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An Improved Technique for Using the
Fast Fourier Transform to Solve Convolution-Type

Integral Equations

by

B. R. Hunt

ABSTRACT

A technique presented by Phillips and Twomey for solving integral
equations is discussed and an extension of the technique to the
use of the fast Fourier transform is presented.




Introduction

The convolution-type integral equation,
t
g(t) = f h(t-t,) £(t,) dty , (1.)
0

occurs frequently in many problems in electrical engineering. For
example, since the input-output reletionships for a time-invariant,
linear system can be formulated as in equation (1.), identificeation
of the system's impulse response, h(t), from a record of input and output
functions, f(t) and g(t), requires the solution of the above integral
equation. An equivelent problem is to find the system input, f(t),
given the system response, h(t), and the system output, g(t). This
problem is frequently referred to as "deconvolution" {1]. These
problems are difficult to solve because of the ill-conditioned nature
of integral equations of the first kind [2]. In this peper we first
review a technique which can be used to overcome many of the problems
associated with integral equations of the first kind. The technique
was originally investigated by Phillips [2] and Twomey [3, 4] and
requires matrix inversion of a get of modified least-squares normal
equations. However, in the special case of convolution-type integral
equations we demonstrate how to adapt the technique of Phillips and
Twomey to application of the fast Fourier transform. This leads to
great improvements in both the time required to compute solutions

and the number of points that can be used in the computation of the
solution, yet still retains some of the computational advantages

of the Phillips and Twomey technique.

Constreined Least Squeres Solutions
In solving equation (1.), we must approximate it in the form of
a discrete sum, Choosing an interval At we use the simplest approximation




end have:
k
g(kat) ?Zo n((k-3) at)£(Jat) at . (2.)
,j:

It is common to let the interval at = 1, and then represent equation

(2.) in simpler notation es:

k

&) T n(e-ne() (3.)
3=0

The formulation of equetion (1.) explicitly assumes "ceusal" functions
that are identically zero for t< O. In addition we assume that f(t)
and h(t) go to zero after some finite interval. This means that g(t)
goes to zero in some finite interval also. If, using the intervel

At, the sequence f(Jj) consists of a total of a non-zero points and

the sequence h(j) consists of & total of b non-zero points, then the
sequence g(k) contains a total of atb-1 non-zero points. Thus equation
(3.) is valid for k= 0, 1, 2, ..., a+b-2. Note that by the upper

and lower limits of the sum in (3.) we are assuming the three sequences
are extended by zeroes for values of k or j outside of the intervels

of non-zero extent., This eliminates the complicated writing of the
convolution sum with varieble upper and lower limits, as is frequently

seen [5].

The difficulty in solving equation (3.) for the unknown sequence
£(3j) lies in the poor behavior of the integral equation as an operator
mepping f(t) into g(t). As demonstrated by Phillips [2], it is elways
possible to add e finite quantity to any solution f£(t) end edd only
an infinitesimel amount to the observed function g(t). Hence, if
the functions h(t) and g(t) contain any error at all, the solution f(t)
will be unrelisble, Typicelly the solutions one obtains are unstable



and oscillate wildly between positive and negative values [2]. To
further aggravate matters, it is impossible for the functions h(t)
and g(t) to be free from error. In the case where h(t) and g(t)
are obtained from measurements on a real system, there will always
be errors associated with the measurements. In the case where h(t)
and g(t) are functions defined in a closed-form expression, errors
are still encountered. Equation (3.) is only an approximation

to the integral equation (1.), and the errors resulting from the
approximaetion can be treated as errors in the actual functions h(t)
and g(t).

Given the existence of errors, equation (3.) cen be written in

the form:

k
a(k) = g(0) +€) = ) nE-HL() ()
j'—‘o

where ¢ (k) is an error term that accounts for the approximation
of the integrel in (1.), or for errors in the measurement of h(t)
and g(t), or both. In this form we are making the statement that
the data one has is actuelly a sequence d(k) composed of the true
sequence g(k) plus an unknown (and unknowsble) error term € (k).

