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1 Introduction

ilere we are concerned with describing the dynamics of multidimenslonal detona-
tion as a self-propagating surface. The detonation shock surface has been shown
under ce-tain circumstance to be governed by an intrinsic relation between the
normal shock velocity and tle local curvature, obtaining a D, — & rel:-*ion. Once
the initial shock position is given, then subsequently the motion of the shock can
be determined by solving a scalar partial differential equation for the shock po-
sition. One can think that in principle, the D, — x relation is determ.ied by
some means, theory or experlinent, and then oace prescribed, predictions of the
phyzical ¢;stem further depend wholly on the initial configuration. Thus we are
alsu concerned about an efficient numerical solution of this equation in three-
dimensious, with possibly multiply connected and disjoint shock surfaces. This
has led us to consider the levcl-set techniques of Osher and Sethian [1], which
are naturally suited to these problems.

[n what follows, we dlscuss examples of propagating surfaces, from formula-
tiona in combustion and heat trausfer to which level-set methods apply. In Sect.
3. we discuss the specific sxample from detonation theory, which suinmarizes
our recent work in [2]. Ip Sect 4. we briefly explain the derivation of the D, — x
relation, in the context of detonation and mention some recent extensions of the
theory, that Includes shock acccieration terms and the poesibility of extinction
for reaction rates thut have large actlvation cuergies [3). These new results can
all be summarized as an extension of the Dy — & relation, to a relation of the
form F(Dp,Dp ¢, &) = 0 where D,, is the acceleration of the detonation shock
along Its normal. Importantly, the resulting equation is hyperbolic In character
as opposed to parabolic, for a sitnple D, — « relatlon. Finally we indicate the
interesting new features of the dynamics that can be observed in the detona-
tion shock surface evolution, and speculate on their relevance to formatlon of
sustained detonation cells.
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2 Examples of Propagating Surfaces

Theory for propagating surfaces arise naturally from discussion of phase trans-
formation, that involve a change In ent.ualpy. Examples Include solidification and
the Stefan problem, flame propagation and detonation propagation. In the first
case the surface is the boundary between solid and liquld, in the second case the
flame surface, In che last case the detonation shock surface. In all three cases,
the actual surface Is not a material surfac , but a phase surface through which
material passes. The surface is assumed sepaiate the two phase (for arguments
sake, unburnt and burnt), and the normal unit vector I8 defined to be positive in
the directlon of the unburnt material. At each point on the surface the normal
velocity is designated D, and the local total curvature (the sum of the principle
curvature) ls designated by x. Further x is assumed to be positive when the
surface 1s convex, relative to a rormal pointing towards the unburnt material.

Next wa delineate between two types of propagating surfaces, Not Self-
Propagating Surface (NSPS) and Self-Propagating Surface (SPS). We distin-
guish these two cases as follows. We define a surface that is Not Self- Propagating
to be one that requires information normal to the surface to define the normal ve-
locity Dy,,. So for an NSPS one includes relations of the form D, = F(x,x,t,n;),
w/here F generally depends on the curvature, the spatial position of the wave,
time and the values of quantities on one side (here the burnt side) of the sur-
face. The slowly varying hydrodynamical limit of a flame, described in [4], is an
excellent example of an NSPS.

In contrast, we define a Self-Propagating Surface that only requires informa-
tion defined in the surface to determine normal velocity Dn. So for an SNPS
one has a relations of the form D,, = F(x,x,t,), or D, = F(x,x,t, D,),where I
generally depends on the curvature, the spatial position of the wave, time and
possibly the self-acceleration of the surf ce, in its normal direction. Examples of
SPS with D, of the form D, = F(x) Include the simple Markstein flame, [5],
or the simplest version of the D, — x relation obtained from Detonation Shock
Dynamlcs; Dy = D¢y — ax, vhere Dcy and a are pasitive constants. As we
mention in Sect. 3 the acceleration term D,, also arises naturally in the descrip-
tion of weakly curved detonation and enlarges the dynamics that is ¢ msidered
in the DSD-theory.

