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TIME REVERSAL IN POLARIZATION PHENOMENA

OF NUCLEAR INTERACTIONS

by

P. W. Keaton, Jr.

ABSTRACT

The concept of "time reversal invariance" is reviewed along
with some basic properties of the time reversal operator, T. Appli-
cations to specific nuclear physics problems are given which dem-
onstrate methods of manipulating T in a calculation. Using the
density matrix formalism, a relation is derived between polariza-
tion transfer (triple scattering) experiments that describe reac-
tions and inverse reactions with initially polarized perticles.
The fundamental relationships are illustrated by examples. Rela-

tivistic effects and photon polarizations are not discussed.



I. INTRODUCTION

The formal properties of a time reversal operator were introduced in
1932 by Wignerl (see also Ref. 2). Discussions of various aspects of the
time reversal operation in nuclear physics have been given by Goldberger and

> and Bohr and Mottelson.6 In an effort

Wa,tson,3 Messiah,h Rodberg and Thaler,
to make this report self-contained, the first part (which borrows heavily
from the above mentioned literature) introduces basic concepts of the time
reversal operation. The last part of this report (Sec. IV and Appendix B)
contains derivations with a different emphasis on operator technique than
other treatments of this subject. The list of references is not intended to
be exhaustive. However, of particular relevance to the material presented
here is work by Csonka and Mora.vcsik.7
Recent articles reviewing the present status of the time reversal in-

8,9

variance question have been published.

II. A REVIEW OF THE TIME REVERSAL OPERATOR AND SOME BASIC PROPERTIES

A. The Time Reversal Operation

The time reversal operator, T, takes a state ¥ into a state ¥ in which
all velocities, including "spinning" particles, are reversed. (Perhaps "velo-
city reversal" would have been a better name than "time reversal.") A system
is sajid to be invariant under time reversal if the following series of opera-
tions result in returning that system to its original form: Teke an isolated
system at t = 0 and allow it to change according to the physical laws which
govern it for a time to. At time to reverse the directions of all velocities.
Allow the system to change according to the physical laws which govern it
from time to until time 2to. At time 2t° reverse the directions of all velo-
cities. If the system is now in exactly the same form as it was at t = 0,

the physical laws which govern it are said to be invariant under time reversal.




The sequence is:

time R .
time x |aisplacement | x time x displacement . (1)
reversal reversal by t
by to : o

If the system is invariant under this operation, it is then equal to the
identity operator. Since H ({he Hamiltonian) is the generator of time dis-
placements, this invariance can be expressed as¥
—th0 --thO

T e T e =1. (2)
Assuming the system to be invariant under time reversal, the sequence of opera-
tions in Eq. (1) are set equal to the identity operator. Applying inverse
operators from the right, this leads to a second expression of a system which

is invariant under time reversal:

time time time time
. . displacement |} = fdisplacement . . s (3)
inversion inversion
by t by -t
o o]
or the same type of operations on Eq. (2) leads to
—tho tho
T e = e T . (L)

One observes that the concept of velocity reversal has led to time reversal.
The operator e+th° on the right-hand side of Eq. (4) is an instruction to
allow time to run backwards for a time to. It should be kept in mind that
the fundamental sequence is expressed in Egs. (1) and (2), where time always

runs forward. .

*Tt will always be assumed here that 4 = 1.



B. Antilinear Property of T

If a system at t = 0 is described by ¥(7,0), the test of Eq. (k) would

require (t, of course, commutes with H)

T yF,0) = 1 oy(F,0) , (5)
but (see Appendix A) )
. SRS, B |
7 I y(Z0) = o TEBIT TTHT 0oy oy (6)

Now Eq. (4) in Egs. (5) and (6) requires that either T be linear,
T(it)T L = it and mHT L = _® (7)
or that T be antilinear,*
. -1 . -1
T(it)T — = =it and THT ~ =H . (8)

We can choose between them by noticing that, from the point of view of time
reversal, there are two important classes of physical quantities. The posi-
tion coordinates, the total energy, and the kinetic energy belong to the first
class which is either unrelated to time or contains an even power of the time
variable. The velocity, linear and angular momentum, and components of spin
in a given direction belong to the second class and contain odd powers of
the time variable.

Returning to Egs. (T) aﬁd (8), the Hamiltonian, H, of a system which is
invariant under time reversal cannot contain a mixture of class I and class
II, because the "either...or" relation would be destroyed. The conclusion

is that since H contains some variables from the first class, it must contain

¥An antilinear operator, A, is one with the property

= ¥ *
AQr ¥ + A%,) = a¥(ay)) + a%(Ay,) ,

where Al and Az are scalars.



only variables from the first class. That is, necessary and sufficient con-
ditions that an isolated system be invariant under the time reversal operations

expressed in Eq. (4) are that
THT ~ = H , (9)

and that T be an antilinear operator.

C. Applications of T to the Schrddinger Equation

The time-dependent Schridinger equation for the state ¥(¥,t) of the

Hamiltonian, H, is
120 w(F,t) = H W(E,t) . (10)

Operating from the left with the time reversal operator T, Eq. (10) becomes
(1 %EJ T w(F,) = THT LT ¥(F,t) . (11)

Assuming that the system is invariant under time reversal, Eq. (9) concludes

that the correct set of properties of T are expressed in Eq. (8), namely that

L = H, and T is antilinear. Using Eq. (8) in Eq. (11),

-1 3= [T w(F,8)] = [T W(F,)] . (12)

Equation (12) is not the Schrbdinger equation (S-E) because of the minus sign.

However, the S-E can be regained by replacing t with -t.
i g;'[T ¥(7,-t)] = H[T ¥(¥,~t)] . (13)
Equation (13) defines a new state ¥, where
— > >
¥(r,t) = T ¥(r,-t) . (1k)
Referring to Egs. (10) and (13), one can make the statement: If ¥(r,t) is a

—, >
r

solution of the S-E, then ¥(¥,t) = T ¥(¥,-t) is also a solution of the S-E.

A reversal of motion is connected with the transformation t + -t through



the fact that observables which are odd in time change their sign and observ-
gbles which are even in time do not.

