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ABSTRACT

In a previously published report (IA-2750, A Proposed Modification
of the Available Momentum Region in Thomes-Fermi Theory) a ™quantum
correction" to the statistical model of the atom was derived in detail.
In the present work we use these results and a very simple approximation
to the correlation energy in deriving a quantum- and correlation-cor-
rected Thomas~-Fermi-Dirac (TFD) equation. One expects the radial density
distribution and potential calculated from this equation to be improved
over those on the TFD model, both near the nucleus and near the outer
boundary of the atom or ion. Minimm-energy (that is, zero boundary
pressure) solutions for rare-gas atoms possess values of cell radius
in good agreement with those calculated from experimental values of the
lattice parameter.

A FORTRAN code is included in en Appendix to the report.
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I. INTRODUCTION

Many properties of free atoms and of solids are predicted with con-
siderable accuracy by the statistical atom model of Thomas, Fermi, and
Dira.c.l')‘L The accuracy of the method has probably helped inspire the
deeper investigation into its foundations; for if one considers only the
premises upon which the original model is based, he would hardly expect
more than very rough egreement with experiment or with the predictions of
a more refined theory. Yet, to give some exemples, the radial density
distribution function for a given element calculated from either the
Thomas-Fermi (TF) or the Thomes-Fermi-Dirac (TFD) equation appears to be,
for any but the very lightest elements, in good agreement with that ob-
tained from self-consistent field calculations. The shell structure is
not reproduced, but there appears to be a reasonable averaging of the
relative maxime and minima. One-electron energy levels computed in the
TF or TFD fields are remarkably close to experimental term values, and
the atomic number at which electrons of a glven angular momentum make
their "first appearance®™ are predicted correctly to the nearest integer.

The correctness of these predictions would have to be regarded as
fortuitous, when they result from a theory which presumes that (1) the
potential field in an atom varies sufficiently slowly that the fractional
change in an electron's de Broglle wave length A is small over a distance
comparable to A; and (2) there are a great many electrons in a region
having a volume of the order of %.3 . However, Fényes showed that the TF
energy and density expressions follow from quasi-classicel arguments as
well as from & strictly classical 'v:i,ewpoin't:.5 later, March and Plaskett
succeeded in deriving the TF energy equation from an integral of the



WKB eigenvalues over a particular region of the quantum-number pla.ne.6
Thus, the validity of the statistical model seems to depend upon that of
the WKB approximation, and Langer showed that the WKB phase integral,
at least in one dimension, is applicable under quite broad conditions
on the potential even for small quantum nu.mbers.7

Since it is known that the statistical theory rests on more than
the classical arguments, it appears well worthwhile to attempt those
improvements that can be made with little complication of the equations
to be solved. The derivation of March and Plaskett provides the basis
for a “"quantum correction" of the statistical model reported earlier8’9
and outlined below.

We have stressed the general success of the TF and TFD equations.
There are, nevertheless, some areas in which the calculations do not
agree well with experiment. A very apparent discrepancy is in the total
binding energy of the electron cloud. The electron density predicted
at the nucleus is infinite on either the TF or the TFD model; consequently,
the calculated binding energy is considerably too large. The previously
derived quantum correction modifies the density in the region near the
nucleus and produces binding energies in much better agreement with ex-
perimental velues and with those obtained from self-consistent field
calculations.

A further area for attempting improvement is suggested by the rather
large errors in the calculated pressure-compression curves. These rela-
tionships are influenced mainly by the outermost parts of the electron
distribution. In this region of low density the correlation energy, ne-
glected in the original models, becomes important.

In the present work we incorporate the quantum correction and a very
simple form for the correlation enmergy in the derivation of an easily
applied quantum- and correlation~corrected TFD equation. One expects
the density distribution and potential calculated from this equation to
be improved over those on the TFD model, both near the nucleus and near
the outer boundary of the atom or ionm.




The numerical procedures used in obtaining solutions of the equation
are discussed, and a few calculational results are summerized. It is
found that the inclusion of the correlation energy should not greatly
change the pressure-compression curves for most elements. However, mini-
mm-energy (that is, zero boundary pressure) solutions for rare-gas atoms
possess values of cell radius in good agreement with those calculated
from experimental velues of the lattice parameter. These results suggest
the interpretation of minimum-energy solutions as representing isolated
atoms, rether than atoms in crystals, since the rare gases are kmown to
be bound in crystals by the very weak van der Waals forces.

Numericael work was performed on an IBM T030 computer. A FORTRAN
code, version "F4",is listed in the Appendix, but we should caution that
certain changes, mainly in the Input-Output statements, might have to be
made before using the code with other computer systems. Also, it is
necessary to carry more than eight-figure precision throughout the cal-
culations in order to obtain accurately the solutions possessing mimi-
mim energy. We have attempted to carry ocur calculations to about thir-
teen figures, and while the 7030 word size is equivalent to about 16
decimal digits, it would be necessary to perform the calculations in
double~precision arithmetic on a smaller mechine. Eight-figure pre-
cision is certainly sufficient, however, to obtain general solutions
corresponding to arbitrary degrees of compression.

IT. A QUANTUM- AND CORREIATION-CORRECTED TFD EQUATION

A. The TF and TFD Equaetions

A variational technique can be used to derive the TF equation, and
an extension of this method provides an often-used and simple means of
adding corrections to the statistical model. Thus, we can write the
Fermi kinetic energy denslty of a gas of free electrons at a temperature
of zero degrees absolute in the form




where
ep = (3/10)(3rP)%/ 3.2

The electrostatic potential energy demsity is the sum of the electron-
nuclear and the electron-electron terms. We can write this as

v =ud

e n e
+U" = «(v+v /2
P P D ( /2)e5

where v is the potential due to the nucleus of charge Z; v° is the PO=
tential due to the electrons; and the factor of 1/2 is included in the
electron-electron term to avoid counting each pair of electrons twice.
With x denoting distance from the nucleus, the total energy of the
spherical distribution is given by

E = f[" fp5/ 3 (vP+v®/2) p WermxPax. (1)

The expression for density on the TF model,

- oy(8" 1?2, (2)
with
0 = (3/5c,)7/2,

is obtained by minimizing Eq. (1) subject to the auxiliary condition
that the total number of particles, N, remains constant. The potential

*
Throughout this work we shall use atomic units (a.u.), in which
e=Aa=m= 1. The unit of length is ay; the first Bohr radius for hydro-

gen; and the unit of energy is e2/a.o.
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energy, V, is a function of position in the electron distribution; E’
1s the Fermi energy, or chemical potential, and is constant throughout
a glven distribution. The TF equation follows from Eq. (2) and Poisson's
equation.

The tendency for electrons of like spin to stay apart because of
the exclusion principle is accounted for by the inclusion in Eg. (1) of
the exchange energy, the volume density of which is given by

I
Uex = -cexp / 3 s
where
1/3
Cox = (3/4)(3/m)7/°.
Minimization of the total energy now leads to the equation
(5/3)e0%3 = (4/3)e o3 - (@) = o,
vhich is quadratic in p/>. From this equation we get
o = 0 lrgH(B ) /213, (3)
vhere
To = (42 /15¢ y1/2
0 e £ *

Now Poisson's equation with the density given by Eq. (3) leads to the
TFD equation. '

In the following two sections we propose additional energy terms
to be included in Eq. (1); the incorporation of these terms leads to &
simple quantum- and correlation-corrected TFD equation.



B. The Quantum Correction

The quantum-correction energy density follows from e slight change
in the derivation due to March and Plaskett; the development will be
only briefly outlined here.

March and Plaskett have demonstrated that the TF approximation to
the sum of one-electron eigenvalues in a spherically symmetric potential
is given by the integral

=2 f f (2&+1)E(nr,l,)d.nrd&, (%)

where the number of states over which the sum is carried is written as
v-2 [ [(e)an . (5)

Here E(nr »4) is the expression for the WKB eigenvalues considered as
functions of continuous veriables; n, is the radial quantum number; 2
is the orbital quantum number; and the region of integration is bounded
by n_ = -1/2, 4 = -1/2, and E(n,,t) = E’. We bave included a factor of
two in these equations to account for the spin degeneracy of the elec-
tronic states. The Fermi energy E’ is chosen so that Eq. (5) gives the
total number of states being considered, the N electrons occupying the
N lowest states. With considerable manipulation, Eq. (4) becomes the
TF energy equation

I=f(2---+v)P bmdPax, (6)
and Eq. (5) reveals the TF density through the expression
p)
=f2—2- ll-mcadx, (7)
3n

both integrals being taken between the roots of E = V(x). We have
written these results in atomic units, so that P, the Fermi momentum,

12




is defined by

1/2 1/2.

