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ABSTRACT

Methods of preparing discrete ordinates quadrature coefficients are
described. Quedrature sets which satisfy complete symmetry conditions
and various moment conditiéns are derived and tebulated, and critical
thicknesses of one-dimensional slabs, spheres, and cylinders are calcu=-
lated with these sets. Prescriptions for relaxing symmetry conditions
and point location requirements are discussed, and orthogonal (Legendre=
Tschebyschev) quadrature coefficients applicable in one-dimensional cy=
lindrical or two-dimensional rectangular geometry are tabulated. Re=
cipes are described for preparing biased direction sets, and a method
of basing the bias upon ma.teria.l composition is outlined.

Preliminary computational results indicate that double Iegendre and
half-range moment satisfying quadrature sets are most accurate in onee
dimensional plane geometry, while even-moment satisfying completely syme
metric sets are recommended for other geometries. At the present state
of the art of discrete ordinates computations, results indicate that
boundary condition treatment and, in curved geometries, the handling of
the ray=to=ray transfer (streaming) terms can affect accuracy as mich as
further refinement of angular quadrature. Since computational results
may depend upon all three of these quantities, further work is needed

before an optimm quadrature method can be selected.
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INTRODUCTION

The evolution of the selection of numerical quadrature sets for the
numerical integration of the Boltzmann transport equation has been

guided by two main principles:

1. TPhysical symmetry

2. The arrangement of discrete directions on latitudes on

the unit sphere.

Selection of quadrature sets that satisfy the first principle guarantees
that solutions will be independent of geometrical orientations. The
first Sn quadrature set, whit;h represented the angular vexisble, p, by
connected line segments, was equivalent to mechanical quadrature with
ebscissae, Hys located asymmetrically, with respect to u = O, on the
interval [~1,1] (see the Appendix). Although quite accurate in appli-
cations in homogeneous media, (1) this set did not give consistent re-
sults when, say, slabs of varying composition were geometrically in-
verted. Quadrature sets that are selected according to the second prin-
ciple have the distinct adventage of permitting a double angular quad=-
rature to be accomplished as a single direct sum. This report explores
methods of selecting quadrature sets thet satisfy symmetry conditions
and also examines the relaxations of symmetry that are possible when

geonmetric dimensionality pexrmits.



COMPLETELY SYMMETRIC QUADRATURE SETS

Coordinate systems for rectangular, cylindrical, and spherical. sym=
metries are shown in Figure 1. In each case ‘the direction variaeble 3
is defined with respect to an orthégonal rectangular coordinate frame
(1M, &) which is locally aligned with respect to the unit vectors of the
geometrical coordinate system. The possible orientations of the anguler
direction vector Q define & unit sphere in (u,n,t) space. Complete syme
metry requires that the (p,n, t) coordinates of points on the unit sphere
chosen to represent 5’ be invariant under all 90=degree rotations about
the p, 1, or & axis. Hence, each set of coordinates must be symmetric
with respect to the origin, and, further, the set of points on each axis
mist be the same. Thus, & description of one octant suffices to describe
the arrangement of points on the unit sphere. For n points on each axis,
[~1,1], there are n(n + 2)/8 points per octant on the unit sphere,
n=24.... Figure 2 shows the arrangement for n = 6. Because these

points lie on the unit sphere
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Fig. 1. Coordinate systems for rectanguler, cylindrical, and spherical
geometries.
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Completely symmetric point arrangement, n = 6.

Fig. 2.



oy since the coordinates are from the same set,

2 2
“'3 + 2“1 =

|
=

(2)

]
[

2 2
2py "+ By

Because of the complete symmetry the Indices, i, J, k, of the coordinates

of a point on the sphere sum to n/2 + 2. That is, in general,

2

2 2
My Myt Hnjoogey = 10 (3)

where 1 =1,2,..., n/2; j=1,2...,n/2 =1+ 1
The relation (3) is solved by (2,3)

byt o= e (4 - 1)A i=1,2...0/2 (L)
where

a=2(1 - 35°)/(n - 2) (5)

Hence the requirement of complete symmetry fixes all My except My and
the freedom of Guassian quadrature is not present. In addition, ro=-
tational invariance dlctates that weights for points on the unit sphere
be chosen in a symmetric fashion. D;I.agra.ms showing points of equal
weight are displayed in Figure 3. TFor a given latitude on the unit

sphere, the sum of the point weights, Py» defines a level weight, wj.
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1 wl=%1+2pe+p3
10 2 2 Vo T 2y + 2py
3 k 3 w, =2p, + D
b 3 3 L
2 3 1 W5=p1
1 wl.2p1+2p2+293
2 2 Wp T2t opy + by
3 W3 = 2p3 + 2pg
3 5 5 3 Wy =23+ By
2 4 b -
5 2 V5 2p,
V6T P

1k 1 "1=21’1+2Pg+21’3*1’1+
2 2 ¥p = 2pp + 205 + 20
3 5 3 v3=2p3+21>6+ b
y 6 6 4 vh=2ph+2p6
3 6 7T 6 3 v5=2p3+ Py
2 5 6 6 5 2 wg = 2p, and pg+ 2pg = Py + Pg + Pq
i1 2 3 4 3 2 1 Wp= Py

16 1 V1=21’1+2P2+2p3+2ph
2 2 w2=2p2+2p5+ p7
3 5 3 w3=2p3+2p6+298
y 6 6 & "h=2Ph+2p7+ Pg
¥ 7 8 7 & V5=2ph+2p6
3 6 8 8 6 3 w6=2p3+ P
2 5 6 T 6 5 2 w,’=2p2
1 2 3 & & 3 2 1 vg = Py
and

