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PERTURPATION TRANSFORMATION OF NUCLEAR CROSS-SECTION PARAMETERS

BETWEEN WIGNER-EISENBUD AND KAPUR-PEIERLS FORMALISMS - THE PERTA PROGRAM

by

Doneld R. Harris

ABSTRACT

The transformation between nuclear cross sections in the Wigner-
Eisenbud and Kapur-Peierls formalisms is expressed by treating off-
diagonal elements of the inverse level matrix as perturbations. A
FORTRAN IV program, PERTA, is developed to compute the perturbation

transformation.

The applicability of the perturbation to real nuclei

is tested for low-energy neutron cross sections of fissile nuclides.
The perturbstion trensformation is applied to the study of properties
of Kapur-Peierls parameters, namely, their probability distribution,
the range in energy of interference effects, and the degree of asym-
metry of resonant shapes of radiative capture cross sections.

I. INTRODUCTION

The Wigner-Eisenbudl’ 2 ana Ka.pur-Peierlss’ b
miltilevel formalisms have been used extensively
to interpret nuclear reaction phenomena and to fit
observed cross sections. They have been used in
preference to single-level resonance formulae to
describe nucleon interactions with a wide range of
nuclei, inecluding oxygen, manganese, and fissile
nuclides, for which mmltilevel interference effects
are possibly or actually significant. Although
these formalisms are consistent, and can be derived
from each other,l’ 2 their application is comple-
nentery. Expressions for cross sections in the

Kepur-Peierls formalism are simply related with ob-
. served cross-section shapes. Moreover, in fitting
Kapur-Peierls expressions to observed cross sec-
tions, knowledge is not required of numbers and
On the
other hand, the parameters appearing in the Wigner-
Eisenbud formalisms are directly related with nu-

characteristics of levels and channels.

clear wave functions. This fact permits inferences
about the nuclear wave functions from observed
Wigner-Eisenbud parameters, and it permits general-
izations such as the Porter-Thomas plausibility
e.:rgumenté for the probebility distribution of Wigner-
Eisenbud parameters.,

The exact transformation between sets of num-
bers parameterizing the two formalisms is well-
defined,l’sand programs are a.va.ilableh’ 8 for accurate
numerical transformation from Wigner-Eisenbud to
Kapur-Peierls parameter sets. The exact trans-
formation, however, is not simple, and it is not
easy to understand the action of the transformation,
that is, of the interference mechanism. 1In partic-
ular, the joint probability distribution of Kapur-
Peierls parameters has not been determined.

In the present study, an spproximate but clear-
er transformation between the two formalisms is de-
veloped (Sec. II), tested (Sec. III and IV), and
briefly applied (Sec., V) to clarification of cer-
tain properties of Kapur Peierls parameters, namely,




their probability distribution, the range in energy
of interference effects, and the degree of asymme-
try of resonant shapes of radiative capture cross
sections. This transformation, a perturbation
transformation, is described in detail in the next
section. The perturbation transformation proceeds
from the Wigner-Eisenbud to the Kapur-Peierls pa-
rameter sets, but if the perturbation is indeed
small the transformation can be inverted.

In the Wigner-Eisenbud i‘orma.lism,l’ 2 the total
cross section, Uct’ and the cross section for reaction

from a channel ¢ into a chennel cj 0, are expressed

ce
as
2
Ot 2 ng Re(l - Uﬂ) ’ (1)
¢ g
and
s JI
Tec? K2 ng Bee’ -Ucc' ‘ (2)
[+

Here kc is the wave number of the incident particle
in channel ¢, and g; is the statistical weight for
states with angular momentum J and parity lI. The
elements of the collision matirx UJn are determined
by the level matrix A'N

s (3)

ce A'e

i{ep +p /)
Jn rl2m1‘12
U .=¢ ¢e scc'+i E: )\é A)J\' !

2,0 ednl

where R is the phase shift for potential scattering
in channel ¢, and 1")\ e is the partial width for decay
of level ) through channel c. By conventim, 1% 2

is assigned the same algebraic sign as the corres-
Finally, the

is defined in terms of its inverse

ponding reduced width amplitude.9
level matrix Am

I EE T DI

»
Aec
c

2 is the

where E)\ » aside from a small level shift,
energy of a nuclear state.

The numerical and conceptual difficulties in
practicel epplication of the Wigner-Eisenbud for-

1 to ob-

malism arise in part in the inversion of A~
tain the level metrix A. A useful approximate in-

version was developed by munaslo using first order
perturbation theory regarding the off-diagonal ele-

ments of AL as perturbations on the diagonal part.

A similar technique is employed here, but perturba-
The transfor-
mation between Wigner-Eisenbud and Kapur-Peierls
parameter sets is facilitated by introduction of a
caomplex orthogonal matrix S that diagonalizes the
inverse level matrix A" to a diagonal matrix D.

In Sec. II we develop the perturbation calcula-

tion theory is applied differently.

tion of S and D, again regarding the off-diegonal
elements of A.l as perturbations on the diagonal
part. This procedure is consistent with Thomas'
analysis, and it can be shown that level matrices A
computed by using the two approaches (we do not actu-
ally display & computed A in the perturbation trans-
formation) differ only in terms of second and higher
order in the perturbation.

The remaining problems in developing an intel-
ligible transformation between Wigner-Eisenbud and
Kapur-Peierls parameter sets are algebraic and num-
erical. In particular,it is not clear when terms
of second and higher order in the (not always small)
perturbation can be profitebly discarded or retained.
Some of these alternatives, and the generel applica-
bility of the perturbation transformation, are
tested by use of the FORTRAN IV program PERTA, de-
scribed in Sec. ITI. Results are presented in Sec.
IV for a representative set of 31 levels in 235’0 +
n that exhibit both weak and moderatly strong level-
We conclude that the perturba-
tion results describe weskly interfering cross sec-

level interference.

tions well and describe moderately strong interfer-
ence qualitatively.

The perturbation analysis re7uires that the
off-dlagonal elements, - i/2 %31‘;'0 )\{i, of the in-
verse matrix be small in some sense campared with
the diagonal elements E, - E - i/2T,. A sufficient,
but not necessary, condition for this requirement is
that level widths are small compared with level
spacings. Perhaps & more widely applicable condi-
tion for this requirement is a large degree of in-
coherence in the level parameters I‘i‘é 2. The ex-
treme form of such incoherence is the assumption

that for channels of a class cI

z I‘i‘f Pi{i B rkcI o (5)
cecI

This condition is not precisely applicable to a non-
vanishing, multichannel dyadic product, but it has



been very useful in practical application of the
Wigner-Eisenbud formalism.9’u

y Porter and
others®»10,12 have discussed the physical bases for
incoherence. Here we regard the applicability of

the present perturbation theory to be a question for
experimental test.

