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SUMMARY OF RADIATION TRANSPORT AND RADIATION

by

B. R. Wienke

ABSTRACT

HYDRODYNAMICS

The principles of radiative dynam.iceare summarized and associ-
ated physical considerationsand approximationsare discussed briefly.
The classical equations are presented, relativisticeffects added and
some conventio~l assumptio~ and schemes treated.

INTRODUCTION

Hydrodynamicsand radiative transportare of-

coupled in analyses of physical problems. Ef-

fects of the radiation field are reflected in the

hydrodynamicmomentum and energy balances when pho-

tons interact with the fluid material. Hydrodynamic

and thermodynamicfactors determine the velocity and

temperatureof a fluid, which in turn affect the ra-

diative source function,absorption coefficientand

scatteringkernel in the radiation transport equa-

tion. Relativisticcorrections to the classical ra-

diative interactionequatfons (radiationtransport

+ radiation hydrodynamics)must be considered for

large fluid velocities.

Ample considerationl-6has been given to radi-

ation dyoamica. It is the purpose of this work to

collect and describe the fundamentalsand underlying

principles of radiation transport and radiatton hy-

drodynamics in an abbrwiated fashion. Section II

lists the fundamentalequations. Section 111 con-

siders rel.stiv%sticeffects,and Sec. IV deals with

some standard approximationprocedures.

11. RADIATION DYNAMICS

The defining equations of radiative dynamite

have been developed in a number of references.
1-6

One can summarize them in some inertial frame to

which all quantitiesare referred and measured.

A. Radiation Transport

The radiative tranaport equation treats photons

(2.1)

as point particles of frequency v moving at the speed

of light c i.ndirection ; with distribution function

f(;,v,~,t) and specific intensity I

I(;,v,fi,t) = hcvf(;,v,fi,t)

and takes the form

:::+t”&+uaI-J.— dv’dfl’:v:I’(1+ c21/2hv3)

J
- dv’dQ’p61(l+ c21’/2hv’3)

+ S(1 + c2112hv3)
(2.2)

for the source intensity S, absorption and scatter-

ing cross sections Ua, us,and scattering kernels ps,

~~ defined in a uniform materiel,

s = S(:,v,ii,t)

I’ - I(:,v’,fi’,t)

u 8a - Ua(v, )

us - Us(v,;)



us - UJv,ik’,m

v’ - P (V’, ?i’+v,i$
a s

and

am -
J
dv’dfl’~a(v,h’,?i’)

(2.3)

(2.4)

Terms involvingc21/2hv3 and c21’/2hv’
3
are of

quantum origin and repreeent enhancementof photon

scattering in the presence of other photons In the

final atate.* The integral term with plue aigo In

‘ ~’+v,fi)whileEq. (2.2) represents in-scattering (v ,

the integral tern with minus sign denotea out-ecat-

tering (v, bv’,fi’). Thepreaenceof the induced

scatteringterms in the Integro-differentialBoltz-

mann equation further renders the equation quadra-

tic in 1.

The source S usually denotes photona arising

from spontaneousatomic emission7 and ia treated in

the local thermodynamicequilibrium (LTE)

*If the probability for p~ton scattering into some
final atate ia P and the number of photons already
preeent in that final atate ia n, than the overall
probabilityof scatteringa photon into the final
state la given by P?,

P’=P(l+n) .

By the uncertainty principle,we know that the phase
space for boaons is constrained in measurement by

I@; ~h3/2

and consequently,using d3p = (h/c)3v2dvdfl,I -
hcvf,

n-
/ f d3rdvdQ - c2112hv3 .

Therefore,

P’ = P(l+c21/2hv3)

and the second term in P’ in referred to aa the in-
duced scatteringpiece. See, for inetance,R. P.
Feynmen, R. B. Leighton and M. Sands, The Feynman
Lecture~~phvaica .ZZZ (Mdfeon-wesl=~bliah~g
Co., Reading, 1966); J. D. Bjorken and S. D. Drell,
Relativistic Quantum Fields (McGraw-HillBook CO.,
New York, 1965).