P=2/5E"-Y) (8)
It is pertinent to examine the error in the TF sum of eigenvalues,

as given by Eq. (6), for the case of the pure Coulomb field. The WKB
eigenvalues in a Coulomb field are given by

E = -2°/2(n_+t1)?,

L
n.,

and let us consider the levels filled fromn = 1 to n = v, where n is the
total quantum number defined by

n=nr+&+1.

Then, for any value of v we can evaluate the error in the TF approximstion
to the sum of eigenvalues, comparing always with the correct value, -Zav.
Scott's correction to the total binding energylo is obtained by letting

Vv become very large.

Although the sum of one-electron eigenvelues is not the total energy
of the statistical atom because of the electron-electron interaction
being counted twice, we might expect to improve the calculated binding
energy greatly by correcting this sum in some manner, since the chief
cause of the discrepancy is certainly the large error in the electron=-
nuclear potential energy. This correction can be performed by imposing
& new lower limit on { in the integrations above. When we introduce a
nev lover limit £ min and a related quantity which we call the "modifica-

tion factor,"

a={

min 1/2,

we obtain, after more manipulation, slightly different expressions corre~

13




sponding to Eqs. (6) and (7). From these revised expressions we can
identify a quantum-corrected TF density expression,

2/, 2\3/2
p = Oy(E'-v-a"/2x /2, (9)
and a corrected kinetic energy density,

U, = ¢ 05/3_;_ (a2/2x2)p. | (10)

k t

The revised lower limit on the volume integrals, say Xy, is the lower

root¥* of

E' -V - a2/2x2 = 0; (11)
for x < X15 P must vanish, and we have thus termed Xy the "inner density
cutoff distance." We can call the second term on the right-hand side of

Eq. (10) the "quantum-correction energy density" and write it in the more

consistent form

2
U, = (cg/x)ps (12)
by defining
2
= 8a [2.
cq /

The modification factor, a, is determined by the initial slope of the
potential function, as described in Part IIT of this report.

For interpreting these results it is helpful to consider just what
we have done in changing the lower limit of the orbital quantum number.

3 :
In application to the atomic problem, there is only one root of Eq. (11)
between zero and the outer boundary of the atom or ion. This root is iden-

tified as X and x2 is then determined by the usual TF boundary condition.

%




Since the lower limit 4 = -1/2 mist correspond to an orbitel engular mo-
mentum of zero, we have, clearly, eliminated states with angular momentum
of magnitude between zero and a cutoff value Lc = ah., Corresponding to
Lc at every radial distence is now a linear cutoff momentum

P, = ah/x,

and we can rewrite Eq. (9) in terms of the Fermi momentum and cutoff mo-
mentum:

p= (00/23/2)(P2-pf)5/2-

At radial distaences less than Xy momenta are prohibited over the entire
range from zero to P, so the electron density vanishes.

This interpretation must be modified somewhat when exchange and
correlation effects are included; for then the Fermi momentum is no
longer simply given by Eq. (8), except very near the nucleus. We can
define x, as in the absence of interactions, i.e., as the lower of the
roots of Eq. (11), but it is not correct to demand that the density ven-
ish at the upper root. Instead, we require only that the density be real.

C. The Correlation Correction

The original TF equation describes a system of independent® particles,
while the introduction of exchange energy, which leads to the TFD equation,
represents a correction for the correlated motion of electrons of like
spin. The remainder of the energy of the electron gas is termed the
correlation energy; by its inclusion we are recognizing that electrons,
regardless of spin orientation, tend to avoid one another.

¥*

The particles are "independent” in the sense that there is no correlation
among their positions. They do interact with each other, however, in
establishing the potential field in which each particle moves.

15



In extensions of the statistical model there have been suggested

at least two different expresrsionsll’l2

for the correlation energy that
approach, in the appropriate limits, Wigner's low-density formula and
the expression due to Gell-Mann and Brueckner at high densities. In
addition to these, Gombas™> and Tomishima.ll" have utilized expansions of
the correlation energy per particle in powers of pl/ 3 about the particle
density encountered at the outer boundary of the atom or ion. In this
expansion, the term of first-order can be considered as a correction to
the exchange energy, and it follows that the TFD solutions for a given
Z then correspond to correlation-corrected solutions for a modified
value of Z. Aside from the rather poor approximation of the correlation
energy, a drawback to this procedure is that the TFD solutions must be
at hand. If solutions representing specified degrees of compression
are desired, the method would appear to be impractical.

It is, however, interesting and fortunate that over the density
range of interest it is apparently possible to approximate the correla-
tion energy per particle quite closely by an expression of the form

2/6, (13)

u, = =C,p
This is shown in Fig. 1, where we have set c = O. 0842, and compared

this approximation with the wvalues due to Ca.rr and Maradudin. 15 The
latter are obtained as a higher-order correction to Gell-Mann and Brueck-
ner's formila at the high demsities (say p = 0.25 a.u.), and are again
reasonable interpolated values at the lower electron densities.

There is no need to be concerned with the correlation energy out-
side the limited range of density shown in Fig. 1. The lowest density
that can be obtained in solutions of the “corrected" TFD equation to
be derived is about 0.002 a.u., and at densities above 1.0 a.u. the
correlation energy becomes small compared with the exchange energy.

Near the lower limit of density, the magnitude of the correlation energy
computed from Eq. (13) is about one-third as large as the exchange energy,

16
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Figure 1. Correlation energy per electron.




but at p = 2.0 a.u. it is only 10% as large. For, say, p = 10° the
ratio is 1% and the exchange energy itself is only 0.01% of the Fermi
kinetic energy.

We shall, then, approximate the correlation energy density with

U = =C p7/ 6
c c
and, in atomic units,

e = 0.0842.
Cc

D. Derivation of the Equation

From the results of the preceding paragraphs, we can now express
the total energy per unit volume of the charge distribution in the form

U= e3 e ot - ccp7/6 - (P®/2)p + (cq/xa)p,

where all quantities appearing in the equation have been previously de-
fined. By minimizing the integral of U over the volume occupied by the
charge, while requiring that the total number of electrons be fixed, we
obtain the following equation:

2/3 _ .

o2 = upf® SR - o, ()

where

T = (1"/5)(°ex/cf) ’

Uy = (1/6)e 0,2/

T -TS T -
R-l!-co (E ch/x ).




The electron density is found as a function of R by solving Eq. (14),
a quaertic in pl/ 6. To accomplish this we write a "resolvent cubic equa-

tion" in terms of another variable, say y:

3 2 2, _
y' + Ty +Ry+ ('rlR-Uo) = 0., (15)

Let us use the same symbol,y,to denote any reel root of this cubic equa-
tion. We can then express the four roots of the quartic, and hence four
expressions for the electron density, in terms of y. One of these ex-
Pressions possesses the proper behavior in reducing to previously ob-

talned results in the neglect of correlation and exchange effects,
namely,

o = (1/8)[r +pr(y*m) 2P, (16)

where

1/2]1/2.

V= (T1+y)1/2[71-y+2(y2¥R) (7)

We note that § vanishes when correlation is neglected, since y = -1, is

1
then a root of Eq. (15).
In the familiar menner we now define a modified TFD potential
function @ by the relation
’ 2
Zf = (B'-v+10)x, (18)
and from Poisson's equation and Eq. (16) we obtain
#" = (/)P 2P, xax,
=0, x<x. (19)

19



In terms of @,

R = 40,2/ 326 /x-eP (2P 2). (20)

Egs. (20), (15), (17), and (19) constitute the differential rela-
tionship to be satisfied at each step in the integration. We could, of
course, write immediately the solutions of Eq. (15) in analytic form,
but it proves convenient in the numerical treatment to obtain a root by
the Newton-Raphson method, since a good first guess in the iteration is
available from the previous integration step.

