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DIFFERENTIAL EQUATIONS INVARIANT UNDER TWO-PARAMETER LIE GROUPS

WITH APPLICATIONS TO NONLINEAR DIFFUSION

Roy Arthur Axford

ABSTRACT

This report considers two general problems, viz., (1) the determination of the
general forms of second-order, linear and nonlinear, ordinary differential
equations that are invariant under two-parameter Lie groups, and (2) the ex-
prloitation of invariance properties to solve nonlinear differential equations

that arise in diffusion phenomena.

1. INTRODUCTION

The application of the theory of continuous
groups of transformations to the solution of ordi-
nary differential equations, partial differential
equations, and systems of ordinary and partial dif-
ferential equations provides a unified approach in
the task of obtaining explicit solutions. The
theory of continuous groups is developed by Liel
and Eisenhart.2 The application of the theory of
continuous groups to the solution of differential

5

equations is given by Lie,3 Cohen,h Dickson,” and
Engel and Faber. A discussion of the use of in-
finitesimal transformations in the determination of
the Riemann function of second-order, hyperbolic
differential operators has been given by Daggit.7

The second section of this report shows how
the general form of second-order, ordinary differ-
ential equations invariant under two-parameter Lie
groups in canonical form may be obtained from a
knowledge of the invariants and the first and the
second differential invariants of these groups.

The third section contains proofs of the in-
variance of the general forms of 16 second-order,
orindary differential equgtions under 16 two-
parameter Lie groups not in canonicel form. In each
case the type of two~parameter group is identified
because this fact is necessary for the reduction of

a differential equation invariant under a two-

parameter group to its canonical form, which is
more easily integrated.

The fourth section contains detailed, exact
solutions of nonlinear differential equetions that
arise in diffusion phenomena. These solutions are
obtained by exploiting the fact that the nonlinear
diffusion equations are invariant under continuous
groups of point transformations. Although the fact
of this invariance was arrived at indirectly, rigor-
ous proofs of the invariance properties are given.
Particular emphasis is given to establishing condi-
tions that must be satisfied for the existence of
solutions of the nonlinear diffusion equations as
well as to obtaining their explicit solutions.

2. DIFFERENTIAL EQUATIONS THAT ARE INVARIANT UNDER
TWO-PARAMETER LIE GROUPS IN CANONICAL FORM

2.1 Canonical Forms of Two-Paremeter Lie Groups

Let
- af af
Ulf = El(x,Y) ‘é—; + nl(x,}') -3?’ (2"1)
and
- af ar
Upf = Ep(xay) 3 + ny(xy) 5o (2-2)

be the symbols of the infinitesimal transformetions
of two one-parameter, continuous groups of point
transformations in two variables. Then, in accord-

1,3 these trans-

ance with Lie's principal theorem,
formations may be regarded as the basis transforma-

tions that generate a two-parameter group of point



transformations provided that the commutator of U1

and U2, viz,,

(Ulua)r 2 U (Uyf) - Uy (U, 1) (2-3a)
= [U(5,) - Uy(5))] %
+ [U (n ) -U (ﬂl)] a ot X1 (2'3b)
asgsumes the form,
(U U)E = e U F + e UL, (2-1)

171 272
in which ey end e, are constants.
Two-parameter Lie groups may be classified in-
to four basic types3 in accordance with the value
assumed by the commutator of the basis transforma-
tions and whether or not one of the basis trans-
formations may be obtained from the other by multi-

plying through by an arbitrary function of x and y.

That is, the four fundamental types of two-parameter

Lie groups satisfy one of the four following sets
of relations.
(1) For the first type,

u,)f = o, {2-5)
and
¢, (x,y)U £ + o, (x,y)UE # 0. (2-6)
(2) For the second type,
uy)r =0, (2-7)
and
¢; (x,3)U £ + d,(x,¥)U L = 0. (2-8)
(3) For the third type,
(ulue)r =Uf, (2-9)
and
¢, (x,5)U.£ + ¢, (x,7)U L £ O. (2-10)
(4) For the fourth type,
(U uy)r = U r, i (2-11)
and
¢l(x,y)Ulf + ¢2(X,Y)U2f = 0. (2-12)

In the first and second types, e = 0 and e2 = 0,
whereas el = 1 and e, = 0 in the third and fourth

types. In the second end fourth types, U2f may be
obtained from Ulf upon multiplying through by
(x.9) ¢, (x,y) (2
plx,y) = - W, -13)
put u2r may not be obtained from~Ulf in the.first.

and third types by multiplying Ulf through by an
arbitrary function of x and y.

If the functions El(x,y), €x(x5y), nl(x,y),
and n2(x,y), which appear in the symbols of the in-

finitesimel transformations of Eqs. (2-1) and (2-2),
take on certain elementary forms, then the corres-
ponding two-parameter Lie groups are said to be
canonical form. There is & canonicel form for each
of the four basic types of two-parameter Lie groups,
and these four cases will now be discussed.

Ir g (x,y) =
ny{x,y) = 1, then

1, "l(st) = 0, 52(X,y) = 0, and

ar
and
af
U = 5y (2-15)

are the basis transformetions of the canonical form

of & two-parameter Lie group of the first type, be-

. cause Egs. (2-5) and (2-6) are satisfied, as may be

verified by evaluating the commutator of the symbols
of Eqs. (2-1k) and (2-15).

I £, (x,¥) = 0, n,(x,¥y) = 1, £,(x,y) = 0, and
n2(x’y) = x, then the symbols
af

ur = 3y (2-16)
and
af
U f = x 3y (2-17)

represent the basis transformations of & two-param-
eter Lie group of the second type in canonical form.
If El(x,y) = 0, nl(x,y? =], Ez(x,y) = x, and
n2(x,y) = y, then the basis transformations of a
two-parameter Lie group of the third type in canon-

ical form are conteined in the symbols

af
Ulf = 3; (2—18)
and
af it
U2f =x ooty 3y 3y (2-19)

In a two-parameter Lie group of the fourth
type, El(x,y) =0, nl(x,y) =1, Ea(x,y) = 0, and
n2(x,y) =y, and the symbols of the basis trans-

formations of the canonical form are

af
Ut =3y (2-20)
and .
=y oL
Ut =y o ¥ (2-e1)

We turn now to.the derivation of the invariants
and the first and gécond differential invariants of
the four fundamental types of two-parameter Lie '
groups in canonical form.

2.2 Invariants and Differential Invarieants of Tvé—
Parameter Lie Groups in’'Canonical Form

In this section the invariants and the first



and second differential invariants will be derived
for each of the basis transformations of the four
basic types of two-parameter Lie groups written in
canonical form. Upon comparison of the invariants
and the first and second differential invarients of
each of the basis transformations of a given two-
parameter group in canonical form, we can write the
general form of a second~order, ordinary differen-
tial equation thet is invariant under the canonical
The four

general forms of second-order, ordinary differen-

form of the given two-parameter group.

tial equations admitted by the four canonical forms
of two-parameter Lie groups will be given in the
next section after the inveriants and the first and
second differential invariants have been obtained.

Let
Mo o af af ' 1y3f
Uif Ei(x’y)ax + ﬂi(x,Y)ay + ni(anay )ayl

+ ny(ysy " e (2-22)
wherein i = 1,2, be the symbols of the twice-extended
one-parameter groups of point transformations
generated by the infinitesimel transformations
represented by the symbols of Egqs. (2-1) and (2-2).

In Eq. (2-22),

dn, ac,
ni(x,y,Y') = a;—{x)y) -y’ E;—(xay)a

(i =1,2),

(2-23)

and
dn! dg,
nf(x,y,yt ") = Hxyyt) -yt gMxy), (2-24)
(i =1,2).
Then the invariants and the first and second dif-
ferential invariants of the one-parameter groups
generated by Uif for i = 1,2 mey be found by solving
the first-order, linear, partial differential equa-
tions obtained by equating the symbols of the
corresponding twice-extended groups to zero, i.e.,
by solving
uir =0, (i=1,2). (2-25)
The systems of ordinary differential equations that
are equivalent to Eq. (2-25) are
dx _ _dy - dy' _ dy"
£, 06y) 0 Gey) T oniGeyayth T oni(x,y,y Ty
(2-26)
An arbitrary function of three linearly independent

solutions of Eq. (2-26) will be the general solu-
tion of Eq. (2-25), and such & function may be

interpreted as & second-order, ordinary differential

equation admitted by the one-parameter group gen-
erated by the infinitesimel transformations with
the symbol, Uir. These three linearly independent
solutions provide, in fact, an invariant, the first
differential invariant, and the second differential
inveriant of the continuous group with the symbol,
Uif.

Now consider the first type of two-parameter
Lie group in canonical form with the symbols of
Egs. (2-1%) and (2-15). The symbols of the twice-
extended basis transformations of this group are

found to be

ure = %%, (2-27)
and
use = g_§ (2-28)

with Eqs. (2-22) through (2-24). The system of

ordinary differential equations that corresponds to

U;f = 0 is

dx _ dy _dy' _ dy" _

1 0 0 0’ (2-29)
and three linearly independent solutioms of this
set are

u (x,y) =y, (2-30)
ui(x)Ysy') = Y', (2‘31)

and
ug(x,y,y',y") = y". (2-32)

In these last three equations, ul(x,y) is an in-
variant, ui(x,y,Y') is a first differential invari-
ent, and u;(x,y,y',y") is a second differential in-
variant, all of the one-parameter group of point
transformations whose infinitesimal transformation
has the symbol of Eq. (2-1L). The general form of
a second-order, ordinary differential equation
admitted by the one-parameter group of point trans-
formations with the symbol of Eq. (2-1k) is

£ly,y'.y") = o. (2-33)
However, this differential equation is not invari-
ant under the two-parameter group of point trans-
formations generated by the two infinitesimal
transformations with the symbols of Egs. (2-14) and
(2-15).

The invariants of the second one-parameter
group in the two-parameter group defined by Egs.
(2-1%) and (2~15) are obtained by equating the
right-hand side of Eq. (2-28) to zero, i.e., Ut =

0, and solving the corresponding system,

VA AN

o "1 ) (2-34)



This produces

uy{x,y) = x, (2-35)
wx,y,y') =y', - (2-36)

and
w(x,y,yty") = y" a (2-37)

as an invariant, a first differential invariant,
and & second differential invariant, respectively,
of the one-parameter group of point transformetions
generated by the infinitesimal transformation with
the symbol of Eq. (2-15). The general form of the
second-order, ordinary differentisl equation ad-
mitted by this one-parameter group is

£lx,y',y") = 0. (2-38)
However, again, the differential equation of Eq.
(2-38) is not invariant under the two-paremeter Lie
group defined by the symbols of Egs. (2-1k) and
(2-15). The general form of & second-order, ordinary
differential equation admitted by the first type of
& two-parameter Lie group in canonical form as de-
fined by the symbols of Egqs. (2-1L4) and (2-15) will
be given in the next section together with those ad-
mitted by the canonical forms of the remaining three
types of two-parameter Lie groups.

The symbols of the twice-extended groups of
point transformations of the basis transformations
for the two-parameter Lie group of the second type
in canonical form defined by Eqs. (2-16) and (2-1T)

are
" ﬁ .
Uit = 5 (2-39)
and
" of  of _
U2f = x 3y + il (2-k0)

The invariant and the first and second differential
invariants that correspond to Eq. (2-39) are pre-
cisely those given in Eqs. (2-35) through (2-37).
The system of ordinary differential equations that
is equivelent to the partiel differential equation,
Ugt = 0, from Eq. (2-40) is

' 4 "
R a0
Accordingly, from the first and second members of
(2-41),
u2(x,y) = x (2-b42)

is an invariant, from the second and third members,
uh(x,y,y') =y' - % (2-143)

is a first differential invarient, and from the
second and fourth members,
uplx,y,y') = y" (2-hk)

is a second differential invariant of the one-param-
eter group of point trensformations whose infinites-
imal transformation has the symbol of Eq. (2«17).

In the case of the third type of two-perameter
Lie group in canonicel form, the two one-parameter
groups of basis transformations contained in Egs.
(2-18) and (2-19) have twice-extended groups that
are generated by the symbols

ujr = g—f;, (2-45)
and
we o o Of af _ w3t _
Upf = x 5o+ ¥ 5= ¥ 3y (2-46)

respectively. The invariant and first and second
differential invariants obtained from Eq. (2-45)
have been given in Egs, (2-35) through (2-37). The
first-order, linear partial differential equation
written from Eq. (2-46) has the following corre-
sponding set of four first-order, ordinary differ-
ential equations

N A VAR _XF (2-47)
x y o]
The first two members of this set, viz.,
&L (2-18)
x ¥y

integrate out to yield
up(x,y) = & (2-k9)

as an invariant of the one-parameter group of point
transformations whose infinitesimal transformation
symbol is thet of Eq. (2-19). The first and third
members of Eq. (2-47) produce the first differen-
tial invariant,
up(x,y,y') =y, (2-50)
of the same group. A second differential invariant
of this group comes out of tﬁe first and fourth
members of Eq. (2-4T) in the form
up(x,y,y'.y") = xy". (2-51)
The symbols of the twice-extended groups of
point transformations of the two basis transforma-
tions of the fourth type of two-parameter Lie group
in canonical form as given in Eqs. (2-20) and (2-21)

are

upr = 35, (2-52)
and
u"e af - af + " af .