Py, + Pg + Pg = Py + Pg ¥ Pq

Fig. 3. Points of equal weight as a function of n. The equations are
the relations between the point weights, Pys and the level weights w 3
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These relations are also given in Figure 3, and the level weights are
the weights corresponding to a one~dimensionsal. angular quadrature. For
2<n< 14 there are n/2 - 1 different point weights. For n> 1k the
number of different point weights increases rapidly. To fix the nunmber
of different point weights at n/2 = 1, it is assumed that point weights
are chosen as & sum of & fundamental set of "axis" weights (ai,a.j,a.k)
with 1 + J + k = n/2 + 2. Then, enough additional relations among the
pj are provided to maintain n/2 = 1 different point weights. For ex-
ample, the relation Py + Pg + Pg = Py + Py + Iy (n = 14) is established

by noting that the point weights may be represented as

P3 = 3.5 + 3.3 + aal pu‘ = ah. + a.h + 5.1
P = 8y + B + 8, Py = @ + 8y + 8
p6 = a.h + 3.2 + 8.3 jp,.{ = a3 + a3 + 8.3

SUM=aL._L+2a2+3a.3-i-2a.h+a.5
Therefore, with complete symmetry, there are n/2 quantities, the n/2 - 1
pj and Hqs vhich can be selected, as opposed to n quantities in a Gaussian
guadrature. However, it is not difficult to show(u) that if

n(n+2)/8 n/2

z

i1 i :)El it (&)




that is, if the area of the octant is measured in units of n/2, then

2 _1
b3 Wiy =3 (7)

so that one moment condition is satisfied by any completely symmetric
set. Hence, one can choose by and the w 3 to satisfy the n/2 + 1 even=-

moment conditions

1 21 1 n/2
pap _poedy L 21
[ 5 - v == 2y (8)

for i = 0,1,...,n/2. Completely symmetric quadrature sets (which auto-
meticelly satisfy the odd moments over the entire range of p because of
symmetry) obtained by satisfying (8) are given in Taeble I. However, for
n > 22, such sets leed to negative w 3 which are undesirable because of
numerical truncation errors.

As sn alternative to matching even moments, all half-range moments

1 n/2
i, 1 i

i = 0y1,...,0/2, can be matched, but this procedure leads to negative
weights for n > 12, Table II displays sets obtained by satisfying equa=
tion (9).

A method of moment matching which does not lead to negative weights
is obtained by matching half-range level moments. Instead of satisfying
successively higher moments by choice by level weight, sequences of lower

order moments are matched by choosing point weights. For example, in




TABLE I

Completely Symmetric Quadrature Sets Satisfying
Even Moment Conditions.a‘

SThe weights given sum to 0.5.

2
Hy Hy Yy Py
1 0.3500212 0.1225148 0.3333333 0.3333333
2 0.8688903 0. 7549704 0.1666667
1 0.2666355 0.0710945 0.2547297 0.1761263
2 0.6815076 0. 46hhi527 0.1572071 0.157207L
3 0.9261808 0.8578110 0.0880631
1 0.21821.79 0.0L476191 0.2117283 0.1209877
2 0.5773503 0.3333333 0.1370370 0.0907407
3 0. 7867958 0.6190476 0.0907h407 0.0925926
i 0.9511897 0.9047619 0.0604938
1 0.1672126 0.0279601 0.1639814 0.0707626
2 0. 4595476 0.2111840 0.1190886 0.0558811
3 0.6280191 0.3944080 0.0631890 0.0373377
L 0. 7600210 0.5776319 0.0624786 0.0502819
5 0.8722706 0. 7608559 0.0558811 0.0258513
6 0.9716377 0.9440799 0.0353813
1 0.1389568 0.0193090 0.1371702 0.0489872
2 0.3922893 0.1538909 0.1090850 0.0413296
3 0.5370966 0.2884727 0.0442097 0.0212326
4 0.6504264 0. 4230545 0.0643754 0.0256207
5 0. Th67506 0.557636k% 0.0400796 0.0360486
6 0.8319966 0.6922183 0.0392569 0.0144589
7 0.9092855 0.8268001 0.0413296 0.0344958
8 0.9805009 0.9613820 0.0244936 0.0085179
1 0.1206033 0.0145452 0.1195893
2 0.3475743 0.1208079 0.1026829
3 0.4765193 0.2270706 0.0282212
L 0.5773503 0.3333333 0.0739389
5 0.6630204 0. 4395960 0.0181985
6 0.7388226 0.5458588 0.0471265
7 0.8075404 0.6521215 0.0313726
8 0.8708526 0.7583842 0.0270754
9 0.9298639 0.8646469 0.0332842
10 0.9853475 0.9709096 0.0185105

The point weights are those of Fig. 3.
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TABLE II

Completely Symmetric Quadrature Sets Satisfying
0dd Moment Conditions.a'

2

My Hy Y1 Py

n = )+ e —— ——— — . —
0.2958759 0.0875425 0.3333333 0.3333333
0.9082483 0.8249149 0. 1666667

n=6 0.1838670 0.033807L 0.2178992 0.102U4651
0.695051L 0. 4830964 0.2308682 0.2308682
0.9656013 0.9323858 0.0512325

n=28 0.1422555 0.0202366 0.1721829 0.1090122
0.5773503 0.3333333 0. 2101402 0.0631708
0.8040087 0.6464300 0.0631708 0.2939388
0.9795543 0.9595267 0.0545061

n= e 0.0935899 0.0087591 0.1168911
0.4511138 0.2035036 0.2531215
0.6310691 0.3982482 -0.1410287
0. 7700602 0.5929927 0.2658355
0.8875457 0.7877373 -0.03882(9)7
0.9912022 0.9824819 0.0440403

& The weights given sum to 0.5.

«lla

The point weights are those of Fig. 3.



