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This paper considers the problem of the detonation of & slab of
high explosive adjacent to a rigid wall with a vacuum as the other
boundary. The reflected shock 1s computed using Whitham's approximation.
The pressure profile at the wall is computed by various approximate
methods and results are compared with those obtained from a numerical

solution using a Lagranglan code.







1. INTRODUCTION

The problem studied is that of a slab of high explosive with a
rigid wall as one boundary and a vacuum as the other (Figures 1 and 2),
wilth the high explosive being detonated at the vacuum boundary. The
problem is one dimensional with the high explosive and the wall contimu-
ing to infinity in the y and z direction. The reflection of the deton-
ation at the rigid wall and an approximation of the flow between the
reflected shock and rigid wall is investigated. Reflected shock paths
are computed for various wvaelues of the adiabatic exponent y. Wall
pressures behind the reflected shock are computed for y = 3 and y = 1.k,

The flow can be considered as consisting of three regions (Figure 2):

Region I Unexploded high explosive,

Region II Simple wave expansion of the detonation products
(isentropic),

Region TIT Region between reflected shock and wall, assumed
to be isentropic in the region of interest.

The detonation 1s computed using the conservation laws and the
assumption of a Chapman-Jouquet detomation, ¢ = |u-D|, where ¢ is the
sound speed behind the detonation, u is the gas velocity behind the

detonation, and D is the detonation velocity.
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Region ITI is then a simple wave region adjacent to a line of con-
stant state, i.e., the detonation, and extending to the limiting char-
acteristic separating the flow and the vacuum.

The reflected shock is computed by a method given by Whitham (ref.l)
which applies the cheracteristic relation dp + pcdu = O (or dp-pcdu=0
depending on the direction of the shock) to the flow quantities at the
shock. The quantities in the above equation are known in terms of the
shock Mach number M from the Rankine-Hugoniot shock relations, hence an
eqguation for the varliation of the shock strength can be obtained by sub-
stituting the shock relations into the eppropriate characteristic rela-
tion. The solution of this differentiel eqguation enables one to obtain
the shock path and values of p, p, ¢, u behind the shock as functions
of the shock path. The Whitham shock paths are also compared with results
obtained from a numericel solution to the complete problem.

The flow behind the shock is considered to be isentropic in the

u C
2"y

+ ar, with 8g and o

region of interest. The Riemann invariants r and s (r =
s = % - §TI> on the shock can be related by s = So
obtained from the shock solution. The error introduced in s is less than
one percent. Calculations were made using the above relstion and the
simpler expression s = 8q? i.e., the shock represented by a characteristic.
Since the flow is assumed to be isentropic, it is possible to transform

to the speedgraph plane (see for example ref.2, pp. 160-171) with u &nd c
as independent variables. By representing t on the shock as & quadratic

in r (2 percent meximum error), it is possible to obtein an analytic



solution in the region between the shock and the wall. It should be
noted thet the shock is a timelike curve (see, for example, ref.3, p.57);
and therefore in x,t space either u or ¢, but not both, may be specified,
although both are obtained from the Whitham solution. In the transformed
variables the shock is represented by a curve u = u(c) and t is specified
as t = t(c) on this curve. The solution includes x = x[c,u(e)] for the
shock curve as a consequence of its timelike character. The solution in
Region IT then actually hes this newly determined "shock" as its boundary.

For y = 3 other approximations were considered and will be mentioned
in the text.

The results of this investigation indicate that the wall pressure
ve. time curve is quite insensitive to the type of approximetion made;
and it would appear that using the simplest assumption for y = 3, that
of ignoring the reflected shock and continuing the straight characteristics
of the original expansion to the wall to obtain the pressure, is quite
adequate for approximate calculations. Going one step further one would
suspect that using this approximetion for propelling a rigid mass would

be equally valid.

2. EQUATIONS

A. Detonation Front

The equations of the detonmation are obtained from the conservation

laws



Mass po(uo-D) = pl(ul-D)

2 2
Momentum Py + po(ul-D) =p, + pl(ul-D) (2)
D P
0 1 2 1l 1
Enery Eo(po)po) + 'p—' + E(uO-D) = El(Pl,pl) + 'p_- + -2'(1’-_]_-]))
0 1l
(3)

where the subscript (0) applies to the unburned explosive and the sub-
script (1) applies to the detonmation products.

For a forward facing Chapman-Jouquet detonation D = wy + c,- It
will be assumed that the detonation proceeds into a stationary explosive,
u, = 0, and for simplicity that Py = 0. The energy of the unburned
explosive Eo will be represented by eo(po,po) + Q where Q is the chemical
energy. Since € is small compared to Q it will be ignored. With the

above assumptions the conservation laws become

PP = p,(D-w;) (1a)

poD2 =p + °1(D""1)2 (22)
P

%Dz +Q = ;%I Bi +%(u1-D)2 (32)

vhere in Equation (3a) use has been made of the relations
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for the detonation products.
Combining these equations one obtains the following for the flow

immediately behind the detonation:

¢, = 7+L1 D (5)
w = 7—% D (6)
Py = 2.;_'3-. o (7
P, = }%’i poD2 (8)

D = \2(y°-1)Q - (9)

B. Region II
The region behind the detonation is a simple wave region in which

the following characteristic equations hold:
— =u+c (10)

On C

S+ =y (11)

10



dx
-R-au-c (12)
On C

.‘_21 - —— = =8. (13)

For a Chapman-Jouquet detopation D = W +ey, hence the detonation
front is coincident with the leading C+ charecteristic. The slope of
this characteristic and the values of u, ¢, etec. it carries can be
obtained from Equations (5) through (8). With the coordinates as shown
in Figure 2 the equation of the C+ characteristic and the expression for

the corresponding Riemann invarient are, respectively,

G b
]
e
+
0

(14)

+ oo = r(g)- (15)

e

Since all C~ characteristics originate at the detonation where

Equations (5) through (8) hold, we have from (13),

u c =D
-5:-5--7-—:3—-85(—7:—]-.7. (16)

Combining Equations (14) through (16) the following are cbtained:

r=2 %, 2% _p (17)

11



2 x D

UeEE (18)
-1 D

c=%_—i-§-+-—~ (19)

