the outer radius was performed with
the improved results in the stress shown on part of that boundary in
Figures 17-19. AdJjustment of stress free boundary was tried at the
worst point on the boundary with the results shown in Figures 1l1-13.
To be really effective an extrapolation scheme of this type should be
made part of the program for the computing machine. Also an investigation
should be made to determine whether such an iteration of boundary wvalues
is an always convergent process.

Another procedure for handling difficult areas near the boundary
is mode feasible by the existence of L. Stein's meshing code. The sub-
region in which difficulty is encountered can be removed from the rest
of the problem and its number of calculation points increased. Boundery
values for the artificial boundary created can be obtained from a first
run for the real region of integration. The automatic mesher makes such
a refined calculation straightforward, whereas set-up by hand for a
large number of points is tedious and time-consuming.

It might be thought that a differencing scheme for the boundary
points based on interpolation to the correct boundary location would
be an answer to the difficulties encountered on the boundary. Such an
approach was taken in an early attempt on this problem, but the iter-
ation process failed to converge. The total matrix of the difference

equations was too complex to analyze, and that approach was abandoned

Lk




for the variational derivation. An attempt to obtain interpolation

formilae which would necessarily leave the matrix of total equations
positive definite should be made. Still to be tried are the more com-
plicated energy relations based on triangular regions described in the
latter part of Section III.

It is hoped that further investigation of the techniques at the
boundary will yield a practicable and simple solution to the problem
of accuracy at the boundary which is an inherent difficulty with
elliptic equations. In the meantime the present scheme based on square
cells should provide displacements of sufficient accuracy and, with the
adjustment of boundary values and boundary mesh refinement, stresses

of useful accuracy as well.
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Figure 8. 0, symmetry boundary, © = 0°




TR

L)
r{cm.)

i = : T

: a
i
Iy
i .
2

! ] 2
J . st

Figure 9. o0, symoetry boundary, @ = 0°




GG

=7

hi
H
)<
&
E

54 56 58 G0 o2

i
3 '. 1R
i
e R R A R
bl [EH e R
s SRR T

: ;
3

66 68 78 12 14 1. 0L
r{cm.)

Figure 10. Tpp symetry boundary, 0 = 0°



5 B Bl i PR Sl SR,
2 N % % 4 2 4 8 8 N R HUH BN
[

fulbid Gt (B

Figure 11. o‘ll stress~free boundary




%2

yie

i i B
8 2 U w8

0 2 ¢4 [ B | M 16 18 X 2 M X B % N U %N B 0 L M4 & 4 %N 2 U
(]

stress=-free boundary

Figure 12. P




Figure 13. 0'22 stress~free boundary
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Figure 14




symmetry boundary, © = 60°
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Figure 16. Oy Symmetry boundary, © = 60°
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Figure 19.
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Figure 20.
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