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SUMMARY OF RADIATION TRANSPORT AND RADIATION HYDRODYNAMICS

by

B. R. Wienke

ABSTRACT

The principles of radiative dynamics are summarized and associ-
ated physical considerations and approximations are discussed briefly.
The classical equations are presented, relativistic effects added and
some conventional assumptions and schemes treated.

I. INTRODUCT ION

Hydrodynamics and radiative transport are of-
ten coupled in analyses of physical problems. Ef-
fects of the radiation field are reflected in the
hydrodynamic momentum and energy balances when pho-
tons interact with the fluid material. Hydrodynamic
and thermodynamic factors determine the velocity and
temperature of a fluid, which in turn affect the ra-
diative source function, absorption coefficient and
scattering kernel in the radiation transport equa-
tion. Relativistic corrections to the classical ra-
diative interaction equations (radiation transport
+ radiation hydrodynamics) must be considered for
large fluid velocities.

-6

Ample considerationl has been given to radi-

ation dynamics. It is the purpose of this work to
collect and describe the fundamentals and underlying
principles of radiation transport and radiation hy-
Section II
Section IXI con-
siders relativistic effects,and Sec. IV deals with

drodynamics in an abbreviated fashion.
1lists the fundamental equations.

some standard approximation procedures.

II. RADTATION DYNAMICS

The defining equations of radiative dynamics
have been developed in a number of references.l-
One can summarize them in some inertial frame to

which all quantities are referred and measured.

A. Radiation Transport

The radiative transport equation treats photons
ag point particles of frequency v moving at the speed
of light ¢ in direction 5 with distribution function
f(;,v,ﬁ,t) and specific intensity I

IE,v,8,t) = hevE(F,v,0,t) (2.1)

and takes the form
191
c

TS +08 - VI + 081 - fdv'dﬁ' %r u;I'(l + c21/2h\)3)

_fdv'dﬂ'psl(l + 21 /2my '3

+ S + c21/2h°)
(2.2)

for the source intensity S, absorption and scatter-
ing cross sections Oqs os,and scattering kernels Hgs

u; defined in a uniform material,

S(T,v.8,t)
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oa(v,ﬁ)

o = os(v,a)



Wy = u‘(v,is-vv',a')

W o u'(v',ﬁ'w,ﬁ) (2.3)
and

o = fdv'dn'ua(v,ﬁw',ﬁ')

0! = fd\unu.(v',ﬁ'w,ﬁ) . (2.4)

Terms involving czI/2hv3 and czl'/2hv'3 are of
quantum origin and represent enhancement of photon
scattering in the presence of other photons in the
final state.* The integral term with plus sign in
Eq. (2.2) represents in-scattering (v',§'+v.§) wvhile
the integral term with minus sign denotes out-scat-
tering (V,ﬁ*V',ﬁ'). The presence of the induced
scattering terms in the integro-differential Boltz-
mann equation further renders the equation quadra-
tic in I.

The source S usually denotes photons arising
from spontaneous atomic emission7 and 1is treated in
the local thermodynamic equilibrium (LTE)

*If the probability for photon scattering into some
final state is P and the number of photons already
present in that final state is n, then the overall
probability of scattering a photon into the final
state is given by P',

P'=P(1l+n) .

By the uncertainty principle, we know that the phase
space for bosons is constrained in measurement by

Apat = n372
3

and consequently, using d"p = (h/c)avzdvdﬂ, I=
hevf,

n= f £ dOrdvdg = c21/20v° .
Therefore,
P' = P(L + c2I/2hv)

and the second term in P' is referred to as the in-
duced scattering piece. See, for instance, R. P.
Feynman, R. B, Leighton and M. Sands, The Feynman
Lectureg on Physics IIT (Addison-Wesley Publishing
Co., Reading, 1966); J. D. Bjorken and S. D. Drell,
Relativistic Quantum Fields (McGraw-Hill Book Co.,
New York, 1965).

approximation,*

S= xan (2.5)
with

K= oa(l - e-hv/kT)

3
Zh; (ehv/kT _ 4y-1

c

B= 1) (2.6)

for T the temperature in absolute units., In Eq.
(2.6) the exponential term in Ka measures the effec~
tive decrease in absorption due to induced emigsion.
At complete thermodynamic equilibrium (CTE - no
space or time dependence), the radiation field I
must equal the Planck blackbody distribution B and,
consequently, the number of photons in-scattered
must equal the number out-scattered, yielding a de-

tailed balance condition for the scattering kernels,

a+ cZBIZhv3)u;B'lv' = (1 + cZB'IZhv'a)u.B/v .
2.7)
The Compton scattering kernels appearing in

Eqs. (2.2) and (2.3) take the general forn,8’9

b8 > ) = S’ + v - € -v)
8

l_naz mv
2 tyt .2y
e(e'v' - q ")
2 2 2
< n _ o
e'v' - E,. ;l e'v - a . 31 )

*The local thermodynamic equilibrium approximation
assumes that the interaction of the radiation field
with the material does not affect, or alter, the
local thermodynamic properties of the material.




+c'vl_al.;l s'v_;.;'
+ (2.8)
ey - "; . 3- e'v' - i" . ;v ’
subject to three-momentum conservation
P=3'+3' -3 2.9)

where 3',3 denote the incident and outgoing photon
momenta, ;',; the incident and outgoing electron
momenta and €', the incident and outgoing electron
energy, with n the number demsity of target elec~-
trons and the electron radius a defined in terms of
the electron rest mass m and charge e,

2
a= E-E = 2.8 x 10-13 cm .

me

(2.10)

If we assign some arbitrary distribution of elec~-
trons £(a) in the particular frame, the effective
scattering kernel ﬁs is simply obtained by folding
u, over f(a),

B8 > v B) = fdatu o1 B > vd) L 2D

where da is symbolic for any convenient integrati&n
parameter & chosen to describe the distribution.*
In the case of stationary electron targets, ;' =0,
€' = m, Eq. (2.8) reduces to the well-known Klein-
Nishina relationship,lo

us(v',ﬁ' > v,0) = G(cos 6 -1- %T-+ %)

. % naz(:?i)[l + cos2 -]

+ (1 - cos e)2 3§:-] (2.12)

m

with ' + q = qq' cos 6.

*One demands normalization to unity,
ff(a)da -1

and, of course, some quantitative relationship be-

-»> -> '
tween a, m, p, €, q, v, and v',

The transport equation [Eq. (2.2)] describes
photons moving in a vacuum (index of refraction = 1)
and does not account for the two polarization states
of light quanta.
sibly trace the wave behavior of light.

Purthermore, Eq. (2.2) cannot pos-
Detailed
attention to these points, however, has been given

5,7,11-13 and modifications to the trans-

by others
port equation have been suggested.

B. Radiation Hydrodynamics

The term radiation hydrodynamics implies inclu-
sion of a radiation field in the hydrodynamic equa-
tions of a fluid.

esgentially conservation statements for particle,

The hydrodynamic equations are

momentum and energy in a differential volume element
in space. For significant radiation fields, contri-
butions from the radiative momentum and energy must
be included in those balances. Furthermore, for
large fluid velocities, relativistic correctiomns,

and the attendant Lorentz transformation properties
of the radiative and hydrodynamical quantities should
be considered. The nonrelativistic equations for
an ideal, compressible fluid interacting with a ra-
diation fie1g?6»14-16

The radiative energy density Er, radiative

are easily detailed.

energy flux fr’ and radiative momentum flux P° are
defined bi successive moments of I over 3 (called
E, ? and P),

-t f dedfiT = ¢t f dvE
- f dvdal = f avF

¥ . ¢t f avdadir = 71 f dv% . (2.13)
These are added to the corresponding material terms
in the balance equations. Aésuming that the macro-
scopic velocity of the fluid is ;, denoting the mass
density, excitation energy density* and pressure of
the material Pos to and P, and admitting a source of
heat W for the fluid, the radiation hydrodynamic
balances consequently take the form in the fixed in-

ertial frame (Eulerian representation)

*The excitation energy density to is all energy
dengity in excess of the rest mass energy density
p _c4,

)