It cannot be expected that the perturbation re-
sults will apply even qualitatively if mltilevel
interference is very strong, as has been suggested
by Lynnl) for certain fission processes. The pres-
ent perturbation enalysis provides a convenient
test for strong interference in that to first order
in the perturbation the level energy and total level
width are unchanged in the transformation between
Wigner-Eisenbud and Kapur-Peierls parameter sets.
This is in marked contrast with the Lynn effect
where interference is so strong that interfering
Wigner-Eisenbud levels shif't so much in the trans-
formation to Kapur-Peierls parameters that they co-
alesce. An immediate test of possible applicability
of the perturbation analysis to a particular set of
cross sections is thus a test of approximate equael-
ity between level energies and total level widths in
equivalent Wigner-Eisenbud and Kapur-Peierls param-
eter sets,

It will be shown that this test is satisfied
for the 23 5U +n cros'sz sections studied here.

De Saussure and Perez' have also reported Wigner-
Eisenbud and Kepur-Peierls parameter sets, trans-
formed by using the POLLA program,7 for 233’(} + n,
and again the test appears to be satisfied. If
interference effects are moderate for such nuclei,
then the perturbation transformation has greater
applicability than might have been expected. Had
very strong interference effects been observed then
more accurate trensformation equations might be de-
veloped by treating a few levels or channels exactly
and applying a very approximate treatment to the re-
14-17,10 One of the conclusions of the
present study (Sec. V) is that some interference
effects are long range, varying as the inverse
level spacing, and it can be conjectured that neigh-
boring levels do not provide all significant inter-
ference effects,

nainder.

These results, the apparent absence
of Lynn effects for certain importent nuclei, and

the long range of interference effects provide mo-
tivation for the study of multilevel interference
effects by many-level, many-channel approximations.

II. THE PERTURBATION TRANSFORMATION

It is convenient to develop the perturbation
trensformation with reference to the diagonelizing
procedure and notation of Adler and A:.i.'l.er,l al-
though we do not yet wish to limit the incident par-
ticle to be an s-wave neutron.
diegonal matrix. Then AT + EI, 2 complex symmetric
matrix with components E 8,/ - %’)I‘;\Lé 2 I‘i‘(i, is ai-
agonalized to D by a complex orthogonsl matrix S.
That is,

Let D represent a

(at s EI)S=Sp . (6)

Recalling that the inverse of an orthogonal matrix
S is its transpose, Str, then

At = s(o - BT, (7)

and the inverse of A is readily obtained by
A=s(p-£er)t st (8)

To the extent that A~l + EI is insensitive to en-
ergy,l9 the diagonalizing matrix S will be also, and
the energy dependence of the level matrix A is con-
fined to the diagonal matrix (D - EI)']'. Writing

out Eq. (8),
= s)\k S)‘ ‘k (9)
Aae Dy - E ’
k
and introducing this expression into Eq. (3), the
collision matrix is obtained.
/2 ed/2
awiah sk

U, = eHogtwys) Byet iz ke

o -5 | ¢ (0
k

kk

where the complex width T‘kc for level k and channel
¢ is defined by

?11:42 =z Sk 1’%2 . (12)
x

Cross sections can then be obtained from Eqs. (1)
and (2) by application of the lemma of App. A.
First, however, the present perturbation technique
is described in some detail.

Let B represent the matrix Al s Er , and sup-
pose B can be decomposed into parts 8 + 8B, where
8B is a small perturbation. Let § represent the
matrix that diagonalizes B to D, and let § + &3
represent the matrix that diagonalizes B + 5B to
B+ 8D, In App. B, a perturbation theory for
symmetric matrices is developed, and expressions are
obtained for 8D [Eq. (B-7)] and for 8S [Eq. (B-15)]
to first order in the perturbation.




8Dy = z S BB S o (12)
AN
and

E . S)\ /ka%\ o8y

- P 2
85, z N By - (1)
i ke

In a previous study, the perturbation was taken
to be the energy-dependent particle channel contri-
butions to the inverse level matrjx.lg Here we take
the unperturbed B to be the diagonal part of A"

EI, while 8B is the off-diagonal part.

,=(B -E-2T)8., (14)
'y E}\ 2l5)\}\

and

B,/ = - Z 1%2 I‘yi (1-8,) - ()

In this case a great simplification emerges in that
B is already diagonal, so that 8§ is the identity
matrix I, and D equals B. Thus, from Eqs. (12)
through (15),

8, =0 , (16)

and

88,, = . a7

The complex level widths T‘kc are obtained from Egs.
(11) and (17),

/2
SCRETel R RS IS
AeJl “ke
2k
where
Ty - T, )/2
1 1 2 /2
F)\k (Ek E)‘)Q_‘_ (r -T )/ 2 21‘1];0’ Iic/,(l9)
and
(5, - &) 1 /2 /2
Ak (B -5 )2+ (T, T, 2 2 g e’ I‘ic,.(zo)

The operations expressed thus far in this sec-
tion refer to levels of a particular spin-perity
To illustrate, the kth level referred to
in Bq. (18) is a member of a particular spin-parity
sequence JN (keJN). Levels of the JIl sequence in-
terfere with one another and only these contribute
to the perturbation of T‘kc.

Cross sections can be expressed conveniently

sequence.

in terms of parameters M}; 2' vhich we refer to as
fractional perturbations. For the level k(kedll),
for channels ¢ and ¢’, and for j = 1, 2,

»s )1\é2 14/2 . (21)

The fractional perturbation Ml:‘l ; is symmetric in ¢
and ¢’, and has the property that

M‘i, - % (ﬁi + M‘:J,'c,) . (22)

Further discussion of these perameters will be de-
ferred until cross sections are expressed in terms
of them.
The perturbed level widths are, in terms of

fractional perturbations,

~ / 2 - 1 [

B2y fai(s )] . @
The perturbed collision matrix U‘;Té, is obtained vy
substituting Eq. (18’) into Eq. (10) and applying
Eq. (22), so that

UJn , = ei(C)c'ch I)

ce
/2 I‘l/‘? ,+ iR
+iz ke -g-lr/2 ] s(23)
keJn
where
k1l 1
Ree? = Moo * E( ce M]::lc ce Kkz ) » (24)
and
Rk2’.l£<2'+ ( Il+l£‘2}£{-l;l)' (25)
ce ce ¢ ¢c ce c’e

Later, we numerically test the adequacy of approxi-

Y3
mating Rcc
PERTA program.

