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FOUR COMPUTER PROGRAMS USING GREEN'S THIRD FORMULA

TO NUMERICALLY SOLVE LAPLACE'S EQUATION IN

INEOMOGENEQUS MEDIA

by

John K. Heyes

ABSTRACT

This report serves as & user's manual and expleins the
theory behind four computer progrems that can be used to nu-

merically solve Leplace's equation.

Laplace's equation in

two dimensions and in three dimensions with exial symmetry is

discussed.

The numerical solution of both problems in inhomo-

geneous medla is considered. A brief outline of applications

to Poisson's equation is given.

I. INTRODUCTION

This report discusses four computer programs:

(1) LAPLACE solves the mixed boundary velue
problems for Leplece's equation in two dimensions.

(i1} IAPLARS solves the same problems in axially
symmetric three-dlmensional regions.

(ii1) LAPLDDC solves the mixed boundary value
problem for Laplace's equation in inhomogeneous wmedia
in two dimensions.

(iv) LAPLDRS solves the mixed boundary value
problem for Laplace's equation in inhomogeneous media
in axially symmetric three-dimensional regions.

The programs are called program (1), program (ii),

and so forth. These programs are written in FORTRAN
and are presently used on the CDC 6600. Programs
(111) end (iv) can be used to solve almost any prob-
lems that can be solved with programs (1) and (ii).
However, programs (i) and (1i) are slightly faster,
slightly easier to use, and much simpler as far as
programming logic is concerned. All four programs
use the same method to obtain a solution, have more
or less the same input and output, and have the same
structure. Because the programs are so similar, we
emphasize the x-y plane with the understanding that

the axielly symmetric problems can be handled simi-

larly.

The method used to obtain a numerical solution
is different from that of most programs used to
solve Laplace's equation, and makes the use of the
program different. Suppose we want to £ind a numer-
icel approximation to a solution of Laplece's equa-
tion in a two-dimensional region, G, with boundary
S. For simplicity, assume that the region is o
homogeneous medium. LAPLACE uses the fundemental
formula

u(x,y) = lﬁé‘ [202)3 - wZnDh s (xov)es (1)

to epproximate the desired solution, u, in G.
Sternberg end Smith,l p. Ti.
ther u or au/av is known at every point of the bound-
ery, S. The problem is to find u where du/dv is

See
For this problem, ei-

known, and du/dv where u is known. The values of u
and du/dv that are sought are called the unknown

boundsry values. To approximate the unknown boundary
vaelues, we use a corresponding form of Eq. (1) for

the boundary. Once the unknown boundary values have
been computed, the solution or any of its derivatives
can be approximated by using Eq. (1). Thus the use

of LAPLACE 1is a two-step process:



1. Approximation of unknown boundery values,
and

2. Approximation of the solution or its deriv-
atives at desired points in G.
The program LAPLDDC also uses Eq. (1) to obtain a nu-
LAPLARS end LAPLDRS use the ana-
log of Eq. (1) for the axially symmetric case.
II. GENERAL PROBLEM

In this section we detail the most general prob-

merical solution.

lem that can be handled by each of the four progrems.
More general problems can be solved, but they must
be reducible to the form given here.
A. General Problem for LAPLACE

Consider & two-dimensionel region, G, in the

x-y plane with boundary S. Suppose we wish to solve

for u(x,y), satisfying

2 2
%u(x,y) , d3u(x,y) _
3 t>3 =0

in G 3
ax dy
u= ¢ on SD >
and
u
%E =g on SN .

Here SD U SN = S, which is the boundary of G, and
Sp n Sy 1s, at most, a finite number of points ( for
example, corners of S). Sy
assume that S has a parametric representation {[x(t),
y(t)] | te(0,d)} with respect to arc length. Here d
is the length of S. Moreover, we assume that both

x(t) and y(t) are piecewise smooth.

or SD can be empty. We

The region G wmay
be finite or infinite, but LAPLACE assumes that the
boundary S is finite in length. The method can be
extended to include infinitely long bounderies. Fi-
nally, Eq. (1) is not true, in general, for infinite
For the
other three programs (LAPLARS, LAPLDDC, and LAPLIRS),

the assumptions concerning the parametric represen-

regions G unless u(x,y) = 0 as (x,y) — .

tation and infinite regions must also be true.
B. General Problem for LAPLARS

Essentially the same problems thet can be solved
with LAPLACE can be solved with LAPLARS. Using axial

syametry, we shall assume that the problem has been

reduced from a problem in (z,r,P) coordinates to a
problem in (z,r) coordinates. Thus, only the z-r
plane need be considered. Moreover, using the symme-
try again, the problem will be restricted to the up-
per half-plane {(z,r)|r = 0}. Note that, in all di-

agrams that follow, the z-axis corresponds to vhat is

2

normally the x-axis, and the r-exis corresponds to
the y-axis. Now let G be a connected region in the

upper helf of the z-r plene, and let S be the bound-

ary of G. Suppose we wish to solve for u(z,r) sat-
isfying
2 2
ar dz
u=f on SD B
and
u
%; =g on SN .

Here Sy USy = 8 N {(z,r)lr > 0}, and Sy N sy is, at

Notice that SD and

Because of

most, a finite number of points.
SN do not contein parts of the z-axis.
the exiel symmetry, the condition 3u/dn = -(3u/fdr) = O
must always be satisfled on the z-exis.

C. General Problems for LAPLDDC

The physical problems that can be treated by
LAPLDDC are given in Ref. 2, p. 391.
one might have an electrostatic problem involving two
or more different materisls. The materials might be
conductors, or might have different dielectric con-
Another possibility is s magnetic field prob-~
lem with materisls of different permeability. Now
In what follows, the

For instance,

stants.

consider the generel problem.
choice of two 0's 1s for ease of explanation only.
Let G be a connected region in the x-y plane.
Suppose that Gl and 02 are connected subregions such
that G = G, U G, end Gy n G, is empty. Let S, be
De-

and

the boundary of Gl and S
fine C = 8, n 8, 1
G,. See Fig. 1. Let oy be associated with G,, and

cz with G2. Define a/an1 to be the exterior iormal
derivative on 5, N C, that i3, exterior to Gl’ and
define a/an2 to be the exterior normal derivative
on 32 N C, thet is, exterior to G2. At every point
of C, 3/am; = -(a/ane). Finelly, let S; and S be
such that S-C = SN u 8p» and Sy n Sy is, at most, a

The problem is to find

> be the boundsry of Ge.

to be the boundary common to G

finite number of points.
u(x,y), defined on G and S= s, U S,, such that

2 2
d
__% + é_% = 0 ing - ¢C s
?x Ay
u=s f on SD ’
du
T on SN 3



lim u(x,y) =
(,3) = (x,,5,)

lim u(x,y)
(x,5) = (x,5¥,)

(x,y)eGl (x:Y)GGQ

for each point (xo,yo)ec, and

au(xoyyo)

B bu(xo,yo)
% 3n, =

-9, S;é for each point (xo,yo)ec.
When, Gl for instance, is empty, this problem reduces
to the genersl problem stated for LAPLACE. If the
stated problem were electrostatic, the O's would
correspond to the dielectric constants of the vari-
ous meterials. The boundery conditions on C are

called the matching boundary conditions.

S

Fig. 1. Possible configuration for G.

D. General Problem for LAPLIRS

The general problem for LAPIDRS is the same as
that for LAPLDDC, except that G must lie in the up-
per half of the z-r plane, and the partial differ-
ential equation corresponds to the axielly symmetric
case.
III, INPUT
In this section we discuse the input for the
The input is slightly different from
that given by Hayes,3 but it is almost exactly the

same for the four prograns considered here.

four programs.

Assum-
ing & compatible problem, the ssme input will vork
for each of the four programs. For progrems (i) and
(11) there are two allowable boundsry conditions:
the Dirichlet boundary condition, i.e., u glven, or

the Neumann boundary condition, i.e., du/dn given.

For problems in which only the Neumann condition is
glven, the solution to the general problem is unique
only up to an additive constent. To make the solution
to the interior Neumann problem unique, the approxi-
mete solution v, is made to satisfy £ u, as = 0, for
programs (1) and (iii), and

‘£ u,rds =0 ,
for the axially symmetric programs. For exterior
problems, we assume that u(v,w) = 0 as (v,w) — =.
This assumption makes the exterior Neumann problem
uniquely solvable. However, using programs (i) and
(i11), arbitrary Dirichlet boundary conditions cannot
be imposed for the exterior problem because of this
assumption.

To use the programs in nonhomogeneous media, we
have another possible boundary condition, celled a
matching boundary condition. On the common boundary,
the solution, u, must be continuous and the normal
derivaetive must satisfy given jump conditions.

A. Boundary Description

Two different types of boundaries csn be given as
The first is called the regular boundary to
distinguish it from the second.

includes all of the common boundary and S

input.
The regular boundary
. It elso

N

may contain sll or part of S The regular boundary

must always be a finite numbgr of closed curves.
For programs (1i) and (iv), a closed curve can also
be a curve beginning snd ending on the z-axis. For
instance, see Fig. 4. Moreover, boundery vslues giv-
en on the regular boundary slways refer to one side
of the boundary.

problem might be the interior of a circle or the ex-

For instance, the boundary value

terior of a square.

For some other boundaries it is convenient and
even desirable to assume that the region enclosed by
a portion of the boundery is infinitely thin. For
instance, in electrostatics, if one is setting the
potential on & plece of foil, it is not unressonable
to assume that the foil is infinitely thin, if its
actual thickness is very smsll compared to its other
dimensions.

The second type of boundary encloses & region
that is assumed to be infinitely thin, and is, there-
fore, called a thin-plate boundery. The values of
the potential are assumed to be given on both sides

of a thin-plete boundary. Moreover, the potential is

3



assumed to be the same on both sides. For this rea-
Thin
plates can be used only with the Dirichlet boundary
conditions.

1. Simplified Boundary Data.

boundary velues can be given as input in two differ-

son, thin plates mst not form a closed curve.

The boundery and

ent ways. We will discuss the more general method

later. For the simpler method, the boundary S is
spproximeted by line segments, clrcular arcs, and
complete circles. The boundary values ere assumed
to be constant on each section of the boundasry, S.
This type of input is satisfactory for most physi-
cal problems. A line segment 1s described by its
two end points. The two end points and any interior
point ere used to describe a circuler arc. For a
complete circle, one must give the coordinates of
the center of the circle, the radius of the circle,
The orientstion determines

vhether G is interior or exterior to the circle.

and the orientation.

A +1 denotes a positive orientation in which case
G is interior to the circle, and -1 denotes a nega-
tive orientation, in which cese G is exterior to the
circle.

The orientation of the other boundary sections
is implicit in the input. The region G must be to
the left of the reguler part of the boundary as one
follows the curve S in the direction given in the in-
put. The direction of the curve is determined by the
order of the points used to describe line segments
and circular sections and is from the first end point
to the second end point. Thus, interior regions give
the boundery S a positive (counterclockwise) orienta-
tion, and exterior regions give it a negstive (clock-
wise) orientation.

All of the input used to describe the simple
boundary conditions is given on data cards, each of
which refers to a pert of the boundary which is
called a boundary section. Each card has ten flelds.
We will discuss only the first seven flelds now.

Each of the first seven filelds is ten characters in
length and is read with a TE10.0 formet. If the
boundary section is not in the common boundary, the
seventh field, i.e., columns 61 to 70, is used for
the boundary value, be it Neumenn or Dirichlet. If
the boundary section is in the common boundery, then
the seventh field is used to give the value of 0 for
the region on the left of the boundery section.

We discuss here only progrems (i) and (11i); for

programs (ii) and (iv), one simply replaces x-coordi-
nates by z-coordinates and y-coordinates by r-coordi-
netes. If a card is used to describe a line segment,
the first four fields are used for the x- and y-co-
ordinates of the first end point and for the x- and y-
coordinates of the second end point, in that order.
The fifth and sixth fields must be left blenk. If e
card is used to describe a circuler arc, the first

six fields are used to give the x- and y-coordinstes
of the first end point, of the interior point, and of
If a deta card
is used to describe s complete circle, the first two

the second end point, in that order.

fields asre used for the x- snd y-coordinates of the
center of the circle, the third and sixth fields must
be left blank, and the fourth and fifth fields are
used to give the radius end orientation, respectively.
For data cards used to describe circular arcs and line
segments, one can leave the first two fields blank if
the first end point is the same as the second end
point of the previous card. The data cards are printed
as they ere interpreted. A blank card must precede
and follow the boundary data cards.

We will now consider four problems with simple

boundary input. See Fig. 2 for the first example.

(0,2}

w0 31.0

ain
{-1.75,0) /L——[ 172

[
I~

(2,-1.5 1

V/

N (2,-15)
u=0

Fig. 2. Sample problem using the three types of

boundary sections.

Here we want to find u(x,y) setisfying Wt Upy = 0
G is the region between the circle and the

three-sided section in Fig. 2.
are assumed to be u = 1 on the circle, 3u/dn = O on

the line segment Z2,-1.5$l0,25, and u = O on the rest

on G.

The boundary conditions



of the boundery. Ignoring the information in colummns
71 to 80, the first seven Pields for the boundary in-
put cards for this problem could be as follows.

80 COLUMN ENTRY
PROGRAMMER PROBLEM OATE Pﬁﬁ* Of

| 56 oM I15)6 20)21 25[26 31 35(36 4q4! 45146 51 53| 6! 6566 n_ 73 80
T . s I-JlJ.S T N o ) NI S .2. JEENTIUTS) DU RN S NVETUPUT R A WAt N IR 4

D IR « WA S I Y ISR Y V0 7 IV EPUON. - Y ESUD AU 3% EPUPR LY 5 IR I Q._H;L -
NP PO W% IV Y Y - IR IVE- W PEPEPIDE e VY -\ IV AP NN S 0.1 .1 —
L IJ;D;‘ aaaa b g Ml o ' U I I Y L1 Y ¥ AP S . I VI P
U § Lokl ) dedn 1 P | PV | Lo L dotda ) Al d ) hdnmd Al 1 Ll el Lo 1 Ak Sk A, Ai

The first two fields of the second and third cards
could have been left blank.

In Fig. 2 the orientetion of the circle is neg-
ative, and that of the three-sided section is posi-
tive. This is because G is interior to the three-
sided section, but exterior to the circle. Care
should be taken in deciding the correct orientation.
Errors in orientation are easy to make and difficult
to detect. Orientation is not used with thin plates
because the region G is slways exterior to & thin-
plate boundary. In the example shown in Fig. 3, G
is 811 of the interior of the circle except the line
segment (0,0)(10,0). The boundary conditions are
u = 1 on the circle and u = O on the line segment
(3:57TT5737. Ignoring the information in columns
T1 to 80, the boundary input cards for this problem

\
20 1\

e

\

us0 1//r

(0,0) (5,0) (10,0)

]/
/

\
N\
N\
AN

S

N P

e

Fig. 3. Thin-plate boundary problem.

/
/

are:
80 COLUMN ENTRY
PROGRAMMER PRQBLEM TE PAGE _ OF |

] s/ 1oh1 ishe  zola 2526 3o i36 a1 4546 sl 55156 edsl 65066 n_ 3 80
NI TR o 1 I P + V5 EURPIP AP 2 o 4 PPUDU TR @ 5 PR PRSPPI PSP ol 0,03 21

R B YR R PSP o R SN VU PPN B+ | o 2t IS I 0 AP o s Le) o). 31
At present, progrems (1i1i) and (iv) are not capable
of handling thin plates.

We will next consider an exially symmetric

problem. Physically the problem corresponds to a vel |
reglon between a sphere and a right circular cylin- -3.2) / '/ (2,2)
der. The cylinder encloses the sphere, and the cen- ,////
ter of the sphere lies on the axis of the cylinder. ¢ 10.1)
On the cylinder the potentiel is 1, and on the u=0
sphere 1t is O. See Fig. 4 for a diagram in the ////
z-r plane. In this problem both curves are closed (-3,0) {-1,0) (0,0) (1,0) (2,0) z
in our generalized sense. This is because the pro- Fig. 4. Intersection of a sphere and & cylinder

Jection on the whole z-r plane would form closed
curves. Ignoring columns 71 to 80, the boundary

input cards would be

with the upper half-plane.




80 COLUMN ENTRY

PROGRAMM PROBLEM DATE PAGE OF
! Si6 o1 IS‘XG 20]21 25[26 30(3! 35{36 444l 4346 5d5l ﬁks 6061 ~ 6566 xn 73 80
2 A 1111 4 ..‘O. lLa 1 ..a._.._;_‘_._;._u..au cdeta sy 1...1 1 FE A l. l "
U T 1A S - N S I 1 AU - ¥ P RPN VU U PO I W Y | .
PP /e R P - 2 TR I 4 R« 1 I BN M L] A
Y A NI o N IR PP« S IS EY N IV IO A PP B« 0. ., .
FITINR I S U AU IDUTSE S AT EPAT S PR AT IR 5 AE U U5 SR B ST SY MU VST AT A B AT T A FITEEN PR S Y
T IS I I SR S AU I I AT I I AT I AT AU S IV I AU UP A I AT AT 1 L n P
I I TUE T WS W NS I NS SN S ST iy RPN R PR TS Y U P U S S

In this type of problem it is easy to make an error
in orientation. For the second and third cards, the
first two fields could have been left blank.