7¥1

We now have the equations of the C+ characteristics and expressions
for u(x,t), c(x,t), r(x,t) and 8 = 8y- ALl that remains is to determine
the equation of the C~ characteristics. Substituting for u and ¢ from
Equations (18) and (19) into Equation (12) yields for the C~ character-

istic

& _O-yx __2D
dt 7+l t 9+l
which integrates to
D - By [7+1
(x + =25 t) <x+,1o>< =) (20)

where xo and to refer to the intersection of the characteristic with
the detonation.
The equations will be put in dimensionless form using the following

definitions:

"1
#
t:lx
ot|
]
1]
[]
l'.?.lr-‘
0l
R
R
]
oiH
B
=1
|
ot I

ojo

The preceding equations then become



% . ;_:_i_ T+ ;-Ll' 502(7-1/7"1) g(3-7/7-1) (208)
) C”
R~ (16a)
2 y-1 2(y-1)
n=u+c (14a)
>C+
2 3=7
T + (172)
us2 @ -3) (182)
¢ =23 (m+ 53 (19e)
Using the polytropic relations
py7-1 . (&)2 TRV
(po) ("o) . po(po) (21)

where Pys Pg? and co

from Equation (192):

are reference quantities, the following are obtained

\ 2/7-1 (22)

(23)

13



It will be convenient at this time to form the differentials of the

quentities in Equations (18a), (198), (22), and (23) for lster use.

au = 7—3'1' dn (24)
s = % a | (25)
doy = 7+l "'é'/’yT [7+Ji< 1)] 7t g dn (26)
% st [ (7 ) @ ()

c. Shock Equations
The Rankine-Hugoniot shock relations may be written as Pollows

(see for example ref.k, p.120):

mu 7'+l°}< M2> | ()

mﬁl

g, = % [1 + %(nz-l)}/ 2[1 + ;Ti(Mz-l)]l/ 2 (29)

b1+ Fr 0P| (30)
oM

%s ~ [1 + Z-—(}412-1)] ' (31)

where the subscript s refers to the flow behind the shock and the

14



unsubscripted quantities are in front of the shock. The Mach mumber M

is defined as

M - OB (32)

where U = U/D, U being the shock velocity. Note that the Mach number
carries the same sign as U - u.
The procedure described by Whitham (ref. 1) for computing the shock

path requires that the flow variables at the shock wave satisfy

dp, - pc du = O (for a left moving shock). (33)

8

Differentiating Equations (28) and (30) we have

dﬁs=dﬁ+;%}<l-i-2->£+;%l-5<l+i-2->m (34)
ap, = [1 + %(Mz-l)}dp + p@ﬁ- aM. (35)

Substituting Equations (29), (31), (34), and (35) into (33) gives
the following result:

15




[1 + %(Me-l)]dp + ;<7%
w2.1)1%/2
o [ A -
y+1
G p oo

Replacing p, ¢, etc., in Equation (36) by Equations (18a), (19e2),

and (22) through (27) one obtains, after algebraic manipulation, the

following differential equation in M and 7:

I e M Ul e

R RS AP e A w7

=

(37)

This equation can be integrated numerically to give M = M(-';]) , the

integration to be carried out between -1/2 s ‘1-]- 2 1. The initiel condition

on M(-ﬂ) is obtained from the reflection of the detonation.

From the conservation laws

u -

22 5 (e -k)

At the instant of reflection

16



|
]

2 0
T =
u1—7+l
o = 2

1l 7+l

giving

M (1) = z'g'l:l'*\/l*‘ (3 )2]- (38)

Knowing M = M(7) the shock velocity is obtained from Equation (32)

'6=Mc+u-M(n)< )( 1>+;§i('ﬁ-%). (39)

This equation can also be written as

e

where 'J?s is the coordinate of the shock. Integrating from Es(l) = 1

3 o

gives the equation of the shock path .is = -:Es(%) .
D. Region III

In obtaining a solution for Region III it is assumed that the flow

behind the shock can be considered isentropic in the region of interest.

17



The equations of motion governing the one-dimensional non-steady flow

of an inviscid elastic fluid can be written as

Contimuity ) _8_1_: +u é_&_ + ég = 0 (k1)
ox ox ot
-3, c2p . N
Momentum 1=+ -L 4+ 2. (42)
ax p ox ot
State 2 _ » const. (43)
oy 4
P
These can be put in more convenient form by introducing a new
variable v defined as follows:
c - v _ ¢ d _ ¢
v-[_%d, H-g o L.& (1)
P1p do o % p ov

- =7 -
For polytropic relation p/ p = const we choose Py = 0 and find

%

-1 ° (45)

Vv =

b

When Equation {44) is substituted, Equations (41) and (42) read

Zﬁag+ﬁa§+ia—_v:=o (41=2)
ox ox ot
TR, eI, B, (42a)
ox ox ot

18



These equations have characteristic directions

(46)

& 18
1
oy
1+
ol

Interchanging dependent and independent variables the x,t plane is
mapped into the u,v or speedgraph plane (ref.2, p.160-171), and the

equations of motion become

E§§-E§§+§§=o (%7)
ov du Jdu
&L X (18)
v u Jov

& (49)
du

Using cdp = pdv Equations (47) and (48) may be written as

2 (z) + S & (7)) = 0 (0)
p oV

O (E) + S o () = o. (51)

ov p du

Equation (51) can be satisfied by setting

19



x-mw=-%, f..iX (52)
ou c ov
Then Equation (50) supplies the condition
v . a1 (53)
N e TV I

Restricting 3-7/7-1 to integer values, m, Equation (53) can be written
as

oy
e ot

v

2o (53a)
v

v
v

The rest of this section will be devoted to the solution of
Equation (53a) in Region III, with appropriate boundary conditions. The
general solution of (53a) (ref.2, p.165) is

1-21
- o e
v Vb+slyv6+32vavb+ )

Me=

<
H

l;(m'l)vo(m'l)jl (5)4_)

where

Bo-l, ﬁlzl

(-1)" ov-1 (m-2)(m=3). . . (m-v)
v! (2m-3)(2m-%). . .(2m-v-1)

pe
L]



VO(E,F)

£(T+7) + g(7-7)

Vé(a,'\-r-) '+ g

f and g are arbitrary functions and the prime denotes differentiation
with respect to the argument.

The particular cases ¥y = 1.4 and ¥y = 3 will now be considered.

(1) z=1.4
Inserting y = 1.4 Equation (53a) becomes

v & uav
2 -2 == (55)
ov ou v ov

while

E=v+u [Note: % =T where r and s are the Riemann invariants.
(56)
n=v-u % =8

It follows immediately that

21




= %( E+n)

<l

- 1
u = 5(&-n). (57)
From the general solution, Equation (54), we obtain

v,ﬁé_l.-_:v"'g_(ﬂ+5_(ﬂ).éj—lﬁliﬂl (58).

and from Equation (52),

— —— v f'(g)_;fn(gl 3'(71)";8"(1‘])
T ) 5
TR R v > (59)

T W, )L |, a(n)-Fvg ()R ()
8 a-‘; .‘_;u =
(60)

For the well boundary conditions we have u = 0, x = 0. (Here the
origin has been translated so that x - 1 = X where x is the length vari-
able in Figure 2. Time t will be translated in the same way. These
transformations simplify the algebra involved in obtaining a solution.)

From Equation (57) we obtain § = n at the wall and inserting in

(59)

F-Ta0a= . £'(n)=ve"(n) _ g'(n)-ve"(n)

3u v v

22



or
£'(n) - v£"(n) = g'(n) - vg"(n). (61)
This has the general solution
£(n) = g(n) + clne + ¢,

Since we are interested in a particular solution we shall set

=0, ¢, =0 giving

¢ 2

£(n) = g(n). (62)

As mentioned previously two different assumptions were made con-
cerning the shock boundary; the first was s = '50 » & constant, on the

shock, the second was s = El + ar on the shock. Both will now be con-

sldered.

a. 8§ = B,
0

If s = 's'o then by Equation (56) n = const = n, and by Equation (57)

v = 1/2( §+'ql) on the shock. From the data of Whithams solution it is

possible to represent the time on the shock curve by
%:Z bn§n-l. (63)

23




Substituting in Equation (60) we have on the shock

4 2
&+ £(&)-3/2(¢& Pr(E)+1/u(E £"(&
12!ijijbnﬁn-i> _ 32(8)-5/2(+n, )21 (E)+1/b(E4n, )"£"(E)

1/16(&«“?11‘)1+
38 75/2(8m,)e '+1/u<s+nl)2g; )
1/16(§+~ql
where g(nl) = g, ete.
This has a solution (ref.2, p.175)
(&+n,)
£(8) = —— [ = (&+n,) ] - g + (6)e; - %(§+nl)2s{
(65)
with arbitrary constants &> gi s g:’i and where
v
A=2%[ (1-2%%(z)dz. (66)
), - o
We can also obtain
, (e
£1(8) = (8+n,)° A+ —p=— A" + g - (&+n))g} (67)
Y
(&+1,)
£7(8) = 3(8+n) 2 A + (84n)0 AT+ —F— A" - g (68)

2k



Evaluating these equations at & = §l = 1, we find they are homo-
geneous in the constants and therefore all constants can be set equal

zero and

L
(&+n,)
2(8) = —g— A Kem) | (69)

Integrating Equation (66), using Equation (63) for t one obtains

4 b §n-!-2 n+1
1
A= 10(§+qi) Znﬁi’?h¥ 3) ~ 5 + <§ }: n+1 > £
) n+2
b &
n"1l 1.2
‘<Z—n:a—' "3 5 (70)

Thus with Equations (59), (60), (69), and (70) we have the complete

solution to the problem.

b. 8 = sl + ar
If 8 = El + ar, then by (56) and (57) the following apply on the
shock boundary:

n=a+ bt (vhere a = 25_, b = @) (71)

1

v = 1/2[a + (1+b)&]. (72)

25




'51 and a are obtained from the Whitham solution. The time t on

the shock can be represented by a quedratic with less than 1 percent

error.
2
T =Zdn o (73)
0
Equetion (60) now becomes [using (62) and (71)]
2
%—d[a+(l+b)§}<z dn§n"l> =
0
{3[f(§)+f(a.+b§)] - g—[a+(l+b)§][f'(§)+f'(a+b§)]
+ %[a+(1+b)§]2[f"(§)+f"(a+b§)]} / -g'—_6[8.+(1+b)§])‘L (%)

This is a mixed differential-difference equation and it can be seen

by inspection that a solution is

£(8) "il’n e" (75)
0
and by (62)
g(n) =iPnnn- (76)
0



On the shock

&(n) = £(n) = £(a+bt) =iPn(a+b§)n- (17
0
Substituting Equations (75) and (77) into (74) and equating
coefficients of like powers of & to zero one obtains eight equations for
the eight unknown coefficlents, Pn. For this particular problem b is a
small number hence terms in b2 on higher powers were ignored (the prob-
lem was also done reteaining terms in b2 with a negligible change in

results). With the Pn's determined the entire solution is in hand.

Expressions for the Pn's are glven in Appendix I.

(2) =53
Inserting y = 3, Equation (53) becomes the wave equation:

%

o c. Using the definitions of Equations (56), the general

solution to (78) can be written as

V= £(8) + g(y). (79)

From Equation (52)




x =ut = £'(E) - g'(n) (80)
ot = ~[£r(&)+g' ()] . (81)
The wall boundary condition again yields

£(n) = g(n). (62)

As in the case of y = 1.4t we shall consider both s = EO on the

shock and s = El + a2 on the shock. '50, -s-l and a are determined from

the y = 3 Whitham shock solution.

a., 8 = 8,
0

Again q = n, & constant and v = 1/2( §+'ql) on the shock. Also on

the shock

n

L
'E:Zd el (82)
0

Substituting (82) into (81), with q = n;

L
£'(E) = - %;(§+nl)<zdn§n-l> - g'
5 A 3

and the desired particular solution is



i
2(¢) = 3 f ()1 a8 e
& 0

or

L
n+2 n+l
1,2
£2(8) = —{Z n n+2 zdn gn-&-l * §§ * §lg
(2n+3) n+2 2
[2 n (n+2)(n+l 25 ]} (83)

Thus Equations (62), (80), (81), and (83) afford the complete solution.

b. 8=Sl+d.r

As in the case of y = 1.4 Equations (62), (71) and (72) apply, with

a end b now determined by the y = 3 shock solution. For % we have

n

4
+,=Za§“-1. (8%)
0]
Equation (81) on the shock becomes
N
%[a + (1+b)§<2dn§n-l>= -£'(§) - £'(a+bt) (85)
0

A solution of the mixed differentlal difference equation is

£1(8) =ipn§° (86)
0

29




and by (62)

n

8'("]) ’ipnﬂ ’ (87)
0

however on the shock

g'(n) = £'(n) = £'(a+bs) =iPn(a+b§)n (88)
0
Introducing Equations (86) and (88) into (85) and equating coeffi-
cients of like powers of & to zero one obtains six equations for the
six Pn's and hence has the complete solution. Expressions for the Pn's
are given in Appendix I.
Two other approximete solutions were obtained for y = 3. They are

as follows.

c. Extend C+ Characteristics from Region II into Region IIT

For y = 3 both the C+ and C~ characteristics are straight lines in
an isentropic region. The simplest approximation to this problem is
therefore to ignore the reflected shock and carry the straight C+ char-
acteristics of Region II into Region III. The equation of these char-

acteristics is

(89)

ctl 1M1
[
el
+
o] ]

30




At the wall x = 1 (using the coordinates of Figure 2). Also at the

wall u = O, hence

- 1
“vall = Zwall ° (%0)

The adiabatic relation, 4, then enables one to calculate wall

pressure versus time.

d. Extend C' Characteristics from Whithan Shock Curve

Another relatively simple method of computing the flow in Region IIT
is to utilize the entire Whitham shock solution. This solution ylelds
u and ¢ as functions of position along the shock. Assuming isentropic
flow behind the shock meens the C+ characteristics behind the shock are

straight and can be represented by

X=Xy _
—= uw+e (91)
‘b-to

also
u+eo=uy+ey =Ty (92)

where the subscript O refers to the shock. Combining (91) and (92) we

obtain

31




DN EN (93)

but on the shock r, = r.(t.), X

3?0(%'0); both known functions. On

o "0°0" 70
the wall X = 1 so that
1-x.(T.)
- = 0' "0
ta11 = Yt T (54)
wall — 0 © 52 (%)
0 0

Equetions (Sk) and (95) together with the adisbatic relation 4 then give

the wall pressure versus time.

3. RESULTS

Figure 3 shows the shock paths given by the Whitham solution for
adiabatic exponents of 1.4, 2.2, and 3.0. Tables 1, 2, and 3 contain
the shock data necessary to obtain a solution in Region III. It is of
interest to note that as the shoek strengthens at the tail of the rare-
faction & discontimiity develops in the flow behind the shock for y > 2.
This discontinuity appears to be the beginning of another shock directed
back into the flow and toward the wall. That this flow pattern is not
Just & result of the epproximete method of calculation is demonstrated

in Appendix IT.
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t

l.m

1.19%
1.327
1.461
1.580
1.685
1.789
1.879
1.984
2.073

X
1.000
0.893
0.800
0.694
0.591
0.4oh
0.391

0.299
0.186

0.086

2.163 -0.017

Table 1.

U

-0.468
-0.641
~0.741
-0.830
~0.900
-0.956
-1.009
-1.050
~1.096

-1.333
~1.168

Reflected Shock Datsa

u

0.000
-0.211
-0.33h4
~0.hh2
-0.527
-0.595
-0.659
-0.709
~0.764
-0.809
-0.851

r
0.673
0.632
0.609
0.589
0.573
0.560
0.548
0.539
0.529
0.521
0.513

y = 1.h

r

1.683
1.475
1.356
1.251
1.168
1.102
1.042
0.993
0.940
0.898
0.858

s
1.683
1.687
1.690
1.693
1.696
1.698
1.700
1.702
1.704
1.706
1.708

Least Squares Polynomial Fit to Some of the Above Detea

kth Degree

2nd Degree

t =5.942 - 7.393 r + L.673 T2 .1.581 7 + 0.224 T

-




1.000
1.144
1.289
1.%05
1.525
1.642
1.753
1.864
1.972
2.077
2,181

Table 2.

1.000
0.899
0.798
0.698
0.598
0.408
0.400
0.299
0.199

0.099
-0.002

-0.669
-0.729
~0.775
-0.813
~0.8Lk4
-0.872
-0.896
-0.919
-0.939
-0.958
-0.976

el

0.000
~0.134
-0.237
-0.317
-0.383
-0.440
-0.488
-0.531
-0.569
-0.604
-0.635
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Reflected Shock Data

)
0.884
0.807
0.749
0.704
0.668
0.637
0.612
0.5%
0.571

0.555
0.5k0

y = 2.2

T
0.737
0.605
0.506
0.428
0.365
0.311
0.266
0.226
0.191
0.160
0.132

w|

0.737
0.740
0.742
0.745
0.748
0.751
0.754
0.757
0.761
0.764
0.768



Table 3. Reflected Shock Data 9y = 3.0
t x 11 u c T )
1.000 1.000 ~0.T9L 0.000 1.010 0.505 0.505
1.129 0.898 ~0.797 ~0.103 0.911 0.404 0.507
1.252 0.799 ~0.803 -0.181 0.836 0.327 0.508
1.378 0.698 -0.810 -0.248 0.773 0.263 0.511
1.501 0.598 -0.817 -0.302 0.723 0.211 0.513
1.621 0.499 -0.824 -0.348 0.683 0.168 0.515
1.741 0.400 -0.831 -0.387 0.649 0.131 0.518
1.861 0.300 -0.839 -0.422 0.620 0.099 0.521
1.981 0.199 ~0.847 -0.454 0.595 0.071 0.524
2.098 0.099 -0.855 -0.481 0.575 0.047 0.528
2.215 -0.001 ~0.864 -0.506 0.557 0.026 0.532

Leest Squares Polynomisl Fit to Some of the Above Date (l.st&1.T7h4l)
t = 2.357 - 6.185 T + 13.477 ™ - 18.585 T + 11.122 .

B8 = 0.525 - 0.046 T
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The solutions in Region III are characterized by plots of recomputed
"shock" paths (those determined by the isentropic solution in Region III)
and plots of wall pressure versus time, Figures 4 through 7. The numer-
ical datae for these solutions are given in Tables 4 and 5.

Figure 4, y = 1.k, shows that the more refined approximation
(s = El + ar as opposed to 8 = 'EO) resulted in a shock curve further
removed from the Whitham curve than the characteristic approximation,
although the difference is extremely small. Neither are in very satis-
factory agreement with the Whitham solution.

Figure 5 compares the wall pressure calculated by letting s = EO
and 8 = El + or. Here again the difference is negligible.

For y = 3 the different methods produce significantly different
shock curves. Figure 6 compares the Whithem shock, the 8 = 8, + or

1

curve, and the s = EO curve. The 8 = El + ar curve is a considerable

improvement over the characteristic approximation although still leaving
much to be desired.

Figure 7 shows that, as for y = 1.4, there is little to difference

between the s = so and s = s:L

ever, yield pressures which decay noticeably slower than those obtained

+ ar pressure distributions. Both, how-

either by extending the C+ characteristics from Region II to Region III
or by continuing the C+ characteristics from the shock, using slopes
obtained from the shock solution.

It would appear that the simpler approximetions for y = 3 are

somevhat conservative and that on the whole the wall pressure profile
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Figure 4. Shock or Characteristic Path  y=1.k
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1 4

Riemann shock - n=a+b¢

2nd degree approximation b3-— 0

————— Riemann shock - 7 =a+b#é

Linear approximation b2—--o
—_—— Riemann characteristic

O] From Circe Y=1.4; scaled

to read —pw= .056683 at

Figure 5. Wall Pressure vs. Time o=1.4

39




Table L.,

1.000
1.100
1.200
1.300
1.%00
1.500
1.600
1.700
1.800
1.900
2.000

Data From Solution in Region III

8 = EO = 1.683

Shock Curve

]

1.000
0.928
0.847
0.759
0.663
0.561
0.453
0.34%0
0.222
0.099

-0.028

Note: Pw

P

D

7y = 1.4

Wall Pressure

EV
1.000
1.154
1.354
1.617
1.971
2.459
3.151
4.162
5.694
8.10k4

R,

5.683 x
4,000 x
2.759 %
1.865 x
1.232 %
0.793 x
0.496 x
0.299 x
0.17h x
0.096 x




1.007
1.068
1.142
1.227
1.324
1.433
1.553
1.686
1.830
1.986

Po = ‘&.6050,
5

Shock Curve

Table 4.

8

Pl=0,

1.001
0.958
0.901
0.829
0.739
0.631
0.502
0.351
0.175
-0.026

Fa

81

= -1.1122, P

= -0.0148, P, = -0.0027,

k3

Contimied

+ ar

= 1.734, @ = -0.032

3
B

1.033
1.169

1.358
1.621
1.986
2.498
3.227
4,293
5.898
8.407

=0, P = 0.0896,

= 0.000k4

Wall Pressure

LY

5.683 x
3.997 x
2.759 x
1.865 x
1.232 x
0.793 x
0.496 x
0.299 %
0.17h4 %
0.096 x
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1.000
1.100
1.200
1.300
1.400
1.500
1.600
1.700
1.800
1.900
2.00

Table 5. Data From Solution in Region III

Shock Curve

»i

1.000
0.802
0.60k4
0.406
0.208
0.010

-0.188

-0.386

~0.584

-0.782

-0.980

8'80

= 0.205

7 = 3.0

Wall Pressure

ot|

1.001
1.110
1.250
1.k27
1.655
1.959
2.387
3.031
4.100
6.175

11.727

P
2.235 x
1.689 x
1.240 x
0.879 x
0.596 x
0.381 x
0.225 %
0.119 %
0.053 x
0.017 %
0.003 x




1.000
1.053
1.113
1.181
1.256
1.342
1.440
1.555
1.692
1.856

Tgble 5.

S=Sl

Continued

+ or

;1 = 0.525, O = -0.046

Ry = -0.7352, P, = 0.9996, P, = -0.2018,

Ps

Shock Curve

i

1.000
0.947
0.886
0.817
0.739
0.650
0.547
0.ker
0.283
0.110

= -0,388L, Py = 0.74%35

ks

0.996
1.111
1.256
1.441
1.680
2.001
2.45%
3.136
4.273
6.487

Wall Pressure

Py

2.235 x
1.689 x
1.240 x
0.879 x
0.596 x
0.381 x
0.225 %
0.119 %
0.053 %
0.017 %




Table 5. Continued

Continuation of Region II Characteristics
No Reflected Shock to Consider

!

1.000
1.200
1.4%00
1.600
1.800
2.000
2.200
2,400
2,600
2.800
3,000

Wall Pressure

46

2.169 x
1.255 %
0.790 x
0.529 x
0.372 x
0.271 x
0.204 x
0.157 x
0.123 x
0.099 x
0.080 x



Table 5. Continued

Utilizing u and ¢ From Whitham Shock Solution Extend
Straight C' Characteristics From Shock Into Region III.
Shock Curve Given In Table 3.

Wall Pressure

‘—b-w pw

1.000 2.252 x 107t
1.112 1.636 x 107*
1.236 1.200 x 107+
1.373 0.881 x 107t
1.526 0.646 x 107%
1.698 0.473 x 107t
1.891 0.346 x 107*
2.110 0.251 x 107t
2.360 0.182 x 107t
2,649 0.130 x 10™+
2.984 0.095 x 10~t

b



is rather insensitive to slight modifications in methods of calculation.

The large discrepancy in shock curves apparently results from the
assumption of isentropic flow behind the shock, although the epproximate
cheracter of the Whitham solution may meke some contribution.

In the discussion to this point the Whitham shock curve has been
considered an adequate approximation to the actual shock peth. For
7 = 1.4t and y = 3.0 a comparison was made between the Whitham solution
and the solution to the same problem using e numericeal code (Circe).
The numerical method uses a one~-dimensional Iagrangian approach with &
pseudo~viscosity term to give a smeared shock. Data for the Circe results
are given in Tables 6 and 7 for ¥ = 1.k and y = 3.0 respectively. Figures
8 and 9 compere the Whitham and Circe shock curves. It is apperent that
the Whitham shock accelerates mch too rapidly. A third calculation was
mede for y = 3.0, namnely a graphical-characteristic integration for the
shock and flow field between the shock and wall (see Appendix IIT for
details); data for this are contained in Teble 8. Figure 10 illustrates
the three shock curves for y = 3.0. The graphic solution appears to
confirm the Circe result; also the Whitham solution and the graphical
solution have opposite curvature which implies the continued divergence
of the two curves.

Scaled Circe pressure profiles are plotted in Figures 5 and 7. These
curves appear to confirm a previous conclusion, namely that the pressure

profiles are relatively insensitive to variations in the shock path.




Table 6. Reflected Shock Data Circe Oré682 y = 1.4 Sharp Detonation

t x u, e, dxfdt = u_te,
(behind shock) (megabars)

1.070 0.967 -0.0337 0.654 0.620 0.854
1.173 0.91%4 -0.116 0.625 0.509 0.659
1.275 0.847 -0.208 0.610 0.402 0.525
1.377 0.781 ~0.266 0.585 0.319 0.427
1.582 0.623 -0.388 0.555 0.167 0.300
1.787 0.452 -0.520 0.532 0.012 0.22%
2.094 0.160 -0.652 0.500 -0.152 0.155
2.401 -0.178 «0. 743 0.473 -0.270 0.114
2.709 -0.513 -0.814 0.446 -0.368 0.0885
3.016 -0.868 -0.913 0.434 -0.479 0.0709
3.323 -1.265 -0.955 0.411 -0.5u44 0.0583
3.630 -1.661 -1.015 0.396 -0.619 0.0490
3.937 -2.094 ~1.063 0.387 -0.676 0.0418
k.245 -2.497 =1.145 0.379 -0.766 0.0362
k.552 -2.92% ~1.172 0.369 -0.803 0.0318
4.859 -3.370 -1.210 0.361 -0.849 0.0281
5.166 «3.839 ~1.258 0.352 -0.906 0.0251
5.678 -4.602 ~1.294 0.341 -0.953 0.0212
6.021 ~5.179 ~1.304 0.327 -0.977
6.430 -5.893 -1.338 0.322 -1.016
7.659 -7.834 -1.466 0.303 «1.163
8.888 -9.942 -1.536 0.286 ~1.250

ko




Table 6. Contimued

t x u c, dx/dt = u e, 1
(behind shock) (megabars)
9.297 -10.585 -1.526 0.282 ~1.24k
9.707 ~11.241 -1.526 0.276 ~1.250
10.117 ~11.903 -1.538 0.269 -1.269
10.936 -13.571 -1.616 0.266 ~1.350
11.755 ~14 .94k -1.609 0.258 ~1.351
12.165 ~15.642 -1.613 0.25% ~1.360
12.57h -16.345 -1.622 0.2ko ~1.373
1%.296 ~-19.873 -1.721 0.241 -1.480
15.934 ~-22.809 ~1.715 0.231 -1.484
19.210 ~-28.886 ~1.761 0.211 -1.550
20.849 -31.958 -1.787 0.205 -1.582
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Figure 8. Reflected Shock Curves, Whitham Method and Circe y=1.4




Table 7. Reflected Shock Data, Circe OT676, ¥ = 3, Sharp Detonation.

[Note: p% . scaled to match Whitham results (p, x 0.3725)]

t x u Cq dx/dt = u.s+cs pwall p%(;a 11
(vehind shock) (megabars)
1.070 0.951 -0.01l7 0.926 0.914 0.488 1.818
1.173 0.873 =-0.102 0.918 0.816 0.369 1.375
1.275 0.788 -0.138  0.809 0.671 0.288 1.073
1.480 0.635 =0.210 0.679 0.%69 0.185 0.689
1.685 0.487 -0.287 0.622 0.335 0.125 0.466
1.889 0.336 -0.331 0.556 0.225 0.0889 0.331
2.09% 0.177 =0.361 0.489 0.128 0.0653 0.243
2.229 0.027 -0.393 0.446 0.053 0.04gl 0.18%4
2.504 -0.121 -0.421  0.k407 -0.01%4 0.0382 0.1h2
2.709 -0.282 -0.451 0.406 -0.045 0.0302 0.112
2.913 -0.41h4k ~0.477 0.383 -0.094 0.0243 0.0905
3.118 -0.576 =0.477 0.349 -0.128 0.0198 0.0736
3.323 -0.678 -0.490 0.329 -0.161 0.0164 0.0611
3.528 -0.853 -0.508  0.324 -0.184 0.0137 0.0510
3.733 <1.01% -0.518 0.290 -0.228 0.0116 0.0432
L.1k2 -1.297 -0.537 0.290 -0.247 0.00846 0.0315
k.552 -1.508 -0.558 0.278 -0.280 0.00637 0.0237
k.961 ~-1.930 =0.564 0.244 -0.320 0.00%92 0.0183
5.064 -1.987 -0.576 0.232 -0.34L4 0.00463 0.0172
5.473 =2.293 ~0.590 0.221 -0.3%69
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Table 7. Continued

v x Vg s dxfdt = ugte, gy P11
(behind shock) (megabers)
5.883 -2.546 ~0.596 0.215 ~0.381
5.985 =2.692 =0.605 0.208 ~0.397
6.088 -2.756 =-0.615 0.250 -0.365
6.190 -2.821 -0.609 0.241 ~0.368
6.295 -2.888 ~0.608 0.229 -0.379
6.395 =-2.957 -0.610 0.215 ~0.395
6.497 -3.026 -~0.616 0.207 -0.409
6.600 -3.096 -0.623 0.189 ~0.434
6.80k -3.236 -0.637 0.171 ~0.466
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Table 8. Reflected Shock Data, Graphical Characteristic Solution, ¥y = 3.

I N N o = S R
8

%

1.000
0.984
0.960
0.945
0.921
0.900
0.856
0.812
0.773
0.711
0.583
0.500
0.335

0.0
-0.016
-0.042
-0.056
-0.077
-0.095
-0.121
-0.153
~0.180
-0.218
-0.271
-0.306

25

1.009
0.992
0.971
0.949
0.927
0.907
0.857
0.822
0.793
0.751
0.666
0.627

dx/dt = ute,

(behind shock)
1.009
0.976
0.929
0.893
0.8%0
0.812
0.736
0.669
0.613
0.533

0.395
0.321
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The date of Tables 6 and 7 can be considered with regard to & dis-
contimuity in the flow behind the shock for y > 2 as discussed above.
For y = 3.0 there is a reversal in the trend of the characteristic
direction behind the shock starting at t = 6.088; however, for y = 1.4
there is also such a reversal at t = 9.297. It appears, upon further
investigation of the nmumerical results, that the character of the
numerical method does not meke a definite conclusion possible since the
flow behind the shock displays "secondary shocks" (defined by a non-
vanishing pseudo-viscosity) even before the reversal in the trend of the

characteristic direction noted above.
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APPENDIX I

Notation: di; i =0, 1, 2 - coefficients in quadratic expression
for t [Equation (73)]

63 = defined as do-l

a, b - the coefficients of Equation (71)

b = (1+mb), i.e., by = 1+b, b, = 1+2b, etc.

2

7 = 1.4

P7 = d2b5/2h0(2+7b)

Pg = [(5d2bha+d1b5) - 1680 P, ab,1/240b),
Ps = [(10d2b3a2+5d1‘b,+a+63b5) - 1680 a.2P7 - h80aP6(2+5b) ]/8Ob5
P, = [(5blal‘d.5+a5dl) - Imal’blps - h80a5(2+3b)1>6 - 16808.61)2?7]/3208.(1)-2)
P, = [(d2a5+5dlbla"‘+10d3b2a3) - 1680a5b6p7 - 1200aubuP6 - 800a3b21>5
- 160(1-!4L‘o)1L>2]/960a2
P, = [638.5 - h80?7a7 - 2hop6a6 - 80P 8’ - 160P28.2]/950

5

P5 arbitrary, set = O

Pl erbitrary, set = 0




To determine the Pn's coefficients of like powers of & in Equation

(74) are equated to zero. P7 = P,_((a ,b ’di) is then determined by equating

the coefficient of §7 to zero and P_ = Pn(P

n L ’ P

n+l’ . L] 7
setting the coefficlent of §n to zero. This procedure breaks down for

) a‘,b,di) by

P5 and Pl ; these constants are indeterminate and found to be arbitrary.

P2 and Po are independent of P3 and Pl' Pl& represented a special problem.
For the case where only terms linear in b were retained Ph could not be
obtained from the coefficient of §h ; however, by taking the derivative of
Bquation (74) with respect to &, P, could be determined independently of
P), end then the original expression for P2[P2=P2(P)+ ,P5 ,P6,P7,a.,b ’di)]
could be inverted and solved for Ph'

The cese where terms of order b2 were retained was again independent
of P, and P.. Ph- could be determined directly but the expression was

3 1

very unstable numerically since changes of 2 percent in P_, P6’ and P,

5 T
resulted in changes of 150 percent in Pl&' Because of this 1“LL was evalu-

ated in the same manner as used in the linear solution.

P = -0.5b,d, /(1+b7)

P, = -[O.5(bld3+adu) + 5ath5]/(l+bh)

= -[0.5(v,d,red,) + 10a2b31>5 + hab3Pu]/(l+b3)

= -[0.5(b,a +ad,) + 10a3b295 + 6a2b2Pu + 3ab293]/(1+b2)
= -[o.5(bld5+ad1) + 5akuP5
-[o. 5ad5+a5P5+auP u+a3p3+a2P2+a.Pl 1/2

v W W
HonoWw

+ haBbPu + 3a2bp3 + 2abP2]/(1+b)

o"U
]

29




These coefficients Pn were obtained without complication by setting

the coefficients of §n in Equation (85) to zero.



The purpose of this appendix is to demonstrate that a weak shock
entering a centered rarefaction ending in & vacuum will, for y > 2,
generate a discontinuity behind the shock which propegates back into the
fluid. This occurs when the shock reaches sufficient strength.

We shall begin by considering a strong shock in a centered rare-

faction as sketched below.

The C+ characteristics can be represented as

dx _x
Before the Shock: (&) T opTutec=1
u c
() 3+ 53 =7 (A1)
After the Shock: X =u +c_ =@ (A2)
*odt ] 8 :




We can also write down the strong shock relations (see for example ref.l,

p.121-122)
w =Ny 2t, (a3)

c = .\/5_%{%)- (U-na) - (A4)

The shock velocity can be represented about %Y by
U = U, + Uy (n-n,) * U (n-n)? + (a5)
o) 1 L 2 1 * e

We also have for the centered rarefaction

u c
3-50= % @ constant. (A6)

7=

Combining (Ala) and (A6) one obtains

c = g;—i (n-2so) (AT)
u=¥-_‘_—l 7L+23) (A8)

And by introducing Equations (A7) and (A8) into (Alb) we bave
- £ 2122
I‘(Tl) 7+1 Tl 7+l so‘ (A9)
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Substituting Equations (A3) and (A4) into (A2) and replacing u, c,
and U in this expression by (A7), (A8), and (A5) (to first order terms)

there results
=42 _.él
\QZE-]_E 2n_ r=1
71 [UO+U1(T‘-T'1) - 7+l - 25, 7+l] (A10)
and
@ _ 2 1)), 2 (222 WfGL
B (A A AL e
Looking at the coefficient of Ul we find
-1
(o AED) <o ror 7 > 2
(1-@>=0 for y = 2
-1

which means that the sign of df/dn depends both on y and the magnitude
(end sign) of U, = dU/dnnsnl. Assuming U, > 0, it is then possible to
have df/dy < O for sufficiently large U). We shall now demonstrate

that Ul does indeed get very large at the tail of the rarefaction and
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hence for y > 2, dffdn < 0 (note for y < 2, d@/dn > O for all positive
Ul).
Using the characteristic rule

d.ps - pscsdus =0 (A12)

and the strong shock relations

p, = o p(U-)? (A13)
o, = g% 0 (A1k)

along with those already introduced [Equations (A3) and (Ak)] we have

(since all variables are functions of n)

R

2 2
= -’ LK TR emtamnns| - t
'_p; T p(U-u)(U'-u') + 7+1(U u)< p

w! = Ao U+ L2
s

(where primes denote differentiation with respect to 'q) . Combining

the above equations ylelds

7—I:I p(U=u)(U'-u') + ;—f—l—_(U-u)ap' 1-\1% p(U=-u) [:;;%—.(U'-u')-m':l = O,
(A15)




We note that in the simple wave region

2.5 @. (A16)

Introducing Equations (A5), (A7), (A8), and (A16) into (Al5) we obtain
2 2(7+1) -1 2 2(y-1
E<Ul - 7+1> * (y-1)2 (n-2s;) [U0+U1(“"‘1) Ty N7 éy-+1§50

2
B (5 - 5+ 1) -

Setting n = 0, and solving for Ul there results

2(7+1)(U . =u)
U. = -2 2..[1?1__1’1 - 0 . A1
e [= P (r-1)(n,-25,) wn

Now on the limiting characteristic ¢ — O hence by Equation (A6), u — 28

0"
But n = u + ¢, therefore st limiting characteristic n —u -» 2s.
Letting "1 approach the limiting characteristic means the second

term on the right increases without bound. Since (Uo-u) < 0 we have

as 1y - 25, Uy o (A18)

Having considered the strong shock at the tail of the rarefaction
we shall now consider a weak shock at the head of & rarefaction. For

a weak shock we have the approximate relations (see for exsmple ref.h4,p.122),
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u, =u+ 2t [U-(u-c)] (a19)

7+l
c,=c - 271;% [U-(u-c)] (A20)
‘-’-;‘-‘-‘- +1=0. (a21)

Combining Equations (Al9) and (A20) with (A7) and (A8) and utilizing

(A5) we have
z_ b an)e 252 g . y2ok
ug = 7rli + 2so> S [Uo‘”UJ.("‘ M) 30 - Mg So]
= 2=L(q - or=d en.) = 22 oo 2ol

cg = r(n-2sy) - 2oy [UO+U1(n m) -5 - VI e
which combined with Equation (A2) gives

§ = 1+ 28D gy (neny) - 2L 0 - 425 | (ac2)
Differentiating Equation (A22) one obtains

ag _

an - 1t- 7+1 Uy (a23)
Combining Equations (A5) and (A21) glves

Uo + Ul("l"’ll) Tu-~c



which by Equations (A7) and (A8) is equivalent to

o) = 22X -1
U + Up(n=ny) = &L n + M5 s,

Taking d/dn we have

U, = 55% (a2h)

for a weask shock, which combined with Equation (A23) gives
i
=1>o0. (A25)

Summarizing, it has been shown that for a weak shock entering a
rarefaction fan, d¢/dq > 0. This shock will increase in strength as it
propagates through the rarefaction. For a strong shock approaching the
limiting characteristic it was also shown that df/dn > O for y < 2 and
dg/dn < 0 for y > 2, hence for y > 2 there is a chenge of sign in dg/dn.
This change in sign implies a discontinuity in the flow behind the

shock (see sketch below).

d¢
an <0
d¢
dn >0
™~ Shoek

Y
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This appendix illustrates the graphical procedure for computing
the reflected shock curve and the flow hetween the shock and the wall
(see for example ref.5).

The fundemental equations can be written as

Continuity %te + %}f:—“l = 0 (BL)

du 1

Ju
Momentum -l (B2)
Entropy condition g—% = g% + u g% = 0 (B3)
Equation of State (a) p = ERT

(®) <2 = yp/p = oRT

-8 = I . 2
(¢) 8 -8 cpﬁn Rin B, (BY4)

1 T

1l

Combining Equations (Bl), (B2), and (BL4) one obtains

SErze)s ok (rem) Rl (35)



where the left side is the derivative of 2/y-1 c + u in the direction
dx/dt = u + ¢ in the x,t plane.
It is convenient to define the derivatives in the characteristic

directions as

3 3
5 "ot (W) 5

g% = %E + (u-c) %; . (B6)

The Riemann variables are defined as

2
P—;:l-c+u
2
Q=;1-c-u. (B7)

Since D/Dt = 3/3t + u 3/dx it is possible to eliminate the ds/dx term

in Equation (B5) as follows;

d * -
C&'= - = -

2
2
#°

Noting that for the flow under considerations Ds/Dt = O, Equations

(B5) become
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5'p
(8) Fg=c5
(v) g% = (28)

where velocities have been suitebly normalized and the entropy has been
normalized on 7R.

Summarizing, we now have

o

+

%zc%% oncurves%=u+c (B9)
%%-c-s—a-% oncurves-g—’é-u-c (B10)
Ds dx

=0 on curves z¥ = U . (B11)

For a finite difference approximation these equations can be

replaced by equations of the form

+ - +
AP, =, A8, (B12)
where A+P12 is the difference in P between points 1 and 2 on & particular

+
C characteristic. c12

is the average sound speed between 1 and 2 along
the characteristic.
At shock points these equations do not hold but the Rankine-Hugoniot

equations apply. If the unprimed quantities apply before the shock and

T0




the primed quantities after the shock we have for a leftward running

shock
8- 16 ) B )
(B13)
IE -2 ,,( M2> (B1k)
Sl =5V + g%i(M?'l)] [1 + Z:l(Ma-l)] (B15)

e z,{l . %<M2-1>] + Aotn L [1 . x;.;%m?--l)] .

(B16)

It should be noted that the flow quantities in front of the shock

are known.

For y = 5.0 the following procedures were used for the various
types of points. Iterations were not necessary in practice because of

the slow changes in the variebles.
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(A) Interior Point

¢t Slope = 1

1 -
Slope = - C \
Q P,

i 1/{1 .1
Particle Path Slope= —2-( T, + F,)

All data are known at points 1 and 2, therefore

2
53 = -I-,I(S2-sl) +8)

P, =P + 01(85-81

3 1
Q.5 = Q2 + 02(55-52
1
us = 5(P575)
c, = —]l(P +Q_)
5 2V3 73

(B) Wall Point

I
NASNANNN
@®

T2




All data are known at point 1, and LR is known from original shock

reflection.

e
u =90
e

c =P
e e
Q‘e=Pe

(C) Shock Point

«-Shock SI 1

®

-—-\‘—® Shock Slope=

1
\Z
All data are known at 3 (but not at 3') and 2.

Assume 5% = Q2’ form (-Qé-QB) /c3, and using Rankine-Hugoniot equation

obtain s.!.
3

Recompute QB' =Q, + c2(s_>1-52 and again form (Q,5'-Q3)/c3. Repeat

until Q3' no longer changes, then from R-H equations one obtains 33’, c3' s

u%, M3 By definition V‘3 = \13 - c3M3.
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