Figure 2, the normalized integrasl of 1 on the unit sphere along the

latitude of u, is oJ1 - u°/x. Defining this quantity es
o1 - p.l§ n = Zp.p,/Tp, (10)

where the point weights are those belonging to the My gives a sequence
of low=order moment conditions, one for each p level. ' These moment equa=

tions for Figure 2 are then

[1. .2
Pyiy + Doy + Pyig = (P + Py + Py)2N 1 = py7/n

Potty + Doty = (D, + By)AL - 1,2/ (11)
o f 2
PyMq = 2pV1 - Mg /@

For general even n, the relations analogous to (ZL'L) give n/2 relations

for the n/2 quantities P and My However, the last two relations

Wy + Hp = N1 - “i/a-l n (122)
By = a1 - ui/ n (12v)

cannot both be satisfied. To obtain a consistent set of equations, Eg.
(12v), representing the smallest latitudinal area, is deleted and, in-
stead, (6) is satisfied so that (7) is also satisfied. Thus the zeroth,
second, and a sequence of first=order moments are matched. Then (128.)

with (4) serves to define iy

-15-




- (n=2)L=N1=0a)-(n-=-5)

5 (13)
(n=5)c=-(n=-2)n~28)

and hence all p,. Above, G = [(14./1()2 - 112

. The remaining n/2-lp:‘
are Pound from equations analogous to (11). Sets obtained in this man-
ner are displayed in Table III. Weilghts obtained in this manner are

apparently always positive.

BIASED SYMMETRIC QUADRATURE SETS

Complete symmetry is required only in three-dimensional geometries.
In lower dimensionsl geometries a relaxation of symmetry requirements
allows additional degrees of freedom. A simple such relaxation is to
keep the point and level asrrangement of complete symmetry while allowing
the points on each axis to be chosen from an independent set. In this

case the requirement that points be on the unit sphere

2 2 2
My + g + g = 1.0 (1)

is solved by

p.m2 = u12 + (m=1)A

Tlm2 = 7112 + (m - l)A

(2= 62+ (m-1)a (15)
a= 2(1 = w? - 0" - 55/ (a - 2)

Whem m = 1’2, ooo’n/2o




n=154
n==6
n=2=8
n =12
n =16

TABLE III

Completely Symmetric Quadrature Sets Satisfying

ILevel Moment Conditions. a

My

0.3120418

0.8971121

0.239094L
0.6865981
0.9410992

0.2010510
0.5773503
0. 7913565
0.9587268

0.1596536
0.4584710
0.6284124
0.7613203
0.87h2511
0.9741773

0.1364305
0.3917822
0.5370040
0.6505792
0. 7470832
0.83247h2
0.9098865
0.9812102

2
By

0.0975949
0.8048102

0.0571661
0.471h169
0.885668

0.0k04215
0.3333333
0.6262452

0.9191570

0.0254893
0.2101957
0.3949021
0.5796086
0. 7643150
0.949021%

0.0186133
0.1534933
0.2883733
0.4232533
0.5581334
0.6930134
0.8278934
0.9627T34

Yy

0.3333333
0. 1666667

0.2582459

0.1501748
0.0915792

0.2174330
0.1283389
0. 0910220
0.0632048

0.1726823
0.1022793
0.0738241
0.0605145
0.0516366
0.0390632

0.1475h02
0.0874396
0.0631648
0.0519818
0.0451381
0.0402906
0.0361672
0.0282776

Py

0.3333333

0.1831585
0.1501748

0.1264098
0.0910232
0.0746315

0.0781264
0.0516366
0.0429194
0.0351903
0.0309047

0.0565552
0.0361572
0.0285758
0.0262421
0.0234298
0.0188960
0.0178932
0.0156931

8
The weights given sum to 0.5. The point weights are those of Fig. 3.
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If complete symmetry is required, p12 = 'ql2 = gle, and equation (4) is

obtained. Requiring rotational symmebtry about the £ axis means that

2 7112 but glg is a free parameter, say glz = bule. Then

ul =
um2 = p12 + (m=-1)A
£.% = b+ (m = L)a (16)

A=2[1-(2+b)")(n-2)

Point weight diagrams for this case are given in Figure 4. Here, two
different sets of level weights are defined by the point weights, one
set corresponding to p or n levels and one set corresponding to & levels.
Again it is assumed that point weights ere formed as a sum of basis

weights (a;, &, b,) to mintain 2(5 - 1) aifferent point weights.

J
There are now more conditions which can be satisfied and more ways in
which they can be satisfied. Half-range moments similar to (9) could
be matched along the ¢ axis and whole-range conditions matched along the
p (and hence n) axis. Halfwrange low-order moments could be satisfied
in the two different directions. For example, for n = 6 the loworder

moment conditions are

(p; + 2, + p3)2~/l - ”12 T = Py + Dohy + Pahiy (172)
(25 + 2, )L = 1"/ = Doy + Dy, (170)
Py al - u32/1r = Pgiy (17¢)

=18



b 1 W17 Pt P

2 2 ¥p = Pp Uy = 2Py
6 1 V1=P1+P2+P3
2 2 Vip = Py + 1)
3 % 3 V3 = Pg Uz = 2p3 + By
8 1 Vl=Pl+P2+P3+P5
2 2 Vo = Py + D), + Pg
3 & 3 W3 = P3 + g
5 6 6 5 w)_&=P5 uu=2ps+2p6
10 1 V1=P1+P2+P3+P5+P7
2 2 V2=92+Ph+P6+P8
3 4 3 V3 = Py + Pg + Py
5 6 6 5 Vh=P5+P8
T 8 9 8 T W5=P-( u5=2P7+2P8+P9
and

Py + Pg+ Pg =Py + s + Py

12 1 wl=pl+p2+p3+p5+p7+plo
2 2 Wy =Py + P) + Pg+ Pg+ Ppq
3 k3 W3 = Py + Pg + Py + Pyp
5 6 6 5 Wy = Pg + Pg + Py
7T 8 9 8 7 Vg = Dg + Ppq
10 11 12 12 11 10 Vg = Py u6=2(pm+pu+pl2)
end