Again the invariant and the first and second dif-
ferential invariants that arise from Eq. (2-52) are
those of Eqs. (2-35) through (2-37). The first-



order, partial differential equation, Ulf = 0, canonical forms. The general form of a second-order,

2
from Eq. (2-53) is equivalent to the set, ordinary differentiel equation that is invarient
dx _ dy _ dy' = Exi (2~5Y4) under the group of one-parameter point transforma-
0 y yl y' k]

tions generated by the first basis transformetion

of ordinary differential equations. From the first of a two-parameter Lie group of the first type in

and second members of this set, we obtgain the in- canonical form has been given in Eq. (2-33), and

variant, that invariant under the group of the second basis

u,(x,y) = x, (2-55)
from the second and third members, the first dif-

transformation of this same two-parameter group, in

Eq. (2-38). The corresponding results for the basis
ferential invariant, transformations of the two-parameter Lie groups of

1]
uy(x,y,y') = %“, (2-56} the second, third, and fourth types in canonical
and from the second and fourth members, the second form are as follows.
differential inveariant, () For the second type,
af
" U.f = <& 2-58
u'é(X,y,Y',Y") = yL’ (2‘57) 1 3y ( ? )
all of the one-parameter group of point transforma- admits
. 1 n = -
tions with the infinitesimal transformation symbol flx,y'y") = 0, (2-59)
given in Eq. (2-21), and
ur=xdL (2-60)
The principal results of this section have 2 3y
been summarized in Table I. In this table the in~ admits
variants, first differential invariants, and second f(x,y'—%,y") = 0. (2-61)
differential invariants are listed for each of the af
two basis transformations of the four fundamental (b) For the third type, Ulf = sy-admits Eq. (2-59),

types of two-parameter Lie groups written in their Whereas

Table I. INVARIANTS AND DIFFERENTIAL INVARIANTS OF THE POINT TRANSFORMATIONS OF THE
FOUR BASIC TYPES OF TWO-PARAMETER LIE GROUPS IN CANONICAL FORM

First Second

Basic Types of Two- Differential Differential
Parameter Lie Groups Invariant Invariant Invariant
First Type

ur =% uloy) =y | ulxyy') =y uf (x,3,y"5¥") = y"

u - if. ( = 1 t = ' " ] " "

of =% uy(x,y) = x ui(x,y.y') =y up(x,y,y'y") =y
Second Type

of

ur=%y u (x,y) = x ui(x,y,y') = y' uy(x,y,y'y") = y"

U2f =X % uz(xsy) =X ué(x,y’y') =y' - % u;(x,y,y',y") = y"
Third Type

of
ur =5 u, (x,y) = x ui(x,y,y') =y uy (x,y,y',y") = y"
af af l L 1 - * " 1] " "

Upf = x %y 5 | vplxy) = % us(x,y,y') =¥ up(x,y,y' ") = xy
Fourth Type

Uf=£ u(x )=x uv(x v)= t u( ' n)_ 1"

1 v AKX 1A XSY5Y y XY oY HY =Y

a\ . ] "
Ut =y uy(x,y) = x uilx,y,y') = lyL' wi(x,y,y'sy") = yL




af af

U2f 'xa—x+ya—y- (2—62)
edmits
f(¥$y' ,X.V") = 0, (2-63)
(c¢) For the fourth type, U f = g—i— admits Eq. (2-59),
and
L] At}
£lx, -0 = o (2-64)
is invariant under
of
Uzr = y a_'y‘° (2-65)

The fact being considered here is that the
general form of the second-order, ordinary differ-
ential equation that is invariant under each of
the one-parameter groups of point transformations
generated by each of the basis transformations of
one of the four fundamental types of two-parameter
Lie groups written in canonical form may be obtained
quite directly, as has been done above, as an
arbitrary function of an invariant, a first differ-
ential invariant, and a second differential in-
variant of the corresponding one-parameter group.
However, the general forms of the second-order dif-
ferential equations so obtained are not invariant
under the two-pearameter groups of point trans-
formations. The genersl forms of second-order,
ordinary differential equations, which may be
either linear or nonlinear, and that are invariant
under one of the four fundamental two-parameter Lie
groups in canonical form, may be obtained by in-
spection of the invariants and the first and second
differential inveriants listed in Table 1I.

2.3 General Forms of Second-Order, Ordinary Dif-

ferentiel Equations That Are Invariant under
the Four Canonical Forms of Two-Parameter Lie

Groups
Although the four general forms of second-

order, ordinary differential equetions thet are in-
variant under the four fundamental types of two-
parameter Lie groups in canonical form may be ob-
tained by inspection, the actual proof of this in-
variance will be made on the basis of the invariance
of the first-order, linear partiel differential
equation, which is equivalent to the second-order,
ordinary differential equation. If a second-order,
ordinary differential equation is written in the
form

¥y = Flx,¥,¥'), {2-66)
in which the right-hand side is to be regarded as
an arbitrary function of the indicated arguments,

then this equation is equivalent to the linear,
first-order partial differential equation,

A.fEa—f-i»y'if—

™ 5¥ (2-67)

This fact may be established
directly by writing Eq. (2-66) es a2 set of two

+ F(x,y,y')-g% = 0,

in three variables.

first-order, ordinery differential equations and
noting that Eq. (2-67) is equivalent to this set.
The general solution of Eq. (2-67) is an arbitrary
function of two linearly independent solutions of
the equivalent set of two first-order differential
equations. Each of these two linearly independent
solutions will, in general, be a function of the
three variables, x,y,y', and, if the derivative,
y', is eliminated between them, then the general
solution of Eq. (2-66) is obtained.

Supposé that Eq. (2-66) admits = one-parameter
group of point transformations in two variables

whose infinitesimal transformation has the symbol

Ur = £(x,y) 'g—f: + n(x,y) %f; (2-68)

Then the equivalent partial differential equation
contained in Eq. (2-67) will be invariant under the
once-extended group of point transformations gen-

erated by the symbol

af af
e = —_— o—
u'e E(Xa}') X + n(st) 3y

+ | Sxay) - y'§Rx)| B (2-69)
To determine whether or not Eq. (2-67) admits a
given one~parameter group, use3
fact thet the commutator between the differential
operator, A end U', assumes the form

(ura)r = A(x,y,y' )AL, (2-70)
wherein A(x,y,y') is an arbitrary function of its
Furthermore, 1if
the partial differential equation of Eq. (2-67) is

invariant under e one-parameter group of point

may be made of the

arguments, when Af = 0 admits Uf.

trangformations, the second-order, ordinary differ-
ential equation of Eq. (2-66), to which it is
equivalent, is also invariant under this same group.
Also, if a first-order, linear partial differential
equation and its corresponding second-order,
ordinary differential equation are going to be in-
variant uhder a two-parameter Lie group, then Eq.
(2-70) must be satisfied when used with the once-
extended symbols of both of the basis transforma-
tions of this group. The prece&ing facts will be

used to establish the invariance of second-order,
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ordinary differential equations under two-parameter
Lie groups.

Now consider the invariant and the first and
second differential invariants of the basis trans-
formations of the canonical form of a two-parameter
Lie group of the first type as given in Table I.

By inspection it mey be asserted that

y"' = F(y') (2-71)
is the general form of a second-order, ordinary
differential equation admitted by the first type of
two-parameter Lie group in canonical form. To
prove this assertion, we may first note that

af . _,af , _
I + y'= 3 + Fy )——— 0, (2-712)

Af =
in which F(y') is an arbitrary function of the
derivative, is the linear, first-order partial dif-
ferentiel equation equivalent to Eq. (2-71). The
symbols of the once-extended groups generated by
the basis transformations of the canonical form of
the first type of two-parameter Lie group ere

af

U f =35 (2-73)
and
- of _
uir = e (2-T4)

With the operators appearing in Eqs. (2-72) and
(2-73) we have

(uja)f = (2-75)
and with those of Eqs- (2—72) and (2-Th),
(uga)e = 0. (2-76)

These last two relations complete the proof that

(2-71) is the general form of a second~order,
ordinary differential equation that is invariant
under the canonical form of the first type of two-
paraneter Lie group in two variables.

For the second type of two-parameter Lie group
in canonical form

y" = F(x), (2-17)

in which F(x) is an arbitrary function of its argu-
ment, is the general form of the second-order,
ordinary differential equation admitted by this
group. The corresponding first-order partial dif-
ferential equation is

= 3L _,3f =
ar = 35+ 3l v RS = o, (2-78)

and the symbols of the once-extended basis trans-
formation groups are

3f
Uif = W’ (2-79)

and

af . of
1] - &> ——
Uef “ay y'”’

Because the commutetors formed from Egs. (2-78)
through (2-80) are
(UiA)f = 0, (2-81)

(2-80)

and

(upp)f = o, (2-82)
the invariance of Eq. (2-77) under the canonical
form of the second type of two-parameter Lie group
is esteblished.

By inspection from Table I, the general form
of a second-order, ordinary differential equation
admitted by the third type of two-parameter Lie
group in canonical form is

xy" =F(y'), (2-83)
which is equivalent to the first-order partial dif-

ferential equation

Ar = 28 4y F_(LLL%_,= 0. (2-8Y4)

ax By x
The symbols of the groups of the once-extended basis

transformations are

Uit = %§, (2-85)
and
Ut = gf yg§ (2-86)
From Eqs. (2-84) and (2-85),
(uja)f = o, (2-87)
and from Eqs. (2-84) and (2-86),
(UéA)f =0, (2-88)

which proves the invariance of Eq. (2-83) under the
third type of two-parameter Lie group in canonical
form.

The canonical form of the fourth type of two-
parameter Lie group admits

y"' = Flx)y*. {2-89)

The corresponding first-order partial differential
equation is

S S+ SRS JOY * S
Af = e T Y 3y + F(x)ay, 0, (2-90)

and the symbols of the once-extended groups of the
two basis transformations for this case are
f

Al - — o
Uit = 3y (2-91)
and
ar Of
U2f yaJ y' P (2-92)

The values of the commutators developed out of Egs.
(2-90) through (2-92) are

(uja)r = o, (2-93)
and



(UéA)f =0, (2-94)
which completes the proof that Eq. (2-89) is in-
variant under the canonical form of the fourth type
of two-parameter Lie group.

The principel results of this section have
been summarized in Table II. The general forms of
the four second-order, ordinary differential equa-
tions that are admitted by the canonical forms of
the four fundamental types of two-parameter Lie
groups of point transformations are seen to be
relatively simple and easy to integrate. Conse-
quently, the quadrature question for these four
forms need not be discussed further here.

Table II. GENERAL FORMS OF SECOND-ORDER, ORDINARY
DIFFERENTIAL EQUATIONS THAT ARE INVARI-

ANT UNDER THE FOUR CANONICAL FORMS OF
TWO-PARAMETER LIE GROUPS

Second-Order, Ordinary
Differential Equation
Invariant under the Group

Type of Two-Parameter
Lie Group

First Type

ar
Upf = ax

ar
Ut - 3y

y" = F(y')

Second Type
Ulf ‘g—f
Y yu = F(x)

af
U2f = X 3

Third Type
of
U f = 3
af af
U2f = X 3% +y 3y

xy" = F(y')

Fourth Type
af

Ulf = 3y

af

u2r =y Ay

y" - y'F(x)

We now turn to the determination of classes of
second-order, ordinary differential equations that
are admitted by given two-parameter Lie groups that
are not, however, in canonical form as was the case
in Sec. 2.3.

3. SECOND-ORDER DIFFERENTIAL EQUATIONS INVARIANT
UNDER TWO-PARAMETER LIE GROUPS NOT IN CANONICAL
FORM

. by atio Thet Are

Admitted by Two-Parameter Lie Groups of the
First Type

Consider the pair of two one-parametfer groups

of point transformations whose infinitesimal trans-

formations are represented by the symbols

of
Ut =5 (3-1)
and
of
Ut = x (3-2)

This pair comprises, in fact, a set of basis trans-
formations for a two-parameter group of point trans-
formations of the first type because the commutator
obtained from Eqs. (3-1) and (3-2) is

(u,u,)f =0, (3-3)
and, also, because
U2f ¥ p(x,y)Ulf. (3-k)
The second-order, ordinary differential equa-
tion
Sy = Fly'), (3-5)

in which F is an arbitrary function of the indicated
argument, xy', is invariant under the two-parameter
Lie group whose basis transformations are represented
by the symbols of Eqs. (3-1) and (3-2). This fact
may bé established in the following manner.

The first-order, linear partial differential
equation that corresponds to Eq. (3-5) is

_ar, Bt Flg') af §
Af = o+ y 2y * 2 oy 0. (3-6)

The symbols of the once-extended groups of basis
trensformations found from Eqs. (3-1) and (3-2) are

ujr = 25, (3-7)
and
3 of
Uéf =X - y's;T. (3-8)
From Egs. (3-6) and (3-7), we obtain the commutator
(ujA)f = o, (3-9)
and from Egs. (3-6) and (3-8), the commutator
(upn)r = UL(Af) - A(USE), {3-102)
af \af
= [u(1) - A|3E + uyty3S
Flxy')’ ar_
+{Ué[ 2 + A(y") 3y {3-10b)
3 . 1
-..sé__y|%§r+.{xkgy(xyw + iEF%xyvﬂ
' . Flxy'))ar
—yx—F'(xy') + 2 }ay—' (3-10c)
L3 af Flxy') af
~ ax ytay' - x2 y'” (3-102)
Therefore,
(UéA)f = — Af, (3-11)

L]




and Eqs. (3-9) and (3-11) establish the invariance
of Eq. (3-6) and, hence, that of Eq. (3-5) under the
two~parameter Lie group of the first type with the
basis transformations with the symbols of Egs. {3-1)
and (3-2).

The second-order differential equation,

y' = yF %L s (3-12)
wherein F(y'/y) is an arbitrary function of its
argument, is admitted by the two-parameter group
with the symbols,

af

Ulf = a—x) (3"13)
and
TS
U2f =y T (3-14)

The basis transformations of Egs. (3-13) and (3-1L4)
define a two-parameter group of the first type be-
cause they satisfy Eqs. (3-3) and (3-4). The first-

order partial differential equation equivalent to

(3-12) is
_ar, 3 rh\ar
ar = g e vy + F(§)ggT - o (3-15)

and the once-~extended groupsAof basis transforma-
tions for this case are represented by the symbols,

1p o= oL
Uit = 35 (3-16)

and

af 1of
U2f yay y' ay"

With Eqs. {3-15) through (3-17) the commutators

work out to be

(3~-17)

(uja)f = o, (3-18)

and

(upp)r = o, (3-19)
so that Eqs. (3-12) and (3-15) are invariant under
the two-parameter group with the basis transforma-
tions of Egs. (3-13) and (3-1k).

We next consider the two~parameter group with

the basis transformations,

_ .af
U b4 xs; (3-20)
and
_ .8f . of
Uyt = 37 + ys;. (3-21)

These last two relations satisfy Eqs. (3-3) and
(3-4) and, thereby, comprise a two-parameter group
of the first type. The second-order differential
equation admitted by this group is

xy" = F(y' - L), (3-22)

in which F is an arbitrary function of the indicated

argument. This follows from the facts that

8f 10f

(3-23)

(3-24)

Af = oo+ y'5 55 ¢ F(y - i)
is the equivalent partial differential equation,
that
ulr = xg§ + %5—
and
af of

U'f = x7— + y—

2 ax

3y

(3-25)

are the symbols of the once-extended basis trans-

formations, and that the commutators formed from

Eqs. {3-23) through (3-2
(UiA)f =
and
(UpA)E =

A fourth example of

5) are
0,

- Af.

(3-26)

(3-27)

a two-parameter Lie group

of the first type is thet group with the basis

transformations
—1
Ulf = xax,
and
T
Upt = Ay’

wvhich satisfy Egs. (3-3) and (3-4),

mits the second-order differential equation

i = (),

with the equivalent partial differential equation,

Af = 3L, 3 Ly F(Eli)
x y 2 Y
x
as follows from the symbols of the
basis transformations, viz.,
af of
' = X - —-
Upf =X - ¥ y!'?
and
re - af 1 of
Uaf— Yayla
and the commutators,
(UiA)f = -Af,
and
! =
(U2A)f

which come out of Egs. (3-31) through (3-33).

(3-28)

{(3-29)

This group ad-

(3-30)

(3-31)

once-extended

(3-32)

(3-33)

(3-34)

(3-35)

3.2 Differential Equations Invaerjant under Two-

Parameter Lie Groups of the Second Type

The two-parameter group of point transforma-

tions which is represented by the symbols,

_af
Upf = Xy
and
. 2 af
Ut = Ay’

(3-36)

(3-37)



is of the second type because

(Uan)f =0, (3-38)

UL = p(x,y)Ulf (3-39)

2
with p{x,y) = x.
ordinary differential equation,

x%y" - 2xy' + 2y = F(x), (3-40)
with the equivelent first-order partial differential
equation,

gt v [Br -Gy Xl
EG x x= ¥ (3-k1)
The symbols of the once-~extended basis transforma-
tions are
of of.
1 e -
ujf = x35-+ T (3-42)
and
2 of af
] —_— -
U2f = 3y + 2X = ay,. (3 l‘3)

The invariance of Eqs. (3-40) and (3-%1) under this
group is & consequence of the values of the commu-
tators that arise from Eqs. {3-41) through (3-43),

viz.,

(u;a)f = o, (3-k4)
and
(upA)s = (3-55)
The second-order differential equation,
" = (317 + Flx)y?, (3-46)

is invariant under the two-parameter group whose

basis transformation symbols are

3f
Ut = XYay> (3-47)
and
of
Uyt = Yoy (3-48)

This group is of the second type, since Eqs. (3-4T)
and (3-48) satisfy Eq. (3-38) and Eq. (3-39) with
p{x,y) = 1/x.
transformations corresponding to Egs. (3-47) and
(3-48) are represented by the symbols,

The once-extended groups of basis

Ut = xvi— +y +xy )a ™ (3-49)
and
\3
upe = y%§'+ ¥ a§" (3-50)

The first-order partial differential equation
equivalent to Eq. (3-U46) is

arz eyl [—U—+ yF(x)] A =0, (3-51)

and the commutators which come out of Eqs. (3-49)
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This group admits the second-order,

through (3-51) are

(uja)e = o, (3-52)
and .
(upa)e = o. (3-53)
The two-parameter group represented by
l ar . A -
Ulf = ; ay . (3-54)
and
x af
Upf = 3 o (3-55)

is of the second type. It admits the second—order

differentisl equation,

"+ (y)? = F(x), (3-56)
equivalent to
of
P [44 wflee o am

The symbols of the once-extended groups of basis

transformations are

= L3 y'af '
Uif v ay y2 3}'" (3"58)
and
= X 3f 1 xy'|af _
Ut =y oy * [Y ye,]ay" : (3-59)

Evaluating the relevant comutators with Eqs. (3-57)
through (3-59) produces
(uja)e = o, (3-60)
and
(uga)e = o, (3-61)
which establishes the invariance of Eq. (3-56)
under the group of the symbols of Eqs. (3-54) and
(3-55).
The nonlinear, second-order, ordinary differ-
ential equation
2

2yyr 22
x 2 Y
X

v - 2(y1)2 - = F(x)y>, (3-62)

is invariant under the two-parameter Lie group

represented by the basis transformation symbols

2 af *
U, f =" o (3-63)
and
2 2 3f
Upf = xy" 35 (3-6h)

This group is of the second type, and the symbols

of its once-extended basis transformations are

Ut = xy2 g; + (y + 2xyy' ) (3-65)

and

2.2 ar

Uyt = xy + (2xy + 22 Yy ) (3-66)

ay"
The commutators formed with Eqs. (3-65) and {3-66)
and the partial differential equation equivalent to



(3-62), viz.,

s ey (B2 s 2 By s rooriLs
=0, (3-67)
assume the valyes
(Uja)r = (3-68)
and
(UIA)E = O

(3-69)
to complete the invariance proof. ‘

3.3 Differential Equations Invariant under Two-
Parameter Lie Groups of the Third Type

The basis trensformations with the symbols

Ut = o (3-70)
and
of af
Uyt = xor + Yoy (3-71)

generate a two-parameter Lie group of the third type
as they satisfy fhe relations

(U1U2)f =Uu.f,

1 (3-72)

and

This group admits the second-order differential

equation
yy" = F(y') (3-74)
vith the equivalent first-order partial differential
equation
_ of 1of | F(y') of
= — 4+ = Q. -
Af =ty ay Y ay' 0 (3-715)

The once-extended groups that arise from Egs.

(3-70) and (3-T1) are represented by the symbols

vp = oL —

ue = 35, (3-76)
and
of af

] = -
U2f x5;-+ yS; (3-77)
The invariance of both Eq. (3-T4) and (3-75) under
the two-parameter group represented by Eqs. (3-70)

and (3-T1) is a consequence of the fact that the
comnutators formed with Egs. (3-75) through (3-77)

assume the values

(UJ'_A)f F 0, (3-78)
and
(Uja)f = - Af, (3-79)
The second-order differential equation
y" = xn-2 F(xl-n v") (3-80)

is invariant under the two~parameter group gen-

erated by the symbols

U.r = af

if =5y (3-81)

and
af of
Upf = xgi-+ ny3y (3-82)

To show thet this group is of the third type of two-
parameter Lie group, we introduce the basis trans-
formation symbols

_ af
V£ 2 U f = 5y (3-83)
and
1 x of of _
V2f U I =Tt y55 (3-84)
and observe that
(vlva)f =V, f (3-85)

together with

Vot # o(x,y)V 1. (3-86)

The linear, first-order partial differential equa-
tion that corresponds to Eq. (3-80) is

Af:ar+y'g§+xn 2F( 1-n ')——-0

™ (3-87)

and the once-extended groups that come out of Egs.
(3-81) and (3-82) are represented by the symbols,

! = EE
u f 3y (3-88)
and
Urr = o s oy 4 (ne1)yr 2 (3-89)
2 ax 3y ay' *

Because the commutators constructed from Egs. (3-87)
through (3-89) are

(ujplf = (3~90)
and
(wpade = [up(1) = a3+ Jupty) - atan)| 35
{Ué[ ety - Aty ]}ay,,
{3-91a)
= - gﬁ-— y'%§-+ {x[(n—2)xn-3F(xl_ny')
+ X2l )y R (xR )]
+ (n—l)y' n-2 1~ nF.(xl-n 0
l1-n v _
- (n-1)x""%F(x )}ay., (3-910)
=- 3. y':§ x2p(xtn ')25,, (3-91c)
= - Af, (3-914)

the invariance of Egs. (3-80) and (3-87) under the
two-parameter group with the symbols of Egs. (3-81)
and (3-82) is proved.

The two-parameter group generated by the two

infinitesimal transformetions with the symbols

= of af
Ul by XK ay’ (3-92)

11



and
af
Uof = Xy
is of the third type. This fact follows by select-

ing the basis trensformations as

(3-93)

= = af -
Vi f = Uf X5y (3-9%)

x_ af n__of
Vof ® T ax * o1 Wy’

and by noting that the commutator constructed with
Eqs. {3-94) and (3-95) is

(3-95)

(v v,)t = v r, (3-96)
and that
vt $ p(x,y)Vlf. (3-97)
The second-order differential equation;
(3-98)

yn » xn—2F "'L"f - L),
X" P
together with its equivalent first-order partial

differential equation, viz.,

ar = 3£ F x"'ZF(—Y-—' - y_)&_ =0

a—x + y'W xn-l xn 3}" (3'99)

are admitted by the group of point transformations
defined by Eqs. (3-92) and (3-93), because the

corresponding once-extended groups are generated by

the symbols

3f or ar
1 i - | eI -
Ulr = X +ngs 4 (n-1)y 3y’ ? (3-100)
and
af , of
] —— -
U2f = xg— + 3y (3-101)

and because the commutators that come out of Egs.
(3-99) through (3-101) assume the value

(UiA)f = - Af, (3-102)
and
(uzp)t = o. (3-103)
The symbols
U, f = xﬁ, (3-104)
1 9x
and
Ut = x%§ (3-105)

yield a two-parameter group of the third type, be-

cause the basis trensformation symbols, viz.,

- ar . _
ViF = UL = X ‘ {3-106)
and
- af
Vf = - U = - (3-107)

satisfy Eqs. (3-96) and (3-97). The symbols of the

12

once-extended groups of point trensformations from
Eqs. (3-104) and (3-105) are ’

3 2L (3-108)

1 - —
Ulr "X Y y'?
and
' of af .
USE = x5+ gy (3-109)
The second-order differential equation
Sy = Ry - ¥), (3-110)

and corresponding partial differential equation

- 3f . .8f . Flxy' -y)at _ -
Af = T-+y %y + z " o (3-1mm)

are invariant under the group represented by the
symbols of Eqs. (3-104) and (3-105), because the
commutators formed with Eqs. (3~108), (3-109), and
(3-111) are

(Uja)g = - Af, (3-112)

and
(UpA)L = 0. (3-113)

3.4 Differential Equations That Are Admitted by
Two-Parameter Lie Groups of the Fourth Type

. In this section we shall consider four two-
parameter Lie groups of the fourth type. The sym-
bols of the two infinitesimal transformations of
these groups are
(a) for the first group,

of
U.Lf = XK, (3-11k)
and
ar.
Uaf = L (3-115)
{b) for the second group,
of af
U f o= o=+ o (3-116)
and
of of
Upt = x- + x5 (3-117)
(c) for the third group,
af of
Upr = oo+ Yoy (3-118)
and i
af af
Upf = xo + Xyyes (3-119)
(d) for the fourth group, -
f af
Upf = 5%+ 5y (3-120)
and M
Jf 2 af
Uyf = x3-+ x o (3-121)

These four two-paremeter Lie groupé of point trans-
formations are all of the fourth type, becguse.each
satisfies the relations
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uf, (3-122)

(ulue)r =
and

Ut = p(X,y)Ulf, (3-123)

vhich define the fourth type of two-parameter Lie
group.

The four second-order, ordinary differential
equatjions that follow are invariant under the above
four groups.

(&) The group of Egs. (3-11k4) and (3-115) admits

v = (y)%F(y)s (3-124)
(v) That of Eqs. (3-116) and (3-117) admits

= (y' - 1)2F(y - x); (3-125)
(c) That of Egs. (3-118) and (3-119) admits

L} 2 )
" o= sx;l— + y(i— - l)zF(ln y - x); (3-126)
(d) That of Egqs. (3-120) and {3-121) admits

v =1+ 20yt - )32y - x9). (3-127)
In Eqs. {3~12h) through (3-127), the symbol, F,
denotes an arbitrary function of the indicated argu-
ment.

To prove the invariance assertion just made
relative to Eq. (3-124), we first note that its
equivalent first-order, linear partial differential
equation is

- of o = -
AL = i y'=— + (y' )2F(y)ay, 0. (3-128)
The once-extended groups arising from the symbols of
Egs. (3-11b4) and (3-115) ere generated by the sym-

bols

_.af af
Uif = xs; - y‘S;T, (3-129)
and
1p = 9F -
ULt = o (3-130)

The commutators formed from Egs. (3-128) through
(3-130) have the values
(Uja)f = - ar, (3-131)

and

(Up)f =0, {3-132)

vwhich completes the proof.

The proofs for the invariance assertions made
above for Egs. (3-125) through (3-12T7) follow the
same pattern as that contained in Egs. (3-128)
through (3-132), and we shall merely summarize the
relevant relations below.

(1) For Egs. (3-116), (3-117), and (3-125) we have

Af Bf

(y' - 1)°K( ) s
7 [ v o (3-133)

Uif =5 * W (3-134)
_ .3 . 3f _
UM = x5+ x X5y * (1 -y ) (3-139)
(UjA)f = 0, (3-136)
and
(uja)r = - Af. (3-137)
(2) For Eqs. (3-118), (3-119), and (3-126) we have
2
N ar y') 2 Y )
Af = — ¥ [ + y( l) F(in y x)] 3y’
=0 (3-138)
= of 3f af -
UL = o+ Yay * y'ay,, (3-139)
af 3f af
Uit = x50t Yoy + 1y + {x - 1)y’ T {3-1%0)
(UlA)f = 0, (3-141)
and
(UéA)r = - Af. (3-142)
(3) For Egs. (3-~120), {3-121), and (3-127) we have
af \3f 2 2,]af
Af = S- 4+ y'Ss il R 2(y' - x)°F(2Y - x°) Py
=0, (3-143)
= 3f af _
Uif =50t xay + T (3-1kY)
e = L Of 2 af af _
ULt = xoo 4 x° oo+ (2x )ay" (3-1k5)
(UiA)r =0, (3-146)
and
(UA)f = ~ Af. (3-1k47)

The principal results obtained in Sections
3.2 through 3.4 are summarized in Table III, which
gives the symbols of the infinitesimal trans-
formations of 16 two-parameter Lie groups, the
group type, and the second-order, ordinery differ-
ential equations that are admitted by these groups.
In Table III, the following definitions are em-

ployed:

» = 55, (3-148)
and

a=3. (3-149)

4, APPLICATION OF LIE GROUPS TO THE SOLUTION OF
NONLINEAR DIFFUSION EQUATIONS

In the ensuing part, explicit, exact solutions
of nonlinear diffusion equations will be found by
exploiting the fact that these equations are in-
variant under Lie groups. Particular emphasis is
given to establishing relationships among the
parameters appearing in the nonlinear diffusion
equations that must be satisfied for the solutions
to exist together with solution integrals.
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Table III.

SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS ADMITTED BY VARIOUS

TWO-PARAMETER LIE GROUPS NOT IN CAKONICAL FORM

Group
Group Symbols Type Invariant Differential Equation
Ulf = q; Uyt = xp 1 x2y" = F(xy;)
1
UL = B3 Upf = ¥q 1 y" = yr()
U)f = xq; UL = xp + yq 1 xy" = F(y' - %)
1]
U £ = xp; Ut = yq 1 x2y" = yF(Ei—)
Upf = xq; Uaf = x2q 2 x2y" - 2xy' + 2y = F(x)
U.f = xya; U,f = yq 2 yy" = (y')2 + F(X)Y2
1 2
U= e -k 2 yy" + ()2 = Fx)
2.2 2 2 2
ufr= xy°a3 Uyt = x"y'q 2 w'-20y) - Fw' - —2'}'2 = Flx)y°
: x
Upf = ps Upf = xp + ya 3 w" = F(y')
Uyf = q; Uyl = xp + nyq 3 " o xn-2F(xl-ny')
- L
U T = xp + nyq; Upf = xq 3 v o= x" ZF(—‘Y— - L)
n-l
x x
U f = xp; Uyt = xq 3 xy" = Fixy*' - y)
U f = xp; Upf = p L ¥ = (y)%F(y)
U,f =p+q; U = xp + yq 4 y' o= (y' - 1)2F(y - x)
1 2
2
' ! 2
Upf = p +yq; Uyf = xp + xyq k y"' = il;l_ + y(i—-- l) F(ln y - x)
Ujf = p + xq; Uy = xp + x%q | b y' =1+ 2(y' - x)%F(2y - x?)

4.1 Group Invariance Properties of yxy" +
w2 e ey = 0

The nonlinear diffusion equation

yxy" (4-1)

arises when the transport coefficient is propor-

+ Ay)‘_l(y')2 +ay’ =0

tional to the A-power of the dependent variable,
and the source term is proportional to the v-power
This nonlinear differ-

ential equation is invariant under the two-parameter

of the dependent variable.

Lie group, which is represented by the two infini-
tesimal transformation symbols

ar
Ulf = I (14—2)
and

af af

Uaf = xﬁ + nyW’ (h—3)

where in Eq. (4~3) the definition that follows has

1k

been introduced:

n:——2——.——
T1l4+ A=y

(b-b)
Accordingly, Eq. (4-1) is admitted by the group
defined by Eqs. (4-2) and (L-3) provided that v #
1 + M. This exceptional case will be discussed in
Sec. 4.3,

The proof of the invariance assertion just
made relative to Eq. (4-1) may be mccomplished in
two stages. First, it must be shown that the
group represented by the symbols of Egs. (4-2) and
(4-3) is, in fact, a two-parameter Lie group.
Second, the invariance of Eq. (b-1) under this
group may be established by demonstrating the in-
variance of its equivalent first-order, linear '
pertial differential equation under the group.

The fact that the symbols of Eqs. (k-2) and



(4-3) do generate a two-parameter Lie group is a
direct consequence of Lie's principal theorem (cf.
Sec. 2.1) because their commutator assumes the
value

(U1U2)f = U f. (-5)

Moreover, because these two symbols also satisfy

the relation
Uef # D(x,Y)Ulf, (b-s)

the two-parameter group of point transformations
generated by the two basis transformations of Egs.
(4-2) and (4-=3) is, in fect, a two-parameter Lie
group of the third type. The identification of the
group type reduces the problem of the integration
of Eq. (4-1) to one of quadratures.

The linear, first-order partial differentisel

equation that corresponds to Eq. (L4-1) is

s af 13 _ A=l 1y2 v=Ajafr _
Af 2o+ 5 {Ay (y')€ + ay 3y 0, (4-71)

and the symbols of the once-extended groups of
point transformations that come out of Eqs. (L4-2)
and (4-3) are

_ of
ujr = e (%-8)
and
o = oF af yer 3 _
Uyt =t nysy + (n-1)y T (4-9)

respectively. The commutator constructed with the
differential operators appearing in Egs. (4-T) and
(L-8) is

(uja)r = o.
The commutator from Eqs. (4-7) and (4-9) is

(s-10)

(usa)r = [Ué(l) - A(x)l%& + [Ué(y') - A(ny)l§§

-‘{Ué[Xy—l(y')2 + uyv'A]

+ (a-1)aty} B (4-11)
Now, because
Ué(l) - Alx) = -1, (4-12)
us(y') - Alny) = - y', (4-13)
and
vy + ay’ ] + (a-1)aty")
= ny[-ky'2(y')2 + a(v-k)yv-x_l]
+ (n1ay™Hy")?
- Dy yZ - w7, (4-1ba)
=y Hyn® - [n(v—x) -n+ 1lay“'*, (4-14b)
=y Hy"2 + oy¥h, (k-1ke)

where Eq. (4-1llc) follows upon substituting Eq.
(4~l4) into Eq. (4-1%b), we find thet Eq. (L-11) re-
duces to
(UéA)f = - Af. (L-15)

From Egs. (4-10) and (4-15) it follows that the
linear partial differential equation in Eq. {(4-7)
is invariant under the once-extended groups repre-
sented by the symbols of Eqs. (4-8) and (L4-9).
Therefore, the nonlinear diffusion equation of Eq.
(4-1) is invariant under the two-parameter Lie group
of the third type whose basis transformation symbols
are contained in Egqs. (4-2) and (4-3) provided that
vEL+

In the case when v = 1 + A, Eq. (%4-1) simpli-

fies to the form

w" + Ay? e ay® = 0, (4-16)
which is invariant under the two-parameter Lie group

whose basis transformetions are represented by the

symbols
- 3t -
ur = &£, (4-17)
and
. _ af -
Upt = vy (4-18)

This two-parameter group is of the first type be-
cause the symbols of Eqs. (4-17) and (4-18) satisfy
the defining relations

(uyU,)f = 0, (4-19)
and

Uf # o(x,y)U £, (L4-20)

The symbols of the once-extended groups arising from
Egs. (k-17) and (4-18) are

1o o 9L
uir = o=, (h-21)
and
of af
Uéf = Yoy + y'ay,, (L4-22)
and the linear partial differential equation
equivalent to Eq. (L-16) is
= -a_f 'ﬁ‘. -1 ' 2 1__af =
Af = Ty Y Ay {y*)F + ay " 0. (4-23)

The commutators formed from the differential opera-
tors in Eqs. (4-21) through (4-23) reduce to
(uja)f = o, (h-2k)
and
(up)r = o, (4-25)
which establishes the fact that the two-parameter
Lie group of the first type with the infinitesimal

transformations of Eqs. (4-17) and (4-18) admits
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the nonlinear second-order differential equation
of Eq. (4-16).
(4-16) may be reduced to a quadrature problem,
which is worked out in Sec. 4.3.
4,2 Introduction of Canonical Variables

It has been shown that Eqs. (4-2) and (4-3)

Accordingly, the integration of Eq.

comprise the basis transformations of a two-~
parameter Lie group of the third type that admits
Eq. (b-1) if v ¥ 1 + A, Through the introduction
of the canonicel variables, which we shall denote
by X and Y, these two infinitesimal transformations
may be brought into their canonical forms, viz.,

- 3
U r =3, (4-26)
and
- af af
U f = Yoy + Yo7 (s-27)

for a two-parameter Lie group of the third type.
Furthermore, if the nonlinear diffusion equation
given in Eq. (4-1) is expressed in terms of canon-
ical variables, then the resulting differential
equation will be invarient under the two~parameter
group in canonical variasbles generated by Eqs.
(4-26) and {4-27). It is known from Table II that
Eq. (4-1) will assume the general form
ngé = F(%%),

ax

(4-28)

where F signifies an arbitrary function of the argu-
ment when it is written in terms of the canonicel
variables of the two-paremeter Lie group under
which it is invariant. A first integral of Eq.
(4-28) may be easily obtained by quadrature.
If

U= El(X,y)%i + nl(x,y)%i, (4-29)

and

< af af
UL = Ez(x,y)s; + "a(x'y)ay (5-30)

are the symbols of the infinitesimal trensforma-

tions of & two-parameter Lie group of the third

type not in canonical form, then the canonical

varigbles of this group may be determined3 from
- nyax + Eldy

dln X = ,
ngky - més

{4-31)

which will be an exact differential, and from
ay M2~ MY
ol s

4-32
3 ™ Tang = Egny (k-32)

and

16

-a!' - - 52 + E'lY

(4-33)

Relative to these last three relations, Eq. (4-31)
is obteined upon solving

El(x,y)-g—é' + nl(x,}’)'g—: = 0, (h‘3l‘) -
and .

Eolxay R + nylx )Tl = X, (4-35) ~
for X and xy, whereas Egs. (4%-32) and (L4-33) are -
the solutions of

Y Y -

£ (x,y)as + nl(x,y)ay 1, (4-36)
and

Ea(x,y)%é . ne(x,y)%§ =Y, (b-37)

For the two-parameter group generated by the aymbols
of Egs. (4-2) and (L4-3), we find that Eqs. (L-31)
through (4-33) become

a =8 -
in X ny (4-38)
Y
Ev i 1, (4-39)
and
A X-x ]
ay v (k-%0)
respectively. Integrating Eq. (4-38) produces
x = y/?, (4-L1)
whereas
Y =x {k-42)
obviously satisfies Bqs. (4-39) and (4-40). Accord-

ingly, the results given in Eqs. (k-Ll) and (4-L42)
may be taken as the canonical variables of the two-
parameter Lie group of the third type generated by
the infinitesimal transformetions contained in Egs.
(k-2) end (b4-3).

In transforming Eq. (4-1) to canonical vari-
ables, we shall regard the canonical variable, Y,
as the new dependent variable and the canonical
variable, X, as the new independent variable. From
Eq. (4-42), it will be noted that the dependent and
independent variables are interchanged in the course
of the reduction of Eq. (4-1) to its canonical form.

To effect this reduction we may first observe

that .
Y . a9y
_.+.—yl
dY _ 9ax 3
ax = X, X, (8-13) ]
ax 3y N
becomes



Lq

df _n _1-(1/n)
& =5 (4-b)

when the partial derivatives are evaluated from
Eqs. (4-b41) and (4-b2). Next we note thet

d -1 1-(1/n)
== 222 = S (y") Yy . (L-bs5)
ax n dx [ y

However,

ax _ y' (i/n)-1
Sy , (4=46)

so that Eq. (4-U45) becomes

pAR y(l/n)—l gfg
n dx2

= (n-l)y_(l/n) ~ nyl-(l/n)(Y')—ZY". (b-b7)

Now, because

x =Y, (L-48)
and
y =X, (k-bg)
we find that Eqs. (4-b44) and (4-47) yield
y = (E) T, (1-50)
and
2
"o n-2/d¥\-2 _ . n-1/aY\-3 @Y _
. ¥" = n{n-1)X (dx) nX (dx) 2 (b4-51)

respectively. Substituting Egs. (4-49) through
(4-51) into Eq. (4-1) produces, first of =all,

n(n_l)xnx+n-2(g_)-2 _ nxnké-n-rl(g )—3 ay
ax ax) = 2

+anPaAI B2 (@2, oY 2o, (kes2)

and simplifying this relation with the help of Eq.

(L-b4) yields

a®
2

(L ) Al EP. o

This last equation is Eq. (4-1) written in terms

of the canonical variables of the two-parameter Lie
group with the basis transformation symbols given
in Egs. (4-2) and (4-3), and it is seen to have

the general form anticipated in Eq. (4-28).

The result obtained in Eq. (4-53) is valid
provided that v # A + 1. In the case v = X + 1,
Eq. (4-1) simplifies to Eq. (4-16), which has been
shown to be invarient under the two-parameter group
of the first, not third, type generated by the
infinitesimal transformations of Egs. (4-17) and
(4L-18). If Egs. (4-29) and (4-30) are now re-
garded as the symbols of the basis transformations
of a two-parameter Lie group of the first type,
then the canonical veriables of this group may be

found from the relations

= 3X X -
X = 52 dx + 5y ay, (L-54)
and
_ 8y oY _
ay = = dx + r dy. (k-55)

In Eq. (4-54), the partial derivatives are solu-
tions of the set

3X 2.9 -

g, (e,y)3 + nl(x,y).‘)y 1, (4-56)
and

Eplx s + ny(xy)3k = 0, (4-57)
and in Eq. (L4-55), of the set

£, (x¥)EE + 0y (xy)EE = 0, (4-58)
and

Eplxay )oe + nplx,y)eE = 1. (4-59)

For the basis transformations of Eqgs. (4-17)
and (4L-18), it is found that Eqs. (4-56) through
(4-59) become

X

3 = Lo (4-60)

yg—i{;= 0, (4-61)

Ao, (4-62)
and

%- 1, (4-63)

respectively. Accordingly, Eqs. (h-S4) and (L4-55)

assume the forms

dX = dx, (L-64)
and
ay = gy_ (4-65)
which integrate out to produce
X = x, (4-66)
and
Y=1ny (4-6T7)

as the canonical variables of the two-parameter Lie
group generated by the basis transformation symbols
of Egs. (4-17) and (4-18).

If the nonlinear differential equation con-
tained in Eq. (4-16) is written in terms of the
canonical variables obtained in Eqs. (4-66) and
(4-67), it will assume, in accordance with Table II,
the general form

2,

ﬁ = F(%) (4-68)
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wvhere F is an arbitrary function of the indicated
argument, which is invariant under the canonical
form of the two-parameter group arising from Egs.
(4-1T) and (4-18), viz.,

Tt 3
o,r = 3L, (4-69)
and
- of
Uaf = NS {4-T0)

To reduce Eq. (4-16) to its canonical form, we
first note that Egs. (4-66) and (4-67) imply that

¥y = exp (Y) (4-71)
y' = exp (Y) 3¢ dx’ {4-T2
and
y"' = exp (Y)[d2Y (dx) ]. (4-73)
ax

Substituting Eqs. (4-T1) through (4-T3) into Eq.
(4-16) and simplifying the result produces

d%

+ (1+A)( )"‘ +a=0, (h=Tk)

which is the canonical form of Eq. (4-16), as an-
ticipated in Eq. (4~68), and also the canonical
form of Eq. (4-1) when v = 1 + A.

We turn now to the integration of the two ca-
nonical forms that have been obtained above for Eq.
(4-1), that is, to Eq. (4-Th) when v = 1 + X and to

(4-~53) when v # 1 + A,

5.3 Solution for the Case when v = 1 + )

If we let

wz (4-75)

in Eq. (4-74), then the first integral is immedi-
ately obtained upon integration in the form,

g} A tan[C - A(l+A)x] (4-76)

wherein C1 is an erbitrery constent, and

= u -
A=z T (4-77)
The integral of Eq. (4-76) may be written as
1
Y = - 1in cos[Cl - A(1+A)xl + 1+x 1nc, (4-78)
with 02 as a second arbitrary constant. Upon re-

verting back to the original variables by means of
Eqs. (4-66) and (4-67), Eq. (4-78) becomes
(1+A) 1n y = 1n cos [Cl - A(1+A)x] + 1n Cys (4-79)

that is

¥ = ¢, cos o) - A, (4-80)
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This last equation is the general solution of Eq.

(4-1) when v = 1 + A, and, therefore, of Eq. (4-16).

The solution given in Eq. (4-80) does not hold,
bowever, if A = -1. Solutions of Eq. (k-1) valid
for A = =1 and v # 0 and for A = -1 and v = 0 will
be given later (see Secs. 4.5.6 and 4.5.7).

The two arbitrary constants in Eq. (4-80) may
be evaluated once the boundary or initiel condi-
tions are specified. PFor example, for the non-
linear, two-point boundary value problem such that

y'(o) =0, (4-81)
and
y(1) =1, (4-82)-
we find that
c, =0, (4-83)
and
c e {L-84
2 * cos [A(1+A)] -84)
Accordingly, it follows that
. L ,
1+
y = cos [xvall+A (4-85)
cos [Va{1+A)]

is the solution of Eq. (4-1) when v = 1 + X pro-
vided that A # -1, y'(0) = 0, and y(1) = 1, i.e.,
of Eq. (h-16) under these same conditions.

4.4 Quadrature Formula for the Case when v # 1 + A

In this section an integral representation
will be derived for the solution of Eq. {4-1) when
v £ 1 + A and for the nonlinear two-point boundary
value problem with the boundary conditions as given
in Eqs. (4-81) and (L-82). We may state that an
infinite number of solutions of Eq. (4-1) may be
found with the integral representation to be
derived. However, we shall limit ourselves to the
subsequent consideration of approximately two dozen
cases that effectively provide the solution of Eq.
(%-1) for a continuous variation of the parameters,
A end v, that appear in this equation. .

To find the integral representation mentioned
above, we begin with the canonical form of Eq.
(4-1), that is, with Eq. (4-53), which, with the
definition contained in Eq. {4-75), may be written
as

—gdu  _gdx (4-86)
u(u2 + a2) n X

wherein
8l = %-[n(l+x) -1]. (L-87)

To express the boundary conditions, y'(0) = 0 and

rxl



s d

y(1)
y(0) Y, be the value of the solution of Eq. (k-1)
at x = 0. Then from Eqs. (4-48) and (4-49) it fol-
lows that

1, in terms of the canoni¢al variables, let

Y =0 (4-88)

and

x = y/® (4-89)
and from Eq. (L4-44)

dY

=8~ (k-90)
Hence, in integrating Eq. (4-86), use is made of

i/n

the fact that u + = as X +» Yo

boundary conditions of Eqs. (4-81) and (4-82), that

for the two-point

is,
- v/
1 a 1
—_———— dQu' = — | Ty dX'. (4=91)
u'[(u')2 + a2] n X
X

u

This integrates out to the form

u2 ) 2a2a X
1n = 1n , (4-92)
<P2 + a2 n <;l/n>

o
or
2 n
u _ X
2 2 < 1/n> (k-93)
u” + a Y,
with the definition
2 2
m = =2~ = 2(n(1n) - 1] (b-gh)

Now from Eq. (4-93) we obtain

2f x \*
a 1/n
2 Yo

X = . (4-95)

1-%—m
yi"

When taking the square root of Eq. (4-95) either
the plus or the minus sign may be used. To decide
which one to use, it may be noted that for the
boundary conditions of Egqs. (4-81) and (4-82) the
solution of Eq. (4-1) will be such that y' < O on
the closed interval 0 < x < 1. Accordingly, it
may be concluded from Eq. (4-L4l4) that the negative
sign is to be used if n is positive, whereas the
plus sign is to be used if n is negative. That
is, Eq. (4-95) yields

(5~96)

A

xl«
"
f+
[

x \®
1 -
<vi’ >

in which we take the plus sign, if n < 0, and the

minus sign, if n > 0. In Eq. (4-96), the boundary
condition y'(0) = 0 has already been incorporated,
and the arbitrary constant, yo, is interpreted as

the value of the solution of Eq. (4-1) at x = 0.

To put in the boundary condition y(1) = 1, we
observe from Eqs. (4-48) and (4-49) that this bound-
ary condition implies that Y = 1 when X = 1. Hence,
Eq. (L-96) yields

(4-97)

or

(4~98)

in which the upper minus sign is now taken if
n < 0, and the lower plus sign if n > 0. Upon
letting
xl
t =3 (4-99)

Yo
and upon reverting back to the original variables
with Eqs. (4-48) and (L4L-49), we find that Eq.
{4-98) becomes

1
(I_) /n
Yo
m
1 A= —_at (14-100)
8y, n 1-t"
1/n

vwhere the minus sign is used if n < 0, and the plus
sign is used if n > O.

In summary, Eq. (4-100) comprises an integral
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representation of the solution of Eq. (4-1) for the
boundary conditions y'(0) = 0 and y(1) = 1. These
boundary conditions have been incorporated into
this equation, which is valid if v # 1 + A.

The constant, y_, in Eq. (4~100) is the value
of the solution of Eq. (4-1) at x = O for the given
boundary conditions and is determined as & root of
the transcendental equation,

1

(k-101)

(L)l/n

Yo

when this root exists. As will be seen later, Eq.
(4-101) may have zero, one, or two roots. When
this equation has no roots, as may happen for cer-
tain combinations of the values of the parameters
A, v, and & appearing in Eq. (4-1), then this non-
linear diffusion equation has no solution for the
boundary conditions y’'(0) = O and y(1) = 1. Ac-
cordingly, we shall have to determine allowed
values of the parameters for which a solution of
Eq. (4-1) does, in fact, exist for the above stated
boundary conditions.

4,5 Reductions of the Quadrature Formula in the
Case when v # 1 + )

In this section 25 explicit, analytic solu-
tions of Eq. (4-1) will be found by specializing
the integral representation obtained in Eq. (4-100),
in which, from Eqs. (4-4), (4-87), and (4-9%4),

1 L+ -v =
T (4-102)
1 Qa
E':(l*"'“)]/21+x+v’ (%-103)
and
1+ X +wv
n = 2 )- (i-204)

4.5.1 Result for m = 1
If m = 1, then Eq. (4-104) implies that

v = %(1 +2), (4-105)

go v > 0, if XA < -1. Also,

n = SR (4-106)

1
h TREYE (4-107)

so that, when A < -1, we may write

and
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_i_- =2(al - 1) ’\3 = 1) (4-108)
and a = iA, where

1 ™ ’

;5-3—(“] -1). (L-109)

Because n < 0, if A < -1, for this case Eq. (4-100)

becomes

1/n
()
l-x t
I;;I7; = - I-1t dt, (4-110a)
o
)"
Yo
1/n
(%)
1 Yo
t t
T dt T at (4-110v)
1/n 1

The value of the solution at x = 0 is a root of

y;l/n
y-l/n
&= [ a, (4-111)
1 -t
1
and the solution itself is given by
1/n
(2)
/ y
-1l/n
o, )/*‘ at. (4-112)
iA 1-t
1
Now, because
ygl/“ >1, (4-113)
and
1
Y, /n
(}7—) > 1, (4-11k)

the denominators of the integrands in Eqs. (L4-111)
and (4-112) are written as

-t =i/ -1, {4-115)
end these equations become
-1/n
y-l/n °
o / t
reniall B F S ) (4-116)
b3

and

(Xl




LY

T dt, (k-117)

(™

respectively. Upon setting t = 12 in Eqs. (b-116)
and (4-117) and integrating out, we obtain

—i—: yJO./2n y;l n -1+ yi/n arccosh(y;l/2n),
(4-118)
and
-1/2n
+ arccosh (;g) . (b-119)

The right-hand side of Eq. (4-118) is plotted as a
function of y;l/2n in Fig. 1. The occurrence of

the maximum on this curve shows that

(%) =1.20 (4-120)
max .
defines a8 maxipum value of a, denoted by “max and
found from Egs. (4-109) and (4-120) to be
_ 1.08
%max = TA] - 1° (h-121)

for which there will be a root of Eq. (k4-118). If
> then Eq. (4-1) has no solution when
A < -1 and
==L
3
On the other hand, if a < Arax? and if

(4-122)

R.HS OF Eq (4-118)

y;IIZn

Fig. 1. Graph for determining the roots of Egq.
(4-118),

1< %-< 1.20, (4-123)

then Eq. (4-118) has two roots, of which the small-
est is of physical interest, and, if

1
I<l (k-12L4)

then Eq. (4-118) has a single root as is the case
for a 5 a ax: When & root of Eq. (4-118) exists,
Eq. (4-119) is the solution of Eq. (k-1) for i < -1
subject to the condition of Eq. (4-122) and with
the value of n given by Eq. (4-108) and that of A
in Eq. (4-109).

4,5.2 Results for m = 1/9, g = 1.5, 2, 2.5, 3, 3.5

Let

=1 _
m = qs (!‘ 125)

then Eqs. (4-102) through (L-104) become

1l+2q °

i
n

2
bag®(1 + ) (4-127

i

’
a2 1+ 2q
and

v = 3+ 201 - 29) (L-128)

1+ 2q ?
respectively. From Eq. {4-128) we see that, if
A < -1 and q > 0.50, then v > 0, and this is the
case that will be considered. If A < -1, Eq.
(4-127) indicates that a is a pure imaginary numbver,
so let a = iA with

2
1 _ bag®(fa] - 1)
2 T+ 2g , for X < =1. (4-129)

Mso, Eq. (4-~126) shows that n < 0, if A < -1. Be-
cause n < 0, Eq. (4-101) now takes the form

-1/n
Yo
-1
vy, /n (/e " )
= at, -130
iA 1 - tl/k;
1
or, because y;l/n > 1,
-1/n
Yo
-1/n
y°A = 1}1 LI (4-131)
I |
1

Let t = T2q in Eq. (4-131), then we have



y-l/n
e . x2q| —E——ar. (4~132)

1
By & procedure similar to that leading to Eq.
(4-132), it is found that Eq. (4-100) reduces to
-1/2qn

= 2q | ————dr. (4-133)

1
From Eq. (4-133) the following five solutions of
Eq. (4-1) may be obtained by integration:
(1) if q = 3/2, then

-2/3n ~2/3n
<= A yc1)/:1{ (io_) -1 [(1&) + 2] E,(u-m)

y y
in which y, is a root of
1. 1 2 _
ATy M s (4-135)
Yo Yo
and
1.2 (-1, (4-136)
and
=] -1 (5-137)
A
This solution is also subject to the relation
v =42 5 L, (4-138)

(2) If q = 2, then

-1/bkn -1/2n -1/2n
o

v =1/4
+ % arccosh(;g) , (4-139)

in which Yo is a root of

A/ T [ 4]

+ % arccosh yollhﬂ} (4-1k0)
and
1 =h
T 5 (ja] - 1), (L-1k1)
1_2 1 (a] - 1), (4-142)
A
and

22

v-%([ﬂ - 1).

(3) 1£ q = 5/2, then

=-2/5 -2/5 2
R I

+ %‘1@“)_2/% : ] )

in which Yo is a root of:

1/n /W?n_ [(y-e/sn -

+ 5- (¥;2/5n -1) + 5],

and
1.2 -0,
1_2'-'2'62'(|Al "l)a
A

and

v = % (Ir] - 1).

(4) If q = 3, then

{ -5/6n
x = l/n ’ -1 [ ___

~1/2n

e >"”"’“]
-1/6n
+ Jéi arccosh(?-) },

in which Yo is a root of

L. yl/n{/y-ﬂan T, y;S/6n .35 y;l/2n

+ —2 -l/6n] + 5— arccosh y 1/65}

and
1 6
=7 (Al -1,
1 36a
===2=(|a} - 1),
27T I
and

v = % ([Xl - 1).

(5) It q = 7/2, then

-2/7T -2/7
S

-2/Tn 2
+-%Lk;é) - 1]

. 7[(z_o)-z/'rn ) 1] ) 7},

T

(4-143)

(4-1h%)

(4-1k5)

(L-146)

(4-14T)

(4-158)

(4-149)

(4-150)

(4-151)

(4-152)

(b4-153)

(4-154)




in which Yo is a solution of

% = yi/n y;2/7n 1 [(y;2/7n - 1)3
AR LR RUCILN 1
(b-155)
and
1.1 _ -
==3 (Ix] - 1), (4-156)
1L _ &
= =2 (]a] - 1), (k-157)
and
v=% (Al -1). (4-158)

The five transcendentel equations for deter-
mining the value, y_, of the solution of Eq. (4-1)
at x = 0 for the five solutions of this equation
given above will have zero, one, or two roots. For
example, the right-hand side of Eq. (4-135) is

—l/n.

plotted in Fig. 2 as a function of Yo The maxi-

mum on the curve of this figure corresponds to

1
(A—) = 1.kh2.
max

Hence, from Eqs. (4-137) and (4-159), it follows

that
_ _0.896
%max Al -1

is the maximum allowed value of a for which & solu-
tion of Eq. (4-1) will exist when Eq. {4-138) holds.

(4-159)

(4-159a)

If a =a there will be just one root found from

max?®
Eq. (U4-135). 1If

1< 3<1z, (4-160)
then Eq. (4-135) has two roots, and if
% <1, (4-161)

one root. When two roots exist, the smaller is of

R.M.S. OF Eq (4-135)
[2]
5

o4l
[o)
o)
-/n
%
Fig. 2. Graph for determining the roots of Eq.

(4-135).

physical interest, and when a 5-umax' the corre-
sponding solutions of Eq. (4-1) are those contained
in Eq. (b4-13k).

Similar relations mey be determined for the
other four solutions embodied in Eqs. (4-139)
through (4-158}.