As pointed out by Phillips [2], the existence of errors converts
the solution of equation (4,) for f£(j) from a problem with & unique
solution into & problem with a family F of solutions, There is
a different solution sequence f(j) corresponding to every possible
combination of g(k) end €(k), and the family of solution sequences,

é?, becomes infinite. Phillips proposed, therefore, that to solve

the problem one should impose a constraint on the solution that

would act to select a specific solution from the familyhﬁrof solutions,
Since solutions to (h.) are usually wildly oscillatory, Phillips
suggested that the constraint to impose was that the solution segquences




be "smooth" in the sense of having minimum second differences over
the family :7 of solutions. That is, the solution ?(j) should satisfy:

a-1
B = min D (e(3-D)-2r(9)+e(3+0)? (5.)
(i) eF 3=0

Since the minimum of the second difference operation formulated in
equation (5.) is achieved by sny constant sequence, Phillips also
suggested another constraint in terms of the error, ¢ (k). Although
the actual error is unknown, one usually knows something sbout the
statistics of the errors. For exemple, if the errors have zero

mean with a variance 02, then one knows that:

a+b-2

z € (k)2 = (ab-2)0 = e (6.)
k=0

where the approximation is based on estimation of the variance from
a+b-1 samples, and could be posed in terms of a suiteble confidence
interval. Assuming knowledge in the form of equetion (6.), Phillips
proposed that besides the constraint on smoothness, one should salso
choose & solution whose residuel was on the same order as e . Thet is,

A
if we define the residual of a solution f(j) as

k
50 =) _n(k-) B -a (7.)
3=0

then Phillips suggested choosing f(j) such that (5.) is satisfied
and the residual has the property:

atb-2

26(1{)2: e . 8.)
k=0




The solution of (4.) in terms of the constraints imposed by
equations (5.) and (6.) wes formulsted by Twomey [4] as follows.

We write equation (4.) as & matrix equation:
d=HTf

The vectors d and f correspond to the sequences d(k) and f(J).
The matrix H is of dimension at+b-l by a . The kjth element of H
is h(k-3), end h(k-j) = O for k-j< O or k-j>b . The constraint

on the residusl in equetion (8.) can then be written as:

(HE-4) = e . (9-)

To include the second-difference operations of the constraint in

equation (5.) we consider the matrix C which is of size a+2 by s,

where:
’.l -~
-2 1
1-2 1
. 1 -2 l
C = . °
. 1 -2 1
1l -2
. 1
L b

and all other elements of C are zero. It is evident thet multiplying

C by a vector f results in another vector which is the second difference
sequence of the~ sequence £(j) represented as a vector f . The right-
hand side of equation (5.) is thus represented by the 5roduc’c

£ er . (10.)



N
The problem at hand is to find a solution vector, f, which
minimizes the quadratic form of (10.), with a residual that setisfies
equeation (9.). Twomey formulated this problem in terms of the

minimization of & criterion function:

#()= (ne-0)"(ue-a) + #(c)" o, (11.)

where 7 is a Lsgrange multiplier [3, 4]. By the usual procedure
of differentiating with respect to f the solution vector f can be
computed as:

£ = (HH + y cTc) 14T g (12.)
The parsmeter y is determined iteratively; once a value of e is
known equation (12.) is solved for different values of y until the
constraint of equetion (8.) is satisfied on the magnitude of the
residual of the solution [3, U4].

Generalizetions of this technique, by using other forms for the
matrix CTC, are contained in the paper by Twomey [4]. We turn now
to the application of the fast Fourier transform to the computetion

of equation (12.).