The boundary conditions on Eq. (19) are: (1) As the nucleus is
approached the potential must become that of the nucleus alone, or

¢(0) =1,

and (2) at the outer boundary, X5) of the distribution of N electrons,

X

*

X2

= zf @"xax.

*

Integration by parts yields

X

2
(¢'x’¢) = N/Z:
X
and since

B(xy) = 1+ x,8'(x),



we have the usual condition:

¢(x2) = x2¢'(x2) + (Z-N)/Z‘ (21)

In addition to potential and density distributions, total binding
energies of atoms are of special interest to us here. For the proper
evaluation of energies, the arbitrary constant that is present original-
ly in both the electrostatic potential energy end the Fermi energy mst
be specified. The state of infinite separation of the constituent par-
ticles is normally taken to have zero energy; we therefore follow the
usual convention and fix the potential at the edge of the neutral atom

at zero for all values of Xne For an ion the potential energy of an

electron at the boundary is taken as

V= -(Z-N)/xa.
The defining relation, Eq. (18), now gives at the boundary

_ ' 2

Z¢(x2) = [E +(Z£N)/x2+To]x ,

or, solving for the Fermi energy,
’ 2
E' = Z¢(x2)/x2 - (z-N)/x2 - Ty

The total electron-nuclear potential energy is given by
x .

2
E; = - f (z/x)p ¥mCax,
)

1
while for the electron~electron potential energy we have
*2
E§ = (1/2) f vSp bmxZax.
1



From Eq. (18) and the relation V = -(v?+v°), this becomes

X
2

E; = (1/2)[-E3+T§N+E'N:[ (z@/x) o 1+nx2&x].
i)

Other energy integrals are, with an obvious notation,
- 5/3 ) .2
Ef- cffp bmx®ax,
2 2
= *= M m“ax
Eq cqf(P/ ) ’
L/3 2
-cexk/np bmx“dx,

-C, /‘p7/6 lmxedx.

Pex

]

E

III. NUMERICAL PROCEDURES

For a given atomic number Z, a family of solutions of the corrected
TFD equation, corresponding to different degrees of compression of the
element, is obtailned by varying the slope of the potential function at
the origin. Several parameters of the integration are determined direct-
ly by this initial slope, which we denote by ¢6. From the discussion

of Eq. (11) we conclude that the electron density, and hence ¢”, vanishes
for x less than

X = (l/s)[l—(l—aas/z)l/el,
where

s = -2¢6 + l/TT2Z.



In starting the stepwise numerical integration,three values of ¢ and §”
are used, lncluding those at the origin. If we therefore choose an

initial interval hin such that

2hin < X5 (22)

then @ is linear in this region, and it is trivial to generate the
starting values. For practical reasons hin is chosen as the largest

interval which satisfies both Eq. (22) and the condition
h, = 0.02/2° (23)
in * ’

where b is an integer. This is done so thet upon doubling the space
interval a number of times (not necessarily b times) ¢ is evaluated at
convenient values of x.

In the earlier work, justification was presented for determining
the modification factor, a,through an "equivalent Coulomb problem."8 In
following this procedure we consider a mumber of electrons interacting
with the charged nucleus but not at all with each other, even to the
extent of providing a partial screening of the nuclear charge. Under
these conditions we would define ¢ through the equation

¢ = (B'-V)x.

Here, in contrast to the situation in the actual atomic problem, the
potential energy distribution is known. We have

V= -Z/x. (24)

It can be established by direct substitution that for the Coulomb problem,

@ is linear throughout the distribution, or

23




$=1+xp’.

In order for Eq. (24) to be satisfied with no additive constant, we mst
let the Fermi energy of the Coulomb problem be given by

E' = zg’. (25)

Correction of the region of integration in the quantum-number plane
is based on the above value of the Fermi energy, where for ¢' we use the
initial slope of the actual atomic problem, i.e., ¢6 The outer boundary
of the region defines a quentity a through the relation

o= (nr+L+l) outer boundary’

The Fermi energy glven by Eq. (25) is the maximum eigenvalue in the Cou-
lomb field. From the form of these eigenvalues we obtain

a= (-z/283).

In correcting the integration region for the Coulomb field we derive the
expression for the modification factor,

a=a - (a.v)l/a,

where v is the (generally non-integral) number of filled shells obtained
as the solution of the equation

N 3v/2 + au.5/ 2v1/ 2. ( 3a.2-1/2) = 0.

Thus the initial slope of @ determines the inner density cutoff distance

X)) the initial interval of integration hin’ and the modification factor

8.




The quantum- and correletion-corrected TFD equation is of the form

¢” = f(x:¢)’ (26)

a form which can be integrated simply end rapidly by a finite-difference

method described by Hartree.l6 In this method the approximation is mede
that

2%, = u3(Bral/12), (21)

the subscripted quantities here being associated with the point x = xo
to which the integration has progressed. In the usual notation, A2 is

the second difference operator, such that
0%, = (8,-8,) - (B,9y)
0 170 0 "-1
=¢l-2¢0+¢-l’

and h is the existent integration interval.

To proceed in the integration an estimate is made of A2¢6, and from
Eq. (27) we find A2¢o. From the backward first difference and A2¢0 we
can predict ¢ at the next step. Eq. (26) then furnishes the predicted
velue of @§”, from which the predicted A2¢6 follows. This predicted
value is compared with the original estimate to determine whether the
integration is to be allowed to proceed to the next step, or whether it
must be repeated with a revised estimate of A2¢g. The criterion for
this decision is discussed below.

Some modification of the integration procedure seems advisable in
the vicinity of Xy where an abrupt change in ¢” occurs. A table of
differences in @’ of second-order and above reveals that the assumption
that leads to Eq. (27), namely, that the terms involving differences
higher than second-order can be neglected, is not too well justified

25




for x close to Xq. We can sttempt to do a little better by adding one
more term and writing

£38, = Gy 12-0" g5 2k0) (28)

The extra term is retained for only a few integration steps for which
the changes in ¢” are relatively large; in practice it is dropped upon
reaching the point at which h has achieved its maximum value. We note
that, for that portion of the integration in which Eg. (28) is utilized,
it is necessary at each step to estimate A&¢S; but we can get an esti-
mate of ¢” at the forward steps of sufficient accuracy to compute this
difference by merely extending ¢ linearly from the origin, thereby ob-
taining the arguments for Eq. (26).

The integration interval, starting at hin’ is doubled on altermate
steps until a certain maximum velue is obtained, and then is kept con-
stent out to the outer boundary of the charge distribution. This maxi-
mm velue is selected by requiring that the precision in each integra-
tion be independent of Z, the precision being that of a chosen test rum.
A convenient check on the precision is furnished by the relative discrep-
ancy between the total number of particles N which enters the boundary
condition, Eq. (21), and the volume integral of the calculated electron
density. It is thus apparent that there are two conditions on the inte-
gration. With h given, the criterion on proceeding to the next step
in integrating the differential equation is that

2 2
(2% -(8%82)
estimated predicted} .2 -n
o8 h <10 7,
0

where n is the number of significant digits carried in the calculation
of §. This condition arises from requiring that an error in A2¢6 ulti-
metely cause an error in ¢l of no more than 1/2 in the least significant
digit. However, the precision of the integration, as measured by the
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calculated number of particles, also depends upon h. We might expect this
error to be dependent to a large degree upon the magnitudes of A2¢ en-
countered in the integration, and results seem to bear this out. We re=-
quire, then, as a rough measure of the error,

2 " ~
hma.x¢mx ~ constant,

and seek to estimate @’ as a function of Z end ¢6
In the neglect of exchange and correlation effects we have

B = (bx/3m)(22/x-a2/xP) 2,

With Z and a given, the condition for a meximum of @”(x) is easily derived

as
2 ‘

2a"[x - z(¢-3'x) = 0;
and since the maximum occurs at a small value of x,it is adequate for this
discussion to put @ = 1 and to neglect 3¥’x in comparison with it. We
then obtain the result that the meximum is at a position

x 2a2/z,
from which there follows

¢{,Iax ~ (31/2/n)Z/a.

We then have the requirement

hia.x ~ constant . (n/}l/a)a/z.