D. The Complex Conjugate Operator, K

The complex conjugate operator, K, is simply an instruction to take the
complex conjugate of any number or function to the right of it. The K opera-

tion is clearly antilinear since by its definition

K(Alwl + xgwg) = Af(le) + Ag(ng) . (15)

Other important properties of K are
K- =1, K=K~ , K* = KKK © = KKK = K . (16)
The definition for the adjoint of a linear operator, B, is
(By,¢) = (v,8T9) . (17)
The definition for the adjoint of an antilinear operator, A, is
(Av,9) = (v,aTg)* . (18)

It will serve as a useful example to calculate K+.

(K¥,0) = (¥*,¢) = (¥v*,K¢¥) . (19)
Since K¥ = K from Eq. (16), we find that Eq. (19) becomes
(K¥,0) = (¥,K8)* = (¢,K ¢)% , (20)

where the last equality is an application of the definition, Eq. (18). Com-

bining Egs. (16) and (20), we find

K=K =K~ . (21)

An operator, A, which is antilinear, and which also satisfies ATA =1,

is said to be antiunitary. Clearly, K is an antiunitary operator, with the

important properties summarized helow.




K(Alwl + A2W2) = A;(le) + AE(KYQ)‘
(K¥,0) = (¥,K ¢)% | (22)
2 -1 t +

E. The Unitary Operator, U

It has been demonstrated above that THT © = H leads to the original

form of the Schr8dinger equation for isolated systems which are invariant
under time reversal. Here a different apéroach will be taken. Operating
from the left on the S-E with the complex conjugate operator, K, Eq. (10)
becomes

-1 %; yR(F,1) = H* v*(F,8) . (23)

If a unitary operator, U, can be found such that UH*U_l = H, Eq. (23) could
be written

+i i;-gu yH(F,-t) = HU v*(%,—t) , (24)

where the transformation t - -t was also required to regain the S-E. The
mathematical rigor necessary to prove the existence and uniqueness of U (cf.
Ref. 4) is inappropriate in this treatment. We simply proceed with the assump-
tion that a unique unitary operator exists which satisfies Eq. (24). Rewrit-

ing Eq. (24) with the use of K,
1 -% [UK ¥(%,-t)] = H[UK ¥(F,~t)] . (25)

Comparison of Eq. (25) with Eq. (13) shows that the time reversal operator,

T, can be written

T = UK or U

K , (26)
where

uu=1.



.

It follows from Egs. (26) and (22) that

T+T = (UK)+(UK) = K+U+UK = K*K =1 . (27)

Therefore, since T is antilinear, it is also antiunitary. Equation (26) is
the consequence of a more general theorem that every antiunitary operator

can be written as the product of a unitary operator and the complex conjugate
operator, K.

F. The Value of '1‘2

Because T° y(¥,t) is also a solution to the S-E, it follows that 2 ¥(T,t)
= ¢ y(*,t) where C is a constant. However, since i = 1 from Eq. (27), it
follows that

(v,T'Ty) = (T¥,Ty)*
-i-

(¥,¥)
2

(TY,T TTY)* = (TZW,T ¥)

Ic|? (v,¥) , (28)

and we find ICI = 1. Consider the identity

T3 w(F,-t) - T Y(F,-t) =0 . (29)
Equation (29) can be written
2(Ty) - T(T7Y) = (CT - TC)Y¥

[c-C*] (Ty) =0

C-C*¥ = 0 and lc| =1 imply C

L}
I+
=

Therefore, the double application of the time reversal operator results only
in either a change in sign or no change at 8ll. For a wave function, ¥,
we have

oy = sy . (30)

It will turn out that systems with integral spin have T2 = +]1 and systems

with half integral spin have T° = -1 (see Eq. (63)).




G. Transformation of an Operator Under T

We now proceed to find how an operator, @, transforms under time reversal.®
Although no time-dependent operators will be used, it will cause no undue

difficulty to include this class. The expectation value of Q(t) is defined as

Qt)> = (¥(T,t), Q(t) ¥(¥F,t)) . (31)

The expectation value for Q(t) in the time-reversed system ¥(r,t) = T ¥(7¥,-t)

is likewise defined as
<Q(t)> = (¥(7,8), Q(t) ¥7F,t)) . (32)

A relation can be found between @ a.nd‘g by writing

Qt)> = (T w(F,-t), Q) T ¥(F,-t))

(¥(F,-t), (T Qt) T) w(F,-t))*

(2" gt) ) ¥(F,-t), ¥W(F,-t))

(¥(7,-t), (T 31 (8) T) ¥(F,-t)) . (33)

One notices that a relation between Egs. (31) and (32) will make sense
only if t -+ -t. Since <g(t)> is measured in a system with time running "for-
ward" and {@LE)> is measured in a system with time running "backward," we
require that a system which is invariant under time reversal obey the rela-

tionship

<Q(t)> = <q(-t)> . (34)

(-t)>
AAAAN Aererangren

Substituting from Egs. (31) and (33), Eq. (3L4) requires that

(¥(F,t), Q) ¥(F,t)) = (¥(F,0), [T g (=t) T] ¥(F,5)) . (35)

¥With the exception of T, U, K, H, and p (density matrix), all operators will
be written with wavy lines under them. The expectation value for an operator,

9, will be written interchangeably as Q and <Q>.




That is

Q(t) =T §(=t) T 4 (36)
or
Yu) =T Q) T, (37)

which are the rules for transforming an operator from a system to its time
reversed system, and vice versa.
Equation (34) preserves the usual meaning of coordinate transformations

which is, for the case of no explicit time dependence,

(v,Q¢) = (¥,Q9) . (38)

It is not uncommon to find the requirement <Q> = <§3* which preserves the

usual meaning of operestor transformation
= -1
Q = TQT ’ (39)

rather than the somewhat more awkward Eq. (37). However, this results in

the awkward coordinate transformation property

(¥,Q0) = (¥,Q9)* .
The reason both Eqs. (38) and (39) cannot be simultaneously preserved is, of

course, due to the antiunitarity of T.

III. EXAMPLES OF TIME REVERSAL CALCULATIONS

A. Classical Mechanics
a°F
As is often pointed out, F= m~——§-is an equation even in time and, there-
dt
fore, the solar system could run "backward" as well as "forward." This serves

as a good example to apply time reversal.
Figure 1 pictures the orbit of a planet under the influence of a gravita-
tional force. The coordinate system is arbitrarily chosen with the origin

at the center of the orbit, the z-axis along f = ;XS, the x-axis along ;,

10




N

Fig. 1. The orbit of a planet under the influence of a
central force. The dotted arrows indicate the ef-

feet of reversing the motion of the planet.