In all of the sbove problems, the boundary in-
put cards could have been put in any order. This
1s not true, in general, for problems in inhomo-
geneous media. For programs (1ii) and (iv), the
whole problem is considered as a sum of connected
subproblems over subregions. Each of the subprob-
lems 1s complete in the sense that if the potential
on the common boundary were known, it could be de-
termined independently on each subregion. This means
that each section of the common boundary must be giv-
en as input twice, once for each of the two subprob-
lems for which it is part of the boundary. To pre-
serve the orientation of the boundary, the direction
along the boundary sections is opposite for the two
inputs.

The subproblems must be numbered, and the bound-
ary data cards for each subproblem must be consecu-
tive. The order of the cards within the subproblem
is arbitrary. Columns T8 to 80 are used to give the
number of the subproblem. The field is read with
an I3 formet. The numbering should be consecutive,
starting with one. For clarification, consider the
example shown in Fig. 5. This diagrem is not drawn
to scale, of course. It 18 en approximation to an
example discussed in Sec. 4.03 of Ref. 4. The phys-
icel problem approximated is an infinite conducting
cylinder surrounded by a layér of material of dielec-
tric strength 5 in a uniform field of strength 1.

To approximate the behavior in the conductor, we use
a value of g that is very large compared to the other
values of ¢. Ignoring columns 71 to 76, the bound-
ary data cards are listed on the next page.

du

an"°
-1 (L1
6
us-| GZ uel
GSCDZ
\Q 04
osS D
ol
(1,1} ™ (1,=1)
n"°

Fig. 5. Conducting and dielectric cylinders in a
uniform field.

Some numerical results for this problem are given in

Sec. V. If, instead of being a conductor, the inside

cylinder were asir, the data cards would be the same,

except for the last card which would have & value of

1 instead of 1.E6 in the seventh field.

On each boundary data card, one must give two
more Input quantities. Column 72 is the eighth field,
vhich 1s for the veriable LT that determines the type
of boundary condition on the boundary section refer-
enced by the card. If LT = 1, the boundery is reg-
ular end u is given. If LT = 2, the boundery is reg-
uler and 3ufan is given. If IT = 3, the boundary is
thin-plate and u is gliven. If IT = 7, the boundary
section is in the common boundery. These are the
only four possibilities at present. Each of the ex-
émples has the variable IT given on the boundary
date card.



PROGRAMMER PROSLBEE COLUMN ENmY DATE Pﬁ: QF
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Columns 74 to 76 form the ninth field on the
card. The ninth field is used to give the integer
variable KV that tells how msny points are to be
used in approximating u snd au/av on & given bound-
ary section. KV should be odd and greater thasn or
If the value of KV given as input is
less than 5, then KV is assumed to be 3. If the
value of KV given as input is even, then KV is set

equal to KV - 1.

equal to 3.

If a boundsry section is in the
common boundary, then the value of KV used for that
section should be the same as the value of KV used
for the other corresponding section in the common
boundary. If the values are not the same, then the
value of KV first given as input will be used for
both of the sections. The variation in the boundary
values, the shape of the boundary section, the de-
sired accuracy, and the computer time available all
determine KV; no set rule can be given. The user
can try different values of KV on each boundary sec-
tion; the change in %he solution usually indicates
the error. In the example in Fig. 3, we assumed that
51 spproximetion points on the circle and 21 on the
line segment would give sufficient accuracy. The two
boundary deta cards have KV given.

Define NDCT to be the total number of boundary

sectlions, and set

NDCT
z KVi
i=1

NT

To compute the unknown boundary values, one must

solve a matrix problem of the form Az = b, where b
is 8 known vector of length NT and A is an NT x NT
For NT < 192, the metrix can be stored in

core on a 65,536-word machine.

matrix.
For very large prob-

lems, however, the matrix A must be stored on an ex-

ternal device. The extended core storage (ECS) on

the CDC 6600 is convenient for this purpose. If the
user wants to use the ECS to store the metrix A, he
must request (NT)2 + 1500 words of ECS. For the in-
The
reads and writes to the ECS are replaced by statements
The
user must dimension a veriasble called A to be of at
least (N’I‘)2 + 1500 length. The dimension statement
must be placed at the start of the FORTRAN subroutine
ECRD. ECRD also handles the ECS reads and writes

vhen ECS is used.

core version, the core itself simulates ECS.

that move the data to another part of the core.

The size of the matrix A determines
the largest allowable problem.
sumed thet NT < 630.

At present it is as-
By modifying the dimensions of
the variables discussed in Sec. XI, one can raise or
lower this figure.

2. Generalized Boundary Data. The subroutine
When-
ever the simple boundary input is the only type used,
This is a

The generalized boundary input can

BDRY is used for generslized boundary input.

BDRY shows up as an unsatisfied externsl.
normel procedure.
be used in conjunction with the simple boundary input,
or it can be used as the only source of boundary dsts
input. To use the generslized boundary input option,
the user must write a subroutine that must be called
BIRY.

and (1i1); the input for the other two progresms is

In what follows we will discuss programs (i)

the same.
Assume that we have & boundary section, SI’ on
vwhich we wish to have variable boundery values. Let

S

1 have the parametric representation

{Ixg (%), yp(t)1]te(0,18.)}

with respect to arc length. Here LS

1 is the length

7



of the boundary section § To keep the orientation

correct for the regulsr biundary sections, the para-
metric representation must be such that as we tra-
verse SI with increasing t, the region remains on the
left. An equivalent condition is that [dyI(t)/dt,

- de(t)/dt] forms the unit exterior normal vector.
We must be able to compute xI(t), yi(t), de(t)/dt,
dy (t)/at,

2 at dt2 dt dt2

N [uI(t) Fy(8)  ayy(v) d"’xl(t)]

and the appropriate boundery velue as a function of
t for te(o,xsl).

BDRY has the formal parameters (I, T, X, Y, XP,
YP, F, V). I and T are input to EDRY. BIRY must
give as output

x = XI(T) 4

Y = YI(T) ’
XP = de(T)/dT o
YP = dYI(T)/cH‘ s
and
.. l[dxl('r) a®y (1) _ax(m) dz)LI(T)]
21 ar 'dﬂ,z' ar —“dmz ’

and the variable F must contain the appropriate

boundery value. The boundery value can be

ulx(8), 1(8)] or 35 ulx (M), Y(M1 .

Each boundary section with generaslized boundary in-
The first six
fields must be left blank, and the lest three fields
must contein the same information as that for the
simplified boundary input. The seventh fileld must
contain the length of the boundary section. In this
case, it will contain ISI.

put must have a boundary data card.

To clarify, consider the following example to
Let G be the
square centered at the point (0,1) with sides of
length 2. See Fig. 6. Let S1 be the line segment
from (1,0) to (1,2); §,, that from (1,2) to (-1,2);
S35 that from (-1,2) to (-1,0); and S), thet from
(-1,0) to (1,0).

Assume that the boundery conditions are

be used as input for program (i).

. 20(y-y7) ons,

2
a‘;:Sx - 120x° + 80 ons,
u= S5y - 10y3 + y5 on S5 , .
and
u=0 on Sh . .
;E-s-‘ -120:% +80
. (-1.2;7// 7// (,2)
u.sy-'o”.yg %%:z-z.,,' )
7 7
1,0 TG 0,0
Fig. 6. Varieble boundary data problem.

The actual solution for this problem is u(x,y) =

thy - 10x2y5 + y5. For the boundary section Sk’

the simple type of boundary input can be used. To
generate the input for the boundary sections Sl’ 82,
and S}’ the subroutine BDRY must be used. One possi-

ble such routine is as follows.



PROBLEM

DATE PAGE OF PROGRAMMER
For
C & comment
Statement Identification
ll 5617 72|73 80
{ SUBROUTINE BDRY (T.T,X,Y,XP, ¥P, F, V)
; Vs0.
I GOTH(1,2.3).1
} | X=YP =},
! XP=Q,
Y=T
i
F=20.%(Y-Yyes3)
} RETURN
: 2 ¥= L-T
I Xp=-[
Ye 2.
YP=0,
+ FzS5.%Xeel - 120, ¥ X&s3d + R0,
! RETURN
3 X=YP= (.
XP=O.
! ¥Y=2.-1
F= S #Y-/0-%Yey3 ¢ YuuS
RETURN
END
i
If KV = 37 on each side of the square, then the stence, the solution u(x,y) might have discontinuous
boundary date cards for this problem are: boundary values or branch cuts. Suppose further,
80 COLUMN ENTRY
PROGRAMMER PROBLEM _DATE PAGE. Of
' 56 1o 1556 20|21 25/26 X031 3536 4 45,46 S5 5556 6061 65(66 ~n 3 804
ye 1 ra— l;.lnlll 1 a1 { WD WS TS S S W g PRVINYIYS SV S SR U MU I UPUNS S E U [ T ) G T it —_— n a- 137
PN SO EFIF I NN BN BT AP I S . SRS PR N i < oy A
NP P R B IR S P PP ST P R RN 37
P 1Y RS I« 7Y PRV IRPIRY 8 AP IV ¢ % S I I . Q. .4, .37
doi 1 ) U W ST S B S 1 Aol DS U S S B B ) N S W Aol L L T Ll 14 1 P Sra— Aol i
In some csses it is difficult, if not impossi- that we have a function v(x,y) such that u(x,y) -
ble, to compute x(t) and y(t) explicitly, as when v(x,y) does satisfy the requirements for the general
the boundary curve is a section of a parabola or an problem. Usually u(x,y) - v(x,y) has involved bound-
ellipse. However, in these cases one can usually ary conditions, and we prefer not to set up problems
get an implicit expression and use it to compute with such conditions. Using the following option, we
x(t), y(t), end the desired derivatives. The speed can give the boundary conditions for u as input, if
of BDRY is not too important because the routine is the function v and its first derivatives can be given
called, at most, a few thousand times. as a function of x and y. The real function BC is
B. Superposition of Solutions and Magnetic Field used to generate branch cuts for magnetic fields that
Problems

we will discuss laeter in this section. In this sub-
Another optlion is avallable. Suppose we wish routine are two comment cerds. After the first cerd;
to find a function u(x,y) that does not satisfy all

we must insert a statement,
of the requirements for the general problem. For in-



BC = BC - V(X,Y) ,

where V(X,Y) is the function, v, evsluated at X and
Y. After the second comment card, we must insert a

statement,
30 = 0 - KN 4y, WOGY) sy

Thus, v(x,y) will be subtrescted from all input bound-
ary data so that the programs can solve for u(x,y)
- v(x,y), and then v(x,y) will be asdded to all out-
put so that we get sn approximate solution to u(x,y).
The following examples show how this option can
be used. Consider again the example given in Fig. 5.
The outside square was used to approximate the effect
of a uniform electric fileld of strength 1. By using
superposition with the function v(x,y) = x, we cen
put in the effect of the electric field directly and
eliminate the need for the square boundary. The two
statements needed for BC are

8
v

BC
BC

8
B

The other input is the same except that the first
four boundary data cards are not used. We 8lso need
to modify two statements in two subroutines. The
modification is described lster in this section.
Suppose we now went to solve for u(x,y) in the
unit circle satisfying a2u/ax2 + b2u/ay2 = 4 with
u = 1 on the boundary. In this example v is not
unique. Arbitrarily choose v = 2x2. The statements
needed for BC are

BC = BC - 2.%x**2
BC = BC - 4.%p*yp .

The other input for u is simply the boundery date
card for the circle.

The application of these programs to Polsson's
equation is difficult for the general problem. Sup-
pose we wish to solve for u(x,y) satisfying

2% , 3%
—§+——§= £(x,y) in G
ax Ay’

plus boundary conditions. This problem cen be re-
duced to Laplace's equation by using the particular
solution

10

V) = g [ o(e,8) 1 (x-0)u(y-0) fas ax

The double integral cen be difficult to deal with
numerically. However, for many problems this tech-
nique is feasible and the problem can be solved.
The author knows of one physical problem for which
this is the only practicsl solution.

Next, we will discuss megnetic field cslculations.
Program (1ii) can be easily modified to compute the
scaler potential for a large clsss of problems. Pro-
gram (iv) can also be modified to compute the scalar
potential for axislly symmetric problems, but the
modification is more difficult because one must write
en axially symmetric version of the progrem BC dis-
cussed in Sec. XI. The scelar potentisl is discussed
in Sec. 7.28 of Ref. 4. The function u(x,y) here cor
responds to the function Q in Ref. 4.

Suppose we have a series of subregions Gl’ G,,

e ey GNRE having constant permeebilities Hys Hos
© oo Hypee Suppose we also have s number of point
current sources of magnitude Il’ 12, “ e ey INBC at

the points (xl,yl), (xa’Ye)’ e ey (XNBC’YNBC)'
The sign convention for the currents will be deter-
mined by Blot and Savert's law. See Sec. T7.1lh4 of
Ref. 4. For a single point source conductor, a posi-
tive I means a positive current of magnitude I into
the paper, and this, in turn, gives B a clockwise di-
rection. A negative I means a positive current out
of the paper, which, 1n turn, gives B a counterclock-
wise direction. Let
NRE

= s G
and let C be the common boundary in G. G will usu-
ally be all of the x-y plane. The problem is to find
u(x,y) such that

2 2

37u(x,y) , 37u(x,y) _ 4 Ing-c
2 2

ax oy

and for any closed curve, [,

§uar=1
r )
r
where I. is the algebraic sum of the currents inside

r
I'. Also, the function u(x,y) must sstisfy the mstch-

ing boundery conditions on C. Thus, if (xo,yo)ec,
and.Gi
the other side of C at (xo,yo), then

is on one side of C at (xo,yo) and G, is on

b



lim u(x,y) = 1im u(x,y) IF{IC(J).NE.O)D(L) =
(apyxgovg)  (0x)=(x53,) D(L)+BON(X(L) , ¥(L), ¥N(L) JN(L) J*(1.+4RA(3)) -
(x,y)e Gi (x,y)e G‘j
and If ROWSTOR, we insert the statement
dux,y,) du(x ,y,)
By A =My 'aVJ : IF(IC(I).NE.O)FT(IG) =

FT{IG)-ECN(X(M),Y(M),YN(M),XN(M))*(L.+RA(I )*CN(M).
As the problem is stated, it does not satisfy the

requirements for the general problem. Superposition
must be used to satisfy the requirement with the in-
tegral. It is easy to construct a function v(x,y)
such that .

This wmodification cen be used for other problems

where superposition is used and the matching boundsry
conditions are not satisfied. These two modificetions
are inefficient. For large numbers of current sources,

o one should use a table loockup for the modification to
2 Vv.dl” = IT
ROWSTOR .

t

Consider the input needed for point current
or an d = Q.
for eny closed curve, T, and Av = 0. In fact, sources. There is one data card for each current

X-X

1 NEC 1 <Y-yk> source. The format used to resd the cards is
2
k

v(x == . I t
Goyd = 55 g2y Ty ten FORMAT( 3E10.0). The first field, that is columns
-1 1 to 10, is used for the x-coordinate. The second
ith -m < t )< m h a t
v an (+) However, such a v does not, 5 14 is used for the y-coordinate, snd the last
in generel, satisfy the matching boundary conditions.

field is used for the current. The data cards for
Let u; = u - v, Obviously, then

the currents must go in front of the blank card pre-
ceding the boundery data cards. The following ex-

Au1 =0 ample (Fig. 7). is a specific case of the example
and given in Sec. 7.26 of Ref. 4.
Yu..dl'= O
§ 7y

for any closed curve ['. Moreover, it can be assumed
that u - v is continuous across C even though v has

brench cuts. However, for (xo,yo)ec,

duy du  av du v
M 3T T My = u

i3V, 3v; T, 13v; "M
=_u.<“’_‘2+§z)_u av
J avj avJ i avi
) 3y

R - (T .
uy », ", (byy)

Program (1ii) must be modified to handle this dif-

ferent boundery condition.

In Sec. XI we discuss the subroutines used by
program (iii). The subroutines ROWSTOR and REGNSEL
must be modified to handle this change in type of
boundary condition. There are comment cards in both This example corresponds to two infinite wires

Fig. 7. Magnetic shielding of bifilar circuit.

subroutines telling where the modificetions go. The shielded by & cylinder of unit thickness and cerrying
change involves the insertion of two statements. 'In 2 unit current in opposite directions. Here it is
REGNSEL, we insert the statement sssumed that the cylinder has permeability 10. The
?
following current data cards and boundary data cards

11



were used for this problem.

the boundary y = 15, -n/2 < x < n/2.