3 Level Set Methods: Tools for Computing the Dynamics
of Interfaces

Here we would llke to outline the level-set inethod and explain its application
and uscfulness as a tool for computing the dynamies of propagating interfi :cs.
The first point is to notice that a interface (or surface) is a subset of lower di-
meuslonality than the space that it travels in. The level-set technlgue solves for
a ficld function ¥(x,t) that depends on position In phycical space and time, and
the field identifies surfaces of constant values of ¢. The surfaces Y(x,t) = 0, is
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Fig. 1. Schematic of a propagating surface. The outward normal pointa toward "unre-
acted” material. The blow v'n indicates a layer, within the structure of the surface that
is has physics that may control its propagation, like a reaction zone.

typically identified with the surface of physical intereat. Therefcre the compu-
tatlonal task involves computing a field in space- time. One then exhibits the
surface of interest by scarching for the special surface y = 0.

This Imbedding method is in contzast to what are sometim: s known ac sur-
Jace methods, where one rcpresents the surface of physical interest by a represen-
tation of the same dimension. For oxample, in two-dimensions, the detonation
shock locus Is a space-curve in the (x,y)-plane and a numerical discretization
represents the shock as a 1D array. For a 3D application the shock surface is a
2D space-surface and the discretizaticn is represented by a 2D array. Differential
representations of the surface, are besed on surface parameterizations. The dis-
crete representations of the surface often include marker particles in the surface,
or finite elements.

While numerical methods based on surface parameterization can be very ef-
fective for many problems and can yield recults with high accuracy, they also
have substantial nurr~rical and logical problems, as the geometric complexity of
the underlying pro_iem Increascs. If the surface rapidly expands or contracts,
n arkers must be added or removed. Surface markers can cross and the stabillty
and accuracy of the method can be lost. The logical complexity of the pro-
grammning, for a surface parnncterization method can be overwhelming if one
considers problemns that have surfaces that are disjoint or multiply connected.

It might seemn that adiditional computation is required for the level-set tech-
niques, since they solve for a field in the dimension of the physical spnce, one
comprnsates for thae by using an efficient, high-accuracy nmnerical method, that
i8 logically simple to program; a polnt that was made dramatically in Osher and
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Sethian's 1988 paper, [1]. Certalnly we have found, so far for our applications,
the advantages of the logica! simplicity of implemc:itation of the level-set meth-
ods, easily compensates for any perceived Increuse in computational cost due to
working in a higher dimension .

3.1 Detonation Shock Dynamics

Detonation Shock Dynamics (DSD)) is a name that we use to describe a collection
of results of an asymptotic theory describes the evolution of a multi-dimensional,
curved detonatlon. The detonation shock is supported by a combusiion reaction
zone that trails behiud the shock, aud the radlus of curvature of the Jetonation
shock is assumed to be large, compared to the reaction zoue thickness. Most
of the resuits, [6], [7], [8], that have been develored so far, assume that the
speed of .be detonation was close to its, plaue, Chapman-.Touguet, {CJ) value. In
partirular, the theoretical results give explicit expressions for the Dy, -- & relation
for an explosive material, described by the Euler equations, with a specified
equation of state and reactior rute law. The work mentioned in (3], and in Sect.
4, extends this to include D,.

The theory of DSD suggest that detonation shock, in some regimes, props-
gate according to a materlal specific evolution law. This theoretical suggestion
has provided the motivation to verify this assertion experimentally in explosive
systems. Fig. 2., shows a facsimile of the experimentally determined D, — x
curve for a condensed explosive PBX9502. Fur positive curvature, the experi-
ments were conducted by Davis and Bdzil of Los Alamos Nations) Laboratory,
[9], and for those of negative curvature, the experiments were conducted by Hull
of LANL, [10]. The two stts of experimnent were carried out in quite different
geoinetries; Davis and Bdzil's experiments were for round sticks of explosive of
different dlamcters, ignited at the bottom, while Hull's experiments were gen-
crated by an entirely different sort of experim.nt, where two, separated point
detonations were ignited far within a block of the explosive and the waves then
eventually merged to form a single detonation shock. Iimportantly the combined
data of the two separate experiments, show the value for tiie detonation velocity
at zerc curvature, and have the same slope where they join.