11




and the y-axis chosen to make the coordinate system right-handed. The unit
vectors i, 3, k are along the x-, y-, z-axes, respectively. Because of the
way in which the coordinate system is set up, f-ﬁ = L. To see how f changes
under time reversal, one need only note that T reverses all motions. There-

> > > > . s . . .
fore, p >~ -p but r + +r, since the position coordinate contains no time or

motion. Therefore, we say (from Eq. (37))

F=or o= %
=r3t et =3 (ko)

= o

NS L L A

where, of course, writing ;T, §+

, etc., is merely a formality at this point
because in classical mechanics these quantities are 8ll real. In fact, in
every case in Eq. (40), the second step was a formality since the T was not
used to calculate anything; the answers which we required were simply placed
on the right-hand side.

The equation f-= -7 is a statement of what would happen to T if all mo-
tions were reversed--but in reference to the original coordinate system,
i.e., §'= -IK. If we had "lived" in a time-reversed system in the first place,

we would have set up the coordinate system with the z-axis along ;kg and

labeled that direction E, etc. Observe that since k = -k, one finds

Tek=(D) (k) =TR=1. | (41)

One cannot, then, observe the orbit of his planet to find which system
he lives in. This, of course, is simply another way of saying that the system
is invariant under the time reversal operations.

B. Quantumn Mechanical Observables

A complicetion arises in calculating the effect of T in quantum mechanics,

because one often works in different representations. As a result, the effect



of U and K, in the equation T = UK, may be different for each representation.

A good example is the momentum, é In a coordinate representation,

Forge
But since 3 is an Hermitian operator, 3 = if, so that
AAA AR
2= s kUt .
aAA ~n
Now‘§ = -ﬁi, and the complex conjugate operator, K, is sufficient to give

the answer; i.e.,

= uk(-1Y) Ku' = v T =g = 3 .
AN

L

$oy

That is, it was not necessary for U to affectjéﬁ On the other hand, in the

. ) 5>
momentum representation p is a real vector. In that case,

>
- (Ulg U)momentum representation ’

$ol

and one must conjure up an operator U that will takeﬂﬁ into :ﬁ (such as a
180° rotation of the coordinate system about an axis perpendicular to;é).
One cannot say unambiguously whether an operator is "real" or "imaginary."
Although it was important to show this point explicecitly, it will not cause
further confusion in this report.

To assure that total angular momentum, 3 = f + §, transform in a consistent
manner, we require that intrinsic spin transform in the same manner as does

orbital angular momentum. Therefore,

A

§=T§+ L 3 (42)
FER I UL

Specific operators for transforming angular momentum will serve as a
useful example. Consider first the case of spin 1/2 (using the Pauli spin

matrices).

13




_fo 1y, _fo -1\ . _(1 o
2 T (1 o) d Sy = (i o) : 2z T (o -1) (k3)
i3

Notice that K already takes gy > -_qy since gy is complex. The only problem

left is to find a U such that

Ug U =-g . (L)

By direct computation, one can demonstrate that U = ioy has the required

properties. That is,

rg Tt = (ig 00 3 (Kig) = g . (45)
This can be generalized. Angular momentum matrix elements <Jj'm' |gx|jm> and
<j'm’ |£z|,jm> are real numbers. The matrix elements <j'm' Igy|jm> are pure

imaginary numbers. One can therefore use K to take the matrix "Iy into -gy.
The proper effect on J and -‘Iz can be obtained by a 180° rotation sbout the

y-axis. This is easily stated in terms of Euler angles and "D" matrices

(ef. Roselo), vhich rotate the coordinate system.

~iog -isgy -ivg,
e e

D3, (a,8,y) = (Jm'[e *| gm)
.. ~i8g X
= e ™ %m'|e Y m) ™
= gim'e dl‘ljl,m(s) e (46)
In particular, a rotation about the y-axis is
-ingd
U = D3, (0,m,0) = (jm'le  V|m) = a, (n) . (47)
For the special case of J = 1/2,
u=g"%) =1g_ . o (18)

y




which is consistent with Eq. (45). TFor a general angular momentum, F, the

time reversal operator, T, can be written

T=UK = a3(n) K . (L9)

C. Exchange of States

The overlap between two wave function ?1 and Wg can be transformed in

a8, consistent manner.

[wz(t),wl(t)] [wg(t),wi(t)}*

.i.
[xy,(t),U UKy, (£) ]*

1}

[Twe(t),Twl(t)]*

[F,(~t) ¥, () ]#

TACONACONE (50)

The effect of going from a system to the time-reversed system is to take the
initial state Wl(t) into the final state Ei(-t) of the time-reversed system,

and the final state \Pg(t) into the initisal state ?2(-1;).

D. The Phase of Time Reversal States in Angular Momentum

A1l systems which are treated will be assumed to be invariant under the
time reversal operations. That is, only systems with ’_I'H'I‘—l = H will be con-
sidered. No further reference will be made to explicit time dependence.
Henceforth, only stationary states and time-independent operators will be
considered.

The need to calculate the phase of time-reversed states is perhaps best
illustrated by a plane wave. Consider a wave function

> >
iker
e

Xe = . (51)

The prescription for calculating ;; = Txa has been

15



= S L o o> >t L >
Ty, = UKy, = eUK(11<: r)K‘ U _ e—lU(k r)U’ _ oikeT ; (52)

where the complex conjugate operator, K, effectively performed the function
K > -k (i, of course, is momentum) and U had no effect in this case. One
can, instead, replace each operator in Xgc by the known time-reversed form,
i.e., 1:<; = -E, ete. Although this is adequate to get the form of ;k’ there
mey be & phase, Ny s which multiplies the answer. If this method is used,

the wave function is referred to here as Xf Thus, we write

X = My X oo (53)
In the case of the plane wave above, we know that ﬁ = -K; therefore,
7
X. =M. x—=1 elk.r —ii--x*'
Xx x Xk k =mn e . (54)

Comparing Eqs. (52) and (54), we see that for this case n = +1. Of course,
the plane wave was merely used here to make & point. That n = +1

is the result of a more general property of the coordinate representation,

utilizing the fact that T|;> = |;> For example,
xk(?) = <k
xk(;) = <T_I*‘|Tk>
XE(;) = <;ITk$ .
But since
<;]Tk> = <T;]Tk> = <;|T+Tk>* = <r|k>* ,
we find |