The problem

80 COLUMN ENTRY
PROGRAMMER PROBLEM OATE PAGE [+] 2
[} 56 IOLI 1516 20}21 2526 31 35136 a4a1 45146 SIS SS56 6061 €566 N 73 80| B
T

Cuceent data cards . ol ... PITTY EETROPY DTS ST P . s
SRR BN P PR + 1% NS U D0 N NI RN S - (PP N SN

P PRV Y PP o 8 NN Y O N N I R saa s
Bnundarg dlata cards | . N I T R L P PO PPN S N .;'

NP VRN « 7S RN EPUPUY + 14 ISV EFEPUPIIN I T U NN BRIV % EPUN N wdal T 28 {

1
RIS PP ¢ BT PR » V1 PSR IV IO U W PP P P T Las LO.L T Qs el

TSN B o NP Y « 1Y BRI NP P NP ¥4 IEPPRPES AP % AFUPIS) DPRPUPI SPUPRIO IR /X3 IO | S T N |

PP IR o % T I . TSN SSUS W AT I NN S Y i n:".lu_x:- S are i " _r_;lm.«jA_a_SA_._._3

" Al L0 a g T | A 11 | 14 4 1 i 418 4111 212 L2 s & 1.2.2 A

NI T N I B I A BN TS RN A I A

The exact solution for subregion 3 of this was run twice. The inputs ere as follows.
i
problem is given by Smythe. The computed and exact
solutions are each given at a few randomly chosen
comparison points in Table I.
Teble I

RESULTS FOR THE PROBLEM OF FIGURE T

Computed Bx True Bx Computed B True B

- y Y
b4, 0. 2. x 1008 0. 9.815 x 107 9.826 x 1079
3. 4, -5.646 x 4 -5.652 x 1073 -1.82% x 1070 -1.823 x 1077
0. 6. ~l. x 10'8 0. -L.,072 x 1o'5 4,077 x 1o'3
-3 -3 -h -k
-8. -71. -1.315 x 10 ~1.316 x 10 1.673 x 10 1.675 x 10

C. Nonsmooth Boundary Values

method

is that the boundery values have piecewise continuous
third derivatives.
problems of interest do not satisfy this assumption.

One of the basic assumptions of this

It seems that most engineering

Figure 3 shows such a problem. The singularity in
this problem is similar to the one discussed by
and to the problem shown in Fig. 8. Ve

will discuss two ways to minimize the figure loss due

Whiteman,5

to nonsmooth boundary vealues.

The simplest way to minimize errors due to
singularities is to distribute the points in the cal-
culation so as to minimize the effect of the singu-
larity. As an example, consider the first test caese
given by Schultz.6 The example is in the x-y plane

and is shown in Fig. 8. fThe change in boundery con-

ditions at the origin is such thet au/an will not
exist at that point. Because the boundery of the

problea is infinite, the problem cannot be run ex-

Schultz’56

actly as it is. A reasonable approximation for this

8. first example.

problem is to truncate the region at y = 15 and im-
pose the boundary condition u = 15. + log(2.). along

12




PROGRAMMER PﬁOGLGES COLUMN ENmY DATE PAGE OF
I Sle ot 15“6 20|21 25[26 30,31 536 444! 45,46 308! 55 6061 65|66 7 73 80
Lt .n?‘n fﬂliﬂlle‘nQ'\14.;_u taes s v o veaa i aaad t el aa s —
SO ICA £ 1Y SNENTIIS PP YL P O 1 Ty & Y SRR SN 1 ST IO PP ISP UG DR 7% - IR} RN
AU P PPN P 0 PPy 12 1 £ 1 IR BN I 00 N AP PP Y Y. W4, B KW, I | Y ) S N v
PRI BRI S iaa g = 0.53103963) .. .}, O, L FIPE AN EUUTEN R S P Ol Q.58 .. .|
lod 4 L Al 0 g d 2 4 RS 1 L 11 llontlLLL ||°l L1 JD B | At 1 L b o la 33
FPENEI IR BRI BN Y P Ty s & 3% | I BN o ¥ IS BT I PR B Oel 4, a3 . ., ]
Sesand suppleosioatiion 0l Liae b AP BN WIS BN SIS ISP SRR A S
| L 8807963 ., W N 18§7)0:2.963 0 13 1] . )S,. FETIEV ANUS IEU AT TP (U STIPEIN APTUEMTT NP ¢ A (| DUV A NN
FEEPET BT PSS BN T L VST 3% §( 1 L X 9 EPEET LS. N B 1o LS. 60304730 .1 i
by e b by o = b 830039630 0 L 0Ge aa] eag FRIPETE I B VS BT T X
s Lo le e by e s L aTieaO T PPN« N U BT I AN N A/ % N N 3§ T
PETITEN I . Pl BT NP PR S IR PR o P BRI AP T STIT I IPEPIT AT BT BN « W I Lo
FErUrel IPVEURI UURPYE VN DRV UPUN EPUUDUINS SR PY )y | INUVETENE SN * 1 TP I ETS PP PP BN » VR I | | Y R
P A e 1. ST70963) 0 ) O s bocain) s faas N S ¢ | | N A
PN TS A AT T PP PP A N [T BT N P it IV B
PO PR B NI R PP ST L N PP ST (S UTITET S PRI E P Y N

The only difference between the two inputs is

the distribution of points elong the x-axis. Some
representative results are shown in Table II.
Table II
RESULTS FOR THE PROBLEM OF FIGURE 8
First Second
approximstion approximation True
X ¥y tou to u solution
-% B 1.5938 1.6071 1.6090
Jnonm

-g B 1.7519 1.7645 1.7662
o 3 2.2436 2.2515 2.2530
Fom 3.7967 3.8030 3.8042

Redistributing the points has some disadvantages.

In the first place, the optimsl distribution of points
is difficult, if not impossible, to determine. Even

2 good distribution of points is difficult to com-
pute. In the second approximation to the sbove prob-
lem, the distribution of points is nowhere near op-
timal., Moreover, if the distribution of points is
involved, the input is involved, and there is a
greater chance for errors. Also, there is a tenden-
cy to put more points in the calculation, and this
Finally, redistributing the
points merely minimizes the error due to the singu-

larity.

is time consuming.

The solution may be good in the region of
interest, but the computed unknown boundary values
near the singulerity are sometimes nonsense.

A second way to minimize the figure loss due to
This

can also be used for dis-

a singularity is to subtract the singularity.

method, discussed by Fox,7

continuous boundary values given in the input. Es-
sentially, the method reduces to finding the behavior
of the solution at the singularity and then subtract-
ing the singularity.

Consider the truncated version of the problem
shown in Fig. 8. Using the formula in Ref. 7, p. 303,
it follows that in polar ccordinates the solution, u,
has the form

@
ne

u(r,e) = o= P T sin (—E .

Thus, 3u/dn is not well-defined et the origin if
b1 { 0. The term corresponding to n = 3 can also
cause trouble, but we will not discuss it. To elim-
inate the singularity corresponding to the term
blr%
position of solutions with

2
v(x,¥) = b [-(’iiﬁg—'—x]é = b ® sin(e/2) .

sin(g), we need only use the option for super-

Of course, b, must be found first, but that is easy

1
because the program itself can be used to approximaete

the solution, u, and near the origin the term
3

bl r

expansion.

sin(@/2) dominates all other terms in the series

This problem wss run using the same input as
that used in the first approximation of the same
problenm. from

this input and the relation

Using the approximate solution, Uy,

u,(0.,0.06) ~b.(0.06)¥ stn(@)

13



we computed an approximate value of bl. Here the
choice of the point(0.,.06) wes arbitrary. Using the
approximate value of bl, we ran the problem again
with the same input, but this time we subtracted the
function v(x,y) = b r sin{6/2) from the input deta.
We repeated this process until bl For this
problem, b1 changed little after the first correction.

converged.

Table III gives some representative results for the
approximate solution using the first two guesses for
b

1
Table III
MORE RESULTS FOR THE PROBLEM IN FIGURE 8
Approximete Approximate

u using 1lst u using 2nd True
X y bl value bl value solution
B 1.6075 1.6090 1.6090

n ou

-3 g 1.7647 1.7662 1.7662
2 2.2519 2.2529 2.2530
oW 3.8033 3.8041 5.8042

Using the seme number of points, the results
here for the subtraction method are more sccurate
than the results for the method of redistributing
the points. However, the subtraction method did
require three times as much computetion time.

The treatment of singularities on regions G hav-
In what
follows, we will consider the problem shown in Fig. 9.

The method of redistributing the points works
satisfactorily for this type of problem, but there

ing more than one O value is more involved.

are four boundery sectlons where points must be re-
distridbuted, instead of two as in the previous case.
Thus, it is twice as expensive to add points to the
calculation at the singularity.

The method of subtracting the singularities is
We will
assume that in some neighborhood of the singulerity,
Also, we will
» the solution, u,

also more difficult to apply in this case.

the boundery is as shown in Fig. 9.

assume that in the subreglon, Gl

is represented by

«® B
u(r,e) = i i[ai cos(8,0) + B, sin(sie)]

in polar coordinates, and that in the subregion, G,

u 1s represented by

u(r,e) = T [ai cos(AiO) + b, sin(AiG)] .

14

Fig. 9. Reglon G having two values of 0 joining at

a corner.

Here O ¢ 51 < 52
the continuity across the common boundary, we immedi-
ately find that A1 = Bi fori=1,2, ..., =
Because u = O on both of the boundaries where the
Dirichlet condition is given, w; have 8

0= 0y =8y = o ...
Using the continuity of u across the common

.. .8nd 0< Al < A2 « « + « Using

1 > 0 and

&
boundary again, we can equate coefficients of r k

at @ = vy to get

Bk sin(BkY) = 8 cos(&kv) + oy sin(ka) .

Let R = Oé/ol. Equating coefficients for the

Jump discontinuity in the normal derivative at
e =Y, we get

By cos(BkY) = R[-ak sin(&ky) + by cos(Bky)] .
Using u= 0 at @ = ¢, we get the condition

& cos(Bke) + by sin(ake) = 0 .

The three equations written as a system are

8 cos(Bky) + b sin(bkv) - B sin(&ky) =0 ,
-a, R sin(&ky) +b R cos(akv) - Bk cos(aky) =0 ,
and

& cos(bke) + b, sin(bke) = 0 .



Setting the determinant of this system equal to zero,

we have

[1+R tanz(sky)]tan(ake) - (l-R)tan(BkY) =0 ,
or
(1R)tan(5,y)

tan(ﬁke) =

1+ R ten’(8,Y)

Using the formula for two tan-l functions, we find
that

-1
5.€ = 8y - ten [R tan(&ky)] ,
and, hence,

tan(s, (y-€)]

tani&kyi =R .

The equation determines the sequence 0 < 51 < 52 .« .

From a numerical point of view, 51 is usueally

Notice that if € = 2y,
then a solutlon does not exist for this equation un-
less R = 1. Notice also that once &

1
been computed, one can compute & and

the only number of interest.

and 31 have

bl from the

gbove system of equations. a little anal-

ysis will show that

Moreover,

v
> 8 > ey
i
>5l>'€' >

(€-y) > y and R > 1 implies that T

2y

n m
e-v) 5 >¢

(e-y) > Yy and R < 1 implies that

(e-y) < Yy end R > 1 implies that

and

>,

N . ks
(e-y) < y end R < 1 implies that T > &, 2y

Thus, singularities can occur at points on the bound-
ery where there 1s no reentrant corner, and singulsr-
ities need not occur at reentrant corners.

Now consider how the subtraction method can be
applied to a specific problem. As in the previous
exsmple, we must first use the routine LAPILDDC to
compute the epproximate behavior of the solution
nesr the singularity. Using the spproximate be-
havior of the solution in Gl and the computed vaiue
of 51, we can approximste Bl and, hence,

Then set

8 and bl.

)

’

<)

1
By r sin(blo) in G, end
V=

)
r l[alcos(510)+blsin(810)] ing, ,

and run the problem agein to get the desired solution.
If the common boundary is not a line segment, then
the subroutines ROWSTOR and REGNSEL must be modified
to take care of the fact that

. Vv ¥-0‘ oV
1 on)

3n 2 3n,

on the common boundary. This modification is given
in Sec. III B. The modification is probably the
easlest way to run the problem in any case.

Consider the example in Fig. 10. This problem

usj
(-3,4) \\\ \ (5,4)
\\th[ . l\
usi 7 Jeor e (5,0)
G 3//
10 F
//2 2/ u=0
(-3,-3) /(o.-:s)
Fig. 10. Regilon with singularity on common boundery.

was run using the input shown on the next page, It
was run a second time with the same input, except

that KV was 21 for each boundary section, and a third

time using KV = 41 for each boundary section, Fi-
nally, it was run a fourth time with KV = 11, and
using the subtraction method described above, Sore

representative results are shown in Table IV,
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Teble IV
RESULTS FOR THE PROBLEM OF FIGURE 10
Approximate u Approximate u Approximate u Approximete u
(kv = 11) (kv = 21) (Kv = 41) (Kv = 11
X ¥y and subtrsction)
-0.2 0.2 2.5337 x 107" 2.335% x 107% 2.3361 x 107" 2.5365 x 107
-0.1 0.1 1.hg42 x 107t 1.4967 x 107t 1.4977 x 107t 1.498% x 107t
-0.05 0.05 9.4565 x 1072 9.5578 x 1072 9.5735 x 1072 9.5847 x 1072

The suthor does not know of an analytic solution for

this problem.

the results shown are probably correct to four fig-

ures.

IV. OUTPUT

Using any of the four programs is a two-step

process.

boundary velues.

gram is the same except for the program name.

call statement for program (i) is

CALL LAPLACE

However, using the subtraction method,

The progrems compute only the unknown

The call statement for each pro-

T

ary values.

velues gre stored is discussed in Sec. XI.

The manner in which these boundery

For pro-

grems (i1i) and (iv) the output is the same, except

that presently there is no explicit gredient routine.

For all four programs, the call stetements for the

A.

A. TN

he

output are the same.

proximate solution at any point.
FN(V,W) gives the value of the approximate solution

After the unknown boundary vslues have been

computed, it is simple to get the velue of the sp-

The resl function

No perameterg are given in the call statement. Once
the user has set up the input and called the subrou-
tine to compute the unknown boundary velues, he is

faced with the question of output. For progrsms (1)
and (11i) the output presently available is of three
functional values st any given point in G,

gradient values at any given point in G, and equipo-

types:

tential or gradient plots. In many cases the user

would also like tec have the computed unknown bound-
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at the point (V,W).
the values -0.
GRADFN

For (V,W) not in G, FN gives

B.

Only programs (i) and (iii) presently have an
explicit subroutine GRADFN.
metion to the gredient of the solution u(X,Y), one -
simply calls the subroutine GRADFN(X,Y,FX,FY). When
the computer returns from GRADFN, the variables UX
end UY contain du(X,Y)/dx end du(X,Y)/dy, respective-
For program (1ii) there is one more detail.

To compute an approxi-

ly.



At sny given time, one can use GRADFN only on the
selected subregion. To select the Kth subregion,

for instsnce, one merely uses the call statement
CALL REGNSEL(K) ’

or cells the routine FN(X,Y) with (X,Y) some point
in the Kth subregion.
selected as often as desired.

Different subregions can be
For (X,Y) not in G,
or, in the case of program (iii), for (X,Y) not in
the selected subregion, GRADFN is not well-defined.
C. Plot Routine

The plot routine is progremmed to plot equipo-
tential curves and gradient curves on film, using
The

routine can be easily modified to use other systems

the Los Alamos Scientific Laboratory system.
or devices for plotting. The two end points of a
line segment and an integer, called X here, are
given as input to the plot routine. The plot rou-
tine plots K equipotential curves or gradient curves
depending on the call. The curves all cross the giv-
en line segment. If K > 1, then there are two curves
at the ends of the segment and K-2 other curves

If K= 1, then one
curve is plotted passing through the first end

The equipotential and

crossing it at equal spacings.

point of the line segment.
gradient curves are e series of line segments of
length HH. HH is given as input.
later sbout the choice of HH.

We will say more
In what follows, we
discuss the input variables for the plot routine.
We discuss only the x-y plene because the plot rou-
tine in the z-r plane is exactly the same if one ex-
chenges {z,r) for (x,y). A totel list of input vari-
gbles is as follows.

XMIN is the minimum X to be plotted.

YMIN is the minimum Y to be plotted.

XMAX is the maximum X to be plotted.

YMAX is the maximum Y to be plotted.

X1 is the first X coordinate of the line segament.

Y1l is the first Y coordinaste of the line segment.

X2 is the second X coordinate of the line seg-

ment.

Y2 is the second Y coordinate of the line seg-

ment.

K is the riumber of equipotential or gredient

curves to be plotted slong the line segment.

HH is the step length to be used in constructing

the curves.

There are four entry points into the plot rou-

tine: LAPLOT, LAPIOT1, LAPLOG, end LAPLOGl. LAPLOT
and LAPIOT1 are both used to plot equipotentisl
curves, and LAPLOG and LAPLOGl are used to plot grad-
LAPLOT and LAPLOG advance the f£ilm;
plot all of the boundary inside the rectangle formed
by XMIN, YMIN, XMAX, and YMAX; and plot the desired
LAPIOT1 and LAPLOGL
plot only the equipotential and gredient curves, and

ient curves.

curves inside the rectangle.

both esssume that there has been a previous call to
either LAPIOT or LAPLOG. LAPIOT1 end LAPIOGL add
more curves to previous plots. The input variables
XMIN, YMIN, XMAX, and YMAX given in the call state-
ments for LAPLOT1 and LAPIOGl are used by these sub-
routines to determine the limits of any equipotential
or gradient curves. The rectengle formed by these
four points should be a subset of the rectangle given
in the previous cell to LAPLOT or LAPLOG. The call

statement for LAPLOT is
CALL LAPLOT(XMIN,YMIN,XMAX,YMAX,XI,Yl,Xe,Ye,K,HH) .

The call statement for the other three entry points
is the same except for the name.