8T°.+$.pu-0

D o+ T 4T + T+ =0

ot ] po o

a—-(— u+t +E)+V( wae +p)
at 2 %o Po o t Py
T4 T e . (2.14)

If one introduces the convective derivative

(2.15)

Eqs. (2.14) can be recast (Lagrangian representa-
tion)

-1

Py Dpo - v cu=0

114

D -1 2r, 2 >

= +
o DE (u + po F/c) + Vpo

3 -+
P @ -at/e2) =0

D 1 2 ~1

°, e G U + p t, + p E Ty +

V.@rs pu-E W =W . (2.16)
Equations (2.14) are conservative in a fixed volume
element in the inertial frame, while Eqa. (2.16)
are conservative in a volume element moving with
velocity : through the frame. In the two sets,
Eqs. (2.14) and (2.16), the three equations detail
congervation of particles, momentum and energy,
respectively, That D/Dt represents the time rate
of change in the moving frame is noted from the

relationship

3 DQ _3_
fd ro 235 f o, (2.17)
v v

with Q any arbitrary quaantity and V a moving volume
whose boundary points move with local fluid velocity

>
u.

IIY. LORENTZ TRANSFORMATIONS AND RELATIVISTIC EFFECTS

14 L defined on a

four-dimensional space-time manifold is written to

The Lorentz transformation

connect frames £ and Eo moving with relative veloc-

ity v along mutual z axes,

E=LE » (3.1)
with

£ = (ct,x,7,2) = (ct,r)

o = (Ct X T,z ) = (et T ) (3.2)

Xy ¥y Zy X5 Yo and z, space coordinates, t and to
time coordinates, and

cosh¢ O O ~sinh ¢
0 1 O 0
L= (3‘3)
0 0 1 0
-ginh ¢ 0 0 cosh ¢

for
tanh ¢ = 8 = v/¢
cosh ¢ =y = (1 - 82)-;i . (3.4)

The frame £ moves with speed v with respect to Eo.
The metric tensor on the manifold is defined

o
1
o
o
o

g = » (3.5)
0 0 -1 0
0 0 0 -1
with associated invariant inner product,
. - i’ - - T . =
€& Eig Ej e, ~T o X . (3.6)

The equations of physics are invariant under
Lorentz transformation, In other words, the equa-
tions are form invariant in arbitrary, nonacceler-
ated frames provided all quantities appearing in

the equations are defined and are measured in the



frame. In many applications, quantities are known

in one Lorentz frame. It is then necessary to trans-
form both the quantities and their explicit variables
to the Lorentz frame of interest. In radiative
transfer work, the material source B, absorption co-
efficient 08, and electron density Do are described
in the fluid rest frame. The corresponding labora-
tory quantities are then obtained following Lorentz
transformation.

A rule of thumb for determining whether perti-
nent quantities need be Lorentz transformed, or can

be treated classically, is roughly furnished by the

categorization,
vie € 1/10 (classical region)
vlie > 1/10 (relativistic region)
v/e > 99/100 (extreme relativistic region) .

(3.7

Use of the classical expressions for momentum and
energy in the case v/c < 1/10 results in less than
1% error from the fully relativistic predictions.
Quantities transforming in powers y? might then be
expected to deviate less than nX from the relativis-
tic prediction at v/c = 1/10, using a linear extrap-
olation, At the extreme relativistic limit v/c >
99/100, the rest energy may be safely neglected to
1% in the calculation.

Assuming the target material moves with veloc-
ity ; and denoting the material rest frame with a
subscript zero, as before, we can list the specific
Lorentz transformation properties of various quanti-
ties after defining

A= - uiehHE
D = (-8 - ufec)

D' = @ -8 . 3a/) . (3.8)

Noting that the momentum distribution function for
both photons and electrons is a Lorentz invariant

(e denotes electrons, Y denotes photons), that is,

e,y 3 .3 ey> . .3 .3
v '(p) dpdx = ¢°’ (po)d pod r, (3.9)
which implies
WY@ = TR (3.10)

it can be shown that the various terms in the trans-

4,5 a

port equation Lorentz transform 8,

v = (AD)-l\:°
v' = (AD")" v,
) [, + A + 1)(AD + 1)d/e)

g = (AD’)_I[E‘; +A(A + 1) (AD' + 1)u/c]

3 . v
Bto + 5o vo

+8 .V = (D)

ol

-3
I (AD) I0
L - 1y=310
I (AD') I°
~2
S = (AD) S,

g = (AD)oao

u = @) oy

ag' = (AD')zdﬂ;
2
dQ = (AD) an_

1-8- 8 =woha-3 - &) (3.11)
Substituting Eq. (3.11) into Eq. (2.2) yields the
transport equation in the zero frame (identical to
Bq. (2.2) with subscripts zero on all quantities).
Relativistic hydrodynamics is concerned with
transformation of fluid rest frame quantities to the
frame in which the fluid equations are posed and
defined.* In radiative transfer work, effects of a
moving medium are seen directly in changes in the

electron density and subsequently in the material

*We are not interested in transformation of the
hydrodynamic equations from the laboratory frame
to any other arbitrary Lorentz frame, A priori,
hydrodynamics for an incompressible fluid pre-
supposes two Lorentz frames (spectator and fluid
frame). Discussion of relativistic effects is
confined to these two frames. Of course, Lorentz
transformation of the hydrodynamic equations to
another inertial frame (a third frame) is possible,
and the usual form invariance of the equations is
the expected result.



In the
cage of a compressible fluid (V . K.f 0), an addi-

tional complication arises since the fluid frame is

momentum and energy densities and fluxes.

_not strictly a Lorentz frame. However, this fact
only causes trouble in the attempted Lorentz trans-~
formation of derivative operators (e.g., time deriv-
atives, streaming terms). Smooth material functions
such as particle, energy and momentum densities and
fluxes are thought to evolve continuously and infin-
itesimally from their local fluid frames.17

ingly then, the various material densities and fluxes

Accord-

as viewed in the Lorentz frame through which the ma-
terial moves with velocity U are given in terms of
Ultimately, the relativistic hydrody-

po’ to’ p°° 45
’” in the fixed Euler-

namic equations take the form

ian picture

9 >
'a—t'(/\%) +V. Apou-O

3,2 2 2.+ 3r, 2
5¢ [A (p°+t:°/c +p /eN)u + F/e”] +Vp°

-
+ Vo tnt_ + e fe? + p/ehyus + ¥ =0

3 a2 2 .

3% A (poc + to + po) = Pg + E’]

Ja2 2 + 3T

+ Vela (g’ +t +p)u+F] =W
(3.12)

or, in the Lagrangian representation,

D_

Apo Dt

-1
(o) " -V :u=0

Ao

2 2 1 3
D_ A (ooc + to + po)u +F
o Dt

czAD
o

-5
+¥ - ST - 2/ -0

2 2 T
ho D Apoc (A-1) + A (to + po) - P, + K
o Dt

Ap°

+ ¥ o[F' + (t, - n‘)”&] -W ., (3.13)

In the limit ¢ + =, A+ 1, (A - 1) + % w?/c? in the
material terms, Eqs. (3.12) and (3.13) reduce to

their nonrelativistic expressions, Eq. (2.14) and
(2.16), respectively. Terms appearing on the right
of 3/3t in Eqs. (3.12) and (3.13) are the total
particle, momentum and energy densities as measured
in the Lorentz frame. The corresponding total par-
ticle, momentum and energy fluxes follow [ in the
above same equations.

The radiative transfer equation can also be
posed in the.Lagrangian picture by substituting the
convective derivative, Eq. (2.15), in the intensity
time derivative and using the continuity equation,

Eq. (2.16), The left-hand side of Eq. (2.2) yields

- -*>
131 . 2D (1 3. _u
13+ 2.V 2 ¢7n + @ =1)
(3.14)
with p = Apo .

IV. APPROXIMATIONS

The equations given in the preceding sections
are exact within the framework of special relativity
and the classical description of the hydrodynamics
of an ideal fluid and the transport of radiative
energy interacting with fluid. Further implementa-
tion schemes have been employed in effecting solu-
tions.

In the transport equation, Eq. (2.2), the ab-
sorption coefficient o, and source function S =
KaB are obtained from the corresponding fluid frame
quantities using Eqs. (3.11)., The prescription em-
ployed is to expand the source and absorption terms
in powers of u/c and work to low order. It is evi-
dent that the source-absorption quantity can be re-

written with the aid of Eqs. (2.5), (2.6) and (3.11),
2 3
S(1 + ¢“I/2hv7) - oaI - Ka(B - 1)

3.3
= ADx_ (B /AD” - 1)
4.1

which, to order u/c, gives in a power series expan-

sion
ax (8 /%% -1 X - - Fe) [x“(v)
oK

+-3v;‘°(v°-v)+...] x

[

v =y
(4]



1+ 3 - B/e) [Bo(v)

ano
35 (Vo -v) + ...]—I 4.2)
o
v =y .
[
The power series in Kao and Bo effectively changes
to V as required. Using the Dopp-

ler shift relationship from Eqs. (3.11),

variable from vo

v, - ADv , (4.3)
it follows to the same order in u/c,
v ~vyYQ- u - ﬁlc)v -~ V= -v; . E/C 2 (4.4)

[+]

which allows elimination of the frequency shift
variables in Eq. (4.2). Eéuations 4.1, (4.2) and
(4.4) can then be substituted into Eq. (2.2) with,
from Eq. (2.6),

ano hy
PEl T M) B M) o T,

kT - ¢
VoV
o (4.5)

Treatments of 9k /3v l
ao’ ofv_=v
18,19 °

are model and data de-~

pendent and vary.
Additionally, the transport equation can be
treated in a diffusion-like &mpt'ox:l.xlxat:ion.20-22
Multiplying Eq. (2.2) by 1 and & and integrating
over d generates the zeroth and first moment equa-
tions.

sionzo

A coupled statement is the two term expan-—
of the intensity (Eddington approximation)*
1

3
I--—E+Z-;§o? .

= (4.6)

The coupled equations which result upon successive
integrations over dQ take form, recalling Egs.
(2.13) and expanding the scattering kernels in par-
tial waves,

- '
—E+V°§-x(awn-n)-oz+[dv'f—.u°n'
a 8 v 8

0=
e

*The Eddington approximation is also written in

generality V. = VfE with f some function approach-
ing 1/3 in the diffusion limit and 1 in the stream-
ing limit,

vy v
1of  loan Javr 2, 3
3ot 5 VE (c, + o )F + [av T""s?
2 u1' u1
[ 8 8
+=— E [ dv' - — ¥
8rh .[ <v2v. v >
o' o
c YA u '
+ 5T F fdv s E
2, '3
Vv v
.7
when, 402 = 2xdz,
l -
up = 2n f dzu P (2) . (4.8)
In the case of anisotropic elastic scattering23
uh =t - v .9

with the various al constants, the induced scattering

terms in Eqs. (4.7) vanish. Requiring Fick's lawza
¥ = -piE (4.10)

yields the diffusion equation with source from the

first of Eqs. (4.7), while the second of Eqs. (4.7)
defines the diffusion coefficient,?’

~ 1,-1
D= (3;:a + 3°s - 3a7) . (4.11)

Asymptotic diffusion theory26 employs the first of
Eqs. (4.7), but uses

D~ _§_~2_:L£L. (4.12)
a (Ka + Os)
with the scattering probability s defined,
08
8 = ————— (4.13)
(xa + os)
and
1 l1+a
E;-nn 1= =8 . (4.14)



7,27

Equilibrium di{ffusion theory treats the materi-

al as being in complete thermodynamic equilibrium

(B = I), and uses,

1,-1 38

f dv(3k_ + 3o - 3a =

)

D~

(4.15)
9B
f"“ﬁ

with the same source function B given in Eq. (2.6).
Other variations of the above approaches are also
employed.z8

In the Lagrangian picture, the left-hand sides
of Eqs. (4.7) become (p = Apo),

13E cFafD 1 @F-u
A R e S A ¢ E)
1af (13 pD -1 1y . uF
cRTIEERp TP 3iE-T .

(4.16)

Use of the Lagrangian picture in the transport equa-
tion allows one to incorporate effects of material

changes directly and permits coupling to the La-

grangian hydrodynamical equations.29’30
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