- R o= W™ >
xz(r) xk(r) xk(r) .
Before calculating the phase of general angular momentum, it will be

helpful to first calculate the phase for orbital angular momentum in a physical

problem. The spatial representation of an energy eigenstate of a scattered

16




particle in a spinless system can be written

. ,Fz(kr) .
Wkgm(r) =N —= [i Ylm(e,¢)] ‘ (55)
_ F, (kr) .
- * = ——— =3 *
¥ =y N = [(-1) Yzm(9,¢)] .
_ m
But Y;m = (-1) Yz_m, and
- _ —— L+m
Y om = "k ELE S Y Yeg,n (56)
Therefore,
' _ _ g+m
Y,o,m - Mem o (-1) .- (s57)

Generalizing this to total angular momentum, we first note that

3 vl = -7
z z
-1
TS, T = =J_, (58)
t ¥
where J = J_ % in are the "step-up" and "step-down" angular momentum opera-
tors. 10 Sterting with
J, w? =M w? , (59)

and applying T from the left,
JZ[TW?] = —M[TW?] . (60)

which shows that TW? is also an eigenstate of Jz. It is related to W}M by

a constant

_ =M -M
™) =t (61)

where IHEMI = 1 because T2w§ i?? (ef. Eq. (30)). The calculation of TJ‘W?

will yield the necessary phase relation by first calculating T[J_w?], and

then calculating [TJ_]W? = [-J+T]W? = —J+[TW?] .

17



TJ_W? = T(constant)wg_l = (constant)n3M+l W3M+l . (62)

where (constant) = [(J+M)(J-M+1)] and is just the (real) matrix element for

J .10 Next,.

TJ_W?

+WJ

-M
-J+Tw§ =-np J

-M =M+1
-n; (constant)‘i'J . (63)

Comparing Eq. (62) and Eq. (63), the relation must be

M Ml
g g
or
M M

One can choose Ny arbitrarily so long as (—l)M is evident. To be consistent

with the orbital angular momentum, i* ¥®, one must choose ny = (—l)J, and

2’
) = (-1)7M M

J

M J+M

ny = (-1) . (64%)
We note that

2 _ M M _ 2J
T W? = n;ng W? = (-1) W? . (65)

As stated after Eq. (30), if J is half-integer, T2 = -1, and if J is integer,
T2 = +],
E. Effects of T Transformations on S Matrix Elements

The incoming and outgoing waves of a nuclear reaction can be written

operetionally as

ICIPOR
PO (66)
vhere
(£) _ 1
@ = [l * E-Hiis] 3

18



then

D1 o o(F)
and
WONNS
ng ) - niW§+) . (67)
An S matrix element becomes
S = (wg‘),w§+)) (TW§+),TW§—>)
= nn (), )y (68)
Since [n| = 1, one finds
504 1° = s51° (69)

This is & relation between the cross section for a reaction and the cross
section for the inverse reaction. An incoming wave has all its motions reversed,
meking it an outgoing wave, and vice versa. This is the analogue of the
statement in classical mechanics that if time is reversed, all systems retrace
their paths (see Fig. 2).
More explicitly, if the initial and final states each contain two spins

Sl’ 82 and S!, Sé, respectively, time reversal invariance requires

<x

St .81 ;8 18]k, ;S
f i

. t .
f’ l’ 2,ml’m2 382 le’m236i>

1

- (_l)s1+m1+sp_+m2+81+m1+8§+mﬁ

x <K, ,S.,8,,-m. ,-m.3B, |S|-k_;S!
TR R Ll Rt L | £?

laséa-m' —mé;8f> > (70)

l’

where Ki and X, are the initial and final momenta, and Bi and.Bf are quantum

f
numbers which are not affected by time reversal.

Finally, if the S matrix elements are written in total angular momentum

representation, conservation of angular momentum requires that

19
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Fig. 2. Top: The momentum vectors of a nuclear reaction producing
a polarized particle out of the paper and indicated by O .
Bottom: The effect of reversing all motions, including the
"spinning" of the particle. Spin pointing into the paper is
indicated by @ .
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<TpoMpsBp|S|I, M, ,8,> = <Bo[S; 185> S5 3. %M, M ° (71)
. i i’ f i’"'f

Time reversal invariance implies

J M _ +J, +M,

£ ii
<JpMprB,[8|T, M, .8, > = (-1) T oM ,B. [S[T., M8 o (72)

Combining these two equations,
<eflsJ|si> = <8, |s;]8.> . (73)
That is, the S matrix is symmetric in the total angular momentum representa-

tion as a consequence of time reversal invariance.

IV. TIME REVERSAL INVARIANCE IN NUCLEAR REACTIONS
We consider here only nuclear reactions which have two particles in
the entrance channel (C) and two particles in the exit channel (C'). This

can be written symbolically as

Ay + By > Ay, + By, . (Th)

A. Density Matrix

A statistical description is appropriate for scattering experiments.
The beam and target consist of an incoherent mixture of various spin orienta-
tions. This suggests that we expect the beam and target to constitute a

statistical ensemble of systems, each consisting of a pair of interacting

particles. Let there be N such systems and ¥(a), (a = 1, 2,...N) be a de-

scription of each. The mean value of a physiecal operatarf&is

1 N
<Q> = ¥ 21 <¥(a) |&|‘}‘(a)> . (75)
a:

Expressing the ¥(a) in an orthonormal basis,
¥(a) = 2 2(a)|s> ,
J

where
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ZI%(a)Iz =1.

J
Now expressing <3,z again,
N
<Q> =%- > X a;(a)<k&]j>%(a) . (76)
o=l J,k

We define the Hermitian matrix, called the density matrix, p, as

N & (a)2¥(a)
<jlplk> = Z _.j___k_

a=1 N ’

so that

Q> = Z <j|p|k><kL%]j> R
or ’

<@ = Tr(pQ) - (77)
Clearly also

Trp =1,
because

2la@®=1.