If K € 0, only the boundary will be plotted.
If there is an error in the input boundary data, and
the unknown boundary values cannot be computed, then
The plots in this
case are sometimes useful for finding errors. If
MIN 2 XMAX or YMIN = YMAX, then no equipotential or
gradient curves will be plotted. If K > 50, only 50
curves will be plotted.

only the boundary will be plotted.

The plot routine will stop plotting an equipo-
tential or gradient curve whenever any of the follow-
ing occur: the curve runs outside the rectangle
formed by XMIN, YMIN, XMAX, and YMAX; it runs into
the part of the boundery S-C; it forms a closed curve;
or it becomes too difficult to plot. The last con-
dition occurs most often near corners in the bound-
Plotting

equipotential or gradient curves is a time-consuming

ary S, or when crossing a common boundary.
process., When computing each line segment of length
HH used to approximate the curve, one must calculate
at least one value of the potential and one gradient
vector. Thus, the step HH should be as long as is
practical. When one plots equipotential curves, the
plot routine always requires that both ends of each
line segment used to approximate the equipotential
curve actually be on the curve. However, this is not

possible with gradient curves. To follow the gradient
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curves, the plot routine uses a Runge-Kutta method.
The error on any given step is O(EHB). Locally the
gradient curves are usuelly good, but the error over
the length of the curve is cumulative.
V. MISCELLANEOUS PROGRAMMING INSTRUCTIONS

There are a few limitations on the progrems that
should be mentioned. When'one hes an exterior prob-
lem, the approximate solution tends to break down at
large distances from the boundary (say 108 times the
length of the boundary).

source of error seems to occur at the boundary. If

However, the most importent

H i1s the distance between approximation points on &

given boundery section, then both FN and GRADFN start
to bresk down at about 1.S5H from the boundary section,
except when the boundary section is linear. The er-
ror varies with the ratio of H to the minimum redius
of curvature of the boundary section. It is easy to
lose as much as half of the significant figures et

the boundary.

vhenever two sections of the boundary are close rela-

The same type of error causes trouble

tive to the distance between approximation points on
either of them.
true when the boundary is linear.

As in the ebove case, this is not

The next two restrictions apply only to programs
(11) and (iv). Both are results of the approximations
described in Sec. IX. If the restrictions are vio-
lated, there is a loss of accuracy proportional to
the degree of violation. In the first place, any
boundery section beginning or ending on the z-axis
must intersect the axis at an angle greater than 12°,

See Fig. 1l.

™~

z

Fig. 11. Boundary section touching the z-sxis.

Here the angle is a, end one should have a 2 12°.
The second restriction is difficult to explain ex-
actly. We will discuss only lineer boundary sections.
Let §, be a linear boundary section with end points
(zl,rl) and (zz,re). If SJ touches the z-axis, then
it must satisfy the first restriction. If it does
not touch the z-axis, then it must be true that

18

|z -z
2 "1

__KVJ-I < 10 min(re,rl) .

See Sec. III for the definition of KV.

en (zl,rl) and (22,r2), there is a corresponding .

winimim value of KV that will satisfy the second re-

striction.

For any giv- .

Probably we should say something about accuracy
and timing.
ited to semple problems.

The discussion of accuracy will be lim-
Earlier we compared some
numerical results to the explicit solution for a
problem with singulerities and a magnetic field prodb-
lem with current sources. Now consider the problems
shown in Figs. 5 and 6. These two problems were run
with exactly the input shown. The problem in Fig. 6
was run with progrem (i), and that in Fig. 5 was run
with program (iii). Some representative results for

the problem in Fig. 5 are given in Table V.

Table V
RESULTS FOR THE PROBLEM OF FIGURE 5

x - Computed u' True u
-0.023 -0.023 -0.004090 -0.004087
0.03 0. 0.004766 0.004762
0. 0.03%  2x 1079 o.

0.9 0.9 0.8999 0.8993
-0.5 0.1 -0.4o81 -0.kg76
0.06 0. 0.03908 0.03905

For this problem there is more than one possible
source of error. Using superposition to compute the
approximate solution, as was discussed in Sec. III B,
we get about the same solution in the dielectric ma-
terial.

accurate.

However, the solution in eir is much wmore
For the problem given in Fig. 6 the error
is entirely due to the discretizetion of the boundary

values. Some results for this problem are given in

Table VI.
Table VI
RESULTS FOR THE PROBLEM OF FIGURE 6
Computed True

x ¥y Computed u True u Ju/3x du/fax 2
0.5 1. ~1.18762 -1.18750 =7.50007 ~7.50000 .
0.25  0.25 -0.0039% -0.00391 -0.00002 0.0 -
‘0.05 0.4 0.00861 0.00865 -0.06303 -0.06500 3
-0.9 0.8 -1.19513 -1.19512 ~2.84809 -2.54800

The times given here ere for the CDC 6600, end they
tend to be optimistic for small problems. The time

" required to compute the unknown boundary values is

simple to calculate.



1 NRE

Let Ni = 150 ? KV‘j , and let NT = 151 N, . The
with Sde G,

quantity NRE is the total number of subregions. For

programs (1) and (ii), NRE = 1, and NT = N, .

are two main problems in computing the unknown bound-

There
ary values. One is generating 2 matrix celled A, &nd
the other is the solution of the matrix problem

The solution of the matrix
5 + 0.5N'1‘2 sec. For pro-
grems (i) and (iii), the time required to generate
the matrix A 1s sbout 1.X\B: N-)sec. Thus, the to-
tal time required to compute the unknown boundery

Az = E for the vector z.

problem requires about 1.1NT

velues for the problem in Fig. 6 was about 7 sec.

To compute the value of the approximate potentiel in
the ith subregion using the routine FN requires 0.013
Ni sec, and to compute the approximate gradient at a
given point in the ith subregion using the routine
GRADFN requires 0.015 Ni sec.
(iv), 1t takes about a factor of six longer to gen-

For programs (ii) and

erate the matrix A or to compute the approximate po-
tential. The times given here assume two things.
First, the only NT3 operation for the matrix problem
is written in machine language which cuts the time
Second, the

routine to evaluate the elliptic integrsels is also

required for this operation in half.
written in machine language. The time savings for
this operation is not known.

For a solution u(x,y) of Lsplace's equation in

the x-y plene, it must be true that
ou _
£ oy ds=0 K (3)

For an axially symmetric solution u(z,r) in the z-r
plane, it must be true that
3u
iora—vdS-o . (1&)

For problems that have the Dirichlet condition given

somevhere on S, it has been our experience that the

ratios
ou
g o3;4s £ or %% as
——
u
g o |&las g o |%%| as

give a good indication of the correctness of the so-
lution. Unless the ratio corresponding to the given

problem is smell, 10-1‘L or 10_5, for instance, there

is usually an error in the input, or a singularity
on the boundery that hes not been properly treated.
The above ratios are eamsy to compute and are dis-
cussed in Sec. XI. When computing the rstios, one
need not include the integrals over common bound-
aries, because they are actually zero. For programs
(1) end (i1i), O is constant and cen be eliminated
from the computation.
VI. INTEGRAL EQUATIONS

We now reduce the problem of solving for the
unknown boundery velues for the general problem to
solving three coupled integral equations, First we
consider the x~y plene. The problem of solving for
the unknown boundary values in a homogeneous medium
is a subproblem of solving for the unknown boundary
values in inhomogeneous media. Therefore, we con-
sider only inhomogeneous media. Moreover, the prob-
lem for the homogeneous medium is discussed by Hayes.

Assume that G consists of NRE subregions Gl’
G2, <+« Gpm with boundaries aGl, ., + + o,
aGNRE. Let Cl, 02’ o e ey CNRE be the common
For k=1,
2, . «. . , NRE, Ck must not be empty. Remember that
Ok is the value of O for the region Gk' Let
{Ix(t),y(t)1]te(0,d)} be a perametric representation
of S with respect to arc length. Here d 1s the
length of S. To make the notation easier, let te3G
mean that [x(t),y(t)le BGJ, and, similarly, teCj
will mean that [x(t),y(t)le Cy- As a point of in-
terest to be used later, note that for teacj,
[dy(t)/dat,-dx(t)/dt] forms the unit normal vector
exterior to Gj at the point [x(t),y(t)]. For eny
point teC =§§? Ck, there is another point that
will be called ¥(t), such that [x(t),y(t)] = [x(¥(t)),
y(x(t))].
u{t) mapping C onto the integers 1, 2, . . . , NRE
by the relation teC”(t) for all teC. Also, define
the function §(t) mapping C onto the integers 1, 2,
. . . , NRE by the relation y(t) = w{v(t)]. For
k=1,2, .. ., NRE, define u
tion of the solution u to the subregion Gk'

boundaries for each of the subreglons.

J

In a similar veln, define the function

to be the restric-

Because S is a finite number of piecewise
smooth curves, there sre, at most, a finite number
of points [x(ii),y(gi)] for i=1,2, . . ., NC
Let agi for i=1, 2, . B
NC be the angle inside G that the curve S makes with
itself at [x(€;),y(5;)]. See Fig. 12.

where S has corners.
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(x(&)), y(€)

Fig. 12. Angle that S makes with itself at [x(§i),

From our definition, we see thet 0 < a
te(0,d), define

< 2n. For
gi

m ift:/gi fori=1,2, ..., NC ,

a(t) =

ap 1£t=§ .

gi
set x(s,t) = {Ix(s)-x(2)1? + Iy(&)y(t) P2,

u(s) = ulx(s),y(s)), and du(s)/dv = dulx(s),y(s)1/dv.
Notice that Eq. (1) holds on any subregion, G- If
we use the above definitions and assume that u(s) and

du(s)/3v are smooth, Eq. (1) becomes on the boundery

du, (s)
- [ el
k

@ Gulmeglle - ©

p. 16. Actu-
ally Eq. (5) is a system of equations, because the
result holds on aGk for k=1, 2, ..., NRE. The

For a proof of this result see Hayes,3

basic assumption of the scheme is that Eq. (5), along
with the matching boundary conditions, can be in~
verted to solve for 3u/3v on Sp, u on Sy, and both
au/3v and u on C. For teC N 3G, the matching bound-

ary conditions are

uk(t) = uﬁ(t)[X(t)] )

(6 2, (X)) 6
U )*3
% a_vk' = O(t) . :

Again, Eq. (6) is really a system of equations, be-
cause the conditions must be true on each of the NRE
common boundaries.

Define E(t) for te(0,d), by the relation

-

[ 2(s) 2 1nlr(s,t)lds - a(t)2(t)

)
sp N ag, Y
- £ g(s) 1nlr(s,t)las if teSy N 3G,
y 30y
E(t) =4
I £(s) —53 Inlr(s,t)las- g(s) in[r(s,t)lds
p N aG. 3 : n 3G,
L if te(sN uc)n aGk

Here £(s) and g(s) are the known boundary values
given in the statement of the general problem.

Hence, E(t) is a known function and can be computed.
For ease of notation for k= 1, 2, . . , NRE, de-
fine s]}; = (s U c) N 3G, and sg = (sp U c) N 3G, -
Assuming thet Egs. (5) and (6) can be inverted to
solve for the unknown boundery values, one can formu-
late the problem as the following series of coupled
equations.

a(t)u (t) - [ u(s) 35 1nlr(s,t)las

Sx
du (s
+ I ugv ) in[r(s,t)]ds = E(t)
Sp if tes®

N

- Ik w (s) g—v 1n[r(s,t)]ds
S

N
au, (s)
+ I u:vs In{r(s,t)lds = E(t)
Sp 1f tes; N 3G,
for k=1, 2, ..., NRE, (N
and
uw(t)(‘c) = u'}(t)[x(t)] if teC ,
du (t) du Ix(t)]
w(t) ¢(t)

Out) T Tule) Ty it tec

Equation (7) will be reduced to a system of
three equations with one unknown function. First,
more definitions are necessary. Define

¢t = (seclu(s) < y(s)]



Ix

c =C-¢C B k = 1 is equivselent to
- %; 1nir(s,t)] if tedG, and seS§ f T(s) Ky(s, t)as + [ 7(5) KD(S t)ds
Ky(s,t) = sy U c® sy U ¢t
for some k , (10)
o] otherwise
+ [ rlxs) I (s,t)as + [ 7Ix(s) Ky (s,t)ds = E(t)
1 2
[ In[r(s,t] if €3G, and se(sD U cl) ¢ ¢
n 3G, for some k , However, Eqs. (8), (9), and (10) are true independent
of k. Thus, the system (7), of 2(NRE + 1)
KD(S’t) = 1 [ u( )/ V(s )]ln[r(s,t)] ir teka equations is equivalent to the system:
2
end seC” N aGk for some k , a(t)T(t) + J\ T(S)KN(S t)ds +j‘ T(S)K.D(S t)ds
L 0 otherwvise S U C S U C
and + [ 7Ix(s) Ky (s,8)das + [ Tlx(s) I (s,8)ds
2 1 2
" u(s) 1f se(sy Uc®) N ac, c c \
T(s) = =
du, (s) = E(t) if tesg Uc®

1
_6\1— if SG(SD uc ) n aGk

a(t)rix(e)] + | (s )ig(s,t)ds + [ (s 8)ig (s t)ds

Thus, T(s) is defined on (0,d), and both Ky end K Sy Ucd Sp Ut

are defined on (0,d) x (O, d) Using the matching
boundsry conditions, if sec n 3G, , then uk(s)

+ [ rlx(s) K (s,t)ds + [ 7[x(s) K (s,t)ds
7(x(s)1, and if teaG and seC n ack, then fl KN £; KD

Cc
1
2u,(s) = E(t) 1if tec™
b In{r(s,t)] = T[x(s)]KD(s t). and
Using these definitions consider the first equation f (s )KN(S t)ds + [ T(S)KD(S t)ds + f T[X(S)]KN(S t)ds
in Egs. (7) with k= 1. For te(sN U C2) N 3G, this Sy U C Sp U C
equation is equivalent to
* fzf[x(s)]xp(s,t)ds: E(t) 1f tes)
a(t)(t) + [ T(s) Ky(s,t)ds + [ 1(s) K.D(s,t)ds c
S U C S U C ) Now set
+ j'lT[x(S)]KN(s,t)ds + feT[X(S)]KD(s,t)dS = E(t) . Ky(s,t) for sesy U c®
¢ ¢ K(s,t) = 1
1 KD(s,t) for ses, uc ,
For teCc™ N 3G,, the first equation in Egs. (7) with
and

k = 1 is equivalent to
KD(s,t) for sect ,
a(t)Tix(e)] + | T(s) Ky(s,t)ds + j‘ 'r(s) Ky(s,t)ds Ris,t) =

2
K (s,t) for seC
suo Uc N(’)

(9)

N f T[x(s)]KN(s,t)ds + f T[x(s)]KD(s,t)ds = E(%) . The above system then becomes
1 2
Cc C

For teS, n acl, the second equation in Egs. (7) with

2l



a(t)T(t) + i'r(s)l((s,t)ds + J‘r[x(s)]k'(s,t)ds

= E(t) for teSy U c? ,

a(t)rix(t)] + £T(s)x(s,t)ds + if[x(s)ll’((s,t)ds (11)

= E(t) for tect s

and

i‘r(s)l{(s,t)ds + {T[x(s)]K(s,t)ds = E(%) for tes) .
Note that at every point where two boundary sections
Jjoin, there is a possibility that T, K, and R are
not well-defined. This will be covered later.

Now we will discuss the axially symmetric inte-
gral equation. Suppose we want to find an axially
symmetric solution, u(z,r,p), to Laplace's equation
on an axially syametric region, G', in (z,r,®)

space., It is true that

w(r® = 350 [ @RGP weoof@ls -
(12)

See Cou.ra.\'xf.,8 p. 257.

G', and

Here S' is the boundary of

d= {(Z'C)2+(r-p)2+2rp[l-cos(o-cp)] }i

is the distance from the point (z,r,p) to the point
(C:p,o) .

can drop the dependence on ¢ and assume that ¢ = O.

Because u(z,r,p) is exially symmetric, we

Also, using the half-angle formule for the sine
function, we have

a = [(20)Ps(r-p)Psbrp s1a°(3) I

Let G be the restriction of @' to the upper half-
plane and let S be the restriction of S' to the
upper helf-plane. Equation (12) cen then be written
in the form

u(z,r) = Ill_._ﬂ

au(C:p) <J‘ p _) - T];TT £ w(C,p)
on am
Lj; & %)pdo]ds -~ gt(c,p) <£ d) pds
1 1
) J Qe fpas -

" (13)

22

Consider now only the integral J' d46/d. Using the
symmetry of the integrand, we h8ve
frae T 2
d )
2 2 2,0
° ® [ (2-6)24(x-p)2s4rp 8125 |

523‘. ae "
© [(2-0)24(x-p)24brp 81253 ]

n/2
- a0

[( Z'C)a‘*‘(r-p)aﬂ*rp sine(e)]l\

Set

bro ., end g = (202 ()R,

B,___—_
(2-€)2+(r-p)

Obviously B 2 O. Assuming that d 40,

/2 o

° [( z-§)2+(r-p)2+14-rp sszlna(o)]T

/2 o

1 ——
%o [1+g sine(e)]

4o

% o [1+e-s cosz(e)]k

1 /2 a0

do(l+8)b ° [1 - -—BE sina(e)]k

- ——x (£p

a(wp)?  HP
Here K is the complete elliptic integrel of the first
kind. See Ref. 9, p. 589-606. Set m = B/1+B. We
then have O £ m < 1, and, thus, the following rela-
tion.