2

approximation,*

S - KaB

with

K
-hvfkT,

- Ua(l - e
a

B = ~ (ehv/kT- 1)-1

(2.5)

(2.6)

for T the temperature %n abeolute units. In Eq.

(2.6) the exponentialterm in Kameaaures the effec-

tive decreeee in absorption due to induced emiaaion.

At complete thermodynamicequilibrium (CTE - no

space or time dependence),the radiation field I

must equal the Plenck blackbody distribution B and,

consequently,the number of photons in-scattered

must equal the number out-scattered,yielding ● de-

tailed balance condition for the scattering kernels,

(l+c2B/2hv3)p:B’/v’ = (l+c2B’/2hv’3)psB/v .

(2.7)

The Compton scatteringkernels appearing Ln

Eqs. (2.2) and (2.3) take the general form,8,9

~ (vi,fit+ Ji) - 6(E’ + v’ - c -v)
a

12

[

2
—m

mu
2

C(c’v’ - q 1““:’)
[( .2 2

m

E’v’ -3’”3’ C’V-1”3’

2

*The local thermodynamicequilibriumapproximation
aaaumes that the interactionof the radiation field
with the material does not affect, or alter, the
local thermodynamicproperties of the material.

.
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J
subject to three-mmentum consemation

(2.9)

where $’,$ denote the Incident and outgoing photon
‘1 +mmanta, p ,p the incident and outgoing electron

momenta and c’,cthe incident and outgoing electron

energy, with n the number density of target elec-

trons and the electron radiue a defined in terms of

the electron reet mass m and charge e,

a=$=2.8x10-13cm .
mc

(2.10)

If we aasign some arbitrary distributionof elec-

trons f(a) In the particular frame, the effective

scatteringkernel ;
s

ua over f(a),

iB almply obtained by folding

where da is aymbol%c for any convenient integration

parameter a chosen to describe the distribution.*

In the caae of stationaryelectron targeta, ~’ = o,

C’ =m, Eq. (2.8) reduces to the well-known Kl.ein-

Nishina relationship,
10

IIE(V’,fi’+V,it)=6(cos0 -1-~+:)

1 -2 m.-
2 ( )[

T1+COS%

+ (1 - cOS 8)2*
1

with~’ ● ~= qq’ coe 8.

*one dmnds nomlizatfon

J
f(a)da = 1

mJ

to unity,

(2.12)

and, of course, same quantitativerelationshipbe-

tween a, m, ~, c, ~, v, and v’.

The transport equation [Eq. (2.2)]describes

photona moving in a vacuum (index of refraction = 1)

and does not account for the two polarization states

of light quanta. Furthermore, Eq. (2.2) cannot pos-

sibly trace the wave behavior of light. Detailed

attention to these points, however, haa been given

by others
5,7,11-13

and modifications to the trane-

port equation have bean euggeatad.

B. Radiation Hydrodynamice

The term radiation hydrodynamicsimpllea inclu-

sion of a radiation field in the hydrodynamic equa-

tione of a fluid. The hydrodynamic equations are

essentiallyconservation statements for particle,

momentum and energy in a differentialvolume element

in apace. For significantradiation fialde, contri-

butions from the radiative momentum and energy muet

be included in thoee balancea. Furthermore, for

large fluid velocities, relativisticcorrections,

and the attendant Lorentz transformationpropertlea

of the radiative and hydrodynamicalquantities should

be considered. The nonralativistlcequatione for

an ideal, compressiblefluid interactingwith a ra-

diation field4-6’’4-16are easily detailed.

The radiatfve energy density Er, radiative
%

energy flux ~, and radiative momentum flux P are

defined b eucceaaivemomenta of I over
$

~ (called

E, $ and P),

Er-c
-1
f
dvdSII- C

J
‘1 dvE

J J~ = dvdfl~I= dv$

~-#~dvd$li%=#~d: . (2.13)

These are added to the correspondingmaterial terms

in the balance equationa. Assuming that the macro-

scopic velocity of the fluid is ;, denoting the msse

density, excitation energy density* and pressure of

the material O., to and PO and admitting a source of

haat W for the fluid, the radiation hydrodynamic

balances consequentlytake the form in the fixed in-

ertial frame (Eulerianrepreeentation)