It is found, moreover, that & varies but slightly with Z and ¢6 We can
treat it as a constant here. It is also found in our calculations that
an interval h ox 0.00125 produces a r6espectably small error in number
of particles of about four parts in 10 for Z = 54 , with a modification
factor of about 0.261. If hma.x is chosen as the largest value obtained
by doubling h in subject to the condition

1/2

b <O .018/z~=,

a fairly uniform error of a few parts in 106 results for all integrations,
although for very small Z the error tends to be somevwhat larger, say one
part in 105.

The outer boundary of the electron distribution, X5 is determined
by Eq. (21). We define a quentity

g= (xo'h/a)(¢o-¢_l)/h - (¢0+¢_1)/2 + (Z"'N)/Z’

which Pirst becomes positive somewhere in the vicinity of Xpe At the

integration step at which thils occurs, a parabola is passed through the
points ¢_2, ¢-1’ and ¢o‘ We then have for this limited region the approxi-
mation

$ = (bca + 6Gx + C,

and the coefficients G, ®, and C are evaluated under the condition that
g” = A2¢/h2.

Thus,

G= ¢”/2)
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8= (f,-_,)/n + na - 2x,,

2
C= ¢, - ax; - Bx,.

The boundary condition becomes

24@x, +C= 2G.x§ + Bx, + (z-N)/z,

Gxo 2

and hence
X, = [(zc-z+x) /za]*/2.

Integrals ylelding the totel energies of the various forms and the
total number of electrons are evaluated by the Simpson "1/3" rule, with

boundary corrections at Xy and X, computed by the trapezoidal rule.

IV. RESUILTS

It was pointed out in the Introduction that the quantum-corrected
TFD equation yields atomic binding energies in good agreement with ex-
perimental values and with the results of Hartree~type calculations.
It is of interest to know whether the agreement is retasined when corre-
lation energy is included. We also wish to ascertain the effect that
inclusion of correlation has on the radii of the minimim-energy solutions.
The pressure-compression curves on the TFD model suffer from this radius
being too large for almost all elements, and correlation effects are
known within the statistical theory to contract the electron cloud.

Table I presents summaries of minimum-energy solutions for a
number of neutral atoms. We should mention here that the correlation
energy for the low-Z elements is roughly twice that given by Clemeni::i..l7

Table II compares the calculated total energies with Hartree-Fock-
Slater non-relativistic values, and, for low-Z elements, with experimental
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TABLE I
MINIMUM-ENERGY SOLUTIONS
A. THE INTTIAL SLOPES, MODIFICATION FACTORS, AND INNER AND OUTER RADII

N

8EI B EYEBE wvouw +uwm

=
3

%o : ol %
1.662286185 .28930262 .021720161 3.1500
1.944982019 .28290387 013707739 3.3149
2.179156982 27921366 .015083695 34274
2.372918675 .2T665497 .0077987352 3.5175
2.548968232 27480082 .0063976318 3.5925
2.705926337 27334467 0054165521 3.6525
2.852616885 27218124 0046931340 3.7075
3%,108618420 27036059 0036973067 3.7925
4.063980433 26564491 0017783697 4.0387
b, 745875374 26359841 0011645068 4.1787
5.280883861 .26226632 .00086374273 4. 2637
5.752752881 .26133199 00068564904 4.3387
6.158923349 26062552 00056803471 k3893
6.520766586 26006289 00048462210 L 4306
6.852574996 . 25960300 00042243370 4. b729
7.157896787 -25921554 .00037429564 kg2
7.440332217 .25888199 00033593916 4 ,5003



¢

3

88338 IEBVBS v~waw Fum

100

Ep

2.2270
5.9421

11.962
20.611
32.149
46.827
64.846
111.73
602.82
1609.6
3225.3
5523.5
8566.6
12409,
17100.
22683,
29200.

B.

E
-4

0.67061

1.5576
2.8506
4 ,5210
6.5894
9.0707
12.03%0
19.085
80.184
185.67
334.76
529,12
TT1.39
1057.3
1386.9
1764.7
2186.9

TABIE I -- Continued
THE VARIOUS FORMS OF ENERGY (a.u.)

En

-2

-6.5965
~17.415
-34.693
-59.182
-91.53%

~132.36
-182.22
~310.64
-1625.0
~4269.1
~8461.7
-14378.
~22167.
-31953.
43849,
=5T796k.
~T4392.

Ee

2

1.5881
3.9161
7.4654

12.345
18.646
26.453
35.838
59.605
292.06
T43.60
1445.6
k22,7
3696.1
5283.9
7202.5
9466.8
12090.

E
ex

-0.73537

-1.4135
-2.2572
-3.2519
4. 3867
=5.654k4
-T7.0479
-10.193
-32,21k
-63.280
-102.22
-148.31
-201.05
-260.02
-324 .94
-395.53
~471.58

o

-0.11198
-0.187T7
-0.27172
-0.36243
-0.45896
-0.56071
~0.66715
-0.89269
-2.2164
-3.7829
-5.5329
=T.4337
-9.4648
-11.611
-13.861
-16.206
-18.639

-2.9582
-7.6005
-14.94%
-25.319
-38.995
-56.225
=17.217
-131.31
-684 . 37
-1797.3
-3563.9
-6058.2
-9343.2
«134Th,
-18498.
~2u4L61.
~31405.




TABLE II

COMPARTSON OF CAICUIATED AND EXPERIMENTAL TOTAL BINDING ENERGIES (a.u.)

?_'_ Eeale Eyrs :f;_e&
2 2.9582 2.8779 2.9027
3 T.6005 T.2262 7.4761
4 14 .94 1k.255 14,665
5 25.319 24,079 2l 652
6 38.995 57.079 37.846
T 56.225 - 53.587 5k .598
8 17.217 73.938 75.092

10 131.31 127.48

20 684. 37 674.02

30 1797.3 1773.6

ko 3563.9 3532.6

50 6058.2 6014 .6

60 9343,.2 9273.6

70 134T4, 13380.

80 18498, 18395.

0 24461, 2k 343,

100 31405. 31264 .
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vza,lues.18 The Hartree-Fock-Slater results through Z = 30 were reported
by Snow, et al,l9 as computed from the code published by Hermen and
Skillman ,20 vhile for larger Z the values were calculated by Cowa.nzL
with a modification of the same code. In comparing with experiment, the
binding energies on the corrected TFD model are seen to be not much worse
than those calculated by the self-consistent field method, and in some
cases are better. At high Z the two methods glve energies differing by
roughly one-half of one percent. It should be mentioned, however, that
the agreement is slightly better on the model that includes the quantum
correction but no correlation. This is especially true for lower Z.
Correlation increases the discrepancies with experimental energies from
about 24 to about 3% for atomic numbers 6, 7, and 8, but at high Z it
causes a chenge in energy of only about 0.1%.

The radius of minimum-energy solutions as a function of atomic num~
ber is shown in Fig. 2; this radius is the "lattice constant™ if the atoms
are considered to be bound in a solid. Also shown are the corresponding
TFD values computed by 'I‘home.s,22 and spherical cell radii calculated from
the observed normal crystal densities. The inclusion of correlation pro-
duces a cell radius which represents a somewhat better average to the
experimental points in the variation with Z, but quite obviocusly the equa-
tion of state for many metals will not be greatly improved.

Although in equation of state calculations e zero boundary pressure
solution is tacitly considered to represent an atom bound in a crystal of
normal density, the calculated radii of such solutions actually support
their interpretation as representing isolated atoms. One might object
that, with reference again to Fig. 2, the calculated cell radius of some
elements, notably most of the alkalis and alkaline earths, is less than
the observed crystal radius. This result is not surprising for these ele=~
ments, as can be seen from the sketch on page 35. Here are showm the
radial distribution functions, as calculated by the self-consistent field
code of Boyd, et al ,25 for the ground states of neon, sodium, magnesium,
and argon. The long "tail" of the distribution, apparent especially for
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sodium, and to & lesser extent for magnesium, is not obtained on the sta-
tistical model. The statistical density distributions have an abrupt
cutoff, and thus much more closely resemble those of the rare gases.

The radii of the rare-gas atoms neon, argon, krypton, and xenon,
computed on the present model agree closely with their crystal radii.
This comparison is made in Table III, where the "experimental" values are
computed from the experimental lattice constants given in the recent re-
view article by Pollack.eu The rare gases are bound in crystals only by
the very weak van der Weals forces; if we were to ascribe a finite radius
to the isolated atom, it shouwld be for the solid rare gases that such a
radius would most nearly equal its crystal radius. Since the corrected
statistical model predicts close to ﬁhese values for the rare-gas atomic
radii, it would appear that the correct interpretation of minimum-energy,

or zero boundary pressure, solutions is as representing isolated atoms.
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TABLE III

IATTICE CONSTANTS OF THE SOLID RARE GASES (a.u.)

Element

Neon
Argon

Krypton

Xenon

(x2)calc

3.79
4.00
k. o3
L.36



APPENDIX

A FORTRAN CODE TO INTEGRATE THE QUANTUM- AND CORREIATION=-
CORRECTED TFD EQUATION

The FORTRAN machine code listed here in "F4" language generates a
single solution of the quantum- and correlation-corrected TFD equation
for a given atomic number, initial slope of the potential function, and
degree of ionization. The minimm-energy solutions were stressed in
this report, and the code as actually used contains a feature that
searches for the solutions possessing the lowest energy by adjusting ¢6
and performing a series of integrations. However, there seems little
virtue in complicating the present write-up by including a number of
code statements that are unnecessary for the task to which a potential
user may put the code.

The input date consists of any number of sets of Z, ¢6 , degree of
ionization, and a print flag thet indicates whether the entire solution
is to be printed, or whether summary information only is desired. Each
set 1s entered by a data card, the layout of which is as follows:

Colums Data
1-4 Atomic number Z
5 « 18 Initial slope ¢6
19 - 25 Degree of ionization
2k Print flag
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All but the print flag are floating point numbers. For example, to
obtain and print the complete solution corresponding to the free neutral
lithium atom, one would prepare the following card:

Columns Date
1-L 003.
5 - 18 ~1.94498201900
19 - 2% 0000.
24 1

If only summary information were desired, column 24 would contain a O
punch.

As a further example, a solution corresponding to a compressed O
ion of radius 2.5203% a.u. is obtained with the input

Columns Data
1 -4 008.
5 - 18 -2.84800000000
19 - 23 -002.
ok 1

The output contains a listing of Z and @/, and the computed value
of a. There follows, unless suppressed by the presence of a O in columm
24 of the input cerd: x, p(x;), and a tabulation of @ and p for each
x value. Immediately following the tabulation is the computed outer
radius of the distribution, Xps and the interpolated wvalues of ¢(x2)
and p(xe). Also printed out are the total calculated number of electrons
within the distribution, and the various energies. If the printing is
suppressed, then x , p(xl), and the table of @(x) and p(x) are not
printed.

The code consists of a main program and a number of FUNCTION and
SUBROUTINE subprograms. "Comment" cerds make the purpose of the pro-
grams evident; no further explanation of their purpose is required here.
However, an attempt will be made to clarify a few items that might



prove puzzling:

In the SOURCE subprogram,note that after 10 attempts to find y by
iteration, y being & solution of Eq. (15) of the text, the initial
guess is changed; and 10 more attempts can be mede. This can occur only
once in each integration, where the density decreases below about
0.0123. At this point there becomes only one real root of the cubic
equation, this root being approximately 0.13, whereas the iteration
procedure utilizing the solution on the previous step of the integra-
tion as a first guess attempts to find a solution near y = -0.18.

Another item is an epparently extraneous integral that is calculated
and never used. This is calculated through FLINT(8) in the integrand
routine, and SUM(8) in the main routine. The integral is

*a
[ e
g}
from which the diamagnetic susceptibility and other quantities of
possible interest can be calculated if desired. It should be mentioned
that, indeed, the susceptibility has been calculated on this model for
the rare gases. The agreement with experiment is slightly better than
on the uncorrected TFD model; hut the latter values are already in
quite good agreement, and the improvement is small.
In addition to the possible necessity of altering the Imput-Output
statements of the code, it may also be necessary to change the iteration
criteria used in the AFUNCT, INTSEC, and SOURCE subprogrems.
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FORTRAN SYSTEM -- VERSION 07/15/64 - CORRECTION LEVEL 09/15/64

SUBTYPE,FORTRAN
c MAIN PROGRAM TO INTEGRATE THUMAS-FERMI-DIRAC EQUATION MAINMTFD
c WI{TH CUANTUM AND CORRELATION CORRECTIUNS MAINMTFD
00000 DIMENSION X{3),PHI(3),FNT(3,8),SUMI8),FNTTM(8) MAINMTFOD 000002
6Cool COMMON Z2,P1,PISQRD,C1,C24C3,y TAUL,CSLOPE jHMAX4R»Y ,PHIX2,FLINT(8) MAINMYFD 000002
[ CONSTANTS MAINMTFD 000002
o0coo02 PI1=3.14159265 MAINMTFD 000002
90003 PISQRD=PIeP] MAINMTFD 000004
0CO04 CON1=3.0%#(1.0/3.0) MAINMTFD 000007
06008 CON2=Ple#(1.0/3.0) MAINMTFD 000021
0C006 CF=,3eP[eCONL*CON1eCON2 MAINMTFD 000033
0Cco07 CEX=,75#CON1/CON2 MAINMTFD 000041
00008 CC=.0842 MAINMTFD 000045
0G009 C1=8,0/(2.0#PISQRD)®=(2,0/3.0) MAINMTFD 000047
00610 C2=.5/1P1SQRD) MAINMTFO 000065
0COli €3=0(49.0/36.0)2CCeCL*4,0/(3,0ePISQRD)I#e(4.,/3.0) MAINMYFD 000070
00012 C4=4,08F] MAINMTFO 000114
00013 TAUL=2.0/(3.00P[ea5)ee(1,0/3.0) MAINMTFD 000117
C READ PROBLEM INPUT MAINMTFOD 000117
0Cula S READ 104Z,SLGPE,DEGION, IPRTFG MAINMYFO 000142
00015 10 FORMAT(F4.04F14.04F5.0,11) MAINMTFD 000177
0CQle CSLOPE=SLOPE MAINMTFD 000177
00017 RHOCON=Z/C4 MAINMTFD 000201
c CBTAIN MLDIFICATION FACTOR MAINMTFD 000201
00ols 15 A=AFUNCT(SLOPE) MAINMTFD 000204
C OBTAIN INNER RADIUS OF ELECTRON DISTRIBUTICN MAINMTFD 000204
ocol9 X1=X1FNCT{SLOPE,A} MAINMTFO 000211
aCcu20 PHIX1=1.0+SLOPE*X] MAINMTFO 000220
C INITIAL GUESS FOR Y MAINMTFD 000220
0Co21 ¥=-.19 MAINMTFD 000224
ccoz2 RHOX1=(RHOCON/X1)*SOURCE(X1,PHIX1,A) MAINMTFD 000226
C RESTORE PAPER ANC PRINT PROBLEM DATA MAINMTFOD 000226
0C023 PRINT 20 MAINMTFD 000243
0Co24 20 FURMATL(1HL) MAINMTFO 000254
0C025 PRINT 22,2 MAINMTFD 000254
0Gv2¢ 2z FORMATI(T7H L= 15) MAINMTFD 000272
0C027 PRINT 24,SLOPE MAINMTFD 006272
00028 24 FORMAT(TH SLOPE= Flé6.10) MAINMTFD 000310
0Co29 PRINT 26,4 MAINMTFD 000310
0C020 26 FORMAT(TH A= Fl6.10) MAINMTFD 000326
0G03i IF(IPRTFGI2615369261 MAINMYFD 000326
00032 261 PRINT 28,X1 MAINMTFO 000330
0C033 28 FORMAT(TH Xl= F16.10) MAINMTFD 000346
0CO34 PRINT 20,RHUX] MAINMTFOD 000346
0C035 30 FORMAT(TH RHUX1=Fl3.7////) MAINMTFD 000364
C PRINT COLUMN HEADINGS MAINMTFD 000364
¢CO36 PRINT 35 MAINMTFO 000364
0Co37 35 FURMAT (3H Xe13H PHI,16H RHO//) MAINMTFO 000375
C COMPUTE INITIAL AND FINAL INTEGRATION INTERVALS MAINMTFD 000375
0Ca38 36 SPLIT=1.0 MATINMTFO 000375
[JVEL) 40 [F(SPLIT-,04/X1)45445,50 MAINMTFD 000377
0Co4C 45 SPLIT=SPLIT#2.0 MAINMTFD X 000404
06041 GO TO 4C MAINMTFO 000407
0Cu42 S0 H=.02/SPLIT R MAINMTFD 000410
0Co42 HMAX=.018/SQRT(Z) MAINMTFD 000413