The Bd.il-Davis reduction of the experimental data for PBX9502, for the
positlve curvature slde, also indicates the pusribl!iiy of an exlinction point; de-
fined here as a iInaximum value of positive curvature, beyond which the D, —
relation may not be continued. Under certain assuinption, theo:y also shows a
sitnilar property for Dy, -- & curves,

Without further cxplanation or assuraption in this section, we will assume
that we have a D, --x re'ation that will describe the motion of a detonation shock
for some range of normal velocitics aud curv. ture, such as the oncs mentioned
above. Further for simplification of the presentation, let’s use Dcy to scale the
velocity, so that scaled D¢y = 1. A Dy, -- & relation then can be assumed to have
the forin

Dy =1 - a(x), ()
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Fig. 2. Calibrated D ~ x response of condensed explusive PBX 9502

and some other s'mple remerks ere in order. The D,, — x relation based on
intrinsic description correspunds to a SPS, in the sense define in Sect. 2. If o == 0,
one is lcad to a Huygens' constructior for the motion of the shock surface. In the
presence of non zero a, one cnn prapagate the surface by a modified Huygen's
construction. If 17, is a monotonically decreasing function of the curvature, then
the underlying dynamics of the surface are those of a parabolic partial differentisl
equation. Indeed under certaln assumptlon tne shock slope of the shock surface
can be show to obey Burger's equation.

3.2 Level-Set Formulation

Next we turn to the level-set tochnique as a way to solve for the motion of
the surface, given this specific example of DSD. It {8 assumed that there is
a ficld ¢(r,y,2.t) that will define level surfaces of the form, ¢(z,y,2,t) =
constant. The shock loration for all tirie, will be defined as the special sur-
face Y(r.y,z,t) == 0, The initial location of the shock with be asmociated with
the locus ¥(r.y,2,0) = 0.

The ¢ function obeys the level-set cquation which is derived as follows. On
any level curve y(r,y,2,t) - constant, the time -lerivative of ¢ in a frame,
travellag in that surfuce is zero, Qe
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dy &  dx _
7 = B + Z Vy =0, (2)
where the derivative dx/dt == D, is the pointwise velocity o1 the surface. By

Jsing the definition of the normal to the constant # = Vy/|V¥| and noticing
that D - V¢ can be rewritten as D,|Vy|, the above equation, now referred to
as the level-set equation, can be restated es

%‘—‘b- + D, %y =0. L))

If D, is = constant, then the level-set cquation is a Hounilton-Jacobl equation.
1f Dy I8 a function of the curvatur., then the level-set equation = a Hamilton-
Jacobi like equation. Importantly, the type of the equation is controlled by the
highest order derivative that appears. For example in the current context, if
D,, is a monotonically decreasing function of the curvature, then the levei-set
equation Is at most first o-der in time, is second order in space, and can be
classified as a parabolic partial differential equation (PDE).

To illu-trate the level-:ot PDE more completely, in the formr used for DSD
applications, one need ibe -.'2rtesian expressicn for the curvature. ‘C'ne curvature
Is generally represented as .« = ‘7 - #t, which In two-dimensions reduces to

_ "p::‘.," - 2¢'u¢:¢y + tbw'ﬁi
T e “

The partial differential equation for ¢ in a Cartesian frame, wholly prescribed
once the function D,(x) is given. The initial data for v) can be generated as
follows. At time t = 0, define ¥(z,y, z,0) = 0 to be the same as the initial shock
position. Note that one could have more than one closed surface identifying
initial shocks. Then the remainder of the initial data for the field can be defined
by setting the value of ¥ at any point (x,y,z) equal to the minimum distance
to the detonation shack. Fig. 3 shows an example of the level-set function ¢
defined intitially (as the miminimum distance function) and at a later time, for
the example of two cylindrically expanding shocks that are at first seperated and
then merge.

The uumerical solutior. of the PDE with initial and boundary conditions,
which we will mention next, generates an approximation to the field y(z, y, z,t),
in generel and the location of the shock is then simply found by senrch for the
level surface ¢ = 0. This is easlly done by creating a table of crcssing times of
the shock across the comnputaiional node. We call this the crossing table. The
crossing table is created by testing the sign of the level wt function at cach
computational nnde at cach time-step, and then recording the time(s) when the
level set function changes sign. A tabular function of the form oy, (7,9, 2)
is found from the computation. The shock location at given time is simply a
contour of constant time.
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Fig. 3. The level-set function ¥ defined intitially (as the miminimum distance function)
and at a later lime, for the exainple of two rylindrict'!y expanding shocks that are at
first seperated and t'.2n merge.