J

B. Density Matrix After a Collision

The definitions of the previous section allow us to calculate the "final"
density matrix, p £ after two particles undergo a reaction. We write the

initial wave : *

where ;(* is an eigenvector of the initial spins, expanded in a particular

basis, ; = Z djl,j>, where |j> are the base vectors. The scattered function

can be written as

() 5 Y4 S we,9) % (78)

> e X +
o
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Initially, the expectation value of an operatorgiis, as before,

2, apexlalse

<X 1x> lel

2 2oraig|ss
_iE JE

(79)

After the reaction, the expectation value of the same operator is (suppres-

sing the a index for the present)

w, - Solali _ iilal

XX <My |Mx>

ZZQ*M <218 |m>M 3%

E I

Jek,% 2

That is,

Z ZM d 2)<2,|9,‘|m>

<Q> =2,m Jk
ST D w e
Jik,g M J KK

-f
2o uN) <alglm

= im
-1-
20,40

We can write
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Tr[Mp. M'Q]
@, ———————T = T - - (80)
r(Mo.M ]

And the final density matrix is defined as
.i.
Mo .M

il el (81)

P = >
f +
Tt ']

where the sbove calculation shows that

9, = TrlpQl - (82)

Before going on, it will be shown that TrQMpiMj) is a cross section.
This fact will often be used to "label" this quantity. Assume that a basis

has been chosen which diagonalizes the initial density matrix. In that case,

eyl = T(Tn, o)
1 3 o Jon mm “mj

n
™
™
=

(83)

il
™M
Q
Ce
1}
Q
—
]
~
-

where the initial state has been taken as x = 2:dijm> and oj(a) is the cross
m

section for scattering to the state Ij>. The index a has been replaced to
point out that this is the scattering for a particular pair, o, of particles.

The average cross section for the ensemble is then

19 +
o(6,0) = 5 3, ola) = Trido.M'] . (84)
o=l

C. Density Matrix Relations for Observables

The initial beam polaerization can be expanded in terms of wz(Sl), a
Lo g oy

complete and orthogonal set of matrices spanning the space of Sl’ the incident
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particle spin. The superscript, £, is an index taking values 0, l,..., 2Sl.
Likewise, the initial target polarization can be expanded in terms of dm(Se),
ANA s

a complete and orthogonal set of matrices spanning the space of 82, the tar-

get spin. The superscript, m, takes integral values from O to 25.. It will

2
0] ¢]
be convenient to always take w (S,) = 1, and w (S,.) = 1., where 1. and 1
are the identity operators in S1 and 82 spaces, respectively.
Orthogonal matrices are defined as
QT m
Tr{w (s) w (8)] = (2s+1) 6§, . (85)
P I e e 2,m

Since gf =1, it follows that all other matrices in the orthogonal set must

be traceless.

A direct product of the beam set of matrices, wE(Sl), and the target set
APty

of matrices, wm(Sz), forms a complete orthogonal set of matrices, R , for
PAAAAA ‘\«h

the entrance channel C.

_ % m
Q, = [w (sl)] x [w(s.)] . (86)
Similarly, one can form such a set for the exit channel, C',
L m'
a0 = [0 (8] x [ (s)] , (87)
Nﬂl‘l- e " " AA ttiis

where 2' =0, 1, ..., 2Si and m' = 0, 1, ..., ZSé. (A prime on the subscript

of @ distinguishes & complete set in C from a complete set in C'.)

To summarize, a complete orthogonal set of matrices can be formed to

describe the entrance channel, C, with the properties.

Tr[f; a1 = (2541)(28,%1) 6 5 9 =1, . (88)

P My N

A complete orthogonal set of matrices can be found to describe the exit channel,

C', with the properties

t = 1 1 .

0'
Arnve Ao AnAn

= C'.
A

25



Since theamatrices span the spin spa.ce,:Ll the initial density matrix*

can be expanded as

1 Z i
p, = 2 . (89)
i (2sl+1)(232+1) ToE N

where @5 = <Q >* = Tr[p,R ] is the component of @ which is contained in

H Al ik u

the entrance channel (beam and/or target). It is convenient to take these

matrices as complete and orthogonal. One can use a set that is simply "at

least complete" (more likely overcomplete and not orthogonal) if the set B,

is defined so that the expansion of ps becomes
Py = E:kak H bk = <;].3J;> .

The second relationship can be satisfied without or‘l;hogonza.lity.1:L From Egq.

(81), the final density matrix is
-i-
o i

Po = 7. (90)
T ey i)
Some definitions will be helpful:
I, = oaey TriMe]
= _ 1 =t
Io = z5vey Trd]
+ (91)
1(8,¢) = Tr{Me,M']
= —
I(e0,¢) = Tr[Mo.M'] .

where Io is the differential cross section for an unpolarized entrance channel

*For these calculetions, we will assume that the Q matrices are Hermitian,

so that Q+ = Q3 a treatment of non-Hermitian matrices is given in Appendix B.
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1
i~ 28+1 C

(p 1.) and I{6,¢) is a differential cross section for general polari-
zation in the entrance channel. The bars refer, of course, to the time-

reversed reaction (or inverse reaction). Since the expectation value of

2 , can be written
ahn

iy
Q= Tr[pfﬁy;] R (92)

we substitute from Egqs. (90) and (91) for P, in Eq. (92), and write differ-

ent forms of the very important relation:

Tr Mo, M M'] Q = Tr[kipigl.f Qv']
(93)
Tr[ypig+] n\f), = 2s+129 Tr[Meo gf ot
or
1(e,0) + 9, = 2s+1zn Tr[yﬁkg 2] : (9k)

D. Calculations of M and 9

‘Before M and 2 are calculated, a recalculation of the general operator
Qwiu be made to emphasize that the earlier results of Egs. (36) and (37)
are the same, even though the matrix opera.tor&may not be square (we are
specifically concerned with the scattering matrix, M, for a reaction involving
arbitrary entrance and exit spins). Considering only stationary states, time

reversal invariance can be written as
(¥50,8%5) = (Y8 ¥o) - (95)

Using the notation ¥ =TV, and ‘l’ =T

i h
c oo C'WC' s the transformation from the

time-reversed system becomes
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—f«._
(¥ T QT ¥ ) *

=
(TC-%TC'WC' ’WC)

(wc,,ngfTch) . (96)

Compering Eq. (95) and Eq. (96), the relation is seen to be

2= Tg'ngc

£§= TCQTTZ' . (97)
In perticular,

Eomgrm s X = TgE

o= y=1 i, . (98)

The expectation values of the.g'matrices are measured, of course, either in

the entrance channel C or the exit channel C'. Therefore,
= +
'&l = TCQ TC
=  _ +
2&} = TC'E&'TC' . ‘ (99)

The results of Egs. (98) and (99) will be used in the next section.