¢ by the linear term Ml:‘l, by using the

In Eq. (10), Dy has been replaced by



its wiperturbed value ﬁkk or E - il‘k/a. The remark-
able fact that to first order in the perturbation
the level energy Ek and total level width I‘k are un-
changed according to Eq. (16) permits identification
of Wigner-Eisenbud levels and Kapur-Peierls levels.
In the presence of strong interference, such identi-
fication is not s:l.\uple.13 The invariance of Ek and
I‘k/e in the perturbation transformation is, of
course, a much stronger statement than the well
known invariance of ?F‘k and §PK/2 resultini from
the invariance of the trace of the matrix A ~ + EX
in the orthogonal transformation [Eq. (6)].

A. Total Cross Section

results from sub-

stitution of the expression of Eg. (23), for the per-

turbed collision metrix into Eq. (1), noting that
; gJ is unity.

The total cross section cct

g = 2 1‘;,(1+R ) ; (30)
n

ak=;212m—ng];R‘n‘i , (31)
n

“}c:Ek s (32)

and

T,

v 2 . (33)

The perameters R!:g contain the effect of the
perturbation on total cross section, which otherwise
has the usual Breit-Vigner form. It can be seen
from Eqs. (24) and (25) that the paremeters Rkj de-
pend on the fractional perturbations Mk o’ and, in-
deed, approximate them when they are small compared
to unity.

Y 2
Iet =73 sin O
c

k

cC

T ,5-2‘[(1 + Rkl)cos e - B2 sin

Joieolle )2z ]

(B - E)? + To/b

(26)

For s-wave neutronms, a widely used notation intro-
duced by the Adlersls’7 is

nt__'SInZKa +-—TZZ M
K O wean (e - E)T + v
(21)
T o cos 2 a + B sin2ka (28)
and .

Hk = Bk cos 2kna.n - % sin 2kna.n . (29)

A necessary modification to their notation has been
introduced in that we explicitly sum over each level
in a particular spin-parity sequence, then over all
The neutron phase shift O is taken to
be - Kn times the neutron channel radlus an, and
the neutron width T is expressed as Pkn El 2
Comparing Eqs. (27), (28), and (29) with Eq. (26), we
obtain the first-order perturbation transformation

sequences.,

from Wigner-Eisenbud to Kapur-Peierls total cross
section perameters for the level k(kedll),

Reference to the definition of fractional perturba-
tions, Eq. (21), shows that they tend to be larger
for week levels, specifically, Ml:‘g varies as l/l"l]{‘(/: 2,
Moreover, the presence of other strong levels in-
creases IMJ:ZI » although their effect has a rather
week dependence on level energy separation, varying
as (& - E )T for ¥ and as (E - E )2 gor ME
Finally, a nearby strong level will have little ef-
fect on Mkl it 1‘ approximately equals I , and it

Wlll have little perturbation effect at all if
B2 /2 15 smany,

B. Reaction Cross Sections

The reaction cross-section o_ .+, ¢ # ¢’, is ob-
tained by substituting Eq. (23) into Eq. (2), applying
Eq. (22), and ignoring terms of second order in the

perturbation,



1/2r1/2r1/2ri/2' [1 + ki 'L s Qkk 2]

. (34)

-E - 1Tk/2)(Ek' e 1rk:/2)

This expression can be simplified by use of the lem-
ma of Apr. A,

,-n o' (B - E)
=~Z z -L)“+I‘/b 03

the incoming or outgoing channels, or both.
c. The dependence of Ml:‘z, contributions on
level separation is rather weak, varying

for Mki, and

approximately as (E E}\) -1
as (E E)\) 2 for @d

d. Even a strong level may only wea.?ly perturdb
a nearby weak level if 2;\ kc kc

(R LY . 0) R

(Ek—E')e*-(I‘ +I‘,)2/‘¥

)(Ek nk)+q 2(1‘ +r,)/2]

(g - Ek’)2 +(r + rk')e/“

. (37)

c JAa keJl
where A o'’ °T Ak ELB]( of App. A is
o/erl/arl (e 2
RIS (1+Qkk1)+1. Z ke ke k'ck’c
ce’  *ke ke’ ce’ k
k’edll
k'#k
and
rl/ar‘l/ 2 [( +
k “ke “ke’ ir}l: o L\E Q‘c
B ,=2
ce
‘el
Here
kk‘l k1 k2 k1 _k‘l, k2 _k’2 .
Qe Roc’ * Beer * Ree R]:c' Y RocRoe’ 2 (38)
kic'2 k2 k’'2 k2 k'l Xl k2
Qee’ = Rogr = Ko7 + Ro/R 7 - R R, 7 , (39)

and if the fractional perturbations are small com-
pared with unity, then approximately

!
QI:]: * =Moot * M}:CJ; ’ (k0)
and
kk'2 _ 52 ‘2
Qoe’ = Moo’ - Ml:c' : (k1)

Again, we numerically test this approximation later
by use of the PERTA program. Ageain, the parameters
MJZ‘Z, act as fractional perturbations, and their mag-
nitudes are governed by the same considerations as
noted before. Let us list these considerations as

they apply to the fractional perturbations Ml:i,:

a. Both Ml;i, and M‘ii, tend to be large (of
either sign) when the level k is weak in
the incoming (I‘kc small) or outgoing (rkc'
small) channel, or both.

b. Both Mﬁi, and M);i. tend to be large (of
either sign) when one or more other levels

in the same JIl sequence are strong in either

small for this pair of levels, or (through
Mzi':) if the levels have nearly equal total
widths.
e. When, as is often the case, level widths
are smaller than level spacings (AR),
and hence Mki tend to be larger than

Fl and Mkl by an order of magnitude in

2k
T/2E.
Although the fractional perturbations, Ml; g:,
are descriptive and compact, they suffer in their

definition from a difficulty that a.ppea.rs clerical
If I‘:L 2 or I"ll‘/ ? is
small or zero, then Mtgl is very large or singular.