Fast Fourier Transform Solution

The discrete Fourier transform of a sequence f(j) is defined

as:

F(n) = Zf(;j) e N . (13)

fOI‘n=O, l’ 2; eecoy N-l

The fast Fourier trensform is a well-known technique for rspidly

computing F(n) [6]. The grestest uses of the fast Fourier transform



have been in the rapid computation of convolutions. The discrete

circuler convolution of two sequences is defined as:

N-1
g(®) =) _nk-DEP) (14.)
3=0

where the sequences g(k), h(j), £(J) are all assumed to be pericdic
with period N. It is easily shown {7] thet the discrete Fourier trans-
form of both sides of equation (14.) gives the transform product:

G(n) = H(n)F(n) ,
forn=0,1, 2, ..., N-1 , (15.)

where G(n), H(n) and F(n) are the discrete Fourier transforms of
the sequences g(k), h(3j) and £(j). If we make the additionsal
assumption that the sequences g(k), h(j) end £(j) are reel-valued,
then it can also be shown [7] that the comvolution

N-1

g(k) =) _h(3-0)2(3) (26.)
j=0

for k = 0, l, 2, eoey N"l

)

can be transformed into the products

G(n) = H(n) * F(n) ) (17.)

forn= 0, l’ 2’ ceoy N"l

)

where * denotes complex conjugete.

Circuler convolutions differ from ordinary discrete convolutions,

such as given in equation (3.), by the assumption of periodicity in



the sequences. However, the convolution of sequences which are not
periodic can be computed with circular convolutions of periodic
sequences by suitable extension of the non-periodic sequences with
zeroes and the formation of periodic sequences from the extended
sequences. The technique is well-known and consists of a proper
choice of N and addition of sufficient zeroes to make periodic
sequences of period N[6, 8]. The fast Fourier transform can then

be applied to the circular convolution of the extended sequences which
will be equal to the non-circular convolution of the extended sequences,
in the form of equetion (3.), for k = 0, 1, 2, ..., N-1, Since the
technique is well documented in the literature, we dwell on it no
further. The following results using convolutions are maede with the
assumption of performing non-circular convolutions by proper circular
convolutions.

It is possible to write the matrix equation (12,) in the form:

T T

(HTH +yCC f=HA (18.)

>

We wish to now rewrite equetion (18.) in the classical subscript
form of notation. Since the matrices H and C were derived from

discrete convolutions, the subscript form of the equation is:

atb-2 a-1 a+t-2 a-l
D D o nenn(en) 3 vy DD clpr)ele-)E)
k=0 j=0 p=0 j=0
at+b -2
=Y nGkena® (19.)
k=0

forr=0,1, 2, ..., a-1 .

The sequence c(j) is the convolution operator that computes second
differences, i.e., c(3) ={l, -2, l} end t = 3,



10

In equation (19.) we have double convolutions with the sequences h(3)
and c(j). The swmation on J convolves h(j) and c(3) with the sequence f(J)
end this is followed by another comvolution, but on the index k and
with the results of the previous convolution. We indicate this
double convolution with intermediate sums:

arb=-2 att-2 a+tbh-2

3 n(kral0) + 7 ele-) B(e) = Y nle-rale) ,  (20.)
k=0 =0 k=0

where:
a-1

(k) =Zh<k-a)?(a> ,
3=0"

(e1.)
a-1

B(p) =Z c(p-T() .

3=0

With these convolutions clearly stated we wish to compute them by
the fast Fourier transform. We choose & number N and extend the
sequences with zeroes such that the circular convolutions of the
sequences are equivalent to the non-circuler convolutions over the

period N. Then equations (20.) and (21.) become:

N-1 -1 N-1
D nna® + 7Y crp®E =Y nkna®,  (22)
k=0 p=0 k=0
N-1
a(k) =) n(&-HT()
=0 (23.)
N-1
B(p) =) clp-0)2(3) .
J:O




We now take the discrete Fourier treansform of both sides of equetions
(22.) and (23.). The trensforms of the sequences we denote by capital

letters, as is usual, and have:

H(n) " A(n) + 7 ¢(n)”* B(n) = H(n)” D(n),

H(n) %(n) ’
¢(n) F(n) .