P3 + P+ Pg = By + Py + Py
Pg + Py + Pyy = Pg + Py + Pyp

1k 1 Wy =Py + Py + Py + Dg + Dy + Py + Pyg
2 2 Vp = Pp ¥ By +Pg + gt Py + Py,
3 4 3 W3 = P3 + Pg + By + Pyp + Py
5 6 6 5 Wy = Pg + Pg + Ppp + Pog
7T 8 9 8 7 W5=p7+Pu+Pls
10 11 12 12 11 10 Vg = Dy + Py,
B 1 15 16 15 13wy =Dy uz = 2(py3 + Py, + Pyg) + Pig
and

P3+P6 +p8 =p]++p5 +P9
Py +Pg + Py =DPg+ Py + Py
Br ¥ Pip + Py = Pg ¥ Pyp + Py
Pg ¥ P1p + P15 = Pg + Py *+ Pig

Fig. 4. Point weight diagrams for half-symmetry. The level weights w

apply to the p or n levels, and the level weights u, correspond to ¢
levels. Only the different u level weights are showtl for each n.
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(2p; + m, )N = 8,/ = Dghty + Dy + DPghig (182)
' 2

2p, AL = £,7/% = Dy + Dokt (18v)

Pl N1 ~ §32/7t = Pl”’l (180)

Keeping b as & free parameter gives five (n = 1) quantities, p, and

Py P Py By to be determined. Deleting (17c) and (18c) and satisfying
the condition ¥p, = 1 gives five (n = 1) equations. &y (J-bul) is then
determined by (18b) and the remaining equations are linear in the Ps

An alternative is to define accumlated weights

3
W, = W
S
(19)
J
U, = 2 u
J 41 d
so that W;]+l - Wj = wj+l and U,j+l - U'j = uj+l and assume that the W’j

and Uj are separated by the same delta as the “,j and gJ:

Wy =Wy + (i - L)a
Uy = Uy + (1 -1)A (20)

A=21[1-(2+ b)p.lz]/(n - 2)

Then the three independent quantities s Wl, and Ul can be fixed by

matching the normaligation. condition

n/2 n/2
T W, = % u, =1 21
=1 * 41 1 - (21)



and the two secondemoment conditions

n/2 n/2

2
Z v, = I out~ =1/3 (22)
1=1 i™ 1=1 1°1

for a given b. A consequence of equation (22) (but independent of the

assumption (20)) is the simpler relation
I oM, +U;=n=2 (23)

Sets of quadrature coefficients have been prepared using the last-
described receipe, and the resulting weights were found to be positive
for the particuler value of b = 2/3 used. Since such sets depend upon
b, the spread of directions along the & axis can be varied relative to
the 1 and n axes direction spreads.

In the above, the number of independent point weights has been
severely limited both by using the point arrangement of Figure 2 and by
assuming various relationships among the point weights. A general method
of choosing quedrature weights which removes these restrictions has been
developed in the method of moments, described in Reference 5. In these
methods, direction sets can be chosen so that discrete ordinates quad=-
rature is equivalent to a generalized spherical harmonics method with a
given boundary condition, say a Marshak boundary condition for no in-
coming flux. Once the direction sets are chosen the quadrature weights

are found by satisfying a general set of moments. Here, only the case

-21-



in which points are arranged as in Figure 2 is discussed. Then, given 2
set of directions on each axis (with, however, p.ie + 1 32 + §k2 = 1),
the moment conditions for the n(n + 2)/8 point weights are given by the

following triangulsx a.rra.y(5 )

Yoo Yoo  Vou y ¥0, n-2
1]!20 1]!22 . .

llfuo . o

l1’n—2 , 0

n=2M46,..., where ¥, Symbolizes a moment of the form

srr@EED)

I m
DM Ny = (24)
Z i l—(%-_)r-(l + 2 + 39

Above, P is a point weight corresponding to the point located by By and
n 3 To 1llustrate, consider n = 2. Then Py = 1 is the single equation
to be satisfied. When n = 4 there are three weights and three equations
Yoo P +P, +Py =1
2 2 2
Voo  Pyby * Py + Paiy” = 13 (25)

2 2 2
Yoo PNy + By +Pgly = Y3

-




Given the directions By and 1 3 the above set can be solved for three
voint weights, that is for & completely unsymmetric choice of directions.
The above formalism contains the half-symmetric case and the completely
symmetric case. In particular, for the halfesymmetric case only the
disgonal and belowsdiagonal moments of the triangular array are needed.
For n = 4 there are only two different point weights and the moment

equa-tions become

1]!00 pl + 2P2 = 1

(26)
1/3

Voo ulapl + (u12 + 1122):92

For n = 6 and four point weights in the half-symmetric case there are

four equations

Voo Py + 2Py | + Py + 2p), = 1
2
Yoo ulapl + (u12 + by )Py + u22p3 P (T u32)ph = 1/3
4
Yo ulhpl + (u o + uel')p2 + uaup3 + (ullF + u3l*)p;1L = 1/5

Yoo ulanlepl + (02 + b0 p, + u22n22p3 + (ulan32 + uéanle)ph = 1/15
(27)

For the n = 12 halfegymmetric case there are 12 different point welghts

illustrating that the mumber of different point weights is not restricted

to n - 2. For the completely symmetric case only the first columm of the

triengular array of moments need be used indicating that even-moments

matching is all that is required. The completely symmetric case is also

«23



contained in the half-symmetric case. For exeample, for n = 12 and the
My (and hence nj) of Teble I, solution of the 12 moment equations

gives five different point weights, exactly equal to those of Table I.
The sbove formulation is more general than previous methods since the
direction sets can be determined independently, and, although not il-
lustrated here, can be extended to more general point arrangements. Be-
cause of the generality, the above method is conveniently coded to pro-
duce quedrature sets (a general matrix formulation can be written).
However, lacking any a priori choice of directions, meaningful com-
parisions of different quadrabure sets are difficult to make.

Most of the gbove serxrves only to describe possible ways in which
the additional degrees of freedom obtained by relaxing symmetry can be
utilized, and no attempt has been made to exhaust possibilities or to
determine, say, optimum moment conditions or procedures for choosing
free parameters. Numerous additional symmetry relaxations are possible.
The same number of points can be kept on each axis, but Hys Ty snd gl
can be chosen independently; or different numbers of points can be
chosen on each axis. ILevel conditions can be relaxed on one axls or all
axes. The same number of points on each level can be used. One such
scheme which is suited to orthogonal quadrature is the followlng. Sup~
pose the quadrature of the surface of the unit sphere is accomplished by

(for one octant)

A=-§f al a (28)
0

=2l



witho defined as 1 =W1 - £2 sin® and p =1 - ¢2 cos®. Then

2
1 lat
I
L, tow -t (29)
_.’%f dgf__d.&_.
© 0 J1.,2

with p = Jl - §2 y. This suggests that the y integration be accom=
plished by Tschebyschev quedrature and the § integration by lLegendre
quadrature. Then, for example, for quadrature with three y points for
each of three ¢t points (Figure 5) there arenine points on the unit sphere
octant,with the distribution of p (and n) points being determined by
the ¢ point selection. Now points lie on the unit sphere on ¢t levels
but not on p or n levels, and point welghts are the product of Legendre
and Tschebyschev weights. If it is argued that three y points are not
needed on each ¢ level, then a different order Tschebyschev quadrature
can be used on each level as illustrated in Figure 6. This sort of
scheme gives a significant improvement over completely symmetric quad=-
rature when one-dimensional cylindrical critical radii are calculated.
For a given set of t levels {gl, 52""’§n/2) g, < gy < ... < gn/2
and weights [wl,wa, veoyW n/2] corresponding to a Guassian quadrature on
the £ interval [-l, 1] the use of the same Tschebyschev quadrature on

each £ level gives the p abscissae and point weights



-> ™

Fig. 5. Point arrangement for the same order of Tschebyschev quadrature
on each ¢ level. The order of the quadrature need not be the same as
the number of & levels.

D6m




Fig. 6. Point arrangement for different order of Tschebyschev quadra-
ture on each £ level. Points do not all lie on the same n or u levels
as in a completely symmetric arrangement.
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-d1-g" P =0

Hi0 ©
Hyg = N i Zn L Y
i=12,...,n/2 J=131,2...n

Here the p points with zero weights are those incoming directions used

as starting directions in the current version of the Sn discrete ordi-
nates transport code. The p values are such that a complete quadrant

is integrated, and the weights are such that the area of the quadrant

is unity. For the same gi and LA the use of a different order Tschebyschev

quadrature on each ¢ level (as in Figure 6) gives the p and point weights

...J]_- 512 P:L:O

Kig =
(31)
[y 2 2n bi = 23 + 5 __L_
pij-l-gi cos ( - 41 + & ) Py"m¥o-o21

i=1,2...,0/2 J=12,...,(n+2~21)

These quadrature coefficients for the gi corresponding to
P a.nd DP /21 quadrature are given in Table IV through Table VII
for n = 4, 8, and 16.

Finally, quadrature schemes that are dependent upon meterial com-
position can be prepared. As a simple example consider the angular de-

pendence of the flux of the monoenergetic transport equation in an

«28-




P
Ne=

()T (1) Quadrature Sets - Same Order

TABLE IV

Tn Set On Each ¢ Level.

-0.50837h41

0.1829577
0. 4696763
=0.9404323
0.3598878
0.8688L459

=0.2790043
0.0544310
0. 1550065
0.2319836
0.2736433
-0.6044192
0.1179163
0.3357973
0.5025562
0.5928054
-0.8507736
0.16597767
0. 4726644
0.7073924
0.834k4262
-0.9830319
0.1917800
0.5461432
0.8173612
0.9641432

Py

0.0
0.0869637
0.0869637
0.0
0.1630363
0.1630363

0.0
0.01265357
0.01265357
0.01265357
0.01265357
0.0
0.02779763
0.02779763
0.02779763
0.02779763
0.0
0.0392133
0.0392133
0.0392133
0.0392133
0.0
0.0453355
0.0453355
0.0453355
0.0L453355

£

0.8611363

0.3399810

0.9602899

0. 7966665

0.525532k

0.18343L6



DB /o- 1(£)T, (1) Quadrature Sets - Same Order

T Set On Each ¢ Ievel

n = ~0.6148102 0.0 0. 7886751
0.2352776 0.125
0.5680104 0.125
=0.9774159 0.0 0.2113249
0.3740408 0.125
0.9030143 0.125
o= -0.3661187 0.0 0.9305682
0.0714262 0.021.7409
0.2034046 0.0217409
0.3044166 0.0217409
0.3590838 0.0217409
~-0.T423696 0.0 0.6699905
0.1448291 0.0407591
0.412438L 0.0L07591
0.6172578 0.0407591
0. 7281052 0.0407591
~0.9439776 0.0 0.3300095
0. 1841609 0.0407591
0.52414458 0.0407591
0. 7848887 0.0407591
0.9258394 0.0407591
-0.9975867 0.0 0.0694318
0.1946195 0.0217409
0.554229h 0.0217409
0.8294630 0.0217409
. 0.978418L 0.0217409

8cor convenience the sets have been ordered as they would be entered in
present Sn codes. For brevity the negative-welghted p directions (sane
in magnitude as the positive directions) have been omitted.
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TABLE VI

P _1(8)7 (1) Quadrature sets - Different Order

T Set On Each ¢ Level

=0.5083741

0.3594748
-0.9404323
0.3598878
0.8688459

«0.2790043

0.1972858
~0.6044192

0.2313012

0.5584103
-0.8507736
. 2201964
.6015878
.8217842
-9830319
1917800

.8173612
.9641432

1
[cNeNoNoNoNoRoNe

~0.1452095
0.1026786
-0.3282956
0.1256333
0.3033056
~0.5006822
0.1295861
0.3540358
0.4836218
=0.6552589
0.1278346
0.3640423
0.5448278
0.6426683

.5h61h32 -

-31-

Py
0.0
0.173927h
O'O
0.1630363
5061&3

555953
-0555953

OOOOOO

OOO

.0522844
.0522844

O

oh53355
0453355
.0k53355
.0k53355

OCO000000000O0OO0O0

1357623
1556338

OOOOOO

0. 01557862
0.01557862
0.01557862
0.01557862

.052281k .