2

de
‘£ a7y (1+s)5 K(m)

. 4
[( z-§)2+( p-r)2+1u'p]t

K(m) .

Substituting this formule in Eq. (13), we get



Ix

- L pfau(c,e)___ 2x(m)p
wen) = 5 |5 (2-)%%(pmr) ey 1#

2X(m)p
(2-0)%#(p-r)Prbrgh

- u(,p)35 s . (14)

Equation (14%) is the axially syametric version of
Eq. (1). If we use the kernel 2K(m)p/[(Z‘C)2+(p'r)2
+hro]%’instead of the kernel log(1l/r), then the rest
of the derivation for the integral equations is the
same as for the x-y plene. The system of Eqs. (11)
also holds for the z-r plane except that the kernel
is different.
VII. DISCRETIZATION OF THE PROBLEM

In this section we derive a discrete approxi-
metion to the system of Eq. (1l). The derivetion
holds for both the z-r and x-y planes. T(s), f(s),
and g(s) are spproximated piecewise by polynomials
of degree two. We assume that these functions have
bounded third derivatives on S, except possibly at
a finite number of points. We assume also that the
j for j =1,
2, « . . , NDCT such that: each section SJ is a

smooth curve, i.e., Sj has no corners and is con-

boundaery S is partitioned into sections S

nected; each section S. is contained entirely in
either S, Sy» or C; end f(s), &(s), or 7(s), which-
ever is defined on SJ’ has bounded third derivatives
interior to Sj' Remember that NDCT is the total num-
ber of boundary sections. Usually SJ should be as
large as possible while still satisfying the three
given conditions.

At the end points of each section Sj for j =1,
2, . . ., NDCT, there is & possibility that 7(s) is
not well-defined because there 1s a possible change
in the type of boundary condition. Also, if there is
a corner, the Neumann derivative need not be contin-
uous around thé corner. To correct the difficulty,
we define an upper and lower limit at each se(0,d)
thst is an end point of a boundary section. Let

7(s+) = lim T(s+d) ,
-0
&80

and
T(s~) = lim T(s+d) .
&0
&<0

Similar definitions could be made for K(s,t) and

R(s,t), but, because these functions are elways in-
tegrated, there i1s no problem with undefined points.
On each section SJ, T(s) is approximated by
using KVJ points for =1, 2, . . . , NDCT. Be-
cause of the type of approximation used, each KV
must be odd and greater than one. Remember that
NT = ggg?KVJ, and IS, 1s the length of S. Define
B, Isj/(KVJ-l) for j=1,2, . . . , NDCT. We
next define arguments t, for k= 1, 2, . . . , NT

k
for the function T(s). 1(s) is approximated at these

points. First let j(k) be the integer-valued func-
tion defined for k= 1, 2, . . . , NT such thet

J(k)-1 J(k)
i Wy <ks L kv,
Set
-
[J(k) ] J(k)
z s |- itk= %KV,
J(k)-1 ] J(k)-1
Y= iE ISy k=14 5 KV,
J(k)-1 ] J(k)-1 ]
i§1 IS | + }k-1- i§1 kv, hj(k) otherwise.

-

Looking at the parsmetric representation for S, we
see that for each section Sj, there are two values
of tk corresponding to its end points. The first
point of SJ corresponds to an upper limit, and the
last point corresponds to a lower limit. There sre
KVJ - 2 other points [x(tk),y(tk)], equally spaced
at a distence hj along the boundary section. We
assume that the ordering of the sections SJ corre-
sponds to the ordering in the parametric representa-
tion.

Define T, = T(tk) for k=1, 2, . .., NT.
The function 7(s) is approximeted on (0,d) by 8
plecewise polynomial of degree two, called TA(S).
On the interval (tl’ti)’ TA(s) is the polynomial of
degree two having TA(tl) =T, TA(tz) = 7, and
'rA(tj) = T3+ On (tj,ts), '\'A(s) is the polynomial of
degree two having TA(ti) = T3 TA(th) = T,, end
TA(ts) = Tg. The approximation continues in this

manner until the point t is reached. t corre-

KV Kv1

sponds to the end of the section Sl' Hence, Sl is

broken up into (KVl-l)/2 subsections of equal length;
end on each of the subsections TA(S) is a polynomial

of degree two. Because t

KV corresponds té the end
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of Sl’ 7(s) is possibly discontinuous at this point.
Therefore the upper limit TKV1+
interval. Thet is, for Se(tKV1+l, tKVl+5)' TA(s) is
the polynomial of degree two with TA‘tKV1+1) = TKVI+1,
TA(txv1+2) Tkvpeer 804 Taltey 43) = Tkv +3' This
type of approximation is continued throughout (0,d).
Using the function j(k) given above, we can define
Tp(s) by ‘

1 is used on the next

[rieals-t ) (8ot 1) 2, (88, ) (5o, )

+Tk+2(s-tk+1)(s-tk+2)]/2h§(k)

3(x)-1

T,(8) =
A
T ie se(tk,tk+2) and [k— p Kvi] is odd,

\Tk if s = tk for some k=1, 2, ..., NT.

Notice that

NT
TA(S) = k;zl ok(s)Tk ) (15)

vwhere each ek(s) is & plecewise polynomial of degree
two, which 1s nonzero in, at most, an interval of
length hhj(k) centered at t,. An exact definition

of Qk is as follows.

r 3(x)-1
(s-tk+l)(s-tk+2) if |k - %Ll KVi
is odd and less than va(k)

and se(tk,tk+2),

- 3(k)-1
(s-tk_l)(s—tk_e) if |x - 1§1 Kv,
is odd and greater than one

1
Qk(s) =~ 4
By(x)

and se(tk_a,tk),

3(x)-1
-2(s-tk_l)(s-tk+l) iffk - ,Z KV,

is even, end se(tk-l’tk+l)’

Y otherwise .

To explain some of the sbove notation, consider
the following example. Suppose S is the unit circle
with center at the origin. Let [x(t),y(t)1 = [cos(t),
sin(t)], te(0,2n) be the parametric representation
for the boundary S. Assume that

s, = [Ix(t),5(t)]]te(0,/2)}, ena

24

§p = {Ix(e),y(t) 1te(n/2,2n)}

Obviously NDCT = 2, & = 2m, LS, = n/2, and Ls, = 3n/f2.
Assume that KV, = 3 and KV, = 5. It follows that
NT = 8, hy = n/4, and h, = 3n/8. The locations of
the arguments t_, k=1, 2, . .
Fig. 13.

If the Dirichlet (or Neumann) boundary condition
were given on ell of S end if £(s), (or g(s)), were

continuocus, then it would be true that Ty = Tg and

K’ + 5 8 are shown in

'r5 = Ty However, if the Dirichlet condition were
given on one section and the Neumann condition on
the other, then the pairs would not, in general, be
equal.

t7
Fig. 13. Distribution of arguments t

k"
In what follows, the term O(hj) denotes both a
scalar and a vector quantity. In the scaler notation,

it has its usual meaning; in the vector notation, it
denotes a vector with each cowmponent bounded by a
constant times h°. If 7(s) is assumed to have a
bounded third derivative, then

t(s) = 7,(s) + O(n’) for se(0,d) (26)
where h = max(hl,he,...,hNDCT).
Next, we describe e method for using the coupled

Bgs. (11) to approximste TA(B). Substituting the
right-hend side of Eq. (16) in Eq. (11), we get

‘;‘(t)[TA(t)*°(“5)] * g[TA(“)w(hs)]K(s,t)ds

\a



A2

+ z'[{T"[x(s)]«»o(k?)]-k'(s,t-.)d.s = E(t) 1if tesy U c? s

a(t){TA[X(t) ]+o(h5)} + i‘[TA(s)w(h})}x( s,t)ds

+ g{TA(X(S)]+0(h3)}R'(s,t)ds = B(t) if tec- ,
snd

gi'rA(s)iro(h})]K(s,t)ds . g{TA[X(s)]w(hs)}'K(s,t)ds

= E(t) 1if tes, .

It is easy to show that both g,x(s,t)lds and
|R(s,t)|ds ere bounded functTons of t with the
ound dependent only on S. Hence, it follows that

a(t)TA(t) + ITA(t)K(s,t)ds + gTA[x(s)]R(s,t)ds
S

= E(t) + o() 1f tes U

a(t)T, (x(¢)] + [r,(s)K(s,t)ds + [r,[x(s)IR(s,t)as
c
(7)
= B(t) + O(hj) if tecl s

and

g'rA(s)K(s,t)ds +CfTA(x(s)ms,t)ds = B(t)+0(n7)

if teSD

Using the representation formula for TA(s) given in
Eq. (15), we get

NT
alt)7,(t)+ }§=17k{ gq((s)}((s,t)ds+£ek[x(s)]?(’(s,t)ds}
= B(t) + O(n) 1if tes, U c®

NT
)y x5 7 {f(o)ncs ass 0, [x() (s, )as}

= E(t) + o(h%)  if tec” (18)

and
NT
kfifk{ Gk(s)K(s,t)ds + gbk[x(s)]ﬁls,t)ds}

= B(t) + o(h3) if tesy

Let I1 be the set of indices k such that
tkeSN u 02; 12, such that tkecl; and 15, such that
t, €Sy Thus, I, u 1, u I5 is the set of indices
k=1,2, ..., NP. To simplify the problem of
approximating TA(S), Eq. (18) will be required to
hold only for NT values of the varisble t. The
choice of the NT points is arbitrary. Except for
special cases to be discussed below, the points tk
for k=1, 2, . . ., , NT will be used. Define
E, = E(ti), E = (El,Ea,...,ENT)T, and a, = a(ti).
Given tiec, define 1i' to be that integer such that
b= x(ti). That such a correspondence does exist
is guaranteed by our restrictions on the input.
Using the sbove definitions, we get the following

NT linear equations with constant coefficients.

NT
a T+ E;lTk{gek(s)K(s’ti)ds+ gek[x(s)]k(s,ti)ds}

_ 3
= B+ o(n”) if iel,

NT
a T+ z Tk{fek(s)x(s,ti)ds+ ek[x(s)]kls,ti)dS}
=108 (19)

%y if ier

= E + o(h s

and
NT .
kfl Tk{gbk(s)K(s,ti)ds + ibk[x(s)lﬁzs,ti)ds}

=E + O(hs) if iel

3

For i, k=1, 2, . , NT set

:11 + g@k(s)x(s,ti)ds + ﬁsk{x(s)lk(s,ti)ds
o

if (1e11 and i = k) or (1e12 and L' = k),
8k 7

i@k(s)x(s,ti)ds + gek[x(s)TK(S,ti)dS

(

otherwise.

[o] T
Now set A = (aik) end T° = (71,72,...,TNT) . Using
these definitions, we can write the system of Eqs.
(19) in the form

M° = E + O(h’) . (20)
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All of the coefficients of A and E can be computed
numerically to any desired accuracy from a knowledge
of S, £(s), and g(s).

The matrix A does not, in generel, have an in-
We will now dicuss this problem and its
The remedies described below, like the
choice of epproximation pdints in Eq. (19), ere
arbitrary.

verse.

remedles.

Considering each subregion separately,
at the end points of each of the boundary sections
SJ for =1, 2, .

are Jjoined.

. , NDCT, two ends of curves
The curves may, or may not, joln at a
corner, and may, or may not, have the same boundary
conditions. These conditions determine how the ma-
trix A is to be modified so that it will have an
invergse. For each joined pair of end points of
boundary sections, we must determine which of the
following possibilities is true.

1. One curve is in SN’ and the other is in SD.

2. Both curves are in SD’ and there is a cor-
ner vwhere the curves join.

5. Both curves are in SD, and there is no cor-
ner where the curves join or both curves are in SN'

4, oOne curve is in S_, and the other is in 02.

DJ

5. One curve is in SD’ and the other is in cl.
6. One curve is in Sy, 8nd the other ia in ct.
T. One curve is in SN’ end the other is in 02.
8. Both curves are in Ca.

9. Both curves are in Cl, and there 1s a cor-

ner where the curves join.
10. Both curves are in Cl, and there is no cor-

ner where the curves Jjoin.
11. One curve is in cl, and the other is in 02.
For simplicity, assume that curve Si Joins 8§

k

and that the corresponding values of t ere t and

i1
tkl' 11 is the start of S
In what follows we will assume in each subregion,
that u(s) is continuous along S, and that du/dv is
continuous along S except at corners.

For case 1, the matrix A need not be modified.

Moreover, assume that t 1

However we can replace an approximete equation by an
To see this, assume that the Dirich-
let boundery is given on Si. Obviously,
T(tkl) = f(til), end, thus, T, = f(til).
then replace the k1l equation in Egs. (19) by

exact equetion.

We can

Tl ™ f(til) .

In case 2 it is relatively easy to see thet the
k1l equation in Egs. (19) is the same as the il equa-

tion. - Hence, A must certainly be singular. To cor-

rect this problem we need only replece the two equs- _‘
tions by the third equation in Eqs. (18) evaluated M
et the two points t = t + hi/2 and t = t ., - hk/2. ~

The author hes tried replecing only one of the two -
equaetions, but the results were not so satisfactory

as when both equations were replaced.

kl) which implies that

If both curves are in SD, then the 11 snd

If both

curves have the Neumann condition given, then the

. For case 3, r(t;;)= T(t

Til = Tkl.

k1l equations in Egs. (19) are the same.

equations ere the same except that the coefficients

11 8¢ Ty

of the equations can be replaced by

for T are interchanged. In any case, one

=0 .

Tkl T i1

1f both curves have the Neumann condition given, then
the change does not have to be made.

Cases 4 and 5 are related. ' Assume that SieSD
and S, €C. For case 4, replace the il equation in
Eqs. (19) by the third equation in Egs. (18) evalu-
ated at t = til + h1/2, end replace the kl equetion
by the first equation in Egs. (18) evaluated at
t = tkl
equation by

- hk/2. For case 5 we simply replsce the kl

= £(t

Tl 11) .

Cases 6 and 7 ere treated elmost the same. As-
suze that S €8 and 5 ¢C. For case 6, we simply re-

place the {1l equation in Egs. (19) by

-T,,.=0 .

T11 T k1

For case 7, we simply replace the il equation in Egs.
(19) vy

= 0 .

Ti1 T Tk *

Cases 8, 9, and 10 are related. Case 10 could

be handled by the same method as case 9, but the .
method of treatment in cese 10 is more accurate.

For cases 8 eand 10, we replace either the il or kl

equation in Egs. (19) by



Tkl - Til = 0 .
For case 9, we simply replace the il and kl equations
of Egs. (19) by the second part of Egs. {18) evalu-
sted at t = ¢, + h/2end t =t -b/2.

Case 11 can occur only when at least three sub-~
regions meet at one point. Assume that SieCl and

Sk€C2. Then change the k1l equation to

Tepr ™ tkl =0 .

If the stated problem happens to be interior
and to have no Dirichlet boundary conditions, then
the potential u is unique only up to an additive con-
stent., To fix this, the restriction

£ TA(S)ds =0

is imposed for programs (i) and (iii), and the re-
striction

£ TA(S)TdS =0

is imposed for programs (ii) and (iv). It has been
found satisfactory to simply replace the equation

corresponding to t, in Egs. (19) by this restriction.

For the Neumann priblem on an infinite region G, no
restrictions on TA(s) are necesssry because of the
assumption that u(v,w) - 0 as (v,w) - = .,
VIII. APPROXIMATION OF A AND E IN THE x-y PLANE

The approximations to be discussed here can also
be used to evaluate Eq. (1) once the unknown boundery
values have been computed. For both the known end un-
known boundary values, we approximate
NT
z

u(s) *u(s), = £ u(t)els)

and k=1

2

NT du(t, )
-] - 2 000

Y

vwhere ek(s) is es defined above. Replacing the func-
tions u and du/av by their approximations in Egs. (1)
and (5) shows that one need only be sble to approxi-
mate

1
g 8, (s)In(D)ds
and (21)

gek(s) g—v 1n(-I-_l-)ds )

Here r = r(s,x,y) = {(x(s)-x]Z + [y(S)-y]Z]J"- To
evaluate the approximate solution, the pair (x,y)
mst be allowed to range over all G and S. When we
evaluate A and E, the pair (x,y) is restricted to
the values [x(tk),y(tk)) for k=1,2, . .. , NT
and, possibly, the intermediate values at the end
points of the boundary sections.

Three different methods are used to approximate
the integrals in Eq. (21). To explasin the three
methods, we need more notation. Let T, = [slek(s)¥O].
Define the function h(s) for se(0,d) by

k;l k

h(s) = h, for = Is, <s s i=21 Is, .

Civen a fixed ek(s) and a point (x,y), the three
methods correspond approximately to the three cases:
x T(s,x,¥) = 7Th(s) ,

(v) For some s€T) r(s,x,y) = O,

(c) The complement of (a) and (b).