)\k

but is in fact more interesting.

The actual magnitude of the perturbation
,
3 2 p/epl/2r1/2rL/2 (K
Pl;l:' - r:-cczrlic'ri'c#c'c'ﬁ;c' (2)

remains finite or vanishes, so that the effect on
cross sections is finite or zero. A large fraction-
al perturbation implies only that there can be a
violent fractional effect of interference on a week
The clerical difficulty created by a zero
value of I’l
gible but fmlte increment to I‘il{é 2, and this device
is employed in the PERTA program described later.
Such a zero value of rkc might be adopted for con-

channel.

can be circumvented by adding a negli-




venience in a cross-section fit. On the other hand,
physical considerations suggest that a channel ¢
might be closed at one level k (rkc = 0) and yet be
open at some other levels of the same JNl sequence
if the state k has some further, not yet defineg,
quantum number that is not suitable for the reac-

tion to proceed through channel ec.

C. Fission and Radiative Capture of s-Wave Neutrons

Cross sections for fission and radiative cap-
ture of s-wave neutrons can be expressed in the

Adlers' notation, 18,7

+ (v - E)
nf "7"2 z E:];-b ;i ’ (135)

T wean Oy - Y
and
et (uk - E)H;
Z z R
7 23
LA TMxegn (e - BT+ v

The parameters e and V) are equal to level energy
ang T" /2 as is described by Eqs. (30) and (31). In
the case of fission, the parameters F and Hi are ex-
pressed as sums of contributions ﬁ-om various 1‘1s-
sion channels , cef,

SR (u5)

) B (46)

cef

and

vhere, comparing Eg. (43) with Eqs. (35) through
(37),

a fission channel, a particle emission channel, or
a radiation channel,

In particular, the cross section for radiative
capture through one or a few channels is expressed

DY (49)
1{.21{; . (50)

However, the total rediative capture cross
section through many channels is usefully expressed
in a different way by use of the incoherence approx-
imation of Eq. (5) for radiative channels, where

z T,lf rll‘(i Ty, By - (51)

ceY

as for fission.,

and

VWhen this approximation is made

¥ s leplan

cEy

18y - roM/2rol/z

o ky 3 MamBix k'n kykk'(l‘sm’)’

(52)

and by using this relation, GZ{ and r{z can be ex-
pressed as

0 I‘
c_ 2 Y kn ke
"2 &|7T (l“e“:zd)
2 K

.5 el [t s M’Sc)“ + T/ - (2 - %), - Ek']} a7)
(5 - B )%+ (1, + T, 0% b

k
n k‘eJn

k'#x

W - BB z r°1/2r1/2101/2r1/2 [(l s Ml;;l)(?k - B+ (Mrli N M};;E)(rk * rk')/2]
2" & (Ek - Elkl)z + (I‘k + I‘k:)%

(48)

These expressions describe the cross sections for

neutron reaction into any channel c, whether this be



L k
. I‘°l/2’l"°}/2[ ,(I‘ I‘k‘,y)(l"k + I‘k,)/e + Fik”(rky + rk"y)(Ek - Ek’)] (53)

x’eJll (8 - 57 + (0 + 1)

k'#x

1 2 2
S 2 ., rﬁn/aff’r/; [Fik,(rk = Tyery ) (B - . E/) Fkk,(}z + T )T + rk,)/e] . (54)
kn k'egn (Ek - Ekl) + (T.‘k + Fk/)/l&
Xx'#x

These results for radiative capture of s-wave neu-
trons complete our development of expressions for
cross sections by first-order perturbation of the
inverse level matrix. Similar, more accurate ex-

pressions might be obteined by second-order pertur-

bation of the inverse level matrix.

III. THE PERTA PROGRAM

The PERTA program, in FORTRAN IV for the CDC-
6600, computes the perturbation transformation
from input Wigner-Eisenbud parameters to Kapur-
Peierls parameters in the Adler form. The program
was devised to test aspects of the perturbation
transformation and has extensive edits.

output are described in App. C.

Input and
The program computes
and edits the imaginary part of the inverse level
matrix, Eq. (4); M and 2, Eq. (21); R and K2,
Eqs. (24) angd (25); Mkl and M‘k2 for f:.ssion channels
¢, Bg. (21);: Rkl and R ¢

(24) and (25); a.nd the quantities appeering in Egs.
(27) through (29), Egs. (45) through (48), and Eqgs.
(53) and (54).

edits an area factor and tilt factor for each cross

for flssmn channels ¢, Egs.

The program also computes and

section, for example, for the total cross section

ART, = G}’E /G}:E (single level formula) , (55)
and
T /.T
el -

Similar arca and tilt fectors are computed and edited

(56)

for each fission channel, for all fission, and for
redietive capture.

Input parameters control the a.pprox:.matlons
used for R © kJ i Eqs. (24) and (25) and for Q];}é 3

(ce fiss:.on) in Egs. (38) through (L1).

IV. NUMERICAL RESULTS

The numerical results chosen for presentation
here are based on the Wigner-Eisenbud parameters
in a Reich-

fission) cross sec-

for 31 levels determined by Cz'a.mer20

235y (n,

Moorel:L fit to measured

tions. Inspection of these parameters, vhich are
listed in Table I, suggests that level-level inter-
ference is expected not to be strong except in the
neighborhoods of 26 and 45 eV. Table II demon-
strates the perturbation transformation prediction
that level energies and total level widths are ap-
proximately unchanged. The Adler parameters listed
in Table II were computed by the POLLA program of

de Saussure and Perez.! Tt is not known why ? E,
fails to equal %)uk as is required by the invariance
of the trace of a matrix under the transformation
[Eq. (6)], which we noted earlier.

In Table IIT are listed the total cross-sec-
tion parameters R and ﬁk as computed by POLLA.7
These are compared with various PERTA approximations.
The right-hand column shows that with zero perturba-
tion (1vr‘r‘1;'j1 = 0), the value of B_
puted to be zero.

is erroneously com-
From the central columns of Table
III it appears that retaining terms quadratic in
Mﬁg in the express for Rﬁi [Egs. (24) and (25)] does
not obviously improve the accuracy of the calcula-
tion. This is not unexpected, because in the per-
turbation inversion of A" terms of second and
higher orders in the perturbation have been dis-
carded. Consequently, introducing such terms into
the later calculation of Rii need not improve the
result.