3.3 Boundary Conditions

Here we give only the briefest of summary of the boundary conditions that are
applied in the DSD application. A detailed description of the boundary condi-
tions and there rationale is found in [2]. The need for boundary conditions comes
froin the application. The problems of interest in explosive design, mostly involve
domains of finite size, and the collision of the detonatlon shock with confinement
boundaries. In typical explosive systems, one places the unreacted explosive in a
container. After having been ignited, the detonation sweeps through the system
ana the detonation shock intersects interfaces. Often the confinement is a thin
layer of metal which then seperates the explosive producis from the ambient
atmosphere.

The borndary conditlons that have been considered so far, are motivated by
analysis that model the interaction of the detonatlon shock wlith the confineinent
boundary, and fall into three simple categories i) shock-edge angle boundary
conditicns, ii) reflective boundary conditions, and iii) continuation boundary
conditions. The shock-edge boundary condition was put forward by Bdzil in [11),
and uscd later in [6], and says that in certain instances, the angle that the shock
makes with the Inte-face s a fixed, and that fixed argle is a material constant
for an explosive-confining material pair. Let the normal of the detonation shock
at the cdge be represented as fi 49, and let the outward normal of the interface,
where the detonation shock and the Interface intersect, be represented as Amge,
then the interior angle between those two direction vectors is soine fixed value
w = we. For example, the angle for a PBX9502 explosive with Copper confining
matcrial, of some specified thickness, In a fixed numnber; a typlcal value is 45
degrees.
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The reflective boundary condition is that the detonation is norma! to the
interface, hence w is equal to 90 deg-ees. Finally the continuation boundary con-
dition ls used in certain circumstances, if the detonation wave is highly oblique
to the Interfacc and the interlor angle v is close to zero. Then the detonation
shock would be no fast relative to the <onfinement edge, the.. the reaction zone
would not be influenced by the bound: ry. In this caz2, nc boundary condition
is applied at all. Continuation means thiit the the detoaation shock Is extended
beyond the boundary as a smooth Interpolant, as needed to determine the nu-
merical solution, but no angle boundary condition ls applled.

In practice, for a DSD exnlosive application, all three of these boundary
conditlon might be applied according to he interior angle w that is realized at
the edge interface. One of the most important points to streas, is that all of the
bvundary conditions, described above are at most function of the derlvatives of
¥. Thus a level curve propaguted, according to the D, — x relation, will evolve
only according to data developed in its own surface. The boundary condition
that are considered fcr the DSD applications do not change this property and
thus one is lead to a class of problems in finite Jomains that can be solved
consistently using level-set techniques.

3.4 The recipe for DSD Application Using Level-Set Methods

The recipe for using level set methods for the DSD application can then be
summarized in a simple way as follows. 1) Determine the initial detonation
shock locations and designate them as %(z,y, 2,0) = 0. 2) Define thc ¢ field
everywhere at time t = O say, by setting ¥ equal to the minimvm distance to
the detonation shock (say). 3) Solve the level- set equation for the » field. 4) At
the boundary, ap;ly the boundary condition for each level curve, as if it were
the physical shock of interest. 5) The physical shock at any time of interest is

found by searching for ¥(z,y, 2,t) = 0.

3.5 The Numerical Methods

Here we give a brief description of a general pumerical method for solving the
level-set equation for the DSD application, cn a fixed Eulerian finite difference
grid. For the interior algolithm, we follow Oxher and Sethia., [1]. The normal
velocity Dy, is explicity written as Doy — a(x), where if the second term was
ahsent, then one solves only the Huygen's construction. The update of ¢ is
split into a IHuygen's advection followed by a diffusive correction. The Huygen's
advection uses a second order ENO scheme. The diffusive correction, due to the
curvature terms in a(x) are approximated by central differencing. The boundary
condition are implemnent with central differences =nd are second order accurate.
'The reader is referred to [2] for .nore details. Suffice it to say that the advantage
of the ENO-based schemes for the advection is the siinplicity of impleinentation
and accuracy of rcsilts.
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4 Asymptotic Theory

Here we summarize the asymptotic .heory that is developed in [3], and which
includes new terms. A standard mathematical model of explosive materlals is
adopted, comprised of the compressible Euler equations for an idcal ec_aation of
state, and Arrhenius form for the reactinn rate r,

e =25 - Qh rip.pd) = k1 - Aye IO, (5)
where e is the specific internal energy, p is *the density, p is the pressure, A Is
the reaction progress variable, 4 s the polytropic exponent, Q is the heat of
comhustion and k, v and E are respectively the premultiplying rate constant,
the depletion factor and the activation energy. The velocity will be represented
by u. Further, from here on, we adopt the notatlon convention where a quantity
with a () refers to a dimensional quantity and the quantities without a tilde are
dimensionless quantities that are acaled with respect to the dimensional unit.
In particular the length, velocity and time scales are given by ¢,,,Dc; and
f,./Dc respectively. The lergth Z,., Is taken to be a characterlstic 1D, steady
reaction zone length. The pressure density scale Is go and pressure scale is poI}E- I
Consequently the sound speed, reaction rate, curvature and heat of combustion
appear aa ¢ = &/Dcy, v =Fley/Dcy, & = &lpsy q=Q/D%, —11(2(? - 1)).