*The excitation energy density to ie all energy
density %n excess of the rest maas energy density
POC2.



apo
+3 “ PO% = o

F

&Po:+*=/c2) +Fpo+ ?“boR +@) =0

& (+ POU2 + to + E=) + to (&i2 + to + Po)

.:++ .F=W . (2.14)

If one introduces the convective derivative

Da
‘+,E-G+u’

(2.15)

Eqa. (2.14) can be rata.st(Lagrangianrepresenta-

tion)

~ IIp;l
-+”:-0

‘F

Po& (:+ P:%IC2) +$po+

$.(%-;P/cZ)=o

~ (&?+P; %o+Py)
‘O Dt 2

?.(&+poZ-Er~) -w

Equations (2.14)are conservative

+

. (2.16)

in a fixed volume

element in the inertial frame, while Eqs. (2.16)

are conservative in a volume element moving with
+

velocity u through the frame. In the two sets,

Eqa. (2.14) and (2.16), the three equations detail

conaewation of particlea,momentum and energy,

respectively. That D)Dt represents the time rate

of change in the mnving frame ia noted from the

relationship

Id3rD ~=~
J

d3rpoQ ,
0 Dt at

(2.17)

v v

with Q any arbitrary quantity and V a moving volume

whose boundary pointa move with local fluid velocity
+
u.

III. LO~Z TRANSFORMATIONSMD REIATIVIS1’ICEFFIXTS

The Lerentz transformation
14

L defined on a

four-dimensionalspace-timemanifold is written to

connect frames c and (0 moving with relative veloc-

ity v along mutual z axes,

~-LEs
o

(3.1)

with

E - (Ct,%;,z) - (Ct,z)

.50- (Cto,:o,;o,lo) = (Cto,:o) D (3.2)

X9 Ys Zs %.s Y. and Z. apace coordinates, t and to

time coordinates,and

for

The

The

(
cosh 1$ 0

0 1
L=

o 0

-ainh tJ O

o

0

1

0

2 -%
cosh$-y= (l-S)

-ninh #

o

)

(3.3)
o

cosh J$

. (3.4)

frame c moves with speed v with respect to Co.

metric temeor on the manifold is defined

1000

()

o -1 0 0
g= 8

0 0 -1 0

\o o 0 -1/

with associated invariant inner

e“ co - Eig%j = tto -:

(3.5)

product,

.:.
0

(3.6)

The equations of physics are invariant under

hrentz transformation. In other vords, the equa-

tions are form invariant in arbitrary, nonacceler-

ated framea provided all quantitiesappearing in

the equationsare defined and are measured in the

.,

w.

.



frame. In many applications,quantitiesare known

in one Lorentz frame. It la then neceeeary to trans-

form both the quantitiesand their explicit variables

to the Lorentz frame of interest. In radiative

tranaferwork, the material source B, absorption co-

efficient oa, and electron density P. are described

in the fluid rest frame. The correspondinglabora-

tory quantitiesare then obtained followingLorentz

transformation.

A rule of thumb for determiningwhether perti-

nent quentitieaneed be Lorentz transformed,or can

be treated claasically,iaroughly furnished by the

cetegorization,

Vlc ~ 1/10 (classicalregion)

Vlc ~ 1/10 (relativisticregion)

vlc > 99/100 (extremerelativisticregion) .

(3.7)

Uae of the classical expressions for momentum and

energy in the caae vfc < 1/10 results in leaa than

1% error from the fully relativisticpredictions.

(juantitleatransforming in powera Yn might then be

expected to deviate less then n% from the relativis-

tic prediction at v/c - 1/10, using a linear extrap-

olation. At the extreme relativistic limit v/c >

99/100, the rest energy may be safely neglected to

1% in the calculation.