Inspection of Table IV shows that for this set

of levels in 23 5U + n the inclusion of terms other



TABLE Y

RESONANCE PARAMETERS FOR 3 LEVELS TN 0% + n (cruver®® pama)*

Ievel Energy Reduced Neutron Width Partial Widths for Pission in
{ev) (evi/2 x 103) Two Channels (eV)
B T Tym Tyen
16.67 0.06 -0.08% o
18.05 0.098 +0.140 [+]
19.295 0,56 0 «0.065
20.19 0,0085 40,050 [
20.67 0.04 [+) +0.,0%0
21.085 0.29 +0.023 4]
22.950 0.095 -0.038 [+
23.4h0 0.15 +0,01% (4]
23.620 0.122 0 -0.090
2k, 245 0.05 <] -0.055
25.62 0.22 0 +0.610
26,15 0.0015 [¢] -0.60
26.5L 0,105 [ +0.225
27.18 0.011 +0.075 [+
21.8 0.11% +0.075 [}
28.42 0.028 -0.100 0
28.73 0.0062 +0.070 [¢]
30.88 0,08 (] +0,020
31.55 0.003 o ~0.040
32.07 0.3 0 +0,042
33.52 0.29 [ +0.022
Lh 64 0.125 +0.175 0
45,04 0.055 [4 ~0.300
45,78 0.027 0 40,100
46,65 0.046 40,035 [}
51.60 0.067 . +0.060 [
52,22 0.33 0 -0.300
. 0.169 (] +0,115
60,22 0,134 (] =0.200
63.80 0,07 0 +0.250
. 0.017 0 -0.070
*g = 0.5, I, = 0.029 eV

COMPARISON CF LEVEL ENERGIES AMD WIDTHS IN WIGKER-EISENBUD AND
KAPUR-FEIERLS FORMALISMS FOR 31 LEVELS IN 2%y + n (CRAMER DATA)

TABLE II

H;Eer-sisenbudzo
Level Energy Level Width 7
(ev). (eV) Adler  Paremeters (ev) pifferences (eV)

B T B s Bo-n  Do-2y
26.67 0.11k2 16.67 0.114 0.00 0.000
18.05 0.1694 18.05 0.170 0,00 -0.001
19.295 0.0965 19.30 0.096 0.00 0.00L
20,19 0,0790 20.19 0,080 0.00 -0,001
20.67 0.0592 20.67 0.058 0.00 0,001
21.085 0.0533 21.08 0.054 0,00 -0.001
22.95 0.0675 22.95 0,068 0.00 0.000
23.44 0,037 23.44 0,044 0,00 0,000
23.62 0.1196 23.63 0,114 -0,01 0.006
2k, 245 0,0842 2k.25 0.082 0,00 0,002
25.62 0.6401 25.67 o.ggg -0,05 -0.038
26.15 0.08%0 1% o. 0,01 0,001
26.51 0.2545 26.46 0,226 0.05 0.029
27.28 0,204 27.18 0.104 0,00 0.000
27.80 0.1046 27.80 0,106 0.00 -0.001
28.h2 0.1292 28,42 0.132 0,00 -0.00%
28.73 0.09%0 28,72 0,096 0.01 0.003
30.88 0.0454 %0.88 0.050 0.00 ~0.00L
31,55 0.0690 31.55 0.070 0.00 «0,001
32,07 0.0727 32.07 0.072 0.00 0.00L
33,52 0.0527 33,52 0.052 0,00 0,001
&l 6% 0.2048 Ly 6L 0.204 0.00 0,00L
Ls.ok 0.3294 45,05 0.332 ~0.01 -0.003
45,78 0.1292 55.77 0.126 0.00 0,003
46,65 0.0643 46.65 0.064 0.00 0,000
51.60 0.0895 51.60 0.090 0.00 0.000
52.22 0.330% 52.22 0.332 0.00 -0.001
8.68 0.1453 8.68 0.146 0,00 -0,001
60.22 0,2300 60.21 0.2%0 0.0L 0,000
63.80 0.2796 63.79 0,278 0.01 0.002
68.k0 0.0951 68.40 0.098 0,00 0,001
Sums 0.03 0,000




TABLE TTT
CQMPARISCN OF o, AND f COMPUTED IN VARIOUS APPROXIMATICNS
FOR 31 LEVELS IN 25%U + n (CRAMER DATA)

PERTA PERTA
Level POLLA (A1 powers of FERTA (M aet
Ener, lJ

gevs Calculation K retatned 1a RY) (R Liness in 1) Equal to Zero)

B % B % B % B % B
16.67 39.3% - 5.66 38.97 - 5.9 39.19 - 5.93 39.12 0.0
18.05 63,56 8.10 63,61 8.35 63.88 8.35 63.90 0.0
19.295 366.35 - 8.5 365,36 - 9.01 365.52 - 9,01 365.12 0.0
20.190 5.87 0.99 5.50 2.02 5.55 1.02 5,54 0.0
20.67 25.39 4,38 25.83 L.48 26.02 4,48 26.08 0.0
21.085 189.17 -1.92 189,02 - 1.65 189.03 - 1.65 189.08 0.0
22.95 61.85 - 2,22 61.83 - 2,42 61.85 - 2.42 61.9% 0.0
23,41 97.85 3.35 97.T7 3.48 97.80 3.48 97.80 0.0
23.62 83.15 -12.88 80.92 -13.63 81.48 13,46 79.5% 0.0
2k, 2k <90 -18.81 31.79 -18. .30 -18.19 32,60 0,0
25.62 1h6.70 70.78 139.49 67.40 147.18 66.53 pUS RO 0.0
26.1% 0.26 0.93 L.66 0.35 3.29 0,16 o.f 0.0