A(n)
B(n)

We perform the indicated substitutions, solve for F(n) and the
result is:

o H(n) * D(n)
) = @R oy S

S D(n) (24.)
H(n) + v C—(%%Q-

o, l’ 2) eoe )y N-lo

for n

The solution %(j) is then computed from the inverse transform:
-l 1_21 Jn
A 1l ~ N
£(3) = § ZF(n) e
n=0

Equation (24.) can be used to solve the problem by iteretions
on y until the constraint of equation (8.) is satisfied. This would
be directly analogous to the technique of Phillips and Twomey. How-
ever, we can use relationships in the frequency domein to solve for
the paresmeter y directly. We recall that the residual constraint of

equation (8.) is given as:

atb-2

:E: ) (k)2 = e
k=0

11



In the case of the extension of sequences by zeroes to develop equations
(22.) end (23.), the residual sequence extends to & total of N points

as well:
N-1
Z 2
6 (k) = e
k=0

By Parseval's theorem the transform of the residual sequence aln),
can be related to 6 (k) [7.]:

N-1 N-1
D awF 3> 1a @i (25.)
k=0 n=0

However, it is evident from the transform of equation (7.) that A(n)

can be computed as:
a(n) = H(n) F(n) - D(n)

We substitute for F(n) from equeation (24.) end after manipulation

have:

a(n) =< TH *-l ) D(n) (26.)
v CnZnS*ggﬁg +1

In equation (26.) D(n) is the only complex quantity, since the products
H(n)* H(n) and C(n)* C(n) are real-valued sequences. Thus we can substitute
into equation (25.) from equation (26.) and have:

N-1
1 D(n) ¥ p(n)

n=0 'y ¢(n)* C(n




In equation (27.) only y is unknown. It cen be computed iterativeiy,
i.e., try a value for vy and then increment y until the left-hand
side of equation (27.) is as close to e a&s desired. Since sll the
computetions are in the transform domein, it is not necessary to
repeatedly solve a problem such as equation (12.) or (25.) in

the process of varying y until the constraint of equation (8.) is

satisfied.

Discussion

The chief advantages of the transform method for solving the
convolution-type integral equetion are reduced computing time and
reduced computer storage. The computing time for the matrix inversions
of the Phillips and Twomey method is nominally proportionel to NB,
whereas the transforms can be performed in time proportional to N log2 N.
In addition, the storage required for the matrices of the Phillips and
Twomey method is N2. The transforms require only the storage of N
points if the so-called "in-place" version of the fast Fourier
transform is used. The disparity in computing time requirements was
demonstrated by test exsmples comparing the Phillips and Twomey
method with the trensform method. Using 10 to 20 points in the sequences
g(k) and h(Jj), the Phillips and Twomey method resulted in elapsed
computing time on the same order of magnitude as the time required for
the transform method using sequences of 500 to 1000 points. Both
examples were coded in FPRTRAN IV for the CDC 6600 at the Los Alamos
Scientific Laboratory, end off-the-shelf routines for matrix inversion
and the fast Fourier transform were used. Actuel computing times were
a8 function of the initiel guess for y and the number of iterations

consequently required.

The major disadvantage to the transform method is a2 loss in generality
from the Phillips and Twomey method. First, the Phillips and Twomey
method ellows the constraint on the solution to be quite general.

The epplicetion of discrete Fourier transforms, as shown herein, requires
that the constraint be formulated as a convolution operation, so that

13
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the transformation of certein of the matrix products can be performed.
Convolution-type constreints are only 2 smell subclass of constraints

in the Phillips and Twomey method, which is general enough to allow

the constraint to be different over different parts of the solution.

In such a case the matrix product CTC in equation (10.) can be repleced
by a general constraint matrix, say V, which embodies the desired
constraeint. Second, the transform method is appliceble only to Volterra

type integral equetions, i.e,, those in which the upper 1limit of

integration in equation (1.) is a verieble and not fixed as a constant.

If both upper end lower limits of the integration are fixed, the
Phillips and Twomey method is still appliceble but the transform method
is not, except for the special case where the interval between the
fixed endpoints extends sufficiently beyond the nonzero extent of the

functions in the equetion.

The transform technique appears to be of greatest utility in dealing
with date generated by real-world measurements of actual data. Digitael
technology has made common the collection of hundreds or thousands of
experimental date points in sampled-data form. If the data must be
used in the solution of a convolution-type integral equation, the
Phillips and Twomey method is not eesily applied to such masses of
data, given the storage requirements and computing time. The transform
method is not so burdened, however, and is a natural method for the
solution of convolution-type integral equations involving the large
quantities of data often generated in experimental measurements.
Investigation is currently underwesy at Los Alemos Scientific Leboratory
in applying the technique to deconvolve optical spectroscopy dats,
solar spectra observations and x-rey images.

Several extensions of the transform method are immediately obvious.
First, in the formulation of equation (3.) the interval st = 1 was
chosen to simplify the notation. Any other integration interval is
easily included in the development herein by multiplying the sequence
h(3) by the actuel value of jt prior to performing the indicated
transforms,




A second extension of the transform method of solution can be
seen by examination of equation (24.). The term C(n)*C(n) is the
transform of the sequence c(p) which performs second-differencing of
the solution £(j). Since c(p) ={1, -2, 1} , it 1s evident that C(n)
will predominantly contain high frequencies. Thus, the term C(n)* C¢(n)
in equation (2k.) is actually a digital filter which acts upon the
data in such & way as to produce & solution which is smoothest in
the sense of minimum second differences. We note also that C{n)*C(n)
is & zero-phase filter, i.e., the transfer function is resal, since
the product C(n)*C(n) is alweys real. Interpreting the term C(n)*C(n)

as the trensfer function of a digital filter leads to the generalizetion

of replacing the second difference filter by an arbitrary transfer
function, say W(n). Equation (24,) then becomes:

F(n) = D(n) (28.)
n H(n) + 7W }1’;: Win

The desirgbility of being able to replace the second-difference
filter by an srbitrary filter is seen when data generated by real-
world measurements is considered. For exsmple, suppose the deta
on hand had been corrupted by noise that was concentrated in e
narrow bandwidth of the frequency spectrum., It would not be
necessary to filter this band of the spectrum prior to solving the
associated convolution-type integral equetion. The filtering and
solution could be obtained simultaneously. It is also possible

to perform two kinds of filtering simulteneously. For exemple,
arbitrary filtering and second-difference filtering could be achieved
by:

F = D(n) e . 29.
(n) H(n) + ¥ W(ID*H"E%)_; T+ C(n) X C(n) (29.)

We note that since W(n) appears in the denominator of (28.) snd (29.)
filter design must deel with reciprocals, i.e., a low-pass filtering
of the solution F(n) is achieved with a high-pass design for W(n),

a band-stop filtering corresponds to a band-pess design for W(n), etc.

15



A third extension is suggested by Twomey. If one knows a-priori
that the solution should assume a perticuler shape, then the method
of Phillips and Twomey assumes the form:

s

- @H+ DT ey (30.)

1’

where I is the identity matrix snd u is the vector that represents
the a-priori shape of the solution [4.]. It is easy to show that
the frequency domain equivelent of this solution is:

H(n)* D(n) + y U (n)
H(n)* H(n) + 7 :

¥(n) = (31.)

A finel extension is to let the sequence h(j) be an impulse, h{0)= 1,
h(j) = 0, j# O. Then the solution of equation (24.) taekes the form:

o D(n
P - oS - (32.)

This form of solution corresponds to filtering the data in such a
way @8 to give a solution which is smoothest in the sense of second
differences and satisfies the constraint of equation (8.).

It is instructive to consider the form of equation (24.) for the
special case when y = O. We see that this corresponds to the simple
solution of equation (3.) by transforming the sequences and dividing
them. Such is the method for solving convolution-type integral equations
suggested in a paper by Cooley, Lewis and Welch [8]. This method,
however, is often too simple, since it lacks the second-difference
filtering of the method of Phillips and Twomey which elimates wildly
oscillating solutions. For example, in the mejority of real-world
systems, the impulse response function is essentially a low-
pass filter and the higher frequencies in the input signel are severely



attenuated., Attempting to deconvolve the input signel by simply
dividing the imput transform by the system response transform results
in boosting the high frequencies of the imput by a large amount.
Unfortunetely, most of the noise in the input signal is usuelly loceted
in the high-frequencies. The deconvolved output is usually en un-
stable oscillating function by virtue of the amplification of the
noise thet results. The suthor's experience has generally been that
the solutions one obtains in applying the straight-forward division
of transforms, as suggested by Cooley, Lewis and Welch, are too

noisy to be of any utility. Consequently, the transform method
developed herein offers the speed end storage edvanteges of the fast
Fourier transform and also retsins the properties of smooth, well-
behaved solutions of the Phillips and Twomey method, In this sense,
the transform method of this document is an improved technique over
the simpler solution of dividing transforms ss advocasted by Cooley,
Lewis, Welch [8].

Examples
Figure 1 shows a sequence generated from the expression

£(3) = exp (-(3289%)

for j=0, 1, ..., 1023.

This sequence was then convolved with a squere pulse defined as:

0 i ly
h(j)={lfor <3 <249
0 for 250 < j < 1023

The result of the convolution wes then added tc & random noise sequence

generated by random semplings of a uniform distribution on the interval

(-.05, .05). Figure 2 shows the result. The effect of noise contemination

17
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is so small as to be undetectable by uneided eye inspection of Figure 2,
Yet it is more than sufficient to ruin the solution using a conventional
division of transforms, as suggested by Cooley, Lewis and Welch [8].

Figure 3 shows the solution of equation (24.) with y = O. The
noise added to the to the convolution dominates the solution. Figure b
shows the solution obtained by applying equaetion (24.) and letting
v be iterated so as to satisfy the constraint of equation (8.). The
superior quality of Figure 4 is evident. Tsble I is a partial
tebulation of the originel function and the solution.

As a second example, a sum of two functions was used to generate

8 sequence:

o2 2
£ = exp (_(3_-17;_;00) ) + exp (-(j'—sgp-)

for §=0, 1, 2, ..., 1023

This sequence was then convolved with the pulse sequence hj defined
in the previous example. The sequence f, is shown in Figure 5

end the resulting convolution is shown in Figure 6. The two separate
pesks have been smeared into one, Noise wes then added by random
samples from a uniform distribution on the intervel (-5, 5). The
result is shown in Figure 7. Solution of the convolution for f with

7 = 0 is shown in Figure 8. The noise completely obliterates ;;aning-
ful details. Allowing the program to iterate the parameter y until
equation (8.) is setisfied produced the result shown in Figure 9.
Table 2 tabulates the originel sequence and the solution. The greater
noise content in the data does not give the better restoration shown
in the previous example. But the shape and megnitude of the two peaks
is adequately restored. The restoration of separate details, smeared
together in a convolution, is of practical utility in meny problems

in optics, spectroscopy, etc.
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Table 1
3 £ ?j
50 . 00000 -.00001
100 . 00000 .00011
150 . 00000 .00037
200 .00012 -.00017
250 . 00193 -.00119
300 .01832 .01858
350 .1o540 .10546
Loo . 36788 . 36793
k50 . 77880 . 77855
500 1, 00000 .999%9
550 . 77880 .77892
600 . 36788 . 36822
650 ~ T .105k0 .10565
700 .01832 .01809
750 .00133 . 00133
800 .00012 . 00017
850 . 00000 . 00050
300 . 00000 . 00028
950 . 00000 -. 0002k
1000 © 7 .00000 -.00073

50
100
150
200
250
300
350
koo
k50
500
550
600
650
700
750
800
850
900
950
1000

Table 2

. 00000
. 00001
.00082
.01832
.16901
64120
1.00082
.65950
. 33803
.65950
1.00082
64120
.16901
.01832
.00082
. 00001
. 00000
.00000
. 00000

.
C_J..’>

. 01020
,0221¢

-.21716

!

. 00639
.02299
.21030
.C1g2
. 95584
.65882
. 3623€
68809
.98263
62975
.15314
.02913
.02862

.01025

. 02501
.0L748
.01035

2
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