The jumps across the lead detonation shock are determine by the equation
of state and the upstream state. We will assume that the upstream state is
quiescent with u = 0, density pp and ambient pressure py. For convenience,
we will assume that the Jead detonation shock is sufficiently strong so that the
strong shock approximation, holds. The normal shock relations for an ideal gas
moving into an ambient atmosphere, reduce to

’ ‘1—1 '11-1
L’ = =0' = , =
n 1+1Dnlm p 1_1 p

2
1+1D"'A 0, at n=0. (6)
where the n— and ¢— subscripts respectively refer to the normal component of
the shock velocity and the tangential component(s) as defined by the shock nor-
mal. Also for the etrong shock approximation, the plane, steady, CJ detonation
velocity is given by D2, = 2(y? - 1)Q.

4.1 Intriasic, Shock-Attached Coordinates and governing equations

In order to make the analysir tractable, it is essential to write the equations
of motion in a suitable form. Given that the material derivative is given by
D/Dt = 3/6t + u - V., then the Euler equations, with reaction, are given by
Dp/Dt + pV -u=0,pDu/Dt +Vp=0, De/Dt + pDv/Dt = 0, where v =1/p
and DA/Dt = r(p, p, A).
Intrinsic, shock-attached coordinates, are uscd to describe curved, time-evolving

detonation waves. We restrict the formulas shown here to 2D to simplify the
presentation, only. The shock surface that can be represcnted quite generally
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In terms of laboratory-fixed cocrdinates (z,y) by a function ¥(z,y,t) = 0.
This equation constrains the lab-coordinate position vectors in the surface to
X = X,(Z,y,t). The shock surface can also be represented by a surfave parame-
terization x = x,(£, ), where £ measures length along the cocrdinate lines of the
surface. The outward normal (In the direction of the unreacted explosive) and
unit tangent vector in the shock surface, (which form a local basis) are given by
A = Vy/| V|, £ = Ox,/8¢. The total shock curvature is given by x(£,t) = V-#.
Finally, the Intrinsic coordinates are related to the laboratory coordinates by the
change of variable given by x = x,{€,t) + ni(€; t), where the variables n, £ are
respectively the distance measured in the direction of the normal to the shock
wave, and the arclength measured in the shock surface along the principle lines
of curvature.

Next the equations of motion are transformed to this shock-attached, intrin-
sic frame, i.e. from (x,y,t)-coordinates to (n,§,t) coordinates. In particular we
note, that the normal shock velocity and curvature are only function of £ and
t,i.e. D, = Dy(€,t) and x = x(€,t). The relevant normal veloclty that appears
subsequently is U, = uy — D,. The manipulations of the transformation are
lengthy but straightforward and the transformed equations have a direct corre-
spondence to the Euler equations. Importantly, the curvature appears explicitly
in the transformed equations.

For the transformed equations, we retain only the explicit time dependence
and the first curvature eflects and writc down a set of approximate equations
to analyze that are valid under the assumption that |x] << 1. Conslstent with
the normal shock relations, for a shock propagating into a quiescent material,
we neglect u in this analysis and take it effectively to be zero. The equations
are then written in a a quasi- conservative form as

o) = —xolUa +Du) = o M
a(plg.n'*' p) = —pUn — KpUpn(Un + Dp) — p(Un ¢ + Dn;), (8)

% (lu: + _'—1—1-4:’ - qA) = —(Un,t + Dpy)

2
1 1 p P Py )
—— | —= 2 S A ). 9
U..('r-lp Tay-1719 ©
The rate equation can be written as
a i
b’_l' = U_..(r - '\.l)l (10)

An auxiliary equation, referred to as the master equation can be written

oUn

= qr('y - 1) - "cz(uu + Dn) + Un(Un.l + Dn.l - ?’:“ (ll)
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Note that for the equations listed above, (). = 8/8¢|(n.¢)

The analysis proceeds the assumption that the leR-hand side of the structure
equations (7) - (10) are in some sense uniformly small and can be approximated
by a quasi-steady, plane solution. One applies the shock boundary conditlons, (6)
at n = 0 and attempts to generate a uniform solution throughout the resction
zone behind the shock.