E. Polarization Transfer Coefficients

The type of polarization measurements with which we will be concerned
are the polarizations of AC" BC" or both, after a reaction in which Ac
(or BC) was initially polarized. This can be written symbolically as

B, +B,>K, +3B . (100)

We seek a relation between the parameters which describes the reaction in
Eq. (100) and those which describe the polarization of A, (and/or BCQ in the

inverse reaction with AC' (and/or BC,) initially polarized. This can be
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written symbolically as
£, +B R.+B,. (101)

The expression for the final polarization, 95, = <Qv.>f, in Eq. (100)
. Anay
when the initial particles have polarizations described by Qi = <Qu>1 are

Lo

given in Eq. (94) as

£ _ 1 i +
I(0,4) * @, = 3577 ggu Tr[y&b_@&,] . (102)
The expression for the final polarization, QS = <Qu>f, from the inverse reac-

tion in Eg. (101) may be given by

= £ 1 R
T(0,6) @, = 55vT :1:: o, Trilin, Ja ],

where the bars indicate values for the inverse reaction. Just as the coor-
dinate system is not changed by T, the base matrices are not changed from
82 to,é; The quantity QS is the polarization of AC in the inverse reaction
of Eq. (101), but referred to the coordinate system of the reaction in Eq.

(100) (see Fig. 2). However, it will be more convenient to work with the

quantity 55, and at the end of a calculation relate this to Qi as follows:

= < >f = < (<B)>T = (L1)F of .

ot
H U M [

In the last equation, the fact that the Qu are made up of products of spatial
components of spin operators is used to determine r. For example, in the

spherical tensors of Appendix A, r = k, and we have

k
qu(§) = (-1) qu(-§) .
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Therefore, the inverse reaction in Eq. (101) can be described by

= = __1 = s wte
1(0s0) @ = 35757 \; Q Tr[Msjy,y &{] , (103)

where ?2‘5 = <§H>f = <TEZ.HT+>f and i’.—(e,(p) is the differential cross section

for the inverse reactions. We can now show that the two trace formulae in
Eqs. (102) and (103) are equivelent. Using Egs. (98) and (99),

T o 7]

rr(ME M0 ] 2,56

e M
K

Tt t
Tr[T&jI. Ter T vt T MT,

oY

-i-
Tr(M &M&{]

¥ (104)

]|

Tr%g 211,
because oip = 1, and Tr[AB] = Tr[BA] for any matrices A and B. For brevity,

. . . . . vt
we can define a polarization transfer coefficient, Au s, Where

+

\)'

Au = Tr[MQuM szv.]
n —
A%, = TrlMa, M2 ], (105)

and Eq. (104) is simply a statement that for nuclear reactions which obey

time reversal invariance,
v' E
AT = A

u v!

(106)

(Ref. 12 defines polarization transfer coefficients for spherical tensors).
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Substituting Eqs. (105) and (106) in Eqs. (102) and (103),

f 1 i, v!
1(8,9) Qv' T 2S+1 E:Qu Au

= = _ _ 1 a—
I(6,¢) Qu = 5571 L 2, A11 (107)
T
Y = TrMe Mg L] .
U VR

Consider the following examples of Eq. (107) for arbitrary reactions given
in Egs. (100) and (101).
(1) Cross Section: v' =0, p = 0. In this case, Eq. (107) becomes

1 o0_ 1 +
To = 28+1 Mo = Bovr Tridd]

— 1 0
Io T 28t+1 Ao i

where Q; 1, Qz £ 1. Therefore,
(25+1) I_ = (28'+1) 'fo . (108)
(2) Polarization: v' =0, p # 0. Here the polarization in the inverse

reaction with an unpolarized beam (and/or target) is sought. Then Eq. (107)
becones

(2s5'+1) T_ - af =20 = Tr[g&_»f] . (109)

M
= t+_ f . . X
where Qu = <TCEETC> . It is the role of TC in this case to replace the entrance

channel spin, §, by 3. Writing Qu explicitly as a function of §, this becomes
AA
af = <q (-B)>T . (110)
H Al
Using Eqs. (108) and (110) in Eq. (109), we find

(28+1) Io <Qu(—§)>f = Ag . (111)
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(3) Cross Section: v' =0, u # 0. An initially polarized beam (or

target) has components Q;. Equation (107) becomes

(es+1) I(6,9) = Zgi A0 . (112)
LW

Substituting Eq. (111) into Eq. (112), we have the very important relation

I(e,0) =I_3 o o
ol-l L U

i by
Io§ Qu <Qu(-§)> s

or (see Appendix B)

i £
I(0,6) IO:L <szu(§)> <9u(-§)> , (113)

where Q; and ﬁj are, of course, to be determined in the same coordinate system.
(4) ©Polarization Transfer: v' # 0, u # 0. Multiplying the first equa-

tion in Eq. (107) by 2 ?zt, and the second equation in Egq. (105) by Z 9‘11,

v! M
we find
(2s+1) T(0,4) L T, af, = (25'41) T(e,0) L a .
v! u

Eliminating S and S' with Eq. (108), this becomes

1 i T i |

_(_%zﬂ. 29151‘:2&_9_:_‘?1 z 51' Qf' R (11k)

b T vV v
o U Io v

which is a relation between the polarization transfer values Qf, and the
polarization transfer values Ef of the inverse reaction.
As e simple example of Eq. (11L4), consider the T(E,K)hHe reaction. We

wish to find a relation between the neutron polarization transfer along the
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Ki x if axis (y-axis) when the deuteron beam is also polarized along that

axis, and the deuteron polarization transfer along the Ki X ff axis when

the neutron beam is polarized along the same axis (i.e., hHe(K,E)T). We
will designate pgrr = <:l >Y for the neutron polarization transfer. The super-
script y indicates that <°y> is to be measured with an incident polarized
[N
deuteron beamn, <«S,X>i. Likewise, the deuteron polarization transfer will be
designated f’yy = <§y>y. In this notation, pg and PS’ are the usual polarization
w

values obtained by initially unpolarized beams. Substituting Eq. (113) for

1(6,4) and similarly for I(6,4), Bq. (11k4) becomes¥

1+ =P P + 2P P’ =11 + 1 +
[ ][l ] [ p}r'py][ | b py]

2'y'y 2 y

3 ,irs0 i=0 —ir O y =1 0.y

2P+ + PP P = +p o+ . 11

> y[ vy T By * By By y] py[py 1 W py] (115)

=0 0

At zero degrees, both Py and py nust be zero. In that case,

3 i _ iy . > > . > >

5 Py Pz = Py py 3 LJ_m(ki x kf) + 0 3 Ikil,lkfl #0, (116)
where Eq. (116) has also been expressed with F‘; = -—P§, 5; = —p;'r. If the
measurement pz is divided by the incident deuteron beam polarization g— P;,

and likewise Pi, Eq. (116) states

124 y
Z) = (3yi) 5 Ll'_m(i]:i x Kf) +0 3 IKllalel £0, (117)
(Py EPy

This is but an example of the type of information which is expected to be

obtainable in the near f‘uture.l3

*The need for the "3/2" factor is clear from Appendix A.
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V. TIME REVERSAL INVARIANCE IN ELASTIC SCATTERING
The fact that elastic scattering leaves the particles in the same final
state as their initial state places restrictions on the scattering matrix

M(Kf, Ki’ §l, §2), where Ki and i are the initial and final momenta, respec-

f
tively, and where §i and §2 are the beam and target spin, respectively. In
particular, since one cannot distinguish between the reaction and the inverse

reaction (if the interaction is invarient under time reversal), the M matrix

must satisfy

M(kfa kis §13 52) = M(i{*fa —k>13 §l’ §2)
= M(-k,, k., -8, 8,) . (118)

Some of the consequences of this restriction will be discussed.

A. Coordinate System

The transformation, M, in Sec. IV did not include Ki_*-if and Kf -+ -Ki’
because that would include a change of the coordinate system. Recall that
Eq. (37) expressed bothjg and Q in the same coordinate system. Specifically,

the transformation is

M = m*(ﬁf, k., 8, §2)T* = m(k,, ., -8, -8 . (119)

The meaning will become clear with a specific example. The most natural
coordinate system in which to discuss time reversal invariance is the follow-
ing set:

. X Ef (taken here as the y-axis)

n a unit vector along N

+

k
~ ] > - .
n, & unit vector along k. + k. (taken here as the z-axis)
ﬁ_ a unit vector along k k. (taken here as the x-axis) ,

i
where specific x-, y-, and z-axes are assigned for convenience. Notice that
as a consequence of Ei = -Kf, Kf

coordinate system requires (see Fig. 2)

= _Ki’ and § = —§, the time reversal of the




A = -n or n8= nd
ﬁ+ = —ﬁ+ ﬁ¥-§ = ﬁ+-§ Time reversal invariance . (120)
ﬁ =+ﬁ ﬁ'§=-rﬁ 'g

One can exchange one system with the other by a rotation of 180° about ﬁ_.
The notation for this transformation will be R_.

For future comparison, it is pointed out here that conservation of parity
and [8] = §, where the brackets []1 designate

requires [gi] = -Ki, [if] = -Kf,

the transformed observable. In this case,

[a]l = A or [4]-[8] = na.8
[a] = -ﬁ+ or [ﬁ+]-[§] = -ﬁ+-§ Parity Conservation . (121)

[
i
=]

[a ] n or [ﬁ_]°[§]

_ﬁ_.§

B. A Spin 1/2 Particle on a Spin-0 Target

The M matrix can be expanded in terms of the complete set, 03'

M=A1l+ § * g
where
B = (Bn)n_+ (Bem)n + (Ben)n,
> > >
=Bn_+3Bn+Bn, (122)
M=mr = o[a% 1+ B% . 317
=ulal1+3B - o*U,
where the function of U is a rotation about the y-axis, and o§ = —oy. There-
fore,

M=a1-38.37. (123)

The inverse reaction will be specified in the inverse coordinate system (a
rotation, R_, of 180° about ﬁ_). Therefore,

RMR LT =41-06B +0B +00B, .
- = X - y o 7+
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Since Eq. (118) holds for elastic scattering,
= -1
RMR ~ =M - (12%)

implies that B_ = O. (0f course, parity conservation requires that not only
is B_ = 0, but also B_ = 0.)

C. Elagtic Scattering of General Spin

We again designate by Qu a complete, orthogonal set of matrices which
describe the polarization of the beam (with spin gi) and the target (with
spin §2). However, for present purposes there will be no loss of generality
if we consider only an unpolarized beam of spin 8 incident on an unpolarized
target of arbitrary spin. In this case, the polarizations of the particle

after the reaction and the inverse reaction are described in Eq. (107) as

(25+1) T <@ >% = rr[mM’ g ]
o M u
(25+1) I, <E'u>f = Tr[MMIQu] = Tr[MQuMT] . (125)

However, since Eq. (12Lk) is a general property for elastic scattering,

Eq. (125) can be written

Tr[MQuMT] = Tr[MMIQu] = Tr[R:MR_R:M*R;EQ]
= 'R @ 71 (126)

Neglecting normalizing constants let Qu = Su, components of angular momentum.

Then Eq. (126) states that

Tr[MszM*] = Tr[MMTSZ]

t t
TriMS_M Tr(MM'S
riMs M'] = Tr(MMs ]

Tr[Mst*] - Tr[MMTSx] . (127)

However, the last equation in Eq. (127) is zero because of the conservation

of parity (i.e., Px = 0 after scattering an unpolarized beam). Therefore,
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we can write the familiar relation
M7 = i
Tr(MSM ] = Tr[MM 8] , (128)

which is a consequence of time reversal invariance for a parity conserving

M matrix.

Vi. CONCLUSION

The general properties for the time reversal operation for nuclear reac-
tions have been discussed. Equation (113) (and its generalization, which is
Eq. (B-11) in Appendix B) was derived and gives a useful relation for the
cross section of feactions containing polarized particles in the entrance
channel. A relation between polarization‘transfer experiments was derived
(Eq. (114)) and is presently being investigated. This report ends where
most treatments of time reversal invariance for nuclear interactions begin--
namely with elastic scattering. The restrictions of time reversal invariance

in the elastic scattering process will be the subject of a future report.
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APPENDIX A

Spin-one tensors are given in terms of the symmetric, traceless, Her-

es 1 . 2
mitian set 1, .ii’ za.nd'i}_J = E(Si Sj + 8 3

are (i,J = 1,2,3 or x,y,z).