051 59.59 -30.63 57.01 -24.87 59.30 -26.65 68.46 0.0
27.18 B 2.13 T.01 2,19 7.28 2.19 7.17 0.0
27.80 75.81 - 7. T%.93 - 6.78 75.08 -~ 6,76 Th.98 0.0
28.42 17.63 3.79 17.86 3.56 18,03 3,58 18.26 0.0
28.73 3.93 0.70 412 0.73 4.15 0.72 h,0h 0.0
30.88 52.2% 0.6k 52.03 0,51 52,03 0,51 52,16 0.0
31.55 1.77 - 0.83 3.85 - .22 3.5% - .22 3.91 0.0
32.07 195.88 - 217 195,46 -~ 1.k2 195.46 - L.h2 195.60 0.0
33,52 . - 8.07 188.89 - 7.9L 188.97 - T.9L 189,08 0.0
bl 64 81.62 1.83 81.56 2.10 81,57 2.10 81.50 0.0
45,04 35.22 - 0,1% 35.09 - 0,16 35.09 - 0.16 35.86 0.0
45,78 17.96 3.45 18.25 3.40 18.40 3.32 17.60 0.0
46,65 29.90 - L 29.89 - 1.85 29.92 - 1.85 29.99 0.0
51.60 43,61 - 141 53,64 - 1.% 43,65 - 1.%0 43,68 0.0
52.22 215.44 - 0,24 215.13 - 0.73 215,13 - 0.73 215.16 0.0
58,68 110.25 - 4,20 110.4% - 413 110,48 - 412 110.19 C.0

60,22 87.14 2,91 87.09 2.72 87.12 2.72 87.31 0.0
63.80 45.75 -2 45,60 2,47 45,64 .47 45,64 0.0
68.50 11.10 0.26 11.09 0.2 11,09 0.2k 1.08 0.0
TABLE IV
COMPARISON OF KAPUR-PEXERLS FISSYON PARAMETERS IN VARIOUS
APPROXIMATIONS FOR 31 LEVELS IN 25%y (CRAMER DATA)
Level POLLA PERTA PERTA
\) Calculation (A1l Powers of M) (Linear in M)

B v’/ (zev?/?) i(BeV’/ %) medf?) 0{(Bev5/ 2 Eev™/?)
16.67 28.98 - 5.Th 28.95 - 572 28.93 - 5.72
18.05 52.37 7.87 53.23 7.82 53.18 7.8%
19.29% 25,44 - 9.13 248,08 - 8.87 24k, 79 - 9.30
20.19 3.73 0.99 3.81 0.93 3.81 0.9%
20.67 12,53 4,30 13.66 4,33 13.41 4,39
21,085 81.50 - 1.86 81.84 - 1,78 81.80 - 1.79
22,95 %52 - 2,32 34,25 - 2,32 3%.25 - 2.3
23,44 30.98 3.07 30.92 3.02 30.91 3,02
23.62 61,08 =12,5L 60,87 -13.k6 57.89 -13,%9
24,245 20.59 -18.58 22,68 =173 22,63 -18.14
25.62 139.32 70.79 206,62 RN.75 204,15 4,15
26.15 - 0.38 0.66 - 5.43 0,58 - 6.22 0.20

b1 50.88 =30+53 9.32 7,19 84.40 - 3.09
27.18 5.03 2.13 6.40 1.86 6.26 1.93
27.80 © 53,90 - 6,91 54.88 - 6,58 4,89 - 6,68
28.42 12,98 3.78 12.29 k12 12.26 4,12
28,73 2,53 0.63 2.20 0.2k 2.09 0,26
30,88 21,14 0.59 21.38 0.6k 21,33 0.7
31.5% 0.84 - 0. 1.83 -~ 1,33 1.83 1.2k
32,07 112,60 - 2.19 114,77 - 0,88 113.70 - 1.3
A 8,54 - T.69 79181 - 1,29 79.33 - 7.hg

64 69.72 1,78 70,18 1.76 70.18 1.76
45,04 31.78 - 0.0 30.79 0,61 30,66 0.73
45,78 C 1341 3,37 11.% 2,64 11.10 2.61
46.60 16.25 - .84 16,64 - 1,87 16,57 - 1,87
51.60 .18 - 1.53 29.42 - 1,56 2932 - 1,56
52,22 194,94 0.02 195.47 - 2,18 195, ]

. K- - 4,13 85.55 - 3.83% 8547 - 3.9
60.22 4 3.03 Th.26 2,71 7416 2.82
63.80 40.8% 2,50 50.73 2,58 40,58 2.5
68.40 7T.82 0.27 7.83 0,25 T7.80 0.26



then linear in M in Egs. (38) and {39) does not im- perturbation transformation is surprisingly good.

prove most fission cross-section calculations. It The total cross section parameters are well approx-
seems likely that for most studies of multilevel in- imated for all levels and the fission cross section
terference by the first-order perturbation approach parameters are well approximated for levels other

only terms linear in the perturbation need be re- than those near 26 eV. The perturbation transforma-
tained in cross-section expressions. tion predicts qualitatively the effects of interfer-

From Tables III, IV, and V, it appears that the ence in nearly all cases.

TABLE V

COMPARISON OF KAPUR-PEXERLS RADIATIVE CAPTURE PARAMETERS IN
VARIOUS APPROXIMATIONS FOR 31 LEVELS IN 272y (CRAMER DATA)

Level POLLA PERTA
Ener; eV Calculation Calculation
B, d( pev/2) H( Bev>/2) G]Z(Be‘p/ 2y H)( pev>/2)

16.67 10.25 -0.03 10.04 -0.01
18.05 11.05 0.01 10.98 0.01
19.295 111.%0 -0.08 109.93 -0.01
20.190 2.1 0 1.99 0
20.67 12.77 0.01 12,81 0.01
21.085 102.92 -0.0k 102.73 -0.01
22.95 26.88 -0.04 26.84 -0.02
23,4 65.16 0.03 65.00 0.0k
23,62 21.52 -0.09 19.65 -0.01
2,245 14,16 -0.17 11.75 -0.09
25.62 T.01 -0.06 6.10 0.51
26 15 0.63 0.26 1.36 0.01
26.51 8.58 -0.02 5.95 -0.43
27.18 1.9k 0 1.88 0.02
28.80 21.46 -0.12 20.87 -0.06
28.k2 L,62 0.03 L49 -0.02
28.73 1.40 0.08 1.36 0.07
20.88 30.62 -0.01 30.46 o)
31.55 0.93 -0.03 1.81 -0.01
32,07 T8.67 0 T7.92 0.01
33.52 104,05 -0,0k 103.93 0
4,64 11.53 -0.01 11.51 o]
45,04 3.36 -0.10 3.28 -0.07
45,78 k.52 0.09 4,3 0.06
46.65 13,50 0 13.45 o]
51.60 14,14 o] 14,13 o]
52.22 18.89 -0.03 18.83 0
58.68 22,31 -0.05 22,24 -0.02
60.22 11.26 0.02 11.18 0.02
63.80 k.51 0 L,76 o]
68.40 3.27 0 3.25 o]
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V. SOME MULTILEVEL INTERFERENCE EFFECTS

The perturbation transformation permits infer-
ences as to the nature of multilevel interference
effects, and we briefly note several such inferences.

The renge of interference effects is surpris-
ingly long.
ized by the fractional perturbations M., [Egs. (19)
through (21)], and these vary only as the inverse
level spacing for j = 2 and as the inverse spacing
squared for j = 1.

The interference effects are character-

Other properties of the frac-
tional perturbations are listed in Sec. II.

The radiative capture cross section usually is
observed to have symmetric resonant shapes. This
symmetry supposedly arises from the summary of many
radiation channels that are incoherent in the sense
of Eq. (5). Equations (53) and (54) show that
another related propérty, the constancy of . {
from level to level, plays a role in diminishing in-
terference.

Finally, we consider briefly the probability
distribution of the Kapur-Peierls parameters. Ex-
perience has revealed few, if any, dev:.a.tions from
the conjecture of Porter and Thoma.s6 that I‘l 2 i
distributed as a normel variate with zero mea.n, that

is
/2 _ =1/2
Iic I‘llcc *ke ’ 1)
where ch is independent of k, and o is an inde-

pendent normal variate with zero mean and unit var-
iance. The similarly successful Wigner distribution
for level spacings will be used here only in moti-
vating the assumption that Ek -E 4 fluctuates only
weakly because of level repulsion.

The total cross section is characterized by the
quentities ¢, and B, and from Egs. (30), (31), and
(57) these are distributed as

kyc@y 1-\kc)

as :ﬁmxklnnﬁmzxklcl, i.e., as the product of four
independent normal variates. If interference arose
primarily from a single channel, as in the numerical
examples of Sec. IV, thean ﬁk would be distributed

as ’ﬁmxkc' pk ’ﬁc'n’ﬁ:'c'a‘k” where the coefficients
&y fluctuate’ less than do the %o variates.

We are led to examine variates of the form
yn=)&.x2...xn s (60)

where the variates x 3 are independently normel with
zero mean and unit variance. The moments of the

distributions of these variates are, for v = 1,2, ««¢s

()

1
o
-

(61)

———
3;42

S —
[

[1-3-5---(2_v-1)]n. (62)

A useful distribution shape parameter is the excess
of kurtosis, 72, deﬁnedel as

(yf’) 3 (63)
7, E - ’
2 (yﬁ)e

and equal to 5n - 3 in this case. A positive value
of 75 usually means that the distribution is higher
near the peak and in the far wings than is a normal
(72 = 0) distribution with the same mean and vari-

ance. Fquations (61) and (62) permit the computation
of moments of all order for noninteger values of n,

and although E ¥ )/(2\))' ga" is divergent

except at § = 0, it is reasonable to infer that
these moments define a unique probability distribu-
tion for positive values of n. Noninteger values

of n are useful in approximating the distribution of

(T, - T,/

o = k2 &y m’ﬁm[’ﬁm*z#"xn
‘#x

and

L™k’ e ke’ ’ (58)
(B, - Ek,)2+ (T, _rk,)/g ; ke k’e )ﬁtc]

2nE -_—
o™ 2 65 T % 0%
n k'#x

N T
n (Ek-Ekl) +(I‘k-I‘k,)/h e’

ch,xk,c,xkcl . (59)

If interference arose from & single chennel and a
single other level k’ then By would be distributed

12
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variates such as a.“_x:l_x2 + aaxsxh. If &) + a2 is
unity, then this variate has zero mean, unit variance,



and an excess of kurtosis that varies between 3.25
(a.l = 8.2) and 6(31 =1 or a, = 1); thus, 8 X x, +
a.ex}xh has the same low order moments as has yn
where n varies between about 1.5 and 2.

From Eq. (59) then,we propose that the indepem-
ent distribution of q{ aporoximates that of yn [Eq.
(60) ], where n is 2 or 3, and that the excess of kur-
tosis is a useful dlagnostic. For the 31 levels in
23511 + n examined in Sec. IV, the excess of kur-
tosis in the observed distribution of Bk is 1%, a
value which corresponds to the variate ¥5,6° A sim-
jilar result is obtained for the 49 levels assigned
by Cremer to the other spin state in 23 5U + n.2o
Some of this agreement must be fortuitous in view of
the uncertainty in estimating excess of kurtosis
from small samples.

Returning to Egs. (58) and (59),it is seen that
the variates ork and Bk are correlated and for practi-
cal application their joint distribution is required.
Although the independent distribution of o approxi-
mates x (:Sm + constant X ym), where m is 1 or 2,
it is simpler to further approximate the distribu-
tion of o as "En In this case, the distribution
of the variate Bk/c{:/ 2 approximates ¥, where m is
between 1 and 2, and ak/oi/ 2 is independent of o
Analogous results are obtained for distributions of
the other Kapur-Peierls parameters.

The equations developed in this study show that
the transformation from Wigner-Eisenbud to Kepur-
Peierls formalisms converts a set of (assumed) sta-
tistically independent paresmeters to a set of sta-
The Jjoint distri-
bution of the correlated Kapur-Peierls parameter set
is a legitimate object of study as is the independ-
In ei-
ther case, the experimentalist must reccgnize that

tistically correlated parameters.

ent distribution of a particular parameter.
he is sampling from a correlated sample. For ex-
ample, different results may be obtained if the ex-
perimental sample consists of & strongly interfering
set of subsets of levels with week interference be-
tween subsets.

APPENDIX A

A LEMMA ON A CLASS OF RATIONAL FUNCTTIONS

%
The rational functions X

N N o/ (z-2, ) (2-2F))

and k}};\l (Ak+Bk2)/(z-zk)(z-z}":) have the same poles

of order one when no zrk is real. To determine Ak
and Bk in terms of the sets 71( and Nkk' the two
functions are equal if their residues are equal.

Equate residues at the poles Z and at z::

3
+ N ..
A * B ke ) (A1)

{A-2)

Solving these equations simultaneously, we have for
k=1, 2 -, &

k *
e 2
A=~ Nyt =+ Ny 55— |, (a-3)
DA e AR ey
and
k
1 1
Bk=2 Nt ———+ N 5| - (a-h)
klnl Zk-Z;/ Z;-zkl

If, further, N, = N:,k, i.e., the matrix N is
self-adjoint, then

-

k _—
’
Ak=-2ZRe&—zk—* , (-5
k’=1 'Y
and
k
N, .,
B =2 z Re ;fksz . (a-6)
k’: k !