4.2 The Generalized CJ Conditions

The master equation (11) exhibits the special character of the sonic point that
generates a condition that can be used, under appropriate circumstances, to
generate the eigenvalue relation between curvature and the normal detonation
speed, and the self-acceleration.

Suppose the flow has a sonic point that

r’=c’—uz=0' (12)

then equation (11) is satisfied at that point, in general, only if, the right hand
side, vanishes simultaneously at that point, l.e.

gr(vy-1) - "C’(Un + Dn(t)) + Un(Uns + Dyu,e) ~vp, =0. (13)

The pair of conditlons (12, 13) are called the sonic and the thermicity conditions
repectively, and taken together are called the "generalized CJ-conditions™, after
Wood and Kirkwood, [13].

4.3 The Method of Successive Approximation

The problem vutlined above, for quasi-steady, near-CJ, curved detonation, in the
absence of explicit time-dependent terms, has been solved by a layer analysis, in
[6], [7], [13], [8]. However in [3] we have used a technique, that Is equivalent and
perhaps simpler, and is based on an integral formulation rather than differential
equations.

For the purpose of generating the corrections we assume that the detons-
tion veloclty and the state corresponds to a quasi-steady, 1D solutlon, plus a
correction,

and
__pr-¢ ’ v-¢ z_1+¢
U, = - 7+l+w =St ', p=D +xp/,  (15)

where ¢ = /1 - A/D2. To keep notation to a minlmum, a * subscript to refer
to the first approximation for the fluid state and a prime superscript is asso-
clation with the correction to that approximation, e.g., Un = U.(¢, D) + xU’.
We represent the leading order approximation to Dy, (Dy)., where it would
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appear by a plain D. All that is assumed for now, in the various expansions

(illustrated by the expansion for U, ia that tae currection term U’ ~ o(U) as

x — 0. The resulting integral equations, have been further simplified by using

the first approximation in the integrals. Finally we also use the rate equation

(10) to change the independent variable of integration from n to the progress
might need some more variable A to obtain equations for the approximations of p, Un, p and D, satisfy
explanation on the ex-

A
pansions here PUn + Dy(t) = ./o [—gp.(U. + D) - p..g]gfdx, (16)
A v
pU +p— D(t) = — /o (e = 1)D, - sD(U. + D) >4k, (17)

-U’+ C’

1 . U.
- - 3030 = / B -+ IDATA (19)
In particuln.r. one can evalute the corrected state at the CJ-point, where
setting A = AcJ, to obtain an appraximation to the state there. The rosulting
formulas represent a correction of the RH jump relations for the state at the
generalized-CJ point.

(pUn)cs = —Dn + "IID’ + /1Dy, (19)
(pU3cy = pcy = Da? —s[aD® + LDD,g, (20)

2
3y + 24— gros = B2 (i + 20D, (21)

where the reaction rate lntegra.ls Il.lz,Jl,Jz are defined by

Acs Acr ¢
\ =ﬁ/° (_I%Q.u' L= 1 [ [Mﬂ]d,\ (22)

(v+1)* Jo
1 fergy-g [
3-(-r+l)’/o o "_/" r -
g2 ldDl) o1 d(Dh) (24)

7 dD ' "D dD

The formal algebraic solution of equations (19) - (21) subject to the sonic
constralnt that @ = U3, in fact determines the state pcy, (Un)cs,pcs and a
condition on the apeed Dy, in the same way as Is obtained for the simplest case
of a steady, plane, CJ wave. The result for U,, and the sonic condition ¢ = U3
can then be used ir. the remaining cquation (21) to obtain condition on D,
which In fact is a condition on D, D,, & and Acy,
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[D: - KI’D’ + I]DD..]’
Da=des+ ”{ [Dn - x,D? - 1D t]T ~ D:}
+2(v? - 1)(I) + Ja)DD, = 0. (25)

which can be further simplfied by retaining only the first correction in O(x) and
O(D,), which are assumed small to obtain the reduced (D, Dy, 5, Acs) relation

D2 - Acy +2xv3(Ih — I)D® +2DD,[(v* - 1)(J1 + Ja) + Y21y + J1)] = 0. (26)

where we have replaced D by D, and D, by Dj.