3540 -

AnA NS s A

Gi,j

of the components

¥

, where the matrix form

1[0 10 : L f0 i o 10 0
s,=—=(10 1); s =—=(i o -i); s =[lo 0o o).
2Z\o 1 o ¥ B\ i o 0 0 -1

However, this set is overcomplete and not orthogonal.

orthogonal and Hermitian matrices for spin one is

8, =1 (unit matrix)
'Ql = /gtﬁl = g*x
& = %.?.’2 =/§'§y
‘23 = %"8‘3 =»/:2)--"'8"2

2 w2 =] /6 S12

fon
+

)
)
g
1

/3_
2
= /3 =
25 "£(§2§3 +838,) = /6 8,3
jé_
2

{00!
'_J
+
Lol
0]
1
wm

[}
N
~—
fl
~—~

These metrices have the properties

1.
Q =
&=y
Tr&d £K= 36;]1( N
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A convenient set of
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and ‘&7 and -&8 can be replaced by

be-p w Bog-n.

respectively, or by .
3 2 &2 /_1__ 2
/2—(~S—3'§1) and 2 (% -8 »

respectively, depending on which is more convenient for a specific problem.
Another commonly used set of matrices for spin one are the non-Hermitian,

orthogonal, complete set of spherical tensors, g

kq®
Ioo =&
10 =~[§~S-z
dqxy = F l/"g (S, * 18))
Lop = 7—;_ (382 - 2)
~T'-2il =+ Z_Z; [(**S‘x*"s*z +~§z§x) * i(~§y~§z +..§.z é‘y)]
Foio = L/—-g_ [(,S,i —“}2,) > i(§x§y +~§y§x)] .

These matrices have the properties

Tt q
Zpg = 1T E

36,6

1.
Tr@kq “T-k'q‘] kk' “aq

In the early part of this report we have used the exponential notation

for an operator. The operator ee is defined as

& = o o, 866
é [1 + +—-21 +—-—31 + ...] .
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With this definition, we proceed to calculate Ae9: for any operators A and

(8

AeY = Al1 +@ + %‘9’+ 0;(!70,+ ...1 a1
-1 -1
= [1 + A0t + Aﬁfﬁ +A‘%‘;OA +...]1A
-1 =1 -1 -1 -1
=1+ aonh o RO RONT | AoWToONTONT g,
! 3!
~1,2 -1,3
= [1 + (AOA"l) + (Aoé! ) + (Aa‘él ) + ...] A
-1
= A0, A

We have used the last expression in Eq. (6).
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APPENDIX B
One can, of course, expand a density matrix in terms of a non-Hermitian

set of orthogonal matrices. Consider, for example, the spherical tensors

_ 1 +
pi = Ze—s-_*_—l)— kzq <qu>qu . (B l)
1

Since pz = p;» We must have from Eq. (B-1)

[<T > 4 «p >7l ] = [<

t + T
kg "ka k-q "k-q Tyt ]

+
ko kg ¥ Tr-q”Tk—q

= » * -
[<qu> qu + <Tk—q> Tk-q] . (B-2)

. t o 1 . o
Since qu = (-1) Tk—q’ Eq. (B-2) is satisfied by

* = (=14 | -
<qu> (-1) Ty g (B-3)

The spherical tensors are not Hermitian opersators and, therefore, they
are not observable. However, one can make up a non-Hermitian operator Qu with

observable components by writing

1.t it .
= = + + = - i@
Qp > [Qu Qu] 5 [19u i p]
= Vu + iwu , (B-4)
where Vu = V: and Wu = W:. The density matrix is written
=1 it . t =
oy = T55TD) %; @>ta, Tr 9 = (25+1) §
_ +
(0,¢) = Tr[MpiM ]
_ 1 i t _
T (25+1) %} <> TriMa M ] . (B-5)
Substituting Eq. (B-4) into Eq. (B-5),
i t t
25+ = >7 [Tr(MV M) - iTR(MW M .
(25+1) 1(8,9) = L <@ >" [Tr(MV M") - iTROM M')]

u
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oot t

. =
But since M = TC,M TC’ M = TCMTC' from Eq. (96),

(2s+1) I(e,¢)== N <Qu>i [Tr(MMqu).— iTR(MM w“)] . (B-6)

M
But Vu and Wu are observables in the inverse reaction, namely

1 =

IO<Vu> = ES—'—E Tr[ MM VU]
= = ___1 —fe _
TN > = 55rT Tr[MM wu] . (B-T)

The observables VU and Wu are tensors made up of components of spin. Since

the effect of T here is to take § into _§, we note also that

Vu<§) vu(_g)

w“(§) wp(-g) . (B-8)
Recalling that (28+1)I_ = (es'+1)fg, we substitute Egs. (B-7) and (B-4) into
(B-6) to find

—t f

I(6,9) = T g; <Qu>i @, (B-9)

where the superscript f denotes final polarization in the inverse reaction.
Using Egs. (B-8) and (B-4) in Eq. (B-9), we obtain

1(0,9) = Io Z <Qu>i <QI(—§)>f . (B-10)
u

This is a generalization of Eq. (111). To emphasize this important result,

we rewrite Eq. (B-10) in the general form. Consider the reaction

KC + ﬁc AC' + BC' s
with polarized target (and/or beam) with beam spin §l and target spin §2.
We can form a complete, orthogonal set of matrices from §l and §2 which we

will label Qu(§1,§2). These matrices are required to cobey the orthogonality

relationship Tr[Q: Qv] = (231+1)(282+l)6uv° If the entrance channel contains

L2




. . 1
polarized particles (i.e., not all 9; = 0, u > 0, where 9: = <Qu> = TrpiQu,

and @ = 1) then the cross section I(6,¢) is given from Eq. (B-10) as

I(0,¢) = I_ g; <9u(§1,§2)>i <9:(-§i,-§2)>f , (B-11)

where, of course, all quantitites are expressed in the same coordinate system.
To illustrate this, consider the cross section for the T(E,n)hHe reaction,
where the incident deuteron beam has tensor polarization which can be expressed

in terms of the spherical tensors, qu. These spherical tensors have the

properties

= (-1)2 -

Tiq (-1) Te-q (B~12)
_ k
qu(§) = (-1) qu(-§) .
Substituting Eq. (B-12) into Eq. (B-11), we find (cf. Satchlerlh)
_ _ k+q i f _
E)

where the Tltq are the expectation values of the incident deuteron beam, and
the Tiq are the expectation values of the deuteron polarization in the inverse
reaction (i.e., hHe(n,_é.)'l‘), but expressed in the same coordinate system as

i

qu .
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