C CALCULATE INITIAL VALUES FOR INTEGRATION MAINMTFD 000413



T

C0044
0C045
00046
00047
0C048

0Cu49
0coso
acosl
G052
QCa53
0C054
0€055
0CJ56
CCO57
CCO58
0C059
CCo60
CcCo6l
0C062
0C063
0Co64

00065
0C066
00a67
06068
0C069
0G¢70
0CaTl
00072
0Cco73
0C074
00075
0Co76
00077
0Co78
0Co79
00080
0cos8l
00082
acos3
0C084
00085

0Co8s
0Cco87
00088
0co8g
0C090
0C091
0GQ92
0C093
00094
0C095
0C096
0G097
00098
0€099
oC100
GG1lo1l

55

56
60
600

61

62
65
70
71
72
75
76

80
810

81

85
86

90

91
910

911

93
931

DO 55 I=1,3

FLI=1

X(I)s(FLI-1.0)eH
PHI(I)=1.04SLOPEeX{])
IFCIPRTFG)S564600,56
PRINT FIRST THREE POINTS
PRINT 60, (XU L),PHI{I),1=1,3)
FORMAT(2F12.8)

PHIM2=1,.0

PHIMI=PHI(2)}

PHIO=PHI(3)

PHDOPM2=0.0

PHDPM1=0.0

PHIDP0=0.0

X0=Xx1{3)

INDXDB=1

XM1l=X1

00 61 J=1,8

SUNM{J)=0.0

CALL FLINTS{X1,PHIX1,RHOX1)}
00 62 J=1,8
FNT(2,J)=FLINTLJ)
ADVANCE ONE STEP IN X
CALL INTSEC{PHIM2,PHIM1,PHI0,PHDPM2,PHDPML, PHIDPO,HyXOyA)
IF(X0-X1)70,75,75
IF(IPRTFG)TL,72,71

PRINT 60,X0,PHIC
INOXDEB=~INDXOB

GU YO 65
RHO=RHOCONePHIDPQO/ X0
IFCIPRTEG)YT6,810,7¢
PRINT 804X0s PHIC,RHU
FORMAT(2F12.8,F17.7)
CALL FLINTS(XC,PHIO,RHO}
0o 81 J=1,8
FNT{3,J)=FLINT(J)
SUM{J)=SUM(J)+.5e(FNT(2,J)¢+FNT{3,J))e(XC~XM1)
FNT(24,J)=FNT{3,J)

XM1=X0

INDXDB=-INOXDB
IF{INDXDB)65,65,85

€O 86 J=1,8
FNT{1,J)=FNT(3,J)
IF{H~-.S¢HMAX)90,94,94
DOUBLE INTEGRATION INTERVAL
H=Z.0%H

PHIM1=PHIM2

PHIMZ=1.C

PHOPML=PHOPM2

PHOPM2=0.0

CALL INTSEC(PHIM2,PHIML,PHIO,PHOPM2 ,PHDPM1,PHIDPO4H,X0,A)
RHC=RHOCONPHIDPC/ X0
IF(IPRTFG)910,911,910
PRINT 80,4X0,PHIO,RHU
CALL FLINTS{X0,PHIQ,RHU}
C0 92 J=1,8
FNTU3,J)=FLINILY)
INDXDB=-INDXDS
IF(INDXDB)93,93,915

DO 931 J=1,8
FNTL2,J)=FNTF(3,J)

MAINMTFO
MAINMTFD
MAINMTFD
MAINMTFO
MAINMTFD
MAINMTFD
MAINMTFOD
MAINMTFO
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFO
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMYFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMYFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTYFD
MAINMIFD
MAINMTFD
MAINMIFD
MAINMTFD
MAINMTFD
MAINMTFO
MAINMTFD
MAINMYFD
MAINMTFD
MAINMTFO
MAINMTFO
MAINMTFC
MAINMTFD
MAINMTFOD
MAINMTFC
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFO
MAINMYFD
MAINMTFOD
MAINMTFD
MAINMTED
MAINMTFD
MAINMTFO
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD

000417
000420
00C422
000426
00G432
000432
00C434
00C460
000460
000462
000464
00C466
000470
006472
000474
000476
006500
000502
00C503
000505
00C515
000516
00CSl16
000520
000544
000547
000551
00CS574
00C576
000577
000603
00C605
00C625
000635
00C645
000646
000650
00C661
00C663
GOC665
Q0Ce667
00C671
000672
00C674
000674
00C701
000704
00C7G6
00C710
00Cc712
000714
00Q740
00C744
00C746
00C776
001006
001007
001011
001013
G01015
co1016



ch

0C102
0Cc103
0C104
001905

ccioe
coLo7

0C108
0C109
ocil10
oc111
ocL12
00i13
CO0ll4
oCl11s
0ClL16
0Cc117
oclle
0Cll9
oci20

0clz2l
0l122
0c123
0Cl24
0Ci28
0Cl126
0c127
00128
0ci29

0C130
GC131
0CL32
06133
0C134
00135
0Cl36
0C137

0ol38
0Cl39
00140

CoLal
0Gl42
0Gl43
COl44
0Cl45
CCla6
00147
00148
GCl49
0C150
0C151
oQl52
cCl1s3
0C154

(s NaNel

935
936

94
95

36

98
99

10C

101
105
110

135

136

GO 70 91

DO 93¢ J=1,8
SUM(J)=SUM(J)+LH/3.0) o (FNT{1,J)44.00FNTL2,J)4FNT(3,4))
GO TO 85

INTEGRATION PROCEEDS WITH CONSTANT X INCREMENT

CO 116 1=2,43

CALL INTSEC(PMIM2,PHIMl,PHI0,PHDPM2,PHDPM]1 4PHIDPOsH XD sA)

TEST IF AUXILIARY CONDITIONS ON INTEGRATION
ARE SATISFIEC. VIOLATION INDICATES INITIAL SLOPE
IS TOO LARGE NEGATIVELY

YSQPLR=YsY+¢R

IF(YSCPLKR)S8,96496

IF{Y+TAULY98,97,97

IF(TAUL-Y+2.0#SQRY{YSQPLR) }98,10C,100

PRINT 99,XC

FORMAT(34H AUXILIARY CONDITION VIOLATED X= F12.8)

cOo 10 S

RHG=RHOCON®PHIDPQ/X0

CALL FLINTS(XO,PHIQyRHO)

00 101 J=1,8

FNY{1,J)=FLINTLJS)

IFLIPRTFG)105,11C,105

PRINT B0,XO0,PHIJ,RHU

TEST IF QUTER BOUNDARY 1S REACHED

G=(XO-.SeH Yo {PHIO-PHIM1}/H-{PHIC+PHIM1)/2.0+DEGION/Z

IF(G)116,120,120

CONTINUE

DO 117 J=1,8

SUMEJ)=SUM{JI+(H/3.0)e(FNT(1,J)+4.00FNT(2,J)4FNT(3,J))

FNT{1,J)=FNT(3,J)

FNTTM{J)=FNT(3,4J)

XTRM=X0

GO TO %4

OBTAIN QUTER RADIUS OF DISTRIBUTION

X2=X2FNCT(PHIM2,PHIM1 ,PHI0, X0 sH DEGION)

RHOX2=RHOCON® SOURCE(X2,PHIX2,A) /X2

IFIIPRTFG)124,1224124

PRINT 123,X2

FORMAT(TH X2= F1ll.5)

GO TO 126

PRINY 125,X2,PHIX2,RHOX2

FORMAT(//FB8e44F16.8,F17.7)

CALC END POINT CORRECTIONS TO INTEGRALS

CALL FLINTS(X2,PHIX2,RHOX2)

D0 13C J=1,8

SUMIJ)=SUM{J) 4,58 (X2-XTRM)Y s (FNTTM(J)+FLINT(J))

CALC ENERGIES FROM INTEGRALS

EPRIME=(2ePHIX2-DEGION) /X2-C2

FLNUM=C4eSUM(1)