&1
0.7886751

0.2113247

0.9602899
0. 7966665

0.5255324

0.1834346

0.9894009
0.9445750

0.8656312

0. 755404k



TABLE VI (Continued)

n =16 contimued

~0.7862754 0.0 0.6178762
0. 1230006 0.01495960
0.3569615 0.01495960
0.5559807 0.01495960
0. 7005765 0.01495960
0. 7765950 0.01495960
-0.8889436 0.0 0.4580168
0.1160304 0.01409638
0.3401839 0.01409638
0. 5&113&5 0.01409638
0. 7052463 0.01409638
0.8212765 0.01409638
0.8813385 0.01409638
-0.9595308 0.0 0.2816036
0.1074405 0.01304310
0.3169175 0.01304310
0.5105032 0.01304310
0.6784908 0.01304310
0.8124567 0.01304310
0.9056836 0.01304310
0.9534967 0.01304310
=0.9954 761 0.0 0.0950125
0.0975737 0.0118L4066
0.2889715
0. 4692641
0.6315234
0. 7695135
0.8779316
0.9526112
0.9906826

aFor convenience the sets have been ordered as they would be entered in
present Sn codes. TFor brevity the negative~-welghted p directions (same
in megnitude as the positive directions) have been omitted.
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TABLE VII

DEy /o- 1(8)7, (1) Quadrature Sets - leferent Order

T Set On Each ¢ Level®

«0.6148102

0.4347364
«0.9774159
0.3740408
0.9030143

-0.3661187
0.2588850
-0. 7423696
0.2840925
0.6858599
-0.94397762
0.2443193
0.66T74930
0.9118123
=0.9975867
0.1946195
0. 5542294
0.8294630
0.9784184

=0.1982824
0.1402068
-0.14393147
0.168118L
0.4058737
«0. 64667
0.1673716
0.4572678
0.6246394
-0.8061455
0.1572712
Ll 78704
0.6702855
0.7906557

Py

ONO
55O

.0
0253071h

779763
T79763

261&222
.02614222
.0261h222

]R°

OOOOOOOOOO OOOOOOOOOOOOOO OOOOO
OOOO

O

0. 0226677h
0.022667T4
0.022667T4
0.022667Th

£

0. 7886751

0.2113249

0.9305682
0.6699905

0.3300095

0.0694318

0.98014493
0.89833324

0. 76276620

0.59171732



TABLE VII (Continued)
n = 16 continued

-0.9128556 0.0 0. 140828268
0.1428021L 0.01813419

0. h1lho7T 0.01813419

0.6454864 0.01813k419

0.8133602 0.01813419

0.9016167 0.01813419

-0.97145258 0.0 0.23723380
0. 1268000 0.01307111

0.3717588 0.01307111

0.5913828 0.01307111

0. 7707021 0.01307111

0.8975049 0.0130711L

0.9631417 0.01307111

~0.9948151 0.0 0.10166676
0.1113917 0.00794218

0.3285724 0.00794218

0.5292775 0.00794218

0.7304429 0.00794218

0.8423356 0.00794218

0.9389910 0.00794218

0.9885625 0.00794218
~0.9998029 0.0 0.01985507
0.0979998 0.00316339

0.2902275 0.00316339

0.4713038 0.00316339

0.6342682 0.00316339

0.7728581 0.00316339

0.881747L 0.00316339

0.9567517 0.00316339

0.99%9885 0.00316339

aFor convenience the sets have been ordered as they would be entered in
present Sn codes. For brevity the negative-weighted p directions (sa.me
in megnitude as the positive directions) have been omitted.
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infinite medium (isotropic scattering)

B(n) = 1—49_[-,23;6

0 c'ba.nh-l)\.o (32)

>
]

0
il

(}:S + vzf)/zt

Picking a two=point quaedrature such that this angular dependence is

correctly integrated gives

w:L = 1.0 ( )
33

2. ll-cl/?\.a

By 0

which also correctly integrates pf(un) and p.ejé(u). For [e - 1| < 1,

02 ~3[1 = ¢| so thet u ~ YN3 which is the result obtained by re-

A
quiring wlu12 = % as in S2 or diffusion theory quadrature. As ¢ -0
(pure a.bsorption), = 1.0 indicating that to integrate a flux that
is becoming more biased in the forwerd direction By should be chosen
closer to wnity. As ¢ - o Wy = 0. Using p, determined by (27) gave
improved answers in critical slab thiclkmesses compared to using

W = 1A3. Higher order quadratures can be obtained in a similar
manner by requiring more moments of P(u) to be satisfied. However, in
a realistic problem, material properties change as a function of energy
and position so that gains in a..ccura.cy obtained by using materisl de=

Pendent quadrature would seemingly be offset by the more complicated



computation necessary for including the quadrature coefficient material
dependence.

Although the completely symmetric quadrature sets are designed for
three=dimensional geometries, one-dimensional monoenergetic critical
thicknesses were calculated using the sets of Tables I through III.
These results, for a variety of secondaries ratios c¢ = (Zs + vzf)/zt,
are displayed in Tables VIII through X. Comparsble calculations for
Pn-l and DP, n/2-l sets are given in Reference 1 <from which the exact
results were taken. Of the three sets compared, the set prepared by
satisfying even=moment conditions (Teble I) is particularly good in
cylindrical geometry and is better than the other two sets in spherical
geometry. The set generated by matching odd moments (Table II) is ef~
fective only in plane geometry where the 88 set 1is better than or com=~
parable to the other two 816 sets. This behavior is analagous to that of
DP_ Jo-1 sets (half-range Gauss-Legendre quadrature) which, due to a
combination of favorsble circumstances, are pexrticularly accurate in
one~-dimensional plane geometry. Although no complete test of the
lLegendre-Tschebyschev sets was made, for c = 1.02 in a cylinder the
PsTh set (Table VI) gave a critical. radius of 9.0353 compared to a DP, T,
(Table VII) radius of 9.0264. These results bracket the S), results
obtained using the quadrature set from Table I.