Assuming the target materiel moves with veloc-

ity ; and denoting the msterial rest frame with a

subscript zero, as before, we can list the specific

Lorentz transformationpropertiesof various quanti-

ties after defining

A=(l - “2,C2)-4

~ -(1-3.:/=)

D’-(l-8’. C)C) . (3.8)

Noting that the momentum distribution function for

both photons and electrons is a Lorentz invariant

(e denotes electrons,Y denotes photons), that is,

+“y(;)d3pd3r = $~’y(~o)d3pod3ro ~ (3.9)

which implies

$“Y(;) =o:’%o) ‘ (3.10)

it can be shown that the various terms in the trans-
4,5

port equation Lorentz tranaform aa,

v - (AD)-lVO

v’ - (AD’)-lV’
o

~ = (AD)-l [;o+A(A +l)(AD+l):/c]

?i’= (AD’)-l[fi:+A(A+l) (AD’ +1):/c]

I - (AD)-31
o

I! - (AD~)-311
o

s = (AD)-2S
o

0
a
- (AD)uao

o
s
= (AD)U60

)!; = (D’)-%u;o

P6 - (D’)-lDveo

d~’ = (AD’)2d$2’
o

d~ = (AD)2dt2
o

(3.11)

SubstitutingEq. (3.11) into Eq. (2.2) yields the

tranaport equation in the zero frame (identicalto

Eq. (2.2) with subscripts zero on all quantities).

Relativistichydrodynamicsis concerned with

transformationof fluid rest frame quantities to the

frame in which the fluid equations are posed and

defined.* In radiative tranefer work, effects of a

roving medium are seen directly in changes in the

electron density and aubaequently in the material

*We are not interested in transformationof the
hydrodynamicequations from the laboratory frame
to any other arbttrary Iorentz frame. A priori,
hydrodynamfcafor an Incompreaeiblefluid pre-
supposes tm Lerentz frames (spectatorand flufd
frame). Diacuaalon of reletiviatic effects Is
confined to theee ttm frames. Of course, LOrentz
transformationof the hydrodynamic equationa to
another inertial frame (a third frame) is possible,
and the usual form invariance of the equations is
the expected result.

5



momentum and energy densities and fluxes. In the

caae of a compressible fluid (? . ~# O), an addi-

tional complicationariaea since the fluid frame ia

not strictly a Lorentz frame. However, this fact

only cauaes trouble in the attempted Lorentz trans-

formation of derivative operators (e.g., time deriv-

atives, streaming terms). Smoth material functions

such aa particle, energy and momentum denaitiea and

fluxes are thought to evolve continuouslyand infin-

itesimally from their local fluid framea.17 Accord-

ingly then, the various material denaitles and fluxes

as viewed in the Lorentz frame through which the ma-

teriel moves with velocity ~ are given in terms of

PO, to, po. Ultimately, the relativistichydrody-
4,5namic equations take the form in the fixed Euler-

ian picture

&(ApJ+3. APoLo

a
~ [AZ(PO+tofC2 +Po/c2):+~/c2] +$p o

+$”[A2(P0 + to/C2 +po/C2)~

& A2(POC2+ to + Po) - P. + Er]

+
+3’=] =0

+t.[A2(poC2 + to +po):+~] - W

(3.12)

or, in the Lagrangian representation,

APO% (APO)-l-? - := O

[

A2(POC2 + to + po):+~
Ap ~

O Dt
C2AP

o 1
+3P0 - $.($.31C2).0

+

APOC2(A - 1) +A2(to +po) - p. + Er
Ap D
o M APO 1

[ 1+$*p+(to-Er): -W . (3.13)

Inthelimit c+_, A+l,(A - 1) ++U%C2 in the

material terms, Eqa. (3.12)and (3.13) reduce to

their nonrel.ativiaticexpressions,Eq. (2.14) and

(2.16),respectively. Terms appearing on the right

of a/at in Eqs. (3.12) and (3.13) are the total

particle, momentum and energy denaitiea as measured

in the Lorentz frame. The correspondingtotal par-

ticle, momentum and energy fluxes follow ~ in the

above same equations.

The radiative transfer equation can ●lso be

posed in the Lagrangian picture by aubatituting the

convectivederivative, Eq. (2.15), in the intenei.ty

time derivative and using the continuity equation,

Eq. (2.16). The left-hand side of Eq. (2.2) yields

with

Iv.

(3.14)

p=Apo.