EPN=-2eC4oSUM(4)

EPEPRM=~2eC4eSUM(5)

EFaCFaC4eSUML3)

EEX=-CEXeC4eSUM{2)

EQ=A®AsC4aSUM{6)/2.0

EC=-CCeC4eSUN(T)

EPE=.5¢{ EPEPRM-EPN+FLNUM {EPRINE+C2))

E=EF+EPN+EPE+EEX+EQ+EC

PRINT 135,FLNUM

FORMAT{//21H NUMBER OF ELECTRONS= Fll.6)

PRINT 13¢,EF,EQ

FORMAT(//5H EF= 1PELS.T,TH EQ= 1PEL15.7)

MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINNMTFD
MAINMTFD
MAINMTFD
MAINMYFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFOD
MAINMTFOD
MAINMTFO
MAINMTFD
MAINMTFO
MAINMTFD
MAINMTFD
MAINMTED
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTED
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMYFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMYFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFO
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFO
MAINMTFOD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD
MAINMTFD

001020
001021
001022
001034
001034
001035
001036
001036
001036
001036
001062
001066
001070
001073
001103
oo1121
001121
001122
001126
001136
001137
001141
001143
001143
001173
001215
001217
001220
001221
001233
001235
001237
001241
001241
001242
001261
001274
001276
001314
001314
001315
001345
001345
001345
001355
001356
001356
001367
001375
001400
001404
001410
001414
001420
001426
001432
001443
001452
001470
001470
001513



Ch

CC155 PRINT 137,EPN,EPE,EEX4EC MAINMTFD 001513

00156 137 FORMAT(S5H EPN= lPE15.7,TH EPE= LPE15.7,7H EEX= 1PEL15.7, MAINMTFD 001550

1 7H EC= 1PElS.7) MAINMTFD 001550
00157 PRINT 138,€ FAINMTFD 001550
ocl58 138 FORMATI(SH E= 1PE18.10//) MAINMTFD 0C1566
0C1s59 GO 70 5 MAINMTFC 0C1566
0C160 END MAINMTFD C01567

SUBPRUGRAM eMA[Ne - COMPILE TIME 006005 SECS., - NO. BINARY CARDS 0CO000 - LENGTH (81001267 WORDS (=(1C)CCI695)



FORTRAN SYSTEM —- VERSION 07/15/64 - CORRECTION LEVEL 09715764

SUBTYPE,FORTRAN

00000
00001
0C002
06003
0C004
00005
0C006

0Co07
o0coos
0€C009
ccolio
0COll

00012
0Co13

0C014
0CO01S
GCale

00017
6Cc18
GCo1l9
0C020

SUBPROGRAM AFUNCT - COMPILE TIME 000003 SECS. - NO. BINARY CARDS 0CO000 - LENGTH (8)000135 WORDS (=(10)000093)

10

15

20

COMPUTE MODIFICATION FACTOR FROM INITIAL SLOPE
BY NEWTON-RAPHSON METHOD

FUNCT ION AFUNCT (SLCPE)

COMMON Z,PI1,PISQRD4CL,C2,C3, TAUL,CSLOPE yHMAX)RoY,PHIX2(FLINT(B)

CRIT=1.0E-14
ALPHA=SQRT(2/(2.04ABS({SLOPE)))

ROOT1=SQRT{ALPHA)

F1=3,0#ALPHA®ALPHA-.5

F2=ALPHA#ROOT1

INITIAL GUESS FOR NU

FLNU=ALPHA-.5

ROOT2=SQRT(FLNU)}

F=FLNU® { FLNU®(FLNU+1.5)+2.0#F2¢R00T2~F1}
FPRIME=3,0#FLNU®{FLNU+1.0)+3.0eF2eR00T2~F1
IF(FPRIME)LS5,10,15

ADJUST NU IF DERIVATIVE OF F [S ZERQ
FLNU=,99599eFLNU

GO 70 S

CORRECT NU

CURR=-F/FPRIME

FLNU=FLNU+CORR

ERROR=ABS {CORR/FLNU)

TEST IF CRITERION IS MET
IF{ERROR-CRIT12042045

AFUNCT=ALPHA~SQRT(FLNU)*ROCT1

RETURN

END

AFNTNTYFD
AFNTMTFD
AFNTMTFD
AFNTMTFD
AFNTMTFD
AFNTMTFO
AFNTMTFD
AFNTMTED
AFNTMTFD
AFNTMTFD
AFNTMTFD
AENTMTFD
AFNTMTFD
ARNTMTFOD
AFNTMTFD
AFNTMTFD
AFNTMTFD
AFNTMTFOD
AFNTMTFD
AFNTMTFD
AFNTMTFD
AFNTMTFD
AFNTMTFD
AFNTMYFD
AFNTMTFD
AENTMYFD
AFNTMTFD

000002
000002
000002
000004
000010
a00012
000017
000017
000022
000025
000027
000042
000057
000057
000061
000064
000064
000065
000070
000073
000073
000076
000101
000106
000107



Gh

FORTRAN SYSTEM ~~ VERSION 07/15/64 - CORRECTION LEVEL 09/15/64

SUBTYPE,FORTRAN
c COMPUTE INNER RADIUS OF ELECTRON DISTRIBUTION
acQ0o FUNCT ION X1FNCT{SLOPE,A)
0cool COMMON Z,P14PISQRD,C1,C2,C3,TAUL,CSLOPE ¢HMAX Ry YsPHIX2,FLINT(8)
00002 $=(1.0-PISQRD®Ze2.0eSLOPE)/(PISQRD#*Z)
00003 XLFNCT=(1.0~SQRT{1.,0-A®A*5/2})/S
0C004 RETURN
00005 END

SUBPROGRAM XLFNCT - COMPILE TIME 000002 SECS. - NO. BEINARY CARDS 000000 - LENGTH (81000067 WORDS (=(10)000055)

X1FNMTFD
X1FNMTFD
X1FNMTFD
X1FNMTFD
X1FNMTFD
X1FNMTFD
X1FNMTFD

000002
000002
000002
000014
000026
000027
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FORTRAN SYSTEM ~- VERSION 07/15/64 — CORRECTION LEVEL 09/15/64

SUBTYPE,FORTRAN

0cco0
00COl
GC002
0€003
0C004
0Ccoo0s
0C006
0coc?
ocgGoe
0C009

SUBPROGRAM X2FNCT - COMPILE TIME 000002 SECS. - NO. BINARY CARDS 060000 ~ LENGTH (8)000115 WORDS (=(10)000377)

C
c

COMPUTE OUTER RADIUS OF ELECTRON DISTRIBUTION
AND INTERPOLATE FOR PHI AT CUTER BOUNDARY
FUNCT [ON X2FNCT{PHIM2,PHIM1,PHIO0,X0,H,DEGION)
COMMON Z+PI,PISQRDsC14C2,C3, TAUL,CSLOPE yHMAX R, Y PHIX2 yFLINT(8)
SCRIPA=,58{PHI0~2.08PHIMLI+PHIM2}/ (HeH)
SCRIPB=(PHIO-PHIM1)/H-SCRIPA®(2,0#X0-H)
SCRIPC=PHIO-X0®{SCRIPA®X0+SCRIPB)
X2=SQRT((SCRIPC-DEGION/Z)/SCRIPA}
PHIX2=X2¢{SCRIPASX2+SCRIPBI+SCRIPC

X2FNCT=X2

RETURN

END

X2FNMTFD
X2FNMTFD
X2FNMTFD
X2FNMTFD
X2FNMTFD
X2FNMTFD
X2FNMTFD
X2FNMTFD
X2FNMTFD
X2FNMTFD
X2FNMTFD
X2FNMTFD

000002
000002
000002
000014
000026
000034
000041
000047
000051
000052
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FORTRAN SYSTEM -~ VERSION 07/15/64 - CORRECTION LEVEL C€9/15/64

SUBTYPEFORTRAN

06000
0cool
cCo02
0Cs03
0Coo0s

0C00s
0C006

0C007
0C008
00009
ocolo
0Coll
0Col2
0Col3
0COl4

0cols

Cc0ole
0Col7
0cols
0col9

0C020
00021
cCo22
0C023
06024
0Co025
0C026
00027
o0cca2s
0C029
00030
00031
00932
00033
00034
00035
0C036