For the general use of quedrature sets it is recommended that the
DP n/2-l sets always be used in one-dimensional plane geometry. In one=

dimensional cylinders the completely symmetric sets of Table I or the

«36=
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TABLE VIII

Monoenergetic Critical Thicknesses (MFP) Calculated

Using Quadrature Sets of Table I.

Sy,
5.68291
3.32171
2.13864
1.32271
0.78186
0.56329
0. 44266
0.36551

Sy
9.03379
5.39784
3.56045
2,27052
1.38380
1.01122
0.80073
0.66414

_n
12.01730
7.25660
4,85011
3.14533
1.96022
1.45371
1.16338
0.97267

Slabs (Half=-Thickness)

5.67065 5.66855
3.30659 3.30245
2.11998 2.11555
1.29710 1.2918%4
0.74758 0.73964
0.52656 0.51579
0.40637 0.39369
0.33091 0.31706
(_,Ilinders
Sg e

9.04364

5.40970

3.57335

2.28245

1.39215

1.01642

0.80356

0.66524

heres

12.02130 12.0229
7.26797 7.27197
4.86577 4.86982
3.16268 3.16887
1.97657 1.98206
1.46828 1.47316
1.17635 1.18072
0.98432 0.98826

Exact

5.6655
3.3002
2.1134
1.2893
0.7366
0.5120
0.3887
0.3108

Exact

9.0433
5.4118
3.5763
2.288L
1.3973
1.0209
0.8067
0.6673

Exact

12.0270
T.2772
L. 8727
3.1720
1.9854
L.h761
1.1833
0.9906
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TABLE IX

Monoenergetic Critical Thicknesses (MFP) Calculated
Using Quadreture Sets of Table II.

Slabs jHa,li‘;-Thiclmess)
5.62241 5.66694 5.6655
3.25389 3.30066 3.3002
2.06750 2.11367 2.113%
1.25270 1.28847 1.2893
0.72152 0.73266 0.7366
0.51256 0.50665 0.5120
0.3993% 0.38375 0.3887
0.32786 0.30716 0.3108
Cxlinders

S), Sg Exact
8.97433 9.02093 9.0433
5.34554 5.3890k 5.4118
3.51360 3.55496 3. 5382
2.226L7 2.26442 2.2
1.34377 1.37426 1.3973
0.97458 0.99820 1.0209
0.76735 0.78510 0.8067
0.63367 0.6467h 0.6673

neres

S)+ 38 Exact
11.97480 12.00510 12.0270
7.22622 7.25991 7.2772
L. 82443 4.85785 L. 8727
3.12868 3.15830 3.1720
1.9u4884 1.97416 1.985)
1.14513 1.h6662 1.k761
1.1564k 1.17508 1.1833
0.966837 0.98329 0.9906
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TABLE X

Monoenergetic Critical Thicknesses (MFP) Calculated
Using Quadrature Sets of Table III.

Slabs (Half-Thickness)

5.64343 5.65669 5.66343 5.6655
3.27617 3.28879 3.29616 ' 3-3002
2.0904L 2.10091 2,1088L 2.1134
1.27495 1.27710 1.28L446 1.2893
0. 74089 0.72800 0.73171 0.7366
0.52880 0.50853 0.50796 0.5120
0.41322 0.39012 0.38617 0.3887
0.33990 0.31624 0.31004 - 0.3108
Cylinders
s), Sg o Exact
8.99519 9.0303 9.0433
5.36340 5.39658 5.4118
3.53025 3.56176 3.5783
2.24195 2.27073 2.2884
1.3573L 1.38131 1.3973
0.98692 1.00622 1.0209
0.77853 0.79397 0.8067
0.64381 0.65619 0.6673
Spheres

11.99720 12.01610 12.01840 12.0270
7.24297 7.26417 7.26841, T7.2772
4.83668 4.8592k 4.,86742 k.8727
3.13624 3.15837 3.16669 3.1720
1.95406 1.97387 1.98098 1.9854
1.44909 1.46633 1.h70k1 1.4761
1.15968 1.17482 1.18012 1.1833
0.96957 0.98307 0.98777 0.9906




PnTn sets are recommended. In one-dimensional spheres, the DP, n/2-l or

the sets of Table I seem best suited. In two- or three-dimensional
geometries the completely symmetric sets of Table I or Table III would
seem best, but more computational experience is needed. In special
situations the biased helf-symmetric sets and the material dependent
sets can be useful. For the former, two-dimensional cylinders with
small height=to=diameter ratios require accurate angular representation
for directions nearly parallel to surfaces. The accurate representation
cen be obtained by proper choice of the parameter b. For neutron or
photon transmission problems, accurate representation in the inwerd and
outward directions is needed. In these problems either the half-
symmetric or material dependent sets can be used to choose biased
directions sets.

Finally, it should be mentioned that recent work(5 ) has indicated
thet proper treatment of the boundary conditions, and, in curved geom=
etries, proper handling of the ray-to-ray transfer terms can be as
important as choice of the angular quadrature. For example, in plane
geometry, paxrt of the accuracy of DPn /2_1 sets 1s due to the fact that
the Marshak boundary conditions for zero incoming flux are satisfied.
Numerical experiments in which one of the Marshek boundary conditions
was spproximately satisfiedhave significantly improved P3 results in
plane geometry.

Thus, the problem of choosing numerical angular quadrature sets is

indeed complicated. The work presented in this report should serve as a



guide to future work and permit the intelligent preparation of quadrature

sets tallored to specific needs.

REFERENCES

1. B. G. Carlson and G. I. Bell, "Solution of the Transport Equation
by the S Method," P/2386, Proceedings of the Second International
Conference on the Peaceful Uses of Atomic Energy, Vol. 16, Genevs
(1958), p. 535.

2. B. G. Carlson and C. E. Lee, "Mechenical Quadrature and the Trans-
1()091'2 E):quation, " Ios Alamos Scientific Laboratory Report LAMS=25T73
1961).

3. B. G. Carlson, "The Numerical Theory of Neutron Transport," in
Methods in Computational Physics, Vol. I, Alder, Fermbach, and
Rotenberg, Eds., Academic pPress, New York (1963).

L. C. E. Lee, "The Discrete S, Approximation to Transport Theory,"
Los Alamos Scientific Laboratory Report LA=2595 (1961).

5. B. G. Carlson, "A Method of Moments for Solving the Neutron Trans-

?oghk;quation, " Los Alamos Scientific Laboratory Report LA=3060
1 .

wli]l-






APPENDIX

The original §_ method(l) represented the angular flux in plane

geometry by connected line segments. That is,
=1 - - -
N(x,n) = [(u uj_l)N(x, uj) + (uj w)N(x, uj_l)] (a-1)
with

Substituting (A=l) into the transport equation for plane geometry

(isotropic sources)

ON(x

m 252+ oN(x, 1) = s(x) (A-3)

and integrating on u from “j-l to “j gives the original Sn difference

equation

}3=



where NJ = N(x, uj). To find a system of discrete ordinates equations

equivalent to (A=) with directions given by (4=2) let

- J
and. choose bOO = 1 so that -I\?O = NO' Next form lineaxr combinetions of
equations (A-4) with coefficients &1k with 850 = 1. That is, form a

first equation by adding the j = 1 equation of (A=) and a); times the
J = 0 equation of (A=-k):

2
%SE [ip-l—;—-u—o N, + (_”_1_'3*_'___*_49 + 8’].1“0) No] (A~6)

+ c(Nl + (L + a.u)No) = (2 + a.]_.L)S

Then form & second equetion by adding to the j = 2 equation of (A-l)

851 times the j = 1 equation and ass times the J 0 equation to obtain

2u, + M, + 2 8, (2w, + 1.) + 2u
a < “1N+l:2 A M o-|N+[“1 0,
& [~ 3 2 3 3 | "1 3 21

(a-7)
+ azech N% + c[N2 + (1 + a‘zl_)Nl + (8.2l + a.aa)N(J = (2 + 28, + a22)s

Proceeding in this manner to form the jth equation by adding to the jth

equation of (A=l) a 3k times the kB preceeding equation, k = 1,2,...,3



~

glves

2u, + U =1 | (. + 2u, .)a, g+ (2}1._'_. + M s )a
%x_ J J=1 N.+ = J+l=1 =i/, =1 Jei Jeiel’ T3, 4, N .
3 j i=1 3 J=

by + 2
+ [——-—-——3 a.j’ PRI I N, (A-8)

J J
+ g|N,. + Z a. + a, N =la..+2 & a, S
[J 1=1 ( Jyi=l J:i) «j"i] <JJ 4=1 9?2 i‘l>

For these equations to be equivalent to a discrete ordinates system

in N

J

+ oN, =8 (A~9)

M 3

J

& B

the coefficients a.

5k mist be chosen so that an equation of the above

type is formed. For example, in equation (A=6)

2“1 + M + 2u
- 0 Hy 0
(2 + all) W N, = ( 3 )Nl +( 3 + p'oall) N, (A~10)
and
(2 + all)Nl = N + (L + all)No (a-11)
2p.l + oy —
Letting — s gives the same coefficient for N in (A-10) and
(A-11). Then if a.. satisfies
11
By * 2;.10 2ul + By _
=gt WPy T\ (L + au) = pl(l + all) (A-12)

=45



thet is, if &)y = ~1/2, the coefficients of N, are the seme.
Finally, since Ny = bygNy + by N Dbyg = /(2 + ay) = 2/3 and byq =
(1 + au)/(e + a._u_) = 1/3. In general, with Ej = (2“3 + “j-l)/3 the

a,, mst satisfy the relations

3k
[(“j+1-i + o gles g g+ (Buy ) + “j-i-l)aji] =3k (8 43 + 8y 4)

i=1L2...,5-1 (A-13)

in addition to (A=12). The bjk are given by

J

Pyo = Y/ (2 R B DS 3)

~ ] (A=1L)
Py (aa,k ¥ aj,k-l)/ (2 oy S aa)

Since the original quadrature was trapezoidal, thet is,

1 n-1
[ Nap = (No/e + z Ny + N /2)/11 (A~15)
-1

the weights associated with the equivalent discrete ordinates quadrature

are given by the identity

N n-1l N N n

0 i n _
mt SE TEm T
. ; (A-16)
= zowJ % bggNg g

b=



.

Equating coefficients No, Nl’ etc., gives a set of equations which may

be solved for w,:

J

= w.b

1
Zn - YoPoo * W1Py1y * Wobop ¢

sl
I

s
]

B

= w.b + W.bD

221’
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. wh

(A-17)

Following this formalism through for n = 2, 4, 6 gives the following

discrete ordinates weights and directions:

-P‘UJI\)}—‘OIC.;- I\)l—-'OIc_l.

-l 7=

W.
—dJ_
1/10
1/2

2/5
w.

J
23/4k4o
13/5k
11/45
19/72
59/297




O\m:wmi—aolc_;.

=1
Cu

_;1_/
=7/9
-1

-l; 5

- 2/9

v

3/85

116/729
60k/3645
2l7/1458

257/1458
1640/12393

As is readily seen these weights ere directions of an equivelent dis-

crete ordinates system representing a nonsymmetric quedrature.
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