For case (a), the functions 3/3v 1n[r(s,x,y)] and
In[r(s,x,y)] are smooth when thought of as functions
of the variable s. The integrals in Eq. {21) csn be

(a) For every seT

spproximated sccurately by a Newton-Cotes formula.
For example, assume that tk is the start of the bound-
ery section SJ(k). Looking at the first integral

in Eq. (21), we have

1
érek( -3 ) ln[m]ds
t
k

+2
1 1 ]
> { (s-tk+l)(s-tk+2)ln|:—(————)-r 57 s

(k) “x

2h5(x)
: [

2
2h4(x)

s-hJ(k)]{s-th(k)]ln[;rgz%;jijyy]ds.

o}

For i=0,1,2, 3,4, let § = -1n{r[ihj(k)/2+tk,x,y]}.
Using Eq. 3.5.13 of Ref. 6, we get

) L
p B CO LN L e

2
25 (k)
h, X
= —ﬁé—l [7(1)§o+52(%)§1+12(0)§2+52(-};)§5+7(o)zu]

Py(x
- %_). (78,4128, -hg,) . (22)

By combining the terms, we need compute only one

logarithm. The second integrsl in Eq. (21) can be
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treated in exactly the same way. When Gk(s) is more
involved, we have only to sum two integrals similar
to the one given ebove. The method discussed for
case (a) can be replaced by that used for case (c).
However, the method used for case (e) is faster.

For ceses (b) and (c), the approximation is more
difficult. Looking at the definition of Ok(s), one
can eesily see that to compute the integrals in Eq.

(21) it is sufficient to be able to compute

el

i 1
N(k,1) = { (S-tk) 1 m ds N
k
and (23)
tk+l

D(k,i) = {

k

60" &5 ey
(s tk) v 1ny r{s,x,y ds

for k=1, 2, . . . , NT-1 and L = O, 1, 2. Thus,
we will discuss only the epproximation of the inte-
grals in Eq. (23).
D(k,0) can always be computed explicitly.
this fact will not be used.

Using the definition of 3/dv and r(s,x,y), it
follows that

As a point of interest, note that

However,

tee1 3 r(s,x,y)
D(k,1) = { (s-tk)i a: %y
k
Tee1 i{[x( )-x]—XL—l - [Y(S)'Y] }

= { (S't )
k T (S’XJY)

In vwhat immediately follows, we restrict the dis-

For (x,y) fixed and se(tk’tk+l)’
the functions {[x(s)-xly'(s) - [y(s)-ylx'(s)} end
r2(a,x,y) will be approximated by polynomials of de-
Set

cussion to case (c).

gree two.

p(s-t,) = as” + bs + ¢ Mri(s,0)

and
q(s-t,) = as” + Bs + y & {[x(s)-x]y'(s)

- [y(s)-ylx'(s)} ,  (24)
and choose a, b, ¢, a, B, and y such that the above
approximations are true at s = tk’ tk+1 and

b tk)/2. Define D, (k, 1) end N,(k,1) as the ap-
proximations to the integrals D(k, i) and N(k,i) re-

28

sulting from the use of the polynomials p(s) end q(s).

Then we have

tk+l i .
N(k,1) = N,(k,1) = -{ (s-t,) ln[p(s-t,)lds
. <
= - j'd( L in[p(s)las .
[¢]
and (25)
: tk+l q(s-t )
D(k,1) & Dy(k,1i) = { (B-tk) -(g—g—y
k
IO
= \(J; —p-%é-)-l ds .

Both NA(k,i) and DA(k,i) can be computed explicitly
for any glven polynomials p(s) and q(s) of degree
two. However, round-off can be a problem whenever
lahJ(k)/cl gets small.

For case (b), r(s,x,y) = O for some se(tk,tk+1)
If we sre generating the matrix A and the vector E,
and r(s,x,y) = O for some se(tk;tk+l), then either
r(tk’x’Y) = 0, r(tk+l,x,y) =0, or r[(tk+1+tk)/2:x)y]
= 0. If we compute values of the solution, and
r(s,x,y) grows small or is zero for some se(tk,tk+l),
then we can use the values of u and au/an computed
at the closest point on the boundary to give an ep-
proximation to the solution. Hence, we can assume
that r(s,x,y) is only zero when generating A and E.
Here we will assume that r(tk,x,y) = 0. The other
cases are treated similerly.

The integral N(k,i) is approximated in somewhat
the same way @5 in case (c¢). The only difference
is that p(s) is chosen differently. Here p(s) = 82
(es+b), with a and b chosen so that p(s-t, ) = ra(s,x,y)
at 8 = ¢, . and (t

k+1)/2. Hence, we also get
(aty) + 28 0,y) and

2
d p(s-t, ) _ ar®(s,x,y) -t .
3 k 38 at s tk
Using the approximation
t

K+l L
N(k,1) = N,(k,1) = -i‘;{ (s-t,)" 1n[p(s-t,)]ds

in(p(s)las ,

h
3(k)
-.ki‘ ol

it follows that NA(k,i) cen be integrated explicitly.



However, there can be problems due to round-off 1if
( )/bl is small.
For case (b) the integrel D(k,i) is treated as

2K(m)ds
% (et (poe) e B

in case (a). However, the integrand and (26)
8 [ 1 7. . {lx(s)-xly'(s)-Iy(s)-ylx'(s)] 0, & 2(m)as
av (e, T T 2 k oV [(2-42)2+(p-r)2+‘*1'r>]i

r(s,x,y)

is not well-defined at s = tk because both the numer- Here m = Zro 5 .

ator and denominator are zero. Using L'Hospital's (2-0)"+(x-p)"+¥rp

rule, it is easy to show thet The two integrals in Eq. (26) are evelusted by

using Geussian quadrature schemes. However, the num-

11m ln[????§_§7] 2y (ty )x"(t )=yt(e )% (b, )1 .  ber of points in the scheme and the type of Gaussian

—t
s k quadrsture schewme vary. The number of points used

Now define a polynomial g(s) = asz + 88 = Y such thst in the Gaussien quadrature scheme for eny glven case
was derived from a numericel study. As in the x-y
a(0) = 2y (6 )x (e )-x" (£ )y"(¢ )], plene, the integrals of Eq. {26) can be reduced to
integrals of the form

and
t, +t
q(s-t ) = 1 ] for s =t ., E—E——Bill .
m ktl 2 - kel 2k [u(s) Jds
N(k,1) = £ (s-t,)"p(s) 5 5 ,
Then, approximete {(z—g(s)] +[r-p(s)] +brp(s)}%
el . (27)
s i = - - ~
D(k,1) & Dy(k,1) J; (s-ty ) a(s-t, Mis B(x,1) = { (s_t ) o(e)35 EK[mU]dS 3
X {ta-C(s)1+1r-p(s) 1P hro(s)}
h
= siq(s)ds . for i=0,1,2,8nd k=1,2, .. . , NI - 1. There
° are four different types of Gaussisan guadrature
If the boundary is & line segment or e circular schemes used to approximate the integrals of Egs. 27n.
arc for se(tk,tk+l), end r(s,x,y) = O for some They correspond to the four caseS°
se(t,,t,, ), then 3/3v in(1/r(s,x,y)] is constent (a) [z-g(s)]2 + [r-p(s)] 4 O for all se(t,, k+l)

and the spproximation 1s exact.
IX. APFROXIMATION OF A AND E IN THE z-r PLANE

The approximstions discussed here are more in-

~and r ¥ o,

0 for some se(tk,t

(0) (z-¢(s)1% + [r-p(s)1?

k+1)

volved then those in the previous section. The gosl 2 2 and r {0,
is to be able to approximate the integrels of Eq. (26), (e) [Z'C(s)] + [r-p(s)] ¥ O for all se(tk’tk+l)
given below, to within s relative error of about 107", and r = O,

This is sbsolutely the best error estimete that one () [z-g(s)]2 + [r-o(s)]2

0 for some se(tk,tk+l)

can expect for any problem using programs (ii) and and r = 0.

(iv). The method of spproximation discussed here 1is
spplicable to at least one other partial differential

Before describing the schemes, we will exsmine
the integrend for D more closely. Let d:=(z-c)2+(p-r)2.

equation and probebly more. Then

The spproximations here, just as in the x-y

-3
plane, can also be used to evaluate Eq. (14%) as well 2K(m) 5 } 2K(r) K(m)m 0
as to compute A and E. Define u (s) and du (s)/av [(z ¢) +(r p) +4rp] [d * rp] r

Just as in Sec. VIII. Agsin, it is obvious that oge Using the derivetive formula given in Ref. 10, p. 521,

need only be sble to eveluate
ve get
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lf 3 K(m)mkaé} = %{}m'}p'éx(m)g% -imép—i/%((m)%% Thus, the integrand for D(k,1) has a logarithmic
r T singulerity and a singularity similer to D(k,1i) in

{ } ( } the x- . -
. k[E 0)-K(m)a' ] & _k _a_m} e x-y plane. The integrand for ¥ has only a log
ma'’ P dv erithmic singularity. Now we will discuss the

Gaussian quadrature scheme corresponding to case (a).
dm
K(m ) [E K(m)]SG} Let Pl(s), PQ(S)’ Pj(s), and Py (s) be second-degree

!&rpm) polynomials, and let P5(S) be a third-degree poly-
nomial such that
[E a 5 g%] : t, 1+t
P k1
rpm) 1 ~P1(8-tk) = p(s) for s = Ty +2 k, tesl
Here E(m) is the elliptic integral of the second 5 trer by
kind, end @' = 1 - m. Now if t 1s the integration 2. Pye-ty) = d(s) fors=1t, =75 by
variable used on the curve S, then .
3. Pgls-ty) = [¢(8)-215(s)-[p(s)-rIC(s)
agft! dsft! ] t +t
= - =z - k
v dt ce) for s = t,, :-%-—](-, Ly 2
and t, .+t
. k+l "k
L, p(s-t,) =(C(8) fors=t , ——, b
Ap(t ao(t 4 k k’ 2 7 k¥l ?
am(t) {[« +urp(t)]ul_)- -p( )] 35 o 2,,20(t) rl}
d
2 b1t
2a2 5. P.(s-t,) =da(s) fors=t , —5—, t and
. 5 k ] k 2 k+1
aZur 20L8) _ uo(e)r 2 5
p
= Lo 3V ] d a 908 Y1
[demp(t)r 2 = ps(s-tk) =35 for 8 = —5—
<d Zur(+) Bp( &) e{[ ()2 5 6)-Lp(8)-r1E(8)}) Define EM(s-t,) = 4rP,(s-t,)/[brP (s-t,)+Pg(s-t,) 1.
[d +’4p(t)r] * Let W, Wy, « - - , Wy, be the weights, end T, ?:2,
« %‘IM be the abscissas, for en IM point Gaus-
Hence, slan quadrature scheme with weight function 1.
That is,
v [d +hr ]k m' 3V " Tp 3V JH)at & 5w 2(E)
o =1
3 E (540r)% 30 (a) 3 1
= (2 —(E)——O—E-— du _ K(m) 3p See Stroud end Secrest. Set s =T h for
™ | [upra2® P £ 3(k)
Prey t=1,2, . .., IM. Now, using the change of
) K(m)c. . (dﬁ#&rp)s/aE(m) veriables, t = (S-tk)/hj(k)’ ve appropriate the in-
2 2
p(aSsbrp)? hrpd tegral
2 3 N
-agkr(-8pr((¢-2)8-(p-r)C]| 1
o i
W(k,1) = th th, .+t
[ (Lorp)’ ] (1) = [ [oh 000y ] P[00y
Kmi _, B (., ss_)_p_mz)g]} acfal oy o+t [} By g2

o(d§+‘*rp)h xb(di"‘*rp)iL

{di[th 3( k)+tk]-mrp[th 3( k)+tk]}}

b,
(a2+a (x(m)c-E(m){C+2p[“—)‘9—(‘°—K]}> (28) ' Wk,1) ~h

J(k) Z W [(s )iPl(s )]

2K [EM(s 4') ]
[Ps( 8 L) #&rPl( 8 L)]%




and the integral

Dk, i —}‘ h Lofth,, .+t ] 2
Dlk1) = L ey 00 P00 5] &
b TOMRNO! )
{8 eyt oty
by
o 1
Bist) = By T wyfsy) (EETCRIETERIE

(s,) -E[24(s,) 1P, (5,)P5(s,)/P,( sb)) /[PS( s, )+hrP, ( sL)]l‘ .

The choice of IM here depends on the minimum
velues of the ratios d (s)/h. and p(s)/h. for
o( )/ 3(x) ol )/ 3(k)

se(tk IM is chosen so that the integrals

’tk+1)' 8
heve a relative error of sbout 10 ~. One might rea-
sonably ask why two different polynomials are used

to spproximate di(s). The approximation to dg(s)

is most critical. Hence, the third-degree polynomial
PS(S) is used. The ratio {[C(s)-z]ﬁ(s)-[p(s)-r]é(s)}
/di(s) is slso importsnt. Moreover, as was men-
tioned for the x-y plane, this ratio is constant for
meny important cases. Without modifying the input,
it is not precticel to approximate the numerator by

a8 similar third-degree polynomial, snd if one does
not, the rstio of the polynomisl epproximations is
not constent for the lmportent cases. Hence, we use
polynomials that will meke the ratio constant for
these ceses. :

We discuss next the Gaussian quadrature scheme
corresponding to case (b). For simplicity we assume
that dg(tk) = 0, Because of our assumptlions concern-
ing the parsmetric representation of the boundary,
there exists a smooth function Ei(s), such that
di(s) = (s-tk)e Eﬁ(s) and Eﬁ(tk) = 1. There also
exist four polynomials Ql’ Q2, Qj, and Qh each of
degree four such thst

K(m) ~Q (n') + q,(m')log(a’) ,
B(a) ~Q5(n') + Q(a’)log(a’)
and the meximum relstive error in these two approxi-

mations is 2 x 1070, See Ref. 9, pp. 591-592. Be-

cguse

at = 1 - w e al(e)/(aZhrg) = (s-t)° To(e)
/(Cshrp)

we have

K(m) =Q1(m') + Qz(m') log |5 o

do*#rp

+ Qp(n') 1ogl(s-8)%1

and
%
E(m) =Q (m') + Q,(m') log
3 4 d§+hrp

+ Qh(m') log[(s-tk)a] .

For eese of notaetion below, set

& - @/ (ahrp)
Ky (m,@) = @y(a') +Qp(a’) log(@)
Ky(m) = Qyu') logl(s-t,)°] (29)
By (m,8") = Qz(a’) + Q(a’) log (W)
and
Eplm) = q(n') logl(s-t,)°] .

Let Pl’ PS’ and Pb be the same polynomials defined
sbove. Choose P2 and P5 such that

Py(s-t,) = 8As) st s = v (b +0)/2, b
end
Pj(s-tk) = lim {{¢(t)-21p(t)-[p(t)-rIi(t)]}

tiés
2 -
/do(s) et 5 = t, (tk+1+tk)/2, Y1

Set EM(s) = htPl(s)/[krPl(s)+P5(s)] end T™M(s) = P,(s)
/[hrPl(s)+P5(s)]. Let Wy, Wy, « « + , W, de the
welghts and let §l, §2, e ey §1M be the sbscissss
for an IM point Gaussian quadrature scheme with
velght function log(t). That is,
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1 IM M
[ ros(e)e(e)ar =T wy £(5) Bk, 1) ~ 1y () ;EFle(sL)LPl(sL)PB(sL)/[Pe(sL)]5/2 :

11
See Stroud and Secrest. Set ny = thJ(k) for For case (d), the approximation is similar, except
t=1,2, . .., IM. Using the change of varlables that the polynomials are defined differently. As-
t = (s-tk) /n J(k), we approximate the integral W(k,1i) suming that di(tk) = 0, then Py, P,, and Py are de-

by fined by the relations

) 2K1[FM(SL) ,EM(SL) ]

1 2
[PS( s&)+hrP1( s&) ]

™
N(k,1) = (k) il‘u (BL)iPl(s P (s-t,) = p(s)/(s-t,) for s = (et )/25 byepn

Pl(s—tk) = dp(s)/ds for s = t

k ?
M 2K, [EM(n,)) )
+2n,(k) T w, (n)'P (n, )2 L , P (5-t ) = d(s-t )2 ¢ = (t, ,.+t,.)/2, t
P e 6T I e ()b () B 2ot = Go(s-t)/(5-8,)" for & = (4y,1+5,0/2, by
Pe(s-tk) =1lfors=t, ,
and the integral D(k,i) by
and
M
B(x,1) % n,(k) il“ﬁi C{Klfm(sé)’m(sc)] P.(s-t,) = lim {[C(s)'zh"(s)"’ ¢ } for s = t,,
3 k tds dg(s) k
- E, [EM(s)) ,ﬁd(sb)]}Pu(sL) - E, [2M( SL)’ Yer1t Y N
2 7 Tk+l
B SL) ]Pi(sL)Pi(sL))/{P5(sb)#‘rpl( SL) ]é N and D are approximated by
M . M ¥
+ 2hj(k) fFl%(m)i(sz[m(%)I-EQIW("L)]] N(k,1) mhj(k) ile(SL)LPl(sL)/[Pe(SC)] ,

and
P (n,) - E,l24(n,)IP; (n,)P5(n,) )/ [Bs(n,)

™ )
AN A i 3
D(k,1) hd(k) i:lw{'(s{') Pl(BL)P5(BL)/[P2(sL)]
+ ‘&rPl(nL) ]é
X. MISCELLANEOUS MATHEMATICAL NOTES

The s,'s and w,'s used here ere the seme as those Once the matrix A and the vector E have been
used in the previous approximations for ¥ and ¥. generated, the metrix equation,
Finally let us consider the two cases when
r = 0. The two integrals in Eq. (27) then reduce Az=E , . (31)
to -
. . must be solved for the vector 2z = (zl,za,...,zNT) .
. k+l (s-tk) p(s)ds This problem can be solved by an iterative technique
’ﬁ(k’l) = —d_'o—(?)_' ’ or by a direct method such as Gaussien elimination.
. For a Neumann problem, an iterative technique is
and t i usually faster than Geussien elimination; for a
3 kel (s-ty) p(s) 1¢(5)-218(s)~pC Dirichlet problem, the opposite is true; and for &
D(k,i)-{ —3——{ s . (30) richlet pr , the opposite ;
X do mixed problem, there is no fixed rule. Only Gaus-
For case (c), Pl’ Pa’ and P3 are the same as in sian elimination is used in the four programs dis-
case(2) . N and ¥ are approximsted by cussed here.
The error anslysis that follows is directly
W(k,1) = hd(k) TEM VL(BL)iPl(SL)/[Pa(%) ]é , applicable only to program {i). However, the re-
=1 sults apply to each of the programs. Let z be the
and vector in Eq. (31). Define zA(s) = glok(s)zk,
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£,(s) = £ o,(s)f(t,)

k with tkesn

, end SA(S) =z Qk(s)g(tk) .

k with tk€SN

The approximate solution, ul(x,y), to the stated

problem is

ul(x,Y) = %ﬁE! gA(s)ln(%)ds + £ ZA(S)ln(%ﬁds
N D

- i 2,(s) % 1n()as - g £,(5) g—v 1n(%)ds] .
N D

If the boundary S consists only of line segments,
then all integrals can be evalueted exactly. In

this case, we have

'u(X:Y)-ul(x:Y)IS[%; lg (g-gA)ln(%)ds
N

+ +

g("zA)l"(%)dS J(r-2,)35 w(E)as
D Sy

+

g(f-fA)%; ln(%)dsl]< [1+”A'1n]o(h3) .
D

Here we essume the existence of bounded third deriv-
atives to get 'g-gAl < O(hi), |e-£ | < O(hj), and
[r=z,| < [r-1py] + |7p-2,] < [l+”A~é”]O(h3). For the
Neumann problem with a different discretization, it
can be shown that ”A-l” is bounded independent of
the number of points NT, if NT 1s large enough. For
mixed problems and Dirichlet problems, numerical
studies suggest that ”A-ln < 0(1/h), except for a
special case to be discussed later. Thus, using
the scheme expleined above, we can expect O(hz) ac-
curacy. However, the order of accuracy is arbitrary,
and we can use whatever order is convenient. When
the boundary S does not consist of line seguments,
there is also an error due to the approximation of
the integrals in Eq. (21). However, ss long as we
do not have cusps, or &s long a&s hj’ divided by the
minigum radius of curvature on S,, remains small for
J=1,2, . . . , NOCT, this error remains negligible.
One might ask about the uniqueness of a solution,
What follows has been
If the region G is

homogeneous and S has no corners, then Eg. (11) be-

T, to the system of Egs. (11).
proved only for the x-y plene.

comes

T(t) + }Tg T(s)K(s,t)ds = E(t) for tes

and

b - (11-A)

% g t(8)K(s,t)ds = E(t) for teS
Kellnerl2
eted with Eq. (11-A), i.e., E(t) = 0.
that if SD { 0, then there is = nontrivial solution
if and only if the transfinite diesmeter of G is
equal to 1. See Hille15
finite dismeter. Thus, we can expect the matrix A
in Eq. (31) to be singular if, and only if, G has
transfinite diameter 1.
very often, but it does occur with the unit circle.
The difficulty can be eliminated by scaling the re-

has studied the homogeneous problem associ-

He hss shown

for a definition of trans-

This problem does not occur

glon G so that it does not have transfinite diameter
1. We can numerically compute the transfinite diam-
eter of a given region G using programs (1) and (iii),
by simply scaling the region G so that the matrix A
is singular.
XI. FROGRAM STRUCTURE

We will attempt to explain .iow the four routines
are programmed. Associated with each routine are a
number of auxiliary subprograms. For instance, the

subprogrem LAPILDDC uses the subprograms:

(1) mc

(2) raPLOT
(3) ECsw
(4) N

(5) av

(6) BIRZ
(7) GRADFN
(8) QG

(9) REGNSEL
(10) ROWSTOR
(11) Ecw
(12) ER

(13) ECRD .

To use LAPLDRS, one needs all of the above except
(8) and (1), plus the two subprograms:

(14) ELLINT
and

(15) ELLINT2 .
To use LAPLACE, one needs the first elght subprograams
LAPLARS needs (2) to (7) and (13)
Although these 15 subprograms have the same

and program (13).
to (15).
name, they vary slightly depending on which of the

four programs they are associated with.
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Before we discuss the actual program structure,
8 description of the general storage scheme is in
order. Almost all the variables mentioned below
are placed in common storage and used by several
subroutines. Most of the storage discussed here is
used to define the boundary. In the four prograus,
the varisbles are named es though they lay in the
X-y plane. This mskes it rather difficult to fol-
low programs (il) and (iv), because all the z-coor-
dinates are called x-coordinates end all the r-coor-
dinates are called y-coordinates. However, it does
mesn that most of the FORTRAN statements aere common
to all four programs.
We will discuss the storage scheme for programs
(1) and (i1) first. Let S, be the ith boundary sec-
tion given as input, and let Si have the parametric
representation {[xi(t),yi(t)]lte(o,di)} with respect
to arc length. Define KTi to be the number in the
ninth field of the ith boundery data card, that is
columns T% to 76. The following variables have one
entry for each boundery section.
DC(1) = 4, = length of the boundery section,
LT(1) = eighth data field of boundary data card,
i.e., colum 72,
HD(1) = by = DC(1)/(xT,-1),
KV(i+l) = KV(1) + KT,, [kv(1) = 0].
The following variables are used to store the coor-
dinates of boundary points.
X[3+Kv(1)] = xi[(j-l)hi] for J=1,2,...,K, ,
Yl3+kv(1)] = v, [(3-2)n, ] for 5=1,2,...,KD;
IN[3+kv(L)] = d.vi[(:]-l)hi]/dt for j=1,2,..-,
KTi »
IN(KV(L)] = dxi[(,‘j—l)hil/dt for 3=1,2ﬁ..,
i ?

foxy(0) Bry(0)  ary(v) ()]

els+xv(i)] = 3{—5¢ w2 Py

evaluated at t = (J-l)hi for J= 1, 2, ..., KT, ,

XILJ+Kv(1)] = xi[(.j-5/2)hi] for j=2,3,...,KT ,
YI(3+kv(i)] = yi[(a-s/a)ni] for §=2,3,... KT, ,

t

XIN[3+V(4)] = —% for §=2,3,... K0,

ax, [(J-3/2)h, ]

YIN{J+KV(i)] = —= for §=2,3,...,KT, .
dt i

Before the unknown boundary velues sre computed, the
veriables D{J+KV(1)] for § = 1, 2, ..., KI, contain
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the known boundery values corresponding to the points
(x[3+kv(1)),Y(s+kV(1) 1}, and the varisble F is the
same as the vector E in Eq. (20). After the unknown
bounda;y values have been computed, the variables

Dly+kv(1}], PL3+kV(1i)] for § = 1, 2, ..., KT

contein the normal derivative and the potential, re-
spectively, for the points {x[3+xv(1)],Y[3+Kv(1) 1}.
To illustrate this let i = 1, KTl = 5 and essume that
8, = {lcos(t),sin(t)]]te(0,2n)} is the unit circle.
Figure 1l shows how the varisbles correspond to this
problem. At every point [X(J),¥(J)], the vector
[xN(3),-¥N(3)] is the unit exterior normal vector to
S. The points [XT(J),YI(J)] and the vector [XIN(J),
-YIN(3)] satisfy the same relation. Between each
peir of boundary velues there is one set of boundary
points that are used only to define the boundery bet-
ter. This choice is arbitrary; there could be none
or whatever number is desired.

The varisble NDC is the to@al number of boundary
sections. For progrems (1) and (ii) it is the same
as the veriable NDCT defined earlier. The variable
N = KV(NDC+1). For programs (1) and (11) it is the
same as the variable NT defined in Sec. I1I.

Now consider progrems (1ii) and (iv). The main
difference is that in this case the boundsry date for
one specified subregion only is stored for use at
any given time. The information for any subregion
ig stored in exactly the same way as the whole region

is stored for programs (i) and (ii). Thus, NDC con-

{x(2), Y(2)), F(2),0(2)

(xx(3), YI(3) (x1(2), Y1(2))

{xt), v,

{x¢3), Y(3}), # FLD, 0D

F(3),0(3)

t
(x(5), Y(8)),
F(5), D(5)

(x1(4), YI(4)) {x1(8), YI(5))

(x(4), Y(4)), F(4), D(4)

Fig. 14. Distribution of points on a circle.
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tains the number of boundary sections for the selected
subregion, and [X(1),Y(1)] is the first boundary point
of the first boundary section of the selected subre-
gion. The subroutine REGNSEL stores the information
for the selected subregion. The indexed boundery data
in the labeled common ZLAP are subregion oriented and
are stored by REGNSEL. The other labeled common stor-
age remains fixed throughout the computation.

The solution in any subregion is dependent on the
boundary data from ell of the subregions. Hence,
there must be some variables concerned with the prob-
lem as & whole. The variaeble NRE is the totel num-

ber of subregions. The subregions are numbered con-

secutively, 1, 2, . . . , NRE. The variable ND(J)
forJd =1, 2, . . . , NRE gives the number of bound-
ary sections in the Jth subregion. The variable
ICH(J) = FI} ND(K) for J =2, 3, . . . , NRE, end

ICH(1) = 0. ICH(J) 1is the number of boundary sec-
tions preceding the Jth subregion. The variable
NDCT is the number of boundary sections for the whole
provlem. If the boundary section SI ¢ 02, then the
variable IC(I) = O. See Sec. VI for the definition
of Ca. it SI € 02, then IC(I) is the number of the
common boundary section that is the same as SI but
with opposite direction. The variable RA(I) is re-
lated to the o value. If S; ¢ ¢, then RA(T) = 1,
snd if 5_ ¢ 2, then RA(I) = “o10(1)/%

The variable NT is the number of unknown bound-
ary values for the whole problem. Before the un-
known boundery values are computed, the indexed vari-
able FT corresponds to the vector E in Egq. (20).
After the unknown boundary velues have been computed,
they are stored in FT. The way the boundary values
are stored is probably not so satisfactory as it
could be. If SI € Cl, then the first 2 KTl vords of
FT are used to store the unknown boundery values on
Sl. All of the computed unknown values for the poten-
tial precede those for the normsl derivative. If S1
¢ Cl, then the first KT, words on FT are used to

1
store the unknown boundary values on Sl' It 82 € Ce,
then the unknown boundary values for S, are alreedy

2
stored in FT. If 82 € Cl, then the next 2KT2 words of

FT are used to store the unknown boundary values on
S,- If S, ¢ C, then the next KT,, words of FT are
used to store the unknown boundary values on 32. The
unknown boundary velues for the remeining boundary’
sections are stored in the same manner. The variable

IE(I) is used as a pointer to tell where in FT the

unknown boundery values for S. are stored. If SI

¢ c2, then IE(I) is the numbei in FT of the first

1° If SI € 02, then
IE(I) is the number +1 in FT of the last boundery
value on S This is because the boundary velues

ﬁnknown boundery value for S

Ic(1)°
for S. can be derived from those of SIC(I)’ except

thet ihey are in reverse order. The variable IX(L)
=1+ ﬁ;i KP, for L= 2, 3, . . . , NICT, end IX(1)
= 1. This variable is similer to KV, except that KV
is defined only for subregions. The variable KSEL
has the number of the subregion which wes last se-
lected.

Most of the following discussion is applicable
to all four programs. There are a number of other
variables in common storage which perform various
jobs. Most of these variables are initialized in FN
and used in QV. We will not discuss them. The other
variables and their functions are as follows. BZ
is a logical variable used to indicate when the un-
known boundary values have been computed. BZ = F
if, end only if, the unknown boundery values have
been computed. The variasble is used by the plot
routine to determine whether anything but the bound-
ary should be plotted. The variable BZ 1s also used
by FN to tell whether the approximete solution is de-
sired, or merely the integrels in Egs. (21) or (26).
The variables CN(I) end CD(I) for I =1,2, . . .,
NT are used by the routine FN to store the integrals
in Eqs. (21) and (26). The indexed varieble Q is
used to store the integrals in Egs. (22) and (27}.
Assuming that one is using program (ii), for instance,
a call to QV(I) will cause the following numbers to
be stored in Q:

Q) = D(1,0-1) forJ =1, 2,3

Q(J+3) = M(1,0-1) forJd =1, 2, 3.

See Eq. (27) for the definition of D and W. The
variable Q is also used by the gradient routine to
store similar integrals. The logicel varisble RI is
used to indicate whether a point is, or is not, in
the reglon G. After a call to FN(S,T), the varisble
RI = T if, and only if, (S,T) € G. If RI = F, then
FN is set equal to ~O. The variable RI is used by
the plot routine, but it is in common storage &nd is
avallable to & user.

The subroutine FN has the formal paremeters
(s,T). To make these two varisbles available to QV,
they are put in common storage; S is stored in V,

and T is stored in W. Assume that one mekes a call
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to FN, end that the point (S,T) is very close to the
boundary. By finding the point (3’,&’) on the boundary
closest to (S,T) one can approximate

i
u(s, ).~ uED) - [sB%en?] BED

This epproximation assumes.that (3’,?) is not at a
reentrant corner, in vwhich caese the approximation is
similar but more involved. The veriables DP, ME1l,
and FB are all used in the approximation of Eq. (32).
The variable DP is used both as an indicator and as a
storage locetion for the minimum distance. Whenever
DP 10100, then Eq. (32) hes been used by QV to com-
pute the solution. The routine QV uses DP to store
the minimum distance to the boundery if Eq. (32) is
used. The approximetion is stored in the variable
FB. The verieble FB = 0. if, end only if, (S,T) ¢ G.
The variable ME1l is used to determine whether or not
the point (8,%) is at a corner. Corners can occur
only at the ends of boundary sections.

To determine if a given point (S,T) is in G, one
must first determine whether G is an exterior or ex-~
terior region. The variable AR is & discrete approxi=-
mation to

[ ¥ alt) ap . (33)

The integral is minus the area enclosed by S. See
Ref. 2, pp. 311-31%. If G is an interior region,
then AR is epproximetely minus the area of G. If G
is an exterior region, then AR is the area of the com-
plement of G. Even though S need not be closed in
the z-r plene, the approximation is still valid be-
cause the z-axis is 2 boundery in our generslized
sense. The indexed variable ARR is used by programs
(111) and (iv). ARR(1) is the integral of Eq. (33)
on the subregion Gi' This indexed variable is needed
for these two progrems because of the possibility of
having both interior and exterlor subregions in one
problem.

The logical variable BQ 1s used es an indicator

by the subrbutine FN to determine whether or not the
subroutine QV encountered case (a) of Sec. VIII.
BQ = T if, and only if, case (a) wes applicable. If
BQ = T, then the integrals of Eq. (21) were computed
directly in QV, and if BQ = F, then the integrals of
Eq. (22) were computed in QV.

Most of the above variables are dimensioned.

The problem size is limited by the dimensions of
these varisbles and by the size of the matrix A
which is NT x NT. The variable FT must be of at
least NT length. The variebles ¥, D, CD, CN, G, X,
Y, XN, YN, XI, YI, XIN, and YIN mst have dimensions
as large as the number of approximetion points for
the largest subproblem. For programs (i) end (ii)
they must be as large as the total number of epproxi-
mation points, The variables HD, DC, LT, IC, IX, IE,
end RA must all have dimensions at least NDCT, and KV
must have the dimension NDCT + 1. The veriables ND,
ARR, and ICH must have dimensions at least NRE. Fi-
nally, there are some variebles, namely FF, GM, AL,
BRE, R, B, GAl, and KT, a1l used in REGNSEL, thet must
have dimensions as large as those of KV. These vari-
ables are equivalenced, and some care is necessary
when changing their dimensions.

We will now discuss the individual subprograms.

BC is a real function used to reasd current data cards
and set up branch cuts if they exist. Probably more
important, the subprogrem gives the user & simple
way to use superposition of solutions. BC is exactly
the same for programs (i) and (i1i). The function
tan-l(y-yc/x-xc) with - < tan™t < ™ has a branch
cut starting at the point (xe,yc) and running parallel
to the x-axis to x = -®. The program BC merely adds
one of these functions for each current source. The
veriable EC corresponds to current and determines
the discontinuity across the branch cuts. The vari-
ables XC and YC correspond to the point (xc,yc).
The variable NBC is the totel number of branch cuts.
The subprogram has three entry points. Entry point
BC evaluates the branch cut functions if they exist,
and entry point BCN evaluates the derivative of the
branch cut functions if they exist. Entry point BCR
reads current data cards if they exist.

The subroutine LAPLOT plots equipotentiel curves
or gredient curves. The program also plots the bound-
ary. The program has four entry points, the purpose
of each of which is expleained in Sec. IV. The plot
routine has only slight differences for each of the
four programs, the main difference being the use of
the gradient function in programs (i) and (1ii) as
opposed to programs (11) and (1v). See the routine
GRADFN below.

The variable IM in LAPLOT is used to count the
number of curves that have been plotted and is set
equal to zero on each entry into the subroutine. The



veriables XS end YS contain the starting point for
the curve belng processed. The variable HH contains
the step size used to construct the curves. The sign
of HH determines the direction of travel slong the
equipotential or gradient curve. When one constructs
the curves, the plot goes from the point [XP(1),
YP(1)) to the point [XP(2),YP(2)]. The gradient
values corresponding to [XP(1),YP(1)] are always -
stored in FXO and FYO. If the gradient vector st
[xP(1),YP(1)] dotted with the gradient vector at
[xp(2),YP(2)] is negative, the curve turns more than
90° in one step and probably does not make sense. If
this is the case, the curve is discontinued.

The film plotter has a resolution of one part in
1024 for both the x and y directions. By the time
the grid lines and the scale have been drawn in, the
resolution is down to one part in 840 for the equi-
potential and gradient curves. ¥For the equipotential
curves, it was arbitrarily decided that the computed
resolution in the rectangle derived from XMIN, YMIN,
XMAX, and YMAX would be one part in 1680. Thus, any
point [XP(2),YP(2)] computed to be on a given equi-
potential curve will have at most an error of (YMAX
-YMIN)/1680 in the y-coordinate and of (XMAX-XMIN)/
1680 in the x-coordinate. This choice does not al-
ways give the full resolution of the plotter, but it
is a compromise between computation time and the best
possible resolution.

Construction of the equipotential curves is easy.
Assume that FO is the value of the equipotential, and
that [XP(1),¥P(1)] was the last point to be plotted.
Because [XP(1),YP(1) 1s not alweys exactly on the
equipotential curve, let F2 be the value of the po-
tential at [XP(1),YP(1)]. Also, let FX and FY be the
values of the gradient at {XP(1),YP(1)]. The first

guess for the next point on the curve is

XP(1) -HH*FY/ (Fx2+n2 )§+( FO-F2)*FX/( pxzmtz)
YP(1)+HHAFX/ (FXP+FY2) R 4( FO-F2) *FY /(FXZFY7) .

(34)

The first term is a step of distance HH perpendicular

XP(2)
YPp(2)

to the direction of the gradient vector. The second
term is a step parallel to the gradient vector, and
is designed to correct for errors in [XP(1),YP(1)].
If the point [XP(2),YP(2)] is not close enough to the
equipotential curve, then another estimate is made by
moving in the direction of the gredient vector at

[xp(2),YP(2)]. Such corrections are made until the
point either is close enough to the curve or does not
improve satisfactorily, in which case the curve is
terminated.

The construction of gradient curves is slightly
different from that of the equipotential curves.
There is no direct way to determine how close & given
point is to an actual curve. In LAPLOT the gradient
curves are approximated by using a simple Runge-Kutta
scheme on the sutonomous system of ordinery differ-
ential equations

ax(t)

== ux[x(t),y(t)] ,

88 - w x(0),¥(6)]

See Hildebrand'slu formulas 6.15.15 and 6.15.16.
In terms of the variables used in LAPIOT, the wethod
for eny given step is

xp(2) = xp(1) + () (u [xp(1),¥2(1)] + u [xp(1)
+HHu, [XP(1),YP(1) ], ¥P(1)+tHu, [XB(1),YP(1)1})
vp(2) = ¥p(1) + () (o, [XP(1),¥P(1) 1 + u {xp(1)

+HIqu[XP(l),YP(1)],YP(l)+m{uy[KP(l),YP(1)]}) . (35)

The subroutine ECSW is simply a routine to read
and write rows of a matrix. It does the bookkeeping
on the size of the matrix and thg storage location
of various elements. It also stores some veriables
that are seldom used. The routine was written to
glve the programs the capabllity to use external
storage. The subprogram is the same for programs (1)
and (11). Similarly, for programs (1ii) and (iv)
the subprogrem is the same.

The subprograms FN and QV together perform one
function. For programs (i) and (iii), they compute
the integrals in Eq. (21) and for programs (ii) and
(iv) they compute the integrals in Eq. /26). 1In
both cases, the routine FN combines the integrals
with the appropriate bmindary values to give the
approximate solution, if it is desired. For programs
(1) and (1ii), the routines QV are identicel as they
also are for programs (ii) and (iv). For each of
the four programs, the routines FN are slightly dif-
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ferent. For programs (1) and (iii), the routine QV
usually computes the integrals in Eq. (22), and the
routine FN combines the integrals to give the inte-
grals in Eq. (21). However, in case (2) of Sec.
VIIi, the routine QV computes the integrals in Eq.
(21) directly. For programs (ii) and (iv), the rou-
tine QV always computes the integrals in Eq. (27),
land FN combines the integrels to give the integrals
in Eq. (26). The routine FN does two other things.
First, it sets up variasbles used in QV. Second, it
coabines the computed integrals to determine whether
the point used in the calculation is inside the re-
glion G. The routine QV performs one other computa-
tion. If the given point at which the approximate
solution is desired happens to be near the boundery,
then QV coumputes the approximate solution using the
velues of u and du/3v at the nearest point on the
boundery.

Now let us consider how the routine FN computes
the integrals in Eq. (21) from the integrals in Eq.
(22). For simplicity assume that t, 1s the start
of the boundary section SJ(k)' The function j(k) is
defined in Sec. VII. From the definition of Gk(s),
it follows that

[o-t -hJ(k)][s-tk-ZbJ(k)]/ﬂl?(k) for se(t,,
k2

ek(s) =

o] otherwise.

Hence, on (tk,tk+l) it is true that

Ou(®) = (5530 ] [(5-)-20 49 /2

3(s-tk) (s-t,)°
=1l- .
3(k) 2n 306
On (tk+1’tk+2)’ we have

o (5) = (s- k+1)[(s'tk+1)-hj(k)]/2h§(k)

(s-t (s-tk+l)
#h3(x)

2
)

2
2y (k)

Hence,

J Ok(s) 1n [?I%jij;F]ds

Y1 N tao N
= { Ok( 8) ln[;(;,x—,y-y ds + { Ok( 8) ln[m]ds
k k+l

38

= N(k,0)- gk,l) gk,a) (k+1,2) Néku,l)

Pat ey a

The other integral in Eq. (21) is treated exactly the
same. The integrals for the axially syumetric case
are also treated the same way.

If we call the routine FN in order to compute
the approximate solution at some point (v,w), then
FN determines if the point (v,w) is in the region G,
or, in the case of programs (iii) and (iv), 1f it
is in the previously selected subregion. This is
done in one of two ways. Assume first that G is en
interior region in the x-y plane, and that S has no
common boundaries. Then

0 if (v,w) ¢ G US,
5 In[r(s,v,w)]lds = { (36)
on 1f (v,w) € G.

B
If (v,v) 1s not close to the boundsry, then the inte-
gral above is a by-product of the computation of the
spproximate solution. The case when (v,w) is close
to the boundery is discussed later. If G is an ex-
terior region, then the result in Eq. (36) 1is exactly
opposite., If the region G has subregions, the sbove
result holds on each subregion. If the point (v,w)
€ G, but 1t is not in the selected subregion when
one calls FN, then the routine FN selects each of
the other subregions until it finds the one contain-
ing (v,w). PFor the z-r plane the method is the same
except that a different kernmel is used in Eq. (36).

The variable DIC is used to store the integral
in Bq. (36). The variable ADIC 1s used to store the
integral of the absolute value of the kernel. DIC
is compared to ADIC to determine vhethér or not the
integrel in Eq. (36) is approximately zero.

The QV subroutine for programs (i) and (iii) is
completely different from the QV subroutine for pro-
grams (11) and (iv). Most of the basic theory be-
hind these two subroutines is covered in Secs. VIII
and IX. Here we discuss only the case in which we
want the approximate solution at the point (v,w), and
(v,v) is close to the boundary. This section of the
program is the same for the two QV subroutines. Let

(XE,YE) be the point on the boundary closest to (v,v),
and let (XP,YP) be the unit tangent vector at (XE,YE).

{Inder the assumptions on the boundary, if (XE,YE) is
not at a corner, then the vector (XE~-v,YE-w) is par-

allel to the vector (YP,-XP). Possibly the direction



ar
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is opposite, if (v,w) is not in G. By teking the dot
product of the two vectors, we can determine whether
(v,w) € G for this case. If {v,w) € G, we approxi-

mate

27 3u

v (XE,YE) .

(37)

u(v,w) =~ (X, ¥8) - (0@-v)*+(1B-v)

If (v,v) € G, and (XE,YE) is at a corner, then
the corner is reentrant. 1In this case, we assume
that eny singularities at the corner have been sub-
tracted out. Using this assumption, we can compute
the derivative of the solution in any direction by
using the two values of au/av at the corner. To
compute the approximate solution, we simply use Eq.
(57) with the derivative term replaced by the deriv-
ative in the direction (XE-v,YE-w).

For programs (1) and (ii), the routine BDRZ reads
the boundary data cerds, puts the data in a usable
form, and genérstes boundary points upon request.

For programs (iii) and (iv), BDRZ generates only
boundsry points. The BDRZ routines for programs (i)
and (ii) are almost identical, as is also true for
programs (1ii) and (iv). We will discuss only the
BDRZ routine associated with programs (i) and (ii)
becsuse the other BDRZ routine is simply a subset
of the one to be discussed. The routine BDRZ has
Entry point BDRZ resds one bound-

ary data card and puts the informetion in a usable

two entry points.
form. Whenever a -0 is encountered in a data field,
When

the routine reads a blank card, it sends a message

the routine assumes that the field is blank.
to stop reading cerds. When using simplified bound-
ary data, the entry point BDRZ in some sense replaces
the subroutine BDRY. BDRZ gives exsctly the same
information for boundary sections with simplified
boundsries as BDRY does for generalized boundary

data.

The information needed to construct the simpli-
fied boundary sections is stored in seven-word blocks,
that is, seven words are used for easch boundary sec-
tion. Generating a line segment or a complete circle
1s a straightforward task using a boundary data card.
However, a circular arc is more difficult, and will
be explained. Suppose we have read in the points
(x1,Y1), (xX2,Y2), and (X3,Y3). First solve for the
center point, called (AL,BE) here, of the circular

arc. Because the three points all lie on the circle,

we have

(ALx1)? + (EE-Y1)2 = RZ,

2
(aLx2)2 + (mE-¥2)° = R? ,
and
52 _ g2

(ALX3)? + (EE-Y R® ,

where R is the radius of the circle.
the first equation from both of the other two, we

Subtracting

get the system of linear equations

2 nl

PAL(X1-X2)+2EE(Y1-¥2) = x1%+y1%x2%.y2? |

PAL(X1-X3)+2BE(Y1-Y3) = X1%+11%x3%-v3% .

These can easily be solved for (AL,BE). Substituting
AL and BE back in the first equation, for instance,
we can compute R. The psrametric form for the cir-
culer arc is

X(T) = R cos(D*r/R+GALl) + AL ,

Y(T)

R sin{D*T/R+GAl) + EE .
The variable GAl amust satisfy

X1 = R cos (GAl) + AL ,

Yl

R sin (GAl) + BE ,
which is equivalent to
GAl = TAN'lt(Yl-BE)/(xl-AL)] .

The variable D is the orientation and is either +1

or -1. The computation of D is involved. Define

the complex numbers Z2 and Z3 by
75 = X2-AL)+i(Y2~-EE
- (X1-AL)+i(Y1-EE ’

(X3-AL)+1(Y3-BE)
(x2-AL)+1(Y2-EE) °

and

23 =

Thus, arg(Z2) is the engle on the circle from (X1,Y1)
to (X2,Y2), and arg(Z3) is the angle from (X2,Y2)

to (X3,Y3).
It follows then that D has the same sign as the

We assume here that -1 < arg(.) < m.
argument that has the smaller absolute value.

Equiv-
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alently, D has the same sign as the imaginary part of
the complex number whose argument has the smaller ab-
solute value. The length of the circular arc is easy
to coapute.

For programs (i) and (iii), the subroutines
GRADFN and QG perform approximately the same functions
vhen one computes the grsdient as the subroutines FN
and QV do when one computes the potentisl. FN and QV,
however, will hendle more difficult situetions. The
gradient routine breaks down very near the boundary.
Also, it will not handle the round-off difficulties
described in cese (c) of Sec. VIII. However, these
problems do not occur often.

The subroutine QG approximates integrals of the
fora

el ;R
{ (t-tk) 35 Infr(t,x,y)]Jat for j= 0,1,2 ,
k

el 52
{ (t-t,) = Inlr(t,x,y))dt for j = 0,1,2 ,
X A
. (38)
k+1 5 32
{ (t-t,) Syov In{r{t,x,y)]dt for j = 0,1,2 ,
k
and
Yrrl

{ (t-t,)? g? lnlr(t,x,y))at for 4= 0,1,2 .
X

The three integrals corresponding to the first line
in Eq. (38) ere stored in Q(1), Q(2), and Q(3). The
next three are stored in Q(4), Q(5), and Q(6), and
so forth, down to Q(12). In QG, one approximates the
integrals aebove by explicitly evaluating integrals

of the form

h . J
t dt
QJ:!—;(-E) for J=0,1,2, 3, 4 ,

and (39)
hJ
= [52 forg=0,1,2, 34 .
op(t)

Here p(t) 1s a polynomial of degree two used to
approximate ra(t,x,y). Explicit formulas for the
integrals Q2J for J = 0, 1, 2, 3, 4 are given on pp.
65-66 of Ref. 15. The integrals QJ for J =0, 1, 2,
3, 4 cen be found in almost any integral table. The
integrals in Eq. (39) are combined to give a rational

%0

frection approximation to the integrsls in Eq. (38).
The approximation is similar to case (c) of Sec. VIII.
The subroutine GRADFN completely treats what
corresponds to case (a) of Sec. VIII. Assuming that

the compufation is being done on the interval (tk,
tk+2)’ the decision to treat the integrals as in case
(2) or cese (c) of Sec. VIII is determined by whether

or not

(b, +t, )
k' k+l
r(t,x,y) 2 5hj(k) for t = t,, 5 s ter?

(tk+1+tk+2) t .

2 ? "k+2

The subroutine REGNSEL has two entry points.
Entry point SELINIT reads all of the boundary data
cards and puts the data in a usable form. This part
of the program is similar to entry point EDRX of BDRZ.
To & large extent, the programming is the same.
SELINIT hes a fewmore wrinkles because it must handle
common boundaries. For this entry point, there 1is
only one difference between programs (1iii) and (iv).
Progrem (1ii) has a provision for reading current
data cards. Entry point REGNSEL sets up all of the
boundary data for a requested subregion. This entry
point for program (iv) differs from that for program
(1ii) in that program (iv) does not allow negative
values of y.

Subroutine ROWSTOR is simply a program to store
the rows of the matrix A given the integrals in Egs.
(21) or (26). The integrels are transmitted through
common storage in the indexed variables CN and CD.
The routine also computes & row of the vector E of
Eq. (20) and stores it in the indexed.varisble FT.

Subroutine ECW has two entry points. Entry
point ECW writes one word into & specified location
of the matrix A. Entry point ECAl adds one word to
a specified element of the matrix A. The real func-
tion ER reads one specified word from the matrix A
and stores it in ER.

ECRD is & routine to utilize storage which can
be core storage, extended core storage, disk, drum,
or what have you. The program presently uses core
storage or extended core storage, but it can easlly
be modified to use whatever storage is available.
The storage is mostly for the matrix A. There are
two entry points to the subroutine. Entry point
ECRD reads a specified number of words starting at
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a glven location. Entry point ECWR writes a speci-
fied number of words starting at a given location.

ELLINT is & subprogram to evaluate the two
elliptic functions E(M) and K(M). If M < 0.81, a
quadratic interpolation from tabular values is used.
The table has 416 points for each of the two func-
tions. It has special values outside both of the
end points so that no special technique need be used
at the ends. If M > 0.81, then the routine uses
formulss 17.3.34 and 17.3.36 of Ref. 9 to approxi-
mate the functions. There are two versions of this
subprogrem, one in machine language end the other in
FORTRAN. The machine language version is fester and
should be used whenever possible because the timing
of this routine is criticel.

ELLINT2 is a subprogram to evaluate the func-
tions K,, Q,, E,, and Q, of Eq. (29). Depending on
the parameters in the calling sequence, the routine
evaluates Kl end El or Q2 and Qh' This routine is
written in FORTRAN.

Finally, let us consider how some of the vari-

ables in common storage can be used for output cel-
" culations. Assume that progrem (iil) is being used,
and that 21l the labeled common storage is available.
Suppose SJ is a boundary section in the subregion
J1l. The following statements could be used to glve
a Simpson's rule epproximation to £ du/fav ds.
J

CALL REGNSEL(J1)

Il = J - ICH(J1)

L1 = KV(I1l) + 2

L2 = KV(I1 + 1)

QUAD = D(Ll-1)

DO 1M=11, L2, 2
1 QUAD = QUAD + L4 .*D(M) + 2.%D(M+1)

QUAD = HD(I1)*(QUAD-D(L2))/3.

The first statement ensures that the right subproblem
is stored in ZLAP. The second gives the number of
the section SJ in the subregion Jl. The other state-
ments follow immediately from the definitions of the
variables. Simpson's rule is about the highest order
integration scheme that makes sense, considering the

way the boundary values are computed.
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