SUBPROGRAM [NTSEC - COMPILE TIME 000073 SECS. ~ NO. BINARY CARDS 000000 - LENGTH (8)005255 WORDS (={10)000173)

oMo O0

10

15
26
25

30

35
40

45

SUBRUUTINE WHICH INTEGRATES SECOND CRDER CIFFERENTIAL EQUATIGN
BY HARTREE (STOERMER) METHUD, WITH A CORRECTION TERM
INVOLVING AN ESTIMATE OF FOURTH OIFFERENCE IN PHI
DOQUBLE PRIME WHEN THIS QUANTITY IS LARGE

SUBRQUT INE INTSEC(VHIM2,PHIML,PHIO,PHDPK2,PHOPM] ,PHIDPO yHyXUsA)

COMMON ZyPI1yPISQRDsC14C24C32yTAUL,CSLOPE yHMAX R, Y PHIX2,FLINT(8)

CRIT=1.0E-13

N=G

XPL=X04H

TEST IF TQ APPLY CORRECTION

IF({H-.54HMAX }110,5,5

IF(PHOPM2)15,10,15

CALCULATE FOURTH CRDER TERM

XP22X0+42.0eH

ESPHP1=1.0+CSLOPE~XP1

ESPHP2=1.0+CSLOPEeXP2

EPDPP1=SOURCE(XP1,ESPHPL,A}

EPDPP2=SOURCE(XP2,ESPHP2,A)

FOURTH=(EPDPP2-4.0¢EPDPP1+6,0ePHIDPO-4, 0#PHDPM1+PHDPM2}/240,.0

GO TO 20

FOURTH=0.0

ESTIMATE SECOND DIFFERENCE IN PHI DOUBLE PRIME

02POPE=PHIDPO-2.0#PHDPML +PHDPMK2

CALCULATE PRECICTED VALUE FOR COMPARISON

D2PHI=(H&H) e (PHIDPQ+(D2PDPE/12,0)~FOURTH)

PHIPL=2,00PHI0-PHIM1+D2PHI

PHDPP1=SOURCE(XP1,PHIPL,A)

02PDPP=PHDPP1-2,0¢PHIDPO+PHDPM]

TEST FOR CONVERGENCE

ERROR=ABS( (0D2PDPP-D2PDPE)/PHIC)*HeH/6.0

IF(ERROR-CRIT145,45,30

D2PDPE=D2PDPP

N=N¢1

IF{N-10125,35,35

PRINT 40

FORMAT(30H INTEGRATION CRITERION NOTF MET)

GO TO 45

PHIM2a2PHIM]

PHIM1=PHIO

PHIC=PHIPL

PHOPMZ=PHDPM]

PHOPM1=PHIOPO

PHIDPO=PHDPP1

X0=XP1

RETURN

END

INTGMTFC
INTGMTFD
INTGMIFD
INTGMTFD
INTGMTFD
INTGMTFD
INVTGMTFD
INTCMTYFO
INTGMTFD
INTGMTFD
INTGMTFD
INTGMTFD
INTGMTFO
INTGMTFC
INTGMTFO
INTGMTED
INTGMTFD
INTGMTFOD
INTGMTFD
INTGMTFD
INTGMYFD
INTGMTFD
INTGMTFO
INTGMTFL
INTGMTFD
INTGMTFD
INTGMTFO
INTGMTFD
INTGMTFD
INTGMTFC
INTGMTFC
INTGMTFOD
INTGMTFD
INTGMTFC
INTGMTFD
INTGMTFO
INTCMTFD
INTGMTFD
INTGMTFD
INTGMTFO
INTGMTFD
INTGMTFD
INTGMTFD
INTGMTFD
INTGMTFOD
INTGMTFO

00C0C2
0000C2
cecoc2
00co04
000006
00¢0C6
0cGo11
00C016
000016
000020
00G024
00CC30
000034
00C045
€0C056
00C074
00C078
€0oC075
G0CO077
60C077
000104
000115
goclz22
00Cc133
000133
00C140
000150
00C153
J0C155
000160
000163
000174
000174
000175
00C177
00C201
000203
000205
00C207
000211
000213
000214
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SUBTYPE,FORTRAN
C COMPUTE SOURCE FUNCTIUN, WHICH IS EQUATED T0
c SECOND UERIVATIVE OF PHI
06000 FUNCT ION SOURCE(X,PHI,A)
00001 COMMON Z4P14PISQRDsC14C2,C3, TAUL,CSLOPE yHMAX R Y PHIX2,,FLINT(8)
0C002 CRIT=1.0E-14
0C003 N=Q
0C004 NFLAG=0
00005 R=Cl#(Z@PHI/X~A®A/(2.00XeX)~C2)
C EVALUATE ¥ BY NEWTON-RAPHSON METHOD
0C006 F2=TAU1#R-C3
CCGGT S F=Ye(Ya({Y4TAUL) +R)+F2
ocoos FPRIME=Y#(3.CoY+2.CoTAUL)+R
€C009 IF(FPRINE)ILS,10,15
0Qo10 10 Y=.99999eY
CCOll GO TO §
0col2 15 CORR=-F/FPRIME
CcCo13 Y=Y +CORR
0Col4 ERROR=ABS({CORR/Y)
0C015 IF{ERROR-CR1T)50,50,20
0C0le 20 N=N+1
0Co17 IF{NFLAG)35,25,35
0caols 25 IF(N-10)£,20,30
0C019 30 NFLAG=1
0Qg20 ¥=C.12
0co21 N=Q
¢co22 GO 10 S
0co23 35 IF{N-1015,40,40
0C024 4C PRINT 45
0C025 45 FORMAT{23H CRITERION UN Y NOT MET)
0G026 50 ROQT=SQRT(YeY+R)
0co27 PSI=SQRT{Y+TAUL)sSQRT (-Y+TAUL1+2.0«ROCT)
00028 SOURCE=(.5¢P[#X/2Z)*(TAUL+PSI+RO0T)#e3
€go29 RETURN
00030 END

SUBPROGRAM

SOURCE =~ CONPILE TIME 000003 SECS. - NO. BINARY CARDS 00000C - LENGTH (8)000177 WORDS (=(10)000127)

SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFD
SRCEMTFOD

000002
000002
000002
000004
000006
000010
000010
000027
000033
000042
000C53
000055
000060
000061
000064
600067
000072
000075
000100
000102
00C1C5
000107
000111
000113
000114
000117
00C130
000130
000134
000150
00C165
000166
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FORTRAN SYSTEM -— VERSION 07/15/64 - CORRECTION LEVEL 09/15/64

SUBTYPE,FORTRAN

0Coco
0Qo01
€002
00003
0C004
Q€005
00006
6C307
0C008
0C009
00010
oCOoll
0ca12

SUBPROGRAM FLINTS — COMPILE TIME 000002 SECS. - NO. BINARY CARDS 000000 - LENGTH (8)000105 WORDS (=1101000069)

COMPUTE INTEGRANDS FOR ENERGY INTEGRALS AND TOTAL
NUMBER OF PARTICLES CHECK

SUBROUTINE FLINTS(X,PHI,RHO}

COMMON Z,P1,PISQRDyC1,C24C3yTAUL,CSLOPE HMAXsR,YsPHIX2 FLINT(8)
RTRHO=RHO#®(1.0/3.0}

FLINT(6)=RHO

FLINT (4)=RHO®X

FLINT{1)=FLINT(4)eX

FLINT(8)=FLINT{1)eXeX

FLINT(2)=FLINT(1)eRTRHOU

FLINT{3)=FLUINT{2)»RTRHO

FLINV{(S1=PHI=FLINT(4)
FLINT(7)=FLINT{1)}#SQRT(RTRHO)

RETURN

END

FLNTMTFD
FLNTMTFD
FUNTMTFD
FLNTMTFOD
FLNTMTFD
FLNTMTFD
FULNTMTFO
FLNTMTFO
FLNTMTFD
FLNTMTFD
FLNTMTFD
FLNTMTFO
FLNTMTFD
FLNTMTFD
FLNTMTFD

000002
000002
000002
000014
000016
00co21
000024
000030
000033
00C036
000041
000045
000046
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