4.5.3 Results form = 0
It is logical in the systematic development of

solutions of Eq. (l-1) to discuss at this point the
m = 0 case, even though the corresponding solutions
do not come out of Eq. (4-100). If m = 0, then Eq.
(4-104) indicates that

v==-(1+21), (h-162)
and Eq. (U4-1) assumes the form
yl+2Xy" + Ayzk(y,)2 +a=0. (4-163)

We shall prove that the solution of Eq. (4-163) for
the two-point boundary conditions, y'(0) = 0 and
y(1) =1, is ’

14A Yo
x =y, YE(_lHTA-)— erf {(1 +A) 1n(}—), (4-16L4)

in whiech ¥q is a root of

14

1= Yo

EETT'%'XT erf /[T + A) In Vg (4-165)

provided that A > -1. On the other hand, if A < -1,
then the solution of Eq. (4-163) for these same

boundary conditions is

V) w ( 1)3[ (2-1) (zEﬂJ
J=0

in which ¢ = |A]|, and
(13253 + 1) = 13:5:7--+(1 + 2J). (4-167)
AMlso, in Eq. (4-166) the value, ¥g» of the solution

at x = 0 is a root of the transcendental equation

2 (-1)9[2(2-1) 1n y )
,2
1l = ;ln yo z (132;J +l) 2 .
J=0

Neither the solution given in Eq. (L4~164) nor that
given in Eq. (4-166) is valid if ) = -1,

(L-168)

To prove these assertions it may be observed,
first of all, that Eq. (4-163) is invariant under
the two-parameter Lie group of point transformations
generated by the infinitesimel transformations

whose symbols are

uf =2

N % (4-169)
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= __1__3f
02r X o= ax TR

This invariance property is & direct consequence of
the fact that the commutators evaluated from the
differential operators appearing in the once-extended

(4-170)

group symbols

Ui = %%, (b-171)

and
Ut = x 3t TR g; = %&7' (4-172)
and the corresponding partial differential equation

Af = gi y'g; - Ay'l(y')2 + ay'l"ex g—;r
=0, (4-173)
are found to be

(UiA)f = 0, (L-17k)

and
(UA)E = - Af. (b-175)

Second, the two-parameter group generated by the
symbols of Egs. (4-169) end (L4-170) is of the third
type with the canonical variables

x =y, (1-176)
and
Y = x. (4-17T)
To transform Eq. (4-163) to its canonical
form, it may be noted that, in terms of the canon-
ical variables,

= xi_is (h'178)
-A
v n kg 2 (b-279)
and
-gl 2A)
I G T (gg)‘a xl+*(dY)‘3 a®

4 (1+A)2 ax T+a \aX

(4-180)

Upon introducing Eqs. (4-178) through (4-180) into
Eq. (4-163), this letter equation assumes its

canonical form, viz.,

2 3
a7y dy
X = u(l + A) =3 I (h_lsl)
axe (dx)
A first integral of Eq. (4-181) is
2
ay 1
(ﬁ) = Cl —2a(1 + A) 1n X° (4-182)

where C1 is an arbitrary constant.
Now assume that A > ~1. Because y' < 0, Eq.

(4-179) shows that the negative square root is to

2k

be taken in Eq. (4-182) if A > -1, that is,

ay 1
o= - . (4-183)

ﬂfi - 2a(1+2a)1nX

in this case. Upon reverting back to the original
variables, Eq. (4-183) becomes

v =T {b - 2a(1 + 3)° 1n y. (4-18%)

Imposing the boundary condition, y '(0) = 0, yields

C, = 2a(1 + x)a iny,, (4-185)

1
in which Yo is the value of the solution at x = 0,

" 80 that Eq. (4-~18k4) reduces to

A
—L 4y = - /Zq ax.

(4-186)
Vln (y°7y5

Integrating Eq. (4-186) gives

A
—_— 4t = - /23 x.

fin (yo/t5

Yo

To simplify Eq. (4-187), let

(4-187)

u? = 1n (v /t), (4-188)

then it becomes

/in zy°7y5

x = yi+x Vg exp [- (1 + x)u2 du, (4-189)

which reduces to the solution given in Eq. (L4-16k)
for A > -1. The transcendental equation for Yo
given in Eq. (4-165) is obtained from Eq. (4-189)
by invoking the second boundary condition, y(1) = 1.
In the case when A < -1, the positive square
root is to be taken in Eq. (4-182), that is
ay _ 1 .
¥ B -amlrninX

(4-190)

With £ = |A], reverting Eq. (k-190) back to the

original variables produces
-1
dx = (1-2)y

/El - 2a(2-1)% 1n y

dy, (4-191)

and imposing the boundary condition, y'(0) = 0,
gives

¢, = 2a(-1)% 1n y_. (4-192)
Consequently, Eq. (4-191) reduces to
-2
/Ba dx = —¥L gy, (4-193)

fin (yo/y5

L)



With the boundary condition, y(1l) = 1, Eq. (4-193)

integrates out to

Y
ot
20 (1 - x) = | ———— dt. (h-19%)
Yin zyo/ti
1

Because the value, Yoo of the solution at x = 0 may

be calculated as & root of the transcendental equa-

tion
yO
t—l
Voq = | ————at, (4-195)
Y1ln Zyo/ti
1

the solution of Eq. (4-163) for A < -1 may be writ-

ten in the form

yO
s
/o4 x = | ————dt. (4-196)
Yln (yo/t)
y
If we now set
T = (2-1) 1n (y,/t) (k-197)
in Eqs. (4-196) and (4-195), we obtain
(2-1) 1n (yoly)
yl-z
% = —2 exp (c) dr, (4-198)
Y2a(2-1) /T
0
and
{(2~1) 1n Yo
2alg-1) = yi-l M dr. ()4—199)

T

0
Evaluating the integral in Eq. (4-198) gives the
series solution of Eq. (4-163) contained in Egq.
(4-166) for A < -1, and evaluating Eq. (4-199) pro-
duces Eq. (4-168), which completes the proofs for
the solutions of Eq. (4-163).

4,5.4 Results for m = -1/g9, 9 = 1.5, 2, 2.5, 3,
3.5, b
We return now to the deduction of further

solutions of Eq. (L-1) from the integral representa
tion contained in Eq. (4-100).
If m = 1/q, then Eqs. (4-102) through (L4-10k)

become

(4-200)

1_29(1 + )
n

2q -1

2
=== - , -201)
a2 2q - 1
and
= _ f{2q + 1)1 + 1) b
v g -1 s (4-202)
respectively. For the case X < -1, which will be

considered below, Egs. (4-200) through (4-202) show

that n < 0, a is a real number, and v > 0 if q > 0.50.

As n < 0, Eqs. (4-100) and (L4-101) become

l-x=-ay, —_——dt, (4-203)

and

l =8 N —_— dt. (h-20h)
1

Consequently, when y_ is a root of Eq. (b-20L), the

solution of Eq. (4-1) from Eq. (4-203) is

1
&)
yO
x = a t/n L dt. (4-205)
RYCUEN

1
Changing the variable of integration in Eqs. (L4-204)

and (4-205) to t = 13 produces

-1/2qn
Yo
2q-~1
1
1=a yo/n 2q X dT, (4-206)
2
T -1
1
and
~1/2qn
2
y
2gq-1
1/n
x=a yo/ 2q dt. (4-20T7)
r2 -1
1

The results obtained by carrying out the integrals

in Eqs. (4-206) and (L4-207) for six values of q are
as follows.

(1) It q = 3/2, then
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-1/3n -2/3n
.34 yin|(e Yo
B I T
-1/3n
+ arccosh (Zg) (4-208)
y ’
in which Yo is a root of
2 _ . 1/n| -1/3n [ -2/3n
3 = Yo [yo Yo -1
+ arccosh y;1/3“], (4-209)
and
1
L.-3l -0, (4-210)
i§ = %5 (a} - 1), {L4-211)
and
v=2([af -1) (4-212)
(2) If ¢ = 2, then
-1 -1/2n
Y Y,
x = l:;- a yi/n (y_o_) - 1[(}70-) + 2], (4-213)
in which Yo is a root of
i = %’yi/n y;llzn -1 (ygl/e“ +2),  (b-21b)
and
1 L
$=-3 (-1, (4-215)
1, 6 - -
273 ([a] - 1), (4-216)
ana
v=3 (1] - 1. (b-217)

(3) If q = 5/2, then

-1/5n -2/5n -2/5
x=a yi/n{%(;'_o) (;9.) - 1[2(};—‘)) ’ + 3]

-1/5n
+ .é.i arccosh (y_o) }, (4-218)
y
in which Yo is & root of
L g T
+ -32 arccosh y;l/ 5“] , (L-219)
and
Le-2 (-1, (4-220)
1 _ 2% - -
] = 5= (a] - 1), (4-221)
and
v =3 (Al - 1. (4-222)
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(4) If q = 3, then

-1/3n ~-1/3n 2
a5 {JH o

v -1/3n
SO

(k-223)
in which Yo is a root of
_ 1/ -1 2
%_ 6 yi/n ],yol/3n -1 [E(yo /3n _ l)
+ % y;1/3n + %-], (k-224)
end
l = - § - -
- 5 (fxf - 1), (b-225)
1 36a
= 2% -1), L-226
== 35 (b ) ( )
and
v’%HH—IL (4-227)
(5) If q = 7/2, then
-1/Tn -2/Tn ~4/Tn
RETE X RN YA
Yo \\y y y
-2/Tn -1/Tn
Y, Y
3
+ %E(y—o-) + %] + 1—% arccosh (y_o_) )
(4-228)

in which Yo is a root of

1_.,/n -1/Tn ,—2/7n 1 -4/Tn
a Yo [T Yo Yo -1 (3‘ Yo

+ %—: y"'2/7“ + %) + -%% arccosh y"l”n], (4-229)

o o
and

1

e % (] - 1), (5-230)
1, kga
26 (]a] - 1), (4-231)
and
v = %-(lkl - 1). (4-232)

(6) If q = 4, then
=1/hn ~1/4n 3
x = 8a yi/“ (;9-) - l{%-[(-;'ﬁ) - 1]
v -1/kn 2 y -1/4n
- %[(-y&) - ] AR

(k-233)
in which Yo ig a root of
1_gq,/n {—-WG— 1, -1/kn 3
a 8 yO yO -1 [:f-(yo - l)
- -1/
N LR e “], (4-23b)



Y4

and

L8 -, (4-235)
i
i—z = -67—“ (] - 1), (4-236)
and
v = ?{- (Ia] - 1). (4-237)

To illustrate the determination of the value,
¥,» of the solution of Eq. (4-1) at x = O for the
six solutions of this equation written in Eqs.
(4-208) through (4-237), we shall consider the q =
3/2 case, and, accordingly, Eq. (4-209). The right-
hand side of Eq. (4-209) is plotted in Fig. 3 as a
function of y;l/n, where n is given in Eq. (L-210).
The occurrence of the meximum on this curve shows
that Eq. (4-209) has zero, one, or two roots, and
that

(g_a) = 0.839, (4-238)
max

together with Eq. (4-211), defines the maximum
value of o, viz.,

0.352

%ax = A - 1’ (4-239)
for which a solution of Eq. (L4-1) will exist in the

case under consideration. If a < @ ax’ Eq. (4-209)
will have multiple roots, the smallest of which is
of physical interest. Similar curves may be drawn
for the remaining five solutions in Egs. (4-213)
through (4-237).
4,5.5 Result for m = -1

If m = -1, then Eqs. (4-102) through (4-10L)

become

% = 2(1 + A), (4-2k0)

0.6

R.H.S. OF Eq (4-209)
2

o
R

[=]

1 1
4 5 6 7 8

“I/n
yO

o
N
o

Fig. 3. Graph for determining the roots of Eq.
(4-209).

-1-5 - ba(1l + ), (4-241)
8
and

v = =3(1 + 1), (4-242)

respectively. Consequently, if A < -1, then & is a

real number, and n < 0 and v > 0. As n < 0, Egs.
(4-100) and (L4-101) reduce to

1/n
Y
Y
)
1 =X . L at, (4-243)
8y, Yt -1
1/n
1
Y
()
and
-1
yo /n
1= ayl/n —L a4t (b-2b4)
° -1
1
Integrating Eq. (4L-2L4) gives the quadratic equa-
tion
2/n 1/n
(1—) - na2(l—) + 4a% = 0, (b-245)
Yo Yo

with the solution
(;—o)l/n = 2%+ m (L-2L6)

in which n is given by Eq. (4-240), and a® is given
by Eq. (L-2u1).

The proper choice of the plus or minus sign in
Eq. (4-246), which provides the value of the solu-
tion of Eq. (b-1) at x = O in the case under con-
sideration, mey be determined by the following
argument. Because n < 0 if A < -1, Eq. (4-246) may
be written as

yg(lxl_l) = 2a2[l + fl - iE]- (L-247)

In view of the boundary condition y(1) = 1, the
solution of Eq. (4-1) in the limit as a approaches
zero is y(x) = 1. Accordingly, in the limit as

a + 0, ve must obtain the solution Yo = 1 from Eq.
(4-247). From Eq. (h-241), we see that

1—2a—+5 0, (4-248)
a

so that we may expand the square root in Eq. (4-247)

to obtain

2(]a]-1) _ 2[ 1 1 1 ]
Y =2a |l +{1 - =5~ - SRNNRER
° (-,
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If we should choose the plus sign in Eq. (4-249),
we would get

y2A[-2) —5 = (1-250)

which is clearly unacceptable. On the other hand,

using the minus sign in Eq. (L-249) gives
2(a]-1)
Yo pre il

Therefore, the value, Yo! of the
solution of Eq. (4~1) at x = 0 is given by the

(4-251)

as required.

relation

yi([x]—l) - 232[ Y _?],

for the current case.
Moreover, Eq. {4-252) indicates that the in-
equality

(4-252)

1
521 (k-253)
2

must be satisfied if the solution for Yo is going
Combining Eqs. (4-253) and
(4-241) with A < -1 yields

a 5-°max = EzTi%—:jry

as the condition that must be satisfied by a for a
solution of Eq. (4-1) to exist when v = 3(|r]-1).

From Eqs. (4-243) and (4-24k) it is found that

to be a real number.

(k-2sk)

1
&)
Yo
x = i/" i at, (4-255)
t -1
1
vwhich, upon integration, becomes
2
Pyt = y e, (h-256)
a

Substituting Eqgs. (4-240) and {4-252) into Eq.
(4-256) and simplifying the result produces

2a2(1 -1 - 1—2->
a

1l + 8.2}(2[— l_. + 2(1 -l - 1_)]
2 y 2
a a

in which e’ is given by Eq. (4-241). The result
found in Eq. (4-25T7) is the solution of Eq. (4-1)
subject to the conditions of Egqs. (L-242) and

(4-25k) and the boundary conditions y'(0) = 0 and
y(1) =1 1if A < -1,
Eq. (4-257) reduces to

2(|a]-1) | , (4-257)

When a = ®rax?® then & = 1, and
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2([A]-1

y-( 2
1+ x2

(L-258)

" 4,5.6 Result for m = -2

If m = -2, it follows from Eq. (U4-10k) that
A = =1 for all values of v. If we assume that
v > 0, then n < 0, because Eq. (4-102) becomes

l B - y— -

Y 2 (4-259)
Also, in this case Eq. (4-103) gives

al = 2 (4-260)

Now, because n < 0, Eqs. (4-101) and (h-259)

combine into

v/2
Yo
Lz, L as, (4-261)
a'’o >
t° -1
1
which integrates out to produce
v/2 fav v/2)
¥ -cosh(fz v (4-262)

as the transcendental equation for the value, Yoo
of the solution of Eq. (4-1) at x = O for this case.
With the definition

A, = )/;E /2, (4-263)
Eq. (4-262) may be written as
) cosh Ao
}/;—:— =— (L-264)

(¢}
The right-hand side of Eq. (4-26l4) is plotted in
Fig. 4 as a function of A - The occurrence of the
minimum point on the curve in this figure defines
the maximum allowed value of a such that a solution
of Eq. (4-1) exists in the current case, that is,
=2 .08 (L-265)
v(1.50)2 Y
, then Eq. (Lk-264) has two roots, of
which the smaller is of physical interest because

a
max

If a < e ax

Yo las a + 0.
The explicit solution of Eq. (4-1) is found
from Eq. (4-100), which now reduces to

1-x) v/2 _ 1 1
y ~—1 —_—

1 1l
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Fig. 4. Graph for determining the roots of Eq.
(L-264).

or, in view of Eq. (k-261),
v/2

x g2 = | —i—at. (1-267)

1

Integrating in Eq. (4-267) results in

Y
y = - (4-268)

2/v {g_; v/2),
cosh ( 2 x yo

in which y_ is a root of Eq. (4-264). When A = -1,
Eq. (4-268) is the solution of Eq. (bl-1) provided

that v > 0 and « :-amax’ where o ax 1S given in Eq.
(4-265). The result of Eq. (4-268) is not valid if
v = 0,

We now turn to the A = -1 and v = 0 case.

4.5.7 Result for v.= 0 and A = -1

If v = 0 and A = =1, then Eq. (4-1) assumes
the form

w' - ¥+ ayd =0, (4-269)
This nonlinear differential equation is invariant
under the two-parameter Lie group generated by the
two infinitesimal transformation symbols
3f

Ulf = E’ (h_z-{o)
and
N -
Upt =¥ 35 (4-271)

Moreover, this two-parameter group is of the first

type with the canonical variables

X = x, (4-272)

and
Y=1lny. (4-273)

Hence

y = exp (Y), (b-274)
y' = exo (1) &, (4-275)

and

2 2

y" = exp (v)[i—x% + (&) ] (4-276)

and the canonical form of Eq. (4-269) is found to
be

2
47y
== =-a (4-27T)
ax
from which two quadratures produce
Y = - % 2+ X + Cp, {4-278)

where Cl and 02 are arbitrary constants. Upon re-
verting back to the original variables, Eq. (4-278)

becomes
- a 2
y = exp(- 7 X *Cix+ 02), (b-279)
which is the general solution of Eq. (4-269). If
we now impose the boundary conditions, y'(0) = 0
and y(1) = 1, Eq. (4-279) reduces to
y=en |30 -0, (4-280)

and this is the solution of Eq. (4-1) when v = 0
and A = -1 for the stated boundary conditions.
There is no restriction on the allowed values of a

in this result.

29



4.,5.8 Result for m = -3

In this and future subsections, solutions of
Eq. (4-1), which may be expressed in terms of
elliptic functions, will be derived.

If m = -3, then Egs. (4-102) through (L-10k)
become

L2014, (4-281)
i—e -8 @, (4-282)
and
v = 5(1 + 1), (4-283)
respectively. Accordingly, if X > -1, then n < 0

and a is a real number, and in this case Eqs. (4-101)
and (4-100) reduce to the forms

1=a yi/“ —X 4, (L-28k)
t3 -1
1
and
L__)l/n
(52
l]-x=a8 yi/n L dt. (h—285)
t3 -1
1/n

Because of Eq. (4-284), we may write Eq. (L4-285) as
1
(I_) /n
Yo

1/n 1
x=ay,

dt. (4-286)
23 -1
1
Now from Eq. (4-286), the solution of Eq. (L-1)
may be expressed in terms of the Jacobian elliptic
With the value of n given in
Eq. (4-281), the integration of Eq. (4-286) provides

function, enlulk).

201+ 1 -1
f‘yo( +A) x 3l/h en~" (cos k), (4-287)
in which the modulus, k, has the value,
k = gin (w/12), (k-288)
and
2(1+))
y
A+ -(2)
cos ¢ = " I6TSIR (4-289)
V3-1+(=2
Y
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Accordingly, if A > -1 and Eq. (4-283) holds, then
the solution of Eq. (4-1) found from Eq. (L4-287) is

2(1+))
/341 - (Zg)
Ly = (32 Z), (u-290) \
3-1+ (;2)

in which a is given by Eq. (k-282).
The value, Yoo of the solution at x = 0, which

appeers in Eq. (4-290), is a root of Eq. (L-28%) -
that may be written in terms of F(Qolk)' the in-
_ complete elliptic integral of the first kind. That
is, if we set
x, = y2H0), (b-291)
then Eq. (4-284) maey be expressed as
3i/h ) F(;olk), (4292
o
wherein
A+l =X
cos ¢ = . (4-293)
-1+ x

The right-hand side of Eq. (4-292) is plotted in
Fig. 5 as a function of Xo.
maximum on this curve together with Eq. (4-282)

The existence of &

shows that the maximum allowed value of a for a

given A > -1 is found from

1/h 8 =
3 {3; (1+2) o = 0.675, (L-294)
which simplifies to

_ 0.198 (4-295)

max 1 + A
If @ > a ., then Eq. (4-292) has no roots, and,
correspondingly, Eq. (4-1) has no solution for the
case at hand. When o = Snax? there is one root,
, the smaller of the two roots is

the one of physical interest.

and when o < Xnax

8
q‘os
A
04
w
&
0@02 b -
I -t
o« 0 1 1 1 1 Il [l 1 1
10 12 1.4 16 1.8 20 22 24 26 .
Xo -~
Fig. 5. Graph for determining the roots of Eq.

(4-292).
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4.5.9 Result for m = -k

In the m = -4 case, if A > -1, then n < 0 and
v > 0, as Eqgs. (4-102) through (L4-104) reduce to
S = (1), (4-296)
1 a
5 =5 (1 +2), (4-297)
a
and
v =3(1+21), (4-298)
respectively, while Eqs. (4-101) and (L4-100) become
142
Yo
ot se | 2, (4-299)
t -1
1
and
1+a
(o)
¥
x yi+A =a | —Et—at. {4-300)
t -1
1
From Eq. {4-300) we obtain
1+ a -1 a
Xy =2-cn" (cos ¢|k) = = F(¢|k), (4-301)
° 2 /2
where
k = sin {n/}), {4-302)
and
i 1+
cos ¢ = ) . (4-303)
(v;

These last three relations are the solution of Eq.
(4-1) when A > -1, and Eq. (4-298) holds. Using
Eq. {4-297) allows this solution to be written in
the explicit form

1

1+ 2
y = yo{;nIVu(l+XS Xy l s (L-304)

in which the modulus of the Jacobian elliptic func-
tion is that of Eq. (L4-302).

The value of the solution at x = 0 is a root
of Eq. (4-299) that reduces to the following rela-
tion involving an incomplete elliptic integral of
the first kind;

y1+x _e. F(¢ L), (4-305)
° 2 \°|/2
or, with Eq. (4-297), to
v
Ja(I+ny = —__I:Xg_’ (4-306)
Yo

0
c>Q6
"
<
o 04
w
[P
o
% a2
X
[+ 4
(o] i 1 I 1 1 1
10 1.2 1.4 1.6 1.8 20 2.2
+)
Y,

Fig. 6. Graph for determining the roots of Eq.

(4-306).
wherein
cos ¢, = —%:;. (4-307)
. Yo

The right-hand side of the transcendental equation
for y, contained in Eq. (4-306) is plotted in Fig. 6

as a function of yi+A

The maximum point on the
curve in this figure leads to a meximum allowed

value of a given by

_ 0.35k4 N

If @« = a_,, then Eq. (4-306) has one root, and
when a < a .., there are two roots of which the
smaller is of physical interest, because the corre-
sponding velue found for Yo is less than the value
of y, for o = Oyt If o > a .., then Eg. (L-1)
has no solution under the conditions of the current
case.
4.5.10 Result for m = -6

If we let m = -6, then Eq. {4-104) becomes

v=2(14+1), (4-309)

so that v > 0 if A > -1, Since n < 0 in this case,

as Eq. (4-102) reduces to

L. 53—%511- (4-310)

;’ )

the value of the solution of Eq. (l-1) at x = 0O
will be a root of the corresponding form of Eq.
(4-101), viz.,

v,2 =a] —=—at, (4-311)

1
in which, from Eq. (4-103),

3|



55 =Z(1+2), (4-312)
a
80 & is & real number if A > -1. Now let
1+ ST
L =y? (4-313)
o~ Yo °?
in Eq. (4-311), so that
O o0
Lo 1 1
2= at - at.  (b-31h)
t -1 t" -1
1 Lo

These hyperelliptic integrals may be evaluated in
terms of the incomplete elliptic integral of the
first kind., We find that

1

t6 -1

1
at = 2.31,,‘[F<¢11k) - Floy 0], (4-315)

1
in which the modulus is given by

2 2+ /3 2 b
k® = Z9—= = sin (%5), (4-316)
and
cos ¥; = 2 - V3, (4-317)
together with
cos ¢l = (_/:;_‘_lu_l =], ().;_318)

(B +1) -1
This last relation implies that ¢l = 0, so Eq.
(4-315) simplifies to

—61—dt -—lrmr'(wllk).
% -1 2:3

(4-319)

1
Since the second integral in Eq. (4-31L4) is

1

dt = - ll/h [F(wllk) - F(%]k)], (4-320)
to -1 -3

Lo

with the same modulus as Eq. (4-316), and

(5-1)L§+1

cos ¢° =

(F+1)12-1

it is found that Eq. (4~31%4) mey be written in the
final form

/4 Fly_|k)
2:3/4 F 19 (4-322)
o

The right-hand side of Eq. (L4-322) is plotted

a
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R.H.S. OF Eq (4-322)

s (4-321)

08

06

o4

L ¥)

0 1 1 i 1 1 1 1

10 12 l4 16 18 20 22 24 26
LO

Fig. 7. Graph for determining the roots of Eq.
(4-322).

in Fig. T &s & function of Lo‘ From the maximum
point on this curve and Eq. (4-312), the maximum

allowed value of g for the current case comes out of

T+ x
2.3M" ffﬁﬁfﬁjg—————— = 0.833

with the value

(4-323)

0.601
Spax = T ¥ 1" (k-324)
If a > op,.» then Eq. (L-322) has no roots; if

a=q , one root; end if a < % rax? two roots, the

max

smaller of which is of interest.
When Eq. (4~322) has a root, then the solution

of Eq. (4-1) deduced from Eq. {4-100) assumes the

form

——— dt, (4-325)

s0 that, in view of Eq. (l4-311) for Yoo

1
)"
yo
.S = 1 -
ayl/n = dt. (k-326)
o t7 -1
1
Therefore,
= . S — dt - — dt, {4-327a)
ay>/® 6
o t" -1 t7 -1
1 1
(l_) /n
yO



= ;T§En7P1¢l|k) = Flgy[k) - Fly|x)

+ F(wlk)], (4-327b)

where

2/n
(V3 - l)(%—) +1
cos § = ° I (k-328)

(/3 + 1)("},—) -

o}

Consequently, it has been found that the solution of
Eq. (b-1) is

1/n
ay,

x = Fly|x), (4-329)
R

with the modulus of Eq. (4-316), the value of a from
Eq. {4-312), and the value of Y, from Eq. (4-322),
when Eq. (4-309) holds, and A > -1. In terms of the
Jacobian elliptic function, the solution in Eg.
(L-329) becomes

v 142
(V3 - 1)(-9) £1 5.3ty
4 oy = en| === k). (4-330)
Y ay
(V3 + 1)<y—°) -1 °
4.5.11 Result form = 6
If m = 6, Eq. (4-101) is
1
3
1
Lot g, (4-331)
1-t
(_l—>l/n
yO
and Eq. (4-100) is
1
(EL_) /n
yO
1-x 1/n t3
—x =y, at. (4-332)
6
1-t
1/n

Because Eqs. (4-102) through (4-104) are, if m = 6,

1 _ 1+
;l" = 4 s (h-333)
1 _afl +1)
== (4-334)
a

and
v=3iA (4-335)

respectively, the plus sign has been used to write

out Eqs. (4-331) and (4-332) as n > 0 and v > O if

A > -1 in the case., The integrals appearing in
Eqs. (4-331) and (4-332) may be put into easily
computable forms with the formula

+3 S ST Y

at
2-1-/3 2-3+/4

1 -t
+ 3% By 1K), (4-336)
in which E is an incomplete elliptic integrel of
the second kind with the indicated argument and
modulus; the modulus is

F(y|k)

K= 2B 02 (B, (4-337)
and
t2_14+/3
cos § = —pemtm—T, for 0 < ¢ < w. (4-338)
tc -1-/3

Through the utilization of Eq. (L-336), it is
found that Eq. (4-331) provides

1 - ( 3 - l) F(
—_— = _1717' v_|k) - Fly, |x)
ay](;/n 2.3 [ ol ll l

+ 4By 1) - ECuy )]

+ s (L-339)

wherein,
cos Wl =-1 (4-340)
and
1 2
() -2e 5
cos y_ = , (4-341)

(yz%;) -1-

as the transcendental equation for the value, Yo»
of the solution of Eg. (l4-1) at x = 0. Because
the range of the arguments of elliptic integrals
may be extended by the formulae,

E(mr + ¢|k) = 2nE + E(¢ k), (4-3k2)
where E is the complete elliptic integral of the
second kind, and

F(mnw + ¢ |k) = 2nK + F(¢|k), (4-343)
where K is the complete elliptical integral of the
first kind, we have for use in simplifying Eq.
(k-339),
F(¥y [x)

Fn - ¢, [k) = 2K = F(¢, [k) = 2, (k-3L4)

E(y, |x)

E(n - ¢, [k) = 2B - E(¢, |k) = 2E, (L-3L5)
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Fl,|k) = Flx - ¢_|k) = 2 - Flp_|x), (4-346)
and

E(y,|k) = E(x - ¢ |k) = 28 ~ E( |K). (4-3b7)

In Eqs. (4-34%) and (k-345), ¢; = 0, and in Egs.
(4-346) and (L4-3LT)

1
1-443- (yI7E)
cos ¢ = 9 5 (4-348)
1
1 -/3+ (yi/n)
Upon introducing Eqs. (4-34k4) through (L4-347) into
Eq. (4-339), we obtain the relation

(537)
1/n
L n -V + 3270

&0e _;_)
(yi/n -1-73

- Slﬁiél—%l F(#OIK{]. (4-349)

2.3t/

E(¢°lk)

The right-hand side of Eq. (4-349) is plotted imn
1/n
o -
be a monotonically increasing function, so that Eq.

Fig. 8 as a function of y The curve is seen to
(4-349) has only a single root for y,, the value of
the solution of Eq. (4~1) at x = 0 for each value
of a. This may be contrasted with previous cases
in which a was restricted by the inequality,
@ 5 Gpaxe

When y_ is the root of Eq. (4-3k49), it is
found that Eq. (4-332) reduces to

T T T T T T T T T T T T
1.0 .
*
< 081 -
"
€T -
o .
uJOBP
304 =
]
c F i
024 .
(o) AN VY NS WO HA NN MRS N SN SN NS SN SN N N
10 1.2 1.4 1.6 1.8 20 2.2 24 25
1/n
%

Fig. 8. Graph for determining the root of Eq.
(4-349).

3k

1
3
x =a yi/n = at. (L-350)
11 - t3
1
(I_) /n
yO
With Eq. (L-336), this first becomes
X (/3 -1) [F(
= v]k) - F(y,|x)]
‘yi/n 2-3l/h l ll

+ 3th (E(#, k) - E(v|x)]

- (3)
AR

(4-351)

in which *l = 7, k is the modulus given in Eq.
(L-337), and

2/n
(o) -2*7
Yo
cos § = 57n . (4-352)
(1—) -1~V
Yo
Now let ¢ = w - ¢ and note that
F(y, k) = 2K, (4-353)
E(y, |k) = 2E, (k-354)

Fly|k) = F(x - ¢|k) = 2k - F(¢[k), (k-355)
and

E(yp|k) = E(v - ¢]|k) = 2E - E(¢]k). (4-356)
Then, it may be observed that Eq. (4-351) simplifies
to

()
X Yo 1/k
7 57n + 37 EGelx)
Yo (5—) -1-17
[o]
-3 1/1) Flg k), (4-35T)
2.3
wherein
2/n
Y
(/3 - 1)(;9) +1
cos ¢ = 5/n . (4-358)

3+ () -1

To sum up, Eq. (4-357) is the solution of Eq. (k-1)
when v = (1+A)/2, A > =1, 0 < x <1, 1 2y <y,
y'(0) = 0, y(1) = 1, the value of n is from Eq.
(4-333), the value of a is from Eq. (4-334) and Yo
is the root of Eq. (4-349).
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4.5.12 Result for m = 4
When m = L, the following relations are valid:

1 _ 142 _
el aa (4-359)
Lé_=%(l + 1), (4-360)
a
and
v=3ig A (4-361)

Under the assumption that A > -1, so that v > 0,
n >0, and a is a real number, Eq. {4-101) now pro-

vides

l = ——————— -
;' =y dt. (4-362)

° 1 -t

)"

o
The transcendental equation for the value, Yoo of
the solution of Eq. (4-1) at x = 0 which comes out
of Eq. (4-362) is found to be

2= M ateg ) - 3 rte, 0] (4-363)
in which
cos ¢, = y;l/“, (4-364)
and the modulus of the elliptic integrals is given
by
k = sin (w/4). {4-365)
The right~hand side of Eq./(h-363) is plotted in
1l/n

Fig. 9 as & function of y , and the curve is seen

o

R.H.S. OF Eq (4-363)
o o
S ]

02

o] It 1 1

1 1 1 !
10 1.2 1.4 1.6 .8 2.0 22 24 26

d/n

Fig. 9. Graph for determining the root of Eq.
(L-363).

to be monotonically increasing. This fact indi-~
cates that Eq. (4-363) has only a single root for
each value of o, so that all values of o are per-
mitted.

When y_ 1is the root of Eq. (4-363), the solu-
tion of Eq. (b-1) that arises from Eq. (4-100) is

1
x=ayt/n -—ta—dt, (1-366)
° VI -t
1/n
(%)

which reduces directly into the form,
x=ay/® B IEGK) - SRR, (4-367)

with the modulus given in Eq. (4-365) and
1/n
cos ¢ (1) . (4-368)

Yo
The result contained in Eq. (4-367) is the solu-
tion of Eq. (4-1) subject to the above stated
conditions of the present case.
4.5.13 Result for m = 3

Ifm = 3, then

L2242, (4-369)
n 5
1 _ ko \
SRR TACREL (4-370)
and
veit A (4=371)

When A > -1, then n > 0 and v > 0, and Eqs. (4-101)
and (4-100) yield

1
3
1 1
= yo/n -3-—5 at, (L-372)
l-t
6"
yo
as the transcendental equation for Yo» and
1
3
t
x=ayy/® | a, (4-373)
l-t
1/n
(v3)
Yo

as the desired solution of Eq. (4-1). Let t = 2

in both of these last two relations, so that they

become
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N
1 1/n 1
Loy | g, (4-37)
l1-7
)"
Yo
and
1
N
x =20 yt/? | o ar. (4-375)
Vl - TE
1/2n
¥
¥
(%)

The reduction of Egs. (4-3T4) and (4-375) to easily
computable forms may be done through the utiliza-

tion of the formula

__13___ dr = (1 - /E)T 1 -1 . (x + /3) F(Wlk)
20(/3 - D2 + 1] u-3t/b

l-1
3l/h
- S5— E(y|k), (4-376)
in which the elliptic integrals have the modulus,
k = sin (7/12), (4-377)
and
L+ /AE-1
cos ¢ = , for 0 < ¢ <=, (4-378)

(/? -1)"+12
With Egs. (4-376) and (4-378), the result that
comes out of Eq. (4-3T4) is found to be

-1 -3
1, S o 2 |1 - /n+3l/l‘E( %)
a yO (E"l) y;l/n*_l 4'O
(3 +1)
- -;T;i7i— F(¢°|k)], (4-379)
wherein
1+ /3- yi/“
cos y, = (4-380)

B-1+ yi/n

The right-hand side of Eq. (4-379) is plotted in
Fig. 10 as a function of yi/ B and the fact that
the curve is monotonically increasing indicates
that Eq. (4-379) has only a single root for each
value of a.
allowed.

The solution of Eq. (4-1) provided by Eqs.
(k-375) and (L-376) is

Consequently, all vealues of a are
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Fig. 10. Graph for determining the root of Eq.
(4-379)
y_l/2n ¥y n
/3 -1 1 -
v )
/n
&y, (/3 - 1)(L)l/" +1
Yo
1/4 1+ /3
+ 3777 E(y|x) - ﬁg’-F(#lk), (4-381)
2.3t
in which
1/n
a+ ML) -1
o
cos ¥ = /n . , (h-382)
(3 - 1)(1_) +1

yO

The solution given in Eq. (4-381) is valid for
A > -1 and subject to the relations of Eqs. (4-369)
through (4-371).
4.5.14 Results for m = 2

In the m = 2 case, Eq. (4-104) implies that
v = 0 for all values of A. The solution of Eq.
(4-1) for the v = 0 and A = -1 case has been dis-
cussed in Sec. U4.5.7.
consider two further solutions of Eq. (L4-1), namely,
(1) that when v = 0 and A > -1, and (2) that when
v =0and A < -1, Also, wvhen m = 2, Eqs. (k-102)
and (4-103) become

Accordingly, we shall now

1_1+2
el (4-383)
and
1 o1
.3.5(1 + 1), (L-384)
a
respectively.

Now, if A > =1, then n > 0 and Eq. (4-100)

gives




l-x _ t

1/n
&Y 1l - t2

(4-385)

so that

box. oL __ /1. (1—) ’ (4-386)
8yi/n yC2J/n Y,

Also, we obtain from Eq. (4~101l) the relation

D S A

l/n l 2/nQ ("""387)
ay, vy

from which
2 n/2
1
v, = <;2“—> (4-388)
a

is the value of the solution of Eq. (4-1) at x = 0
Substituting Eq. (4-388) into Eq.
(4-386) and simplifying produces

2

o\
1l - x

y = <l + "':;5——> ’

which, in view of Eqs. (4-383) and (4-384), reduces
to

for this case.

(L-389)

X
] S (4-390)

vy = [1 +$ 00 - )
This last relation is the solution of Eq. (4-1) when
v = 0 and A > -1 such that y'(0) = 0 and y{1) = 1,
and there is no restriction of a maximum allowed
value of o in it.

If we now assume that A < -1, then n < 0, and
the solution of Eq. (4-1) that comes out of Egq.
(4-100) is

2/n
1l -x Y 1
=X . S-S (a-301)
ayi/n V/ (yo) yg/n
and Eq. (4-101) reduces to
2/n 1
vl =1+ (4-392)
a
Because A < -1, we write this as
P s1-% -0, (4-393)

in view of Eq. (4-384), and, therefore, with Eq.

(4-383), it is found that

y = 2 (4-394)

o 1
[1 -3 (I - l)ITﬂ:I

is the value of the solution of Eq. (l-1l) at x = 0
in this case. To ensure & finite, real solution at
x = 0, Eq. (4-394) indicates that @ must satisfy

the inequality,
a < . (4-395)
Introducing Eq. (4-39%) into Eq. (4-386) leads
to the result
y = . T, (4-396)
[1-2 (] - v -2 DT

vhich provides the solution of Eq. (4-1) when v = O,
A< -1, y'(0) = 0, y(1) = 1, and the inequality of
Eq. {4-395) is satisfied.

4.6 Summary of Solutions of y

+ axv =0

The 26 solutions that have been obtaired for

Ayt e ayrl(y)?

the nonlinear, two-point boundary value problem
defined by Eq. (4-1) and the two boundary condi-
tions, y'(0) = 0 and y(1) = 1, are summarized in
Table IV in accordence with the value of m as de-
fined in Eq. (4-10k). 1In the second column of this
table, the relation between A and v is given for
the corresponding value of m. The third column
gives the value of ® ax such thet a solution of
Eq. (4-1) will exist. When A < -1, then, for a
given value of A, the value of o ax decreases as
the value of v increases, which is a trend that is
intuitively apparent. For a given value of A such
that A > -1, the value of & ax increases as the
value of v decreases, which is also to be expected
on the basis of physicel insight. For each combina-
tion of values of A and v that satisfy the relation
given in the second column of Table IV, the solu-
tion of Eq. {b-1), when it exists, is given by the
relation whose equation number is shown in the
fourth column of Table IV. Illustrative combina-
tions of the values of A and v are displayed in
Table V, which may be extended to the right
through higher values of Vv indefinitely by inspec-

tion.
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Table IV. SUMMARY OF SOLUTIONS OBTAINED FOR y'y" + Ay* >(y')? + ay¥ = 0 WITH THE BOUNDARY

CONDITIONS, y'(0) = 0 and y{1) = 1

Solution
Value Relation between . Solution at x =0
of m A and v Value of “max in Eq. in Egq.
-1 .
1 v = 42 5 @ Sa, = Al 881’ A< -1 (4-119) (L-118)
% v =2 > L a <o, = -l%i—a}iil-, A< -1 (4-134) (4-135)
3 v=2 (Al - 1) Spax & TR A < <L (4-139) (4-140)
£ v=2 (] -1) Spax ¥ TorLo A < -1 (4-1kk) (4-145)
1 _5 _ + _0.7k0 _ _ -
3 v=£ (] - 1) %max = X[ = 1° A<l (4-1L9) (4-150)
£ v =2 (] -1) o T%[:%L’ A< -1 (k-15b) (4-155)
0 ve Al -1, ae-1 | e 2280 . (4-166) (4-168)
0 ve~(1+2),2>-1 None (4-164) (4-165)
1 - s 0.50
-1 v=%(]r] - 1) ey = ms_—"l A< -l (4-233) (4-235)
2 .k % - 0.ho2
-2 ve=3 (] -1 Cpax * TR oo A < -1 (4-228) (4-229)
1 . 0.4
-3 v = fst (Ja] - 1) oy * W—PT A< -l (4-223) (4-224)
-2 = - + _0.450
£ v=3(]a] - 1) oy = W_Ll A<l (4-218) (4-219)
1 . 0.41
-3 v=2 (] - 1) o X TR A < -1 (4-213) (4-214)
-% v=2([]x] -1) G <a, = .rg_lé_&l A<=l (4-208) (4-209)
-1 v=3([a] -1) o<a, =Tl A<l | (b-257) (4-252)
-2 A=-1for all v oo, =28 rrvso0 (4-268) (4-262)
except v =0 v
- A=-land@vs=0 None (4-280) (4-280)
-3 v=5(14+2) a<a = 0_-1.9ﬁ, A > =1 (L-290) (4-292)
max 1+
- V3 (1) PRI ER - - N (4-304) (4-306)
-6 v=2(1+121) a<a, = p'fﬁoi, A > =1 (4-329) (k-322)
- v=1l+ A, A #F -1 None (4-85) (4-85)
6 veild g None (4-357) (4-3k9)
L v = 142 ; X’ A > =1 None (4-367) (!“363)
3 veil Aas None (4-381) (4-379)
2 v=0and A > -1 None (4-390) (4-388)
2 v=0andA<-l a < ST (4-396) (k-394)

oo




Table V. ILLUSTRATIVE VALUES OF A AND v FOR THE SOLUTIONS OF EQ. (&4-1)

Value
of m v =1 v=2 v=3 v=yl
04 1 A= -b A= =T A = -10 A = =13
2/3 A=-3 A= -5 A= -7 A =-9
3
~ 1/2 A= =8/3 A = «13/3 A= =6 A = 23/3
2/5 A= -5/2 A= b A= -11/2 A= -7
® 1/3 A = -12/5 A= -19/5 A= -26/5 A = -33/5
2/1 A= =7/3 A= -11/3 A= =5 A = -19/3
0 A= =2 A= =3 A= =4 A= ~5
-1/k A = -15/8 A = -22/8 A = -29/8 A = -36/8
-2/7 A= =T/k A = -10/4 A = =13/4 A= =b
-1/3 A= =12/7 A= -17/7 A= =22/7 A= =27/7
-2/5 A = -5/3 A= -7/3 A= -3 A= -11/3
-1/2 X = -8/5 A = -11/5 X = =14/5 A = -17/5
-2/3 A= =3/2 A= =2 X = =5/2 A= =3
-1 A= -b/3 A = -5/3 A= -2 x=-7/3
-2 A =-1 A= -1 A =-1 A= -1
-3 A= =L/5 A = -3/5 A= -2/5 A =-1/5
-k X = -2/3 A= =1/3 A=0 A =1/3
-6 A= =1/2 A=0 A =1/2 A =1
Vv o= 1+A A =0 A =1 A =2 A=
6 A =1 A =3 A= A=
b A =2 A =5 A= A =11
3 A=} A =9 A = 1h A =19
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