APPROXIMATIONS

The equations given in the preceding sections

are exact within the framework of special relativity

and the claaeical description of the hydrodynemica

of an ideal fluid and the transport of radiative

energy interactingwith fluid. Further implementa-

tion schemes have been employed in effecting aolu-

tiona.

In the tranaport equation, Eq. (2.2), the ab-

sorption coefficient Oa and source function S =

KaB are obtained from the correspondingfluid frame

quantities using Eqs. (3.11). The prescription em-

ployed is to expand the source and absorption terms

in powers of UIC and work to low order. It ia evi-

dent that the source-absorptionquantity can be re-

written with the aid

S(1 + c21/2hv3)

which, to order

sion

ADKao(Bo/A3D3-

\

Ufc,

1) :

of Eqs. (2.5), (2.6) and (3.11),

- uaI = Ka(E - I)

=ADKao(Bo/A3D3 -

gives in a power series

/[

(1-: . fi/c) Kao(V)

.

.

I)

(4.1)

x

6



a

(1+ 3; “ itlc) Be(v)

‘fl(vO-V~+]-1](4.2)

,.=, .

The power series in Kao and B. effectivelychanges

variable from v to v as required. Using the Dopp-
0

ler shift relationship from Eqs. (3.11),

v = ADV ,
0 (4.3)

it follows to the same order in ufc,

v- , ~ (1 -: . iifc)v- v=-.:. 8/=,(4.4)
o

which allows eliminationof the frequency shift

variables in ~. (4.2). Equations (4.1), (4.2) and

(4.4) can then be eubatitutedinto Eq. (2.2) with,

fromEq. (2.6),

aB.
‘r = 3BO(V) - BO(V) h.

o kT(l - C-h’kT) .
v A
o (4.5)

ITreatments of’dKao/aVo.=vare~del and datade-

18,19 0
pendent and vary.

Additionally,the transport equation can be

treated in a diffusion-likeapproximation.20-22

Multiplying Eq. (2.2) by 1 and 3 and integrating

over dflgenerates the zeroth and first moment equs-

tlons. A coupled statement is the

sion20 of the intensity (Eddington

The coupled equations which result

two term expan-

approxim.ation)*

(4.6)

upon successive

integrationsover d$ltake form, recalling Eqs.

(2.13) and expanding the scatteringkernels in par-

tial waves,

*l’he Eddington apprOXktiOn is da” ‘itten ‘n

generality? . # - ~fE with f some function approach-
ing 1/3 in the diffusion limit and 1 in the stream-
ing limit.

I

2

J(

Ii;’ u:
+~E

)
dv’ —-—

,2,, ,,3
E’

b dv’ ‘:’ ‘:
+ &h J( _-T

2
.V v’ v )

when, dfl- 2xdz,

*,

E’

(4.7) *

(4.8)L
us J= 2W dzU6PL(z) .

In the case of anisotropic elastic scattering
23

(4.9)

with the various aE

terms in Eqs. (4.7)

constanta, the induced scattering

vanish. Requiring Fick’s law
24

(4.10)

yields the diffusion equation with source from the

first of Eqs. (4.7), while the second of Eqs. (4.7)

definea the diffusion coefficient,
25

1-1 .
D~(3Ka+31Ja-U) (4. 11)

Asymptotic diffusion

Eqs. (4.7),but uses

theory
26

employs the firat of

D2 1-s

a2(Ka + us)

with the scattering probability s defined,

u

‘= (Ka:uE)

and

(4.12)

(4.13)

(4.14)

7

l+a
&R.n ~ =s.

-a



Equilibriumdfffusion theory7,27 treats the materL-

al aa being in complete thermodynamicequilibrium

(B = I), and uses,

J 1 -1 aB
dv(3Ka + 3U - 3a )

a =

D: (4.15)

J aB
‘v m

with the same source function B given in Eq. (2.6).

Other variations of the above approachedare also
28

employed.

In the Lagrangian picture, the left-hand sides

of Eqe. (4.7) become (p - Ape),

(4.16)

Uae of the Lagrangian picture in the tranaport eque-

tion allows one to incorporateeffects of material

chsngea directly and permits coupling to the La-
29,30

grangian hydrodynamicalequationa.
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