In terms of the real and imaginary parts of 7, =
e = Ve
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A

A= -2 :%: ReNkk'[“k(“k - “k’) - vk(vk + vk,)] + Inm Nkk,[vk(uk . “k') + “k(vk + Vk')]

2 2
k=1 (Pk - ukl) + (\)k + \)kl)

and

s (A-7)

‘E ReN, 1( - I) + ImN . . ( + I)
%ﬂzz e - ke’ M 2"1:
(i - “k’) + v + vk;)

. (A-8)
k'=1

Some simplification results by observing that

a

k ReN /(M + Vo) - Tml (o - 1y o)
B - + 2V, .
A= -m By kz (b pk')z « O + "k’)2
k’=1

(a-9)

APPENDIX B

PERTURBATION THEORY FOR SYMMETRIC MATRICES

A complex symmetric N X N matrix B is diagonel-
ized to D by a complex orthogonal N X N matrix S.
Similarly the complex symmetric N X N matrix B + 5B
is diagonalized to D + 8D by the camplex orthogonal

N X N matrix S + 8S. That is,
BS = 82, (B-1)
and
(B+ 8B)(S + 8S) = (s + 88)(D + &D) . (B-2)

Subtracting Eq. (B-1) from Eq. (B-2), and ignoring
terms of second order in the perturbed quantities,

BSS + OBS = 5SD + S8D . (B-3)

It is convenient to rewrite these equations in terms
of the eigenvalues Dkk end the eigenvectors sk, k =
1, 2y « « « , N, column vectors with elements Sik’
Sek,-oo,SNk. Thus,

Bs, =D,,8

% kkk; k=1,2,e¢, N ,

and

+ =
B&sk SBsk 85, D . + 8 8D

Wikt %P> B 1,2,000, No(B-37)

Orthogonality of the unperturbed matrix S requires

tr

B B’ ™ skk'; k, k! = 1,2,%¢, N , (B-4)

Multiplying Eq. (B-3') by sfr, one has

ik

(B-17).

tr tr tr, tr .
N BSsk + s)\ 813&:k s)\ Gskak + s)\ skSDkk,

Ayk = 1,2,°°*y, N ,
or, in view of Eq. (B-4),

tr. tr tr
= +
s)\ B&sk + s)\ 813sk s)\ SskD“ SM(BD” ;

Aok = 1,2,%¢¢, N (B-5)

Teke the transpose of Eq. (B-1’), and recognize that

B is symmetric so that s;irBtr, which is equal to

ﬁmszr: is just s::rB. Thus, rearranging,

tr tr ;
(DM - Dkk) 8, 88+ 8° bBs = 8 8D, ;

Aok = 1,2,000, N. (B-6)
For A = k, the perturbation in eigenvalue 18 deter-
mined.

N

tr, .
8D, = 5 6Bs, = z 5, BB, 45, 3
AN =1

k=1,2,0¢0, N . 6:3%}

The assumption that B can be diagonelized is
equivalent to the assumption that the set 815 Sp»
cees Sy is complete, so Bsk can be represented es a
linear combination of the s}\ >

N

55k= zykl;s)\', kK= 1,2,00¢, N .
A=l

(B-8)

Substitute Eq. (B-8) into Eq. (B-6) for the cases
A # k. In view of Eq. (B-4),

(D), - D)%, * 5,8Bs_ = 05 A # k

Mk = 1,200, N . (8-9)

Combining Eqs. (B-8) and (B-9),

s:rGBsk ’
e T e

- K = 1,2,00,N .
Dge = Daa
aék

(B-10)




The quantities Yy 8Te as yet undetermined.
Orthogonality of S + 8S requires

t: t.
(Skr + 8skr)(skl + askl) = akk,; k)k'=l’2:"')N .
(B-11)

Subtract Eq. (B-%) from Eq. (B-11) and linearize,
obtaining

tr tr oA
8. Ssk, + Ssk s, » = 03

X/ Xk’ = 1,2,6e0, N . {B-12)

Substitute Eq. (B-10) into Eq. (B-12), and apply Eq.
(B-4),

( ) s:rSBsk: S;I;SBSK
2y. .5  ,+ (1-85_, + = 0;
kk kk kk Dk'k' Dkk Dkk Dklkl

k,k’ = 1,2,°*, N . (B-13)
In view of the symmetry of 8B one obtains, for
k)k, = 1,2,°**, N,
sTsps , = z S. 8BS s s= ) S .45 =
K OBSy’ A OB Sk T 2k OB Sk T

2N’ A
s:fsnsk , (B-14)

so the square bracket in Eq. (B-13) is identically

zero. Thus, to preserve orthogonality of S + &S (to
first order in the pertur’ba.tion), it is necessary to
set y,, equal 1}:o zero, Finally, Eq. (B-10) becomes

A0 "=1
554 )Z}:c Dex - Pix Sins
A,k=1 3,k = 1,2,¢+, N. (B-15)
APPENDIX C
INPUT AND OUTPUT FOR THE PERTA PROGRAM
Znput
Card 1: Any 80 column alphanumeric title.
Card 2: 16I5 format.
MPRE: Positive if there are more cases in
this job.

NL: Number of interfering levels.
NF: Number of fission channels.

. soopied
NNLIN: Equals 1 if RS = Mlg‘l

Equals O if Eqs. (24) and (25) are
used for er'
NFLIN: Equals 1 if Egs. (4%0) and (41) are
used for Ql:}::-j
Equals O if Eqs. (39) and (40) are
used for Q}cdénj.
Card 3: 8E10.3 format.
ANUC: Terget nuclear mass in AMU.
Card 4: 8F10.3 format. Wigner-Eisenbud parameters.
Level energy for level 1,
Statistical weight factor for level 1.
Reduced neutron width for level L
Radiative capture width for level 1.
Partial fission widths for level 1 for
fission chennels 1,++., NF.
Cards 5 to 4 + NL: 8E10.3 format. Wigner-
Eisenbud parameters for remaining levels.
Output
The input Wigner-Eisenbud parameters are edited
together with the total level widths.
ing edits are listed in Sec. III. Definitions of

The remein-

program variables, which label some edits, are
listed on comment cerds early in the program deck.
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