In most respects, equation (26) is the key result and holds gZenerally for
slowly varying, weakly curved detonation structure that has a sonic character.
The evolution equation is obtained once Ac, is estimated, which follows from
consideration of the thermicity condition., (13).

4.4 Large Activation Energy

In the general case, the quantitles, I;, J3, J; and J; are functions cf D, aad Dy,
thus it is generally difficult to write down the Dy, D,,, x- relatlon in very simple
terms. For the purpose of illustration, we focus on the case of large activation
energy, which follows our work In [8]. In this case, the reactlon zone structnre
is assumed to be that of an induction zone, followed by an exponentially thin
reaction zone. It follows that we can assume that Ac; is exponentially close to
one. Further we assume that D, is close to one, and that quasi-steady time
varlation in the induction zone is due to the motion of the shock, and that D,
and x ere small and of the same order. Equation (26) can be further simplified
to

Da=1-+(l - B)s— ((h + 1)+ (P~ 1)(h + H)Da  (27)

The characterictic reaction zone length is estimated In terms of the inductlon
zone length scale, Z., = k~!Dc ezp[6/c3}/0 and thus the reac’ion rate Is ex-
pressed as

r= QA prct-ore, (28)

For v < 2, the rate term Is exponentially large outside the Inductlon zone, hence
the values of the rate integrals I, I3, J1, J3 only depend on their behavior In the
Induction zone.

Consideration of the inductlon zone then allows for enlculaticn of the temper-
ature (sound specd squared) pertur'-ation in the zone, in terms of the curvature
and the slow acceleration of the detonation and small depletion, and vbtains the
cstimate for &,
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A=cd+al+ %m{%"i (1-emo/et) e |(1+ ‘i)o(n.. - 1)]}. (29)

where ¢} = [2y(y - 1)]/(7 + 1)? and

1(3-7) 1 -1)* Ay =1)(v-2) Da
BT ‘((an 2y o)' (30)

All that remains is the integral asymptotics, which can be summerized as
follows. For large 8, the dominant contributions to the integrats are close to the
shock, where £ = 1, and it follows that J; ~ 0 and I1j{y +1)/2 ~ (I; — I))(v +
1)3/4 ~ —Ja(v +1)*/[4(y* - 1)] ~ I, where

1 o0
I= / ;‘ﬂ ~ / e~ 0=/l ds where. 2= )0, (31)
0 0

In turn, / can be estimated using the approximation for 2 in the r.action
rater, as

= a‘fp [tn(o) - tn{o - Oug-)]. (32)
where
-0% =ezp((‘z+l=)0(D l)) (33)
Now we substitutc these varlous results back into (27) to obtain
%= %,m:-nmow.—l)(l — e{#/u0(Da-1)) (34)
where
_ 2v(4y-3) D
‘[( +1)’ "t v+1 l (35)
Note that when D, is absent, then
K= %eM(D.-l)(l — e 21y, (36)
where
Qely-1) 2 (+17Er-1)
LA RURh - =

and
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E I — 8(7 - 1)3

a2~ " @)y +17
which agree with the steady (D, = 0) Dy — « relation established in (8]. Fig.
4. shows two representations of the D,, Dp,x - relation in the limit of large
activation encrgy. The left plot shows a three dimensional representation of the
surface in the Dn, Dy, 5 - space, and the right plot shows D, — & curves taken
at diffezent values of D,.

(38)

Fig. 4. Fig. 4. shows two 1cpresentations of the Dy, Dy, & - relation in the limit of large
activation cnergy. The left plot shows a three dimensional representation of the surface
in the D..!D...n - space, and the right plot shows D, — x curves taken »¢ different
values of D,,.

5 The Dynamnics of a Dn, D, k - Relation

Glven that the asymnptotic analysis suggest that the shock surface evolves ac-
cording to a Dy, Da, 5 - relation, we discuss some of the changes to the numerlcs
that are required In the level-set formulation, and Hustrate some siimple aspects
of the changes In behavior that are observed from the dynanics of a Dy - & -
relation.

need a picture here, also
nced to comment about
well-posedness, interest-
ing properties and so on,
bowtle, extended valid-
ity, equation tipe....



need to comment on cells
and revise

16 D. Scott Stewart Tariq Aslam Jin Yao and John B. Bdzil

5.1 Numerical Methods

As In the original level-set methed, if one consider the surface to a SPS, but one
that obeys a relation of the type F(Dp, Dn, x) = J, it is still the case that the
level-set equation holds, i.e.

2 ix+ DalV| =0. (39)
But now Instead of having D,(x), we have instead a relationship between the
acceleration of the shock in the normal direction in terms of the normal velocity
and curvature, Da(D,,, ). Note that it is possible to dcrive an additional kine-
matic ralationship for D,. by taking its total derivative 8D, /8tx + Dafi- ¥V = 0,
using the definition of the normal, # = 4/|4| and one uses to derive an expres-
s'un for the 8D, /Otx that is needed for the numerics on th- fixed grid

8D, _ : Ve
m lx_Dn(Dnv“)l—Dn'IVI an- (40)

Equations (39) and (40) are a set of two coupled, PDEs thet are to solved
simultaneously, for the evolution of the shock surface, for a give D,, Dy, s -
relation. Notice that not only the initial position of the shock is needed, but also
its initial velocity, as well.

5.2 Numerical Examples

Here we demonstrate numerically the differences between the evolution of a wave
front governed by a D, — s law and a D, — Dydot — x law. Experiment (a) in
the numerical solutlon to the D, — x problem, while experiment (b) is that of
D,, ~ Dnpdot — x. We choose the Initial wave to be at z = .2(1 — cos(2xy)), or
cquivalently a ¥(z, y, ¢t = 0) = z -.2(1- cos(2ry)). For experiment (b) we choose
Dy(z,y,t = 0) = 1. The comnputational domain s 0 <z < 5and 0 < y < 1, with
contlnuation boundary conditions at z = 0,5 and perfectly reflecting boundary
conditlons at y = 0, 1. For experiment (a) we take D, = 1-.05x. For experiment
(b) D, dot = —.025(Dy — 1) — .5«. Both relations allow for a flat non-accelerating
wave to move with speed 1.

The results of the numerical experiment are shown in Figure 5. The dark
lines are contours of the crosslng table (i.c. location of waves at time intervals of
0.2), while the grey scale indicates the detonation normal velocity as the wave
crosses a node point. Experiment (a) shows how the initial cosine wave smoothly
evolves into a flat CJ wave, ns expected by a wave governed by a Dy, — & law.
By contrast, experiment (b) starts out with smooth data, but in a short time
th2 level-set function (and hence the wave shape) forms cusps and Dy, becomes
discontnuous. As the wave evolver further, these dircontinuitics reflect off the
wa'ls and demonstrate a cell-like pattern. ‘This new phenomenon Is due to the
governing nonlinear hyperbolic PDE which governs the D, - D, dot - k relation.
While this new relation is not a complete theory of cellular detonatlons, there s
clearly similar features between the two.
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Fig.5. Ar exampie of the comparison between the D-kappa relation and
D-kappa-Dndot retlatinn

Acknowledgments

This work has been supported by the United States Air Force, Wright Labora-
tory, Armament Directorate, Eglin Air Force Base, F05630-92- K0057, and with
computing resources from the National Center for Supercomputing Applications
(NCSA). Tariq Aslain has partially been supported by an AASERT grant by
AFOSR, Summer of 1994. D. S. Stewert had travel support from the National
Science Foundation.

References

1. Osher, Stanley and Sethian, James, A., "[Yonts Propagating with Curvature
Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations”, Jour-
nal of Computational Physics, 79, 12-49 (1988)

2. T. Aslam, J. Bdzil, and D. S. Stewart and "The level set method of Os-
her/Sethian Applied to Modeling Detonation Shock Dynarmics”, in preparation.

3. Yao, Jin nnd Stewart, D. Scott, "On the dynamics of detonation”, to be sub-
mitted for publication.

4. Matalon, M. and Matkowsky, M., "Flamnes as gasdynamic discontinuities”, J.
Fluid Mcch., vol. 124, pp., 239-259 (1982)



18 D. Scott Stewart Tariq Aalam Jin Yao and John B. Bdail

5. Buckmaster, J. and Ludford, G. S. S., Theory of Lan:inar Flames, Cambridge
University Prezs, (1982), page 208.

6. Stewart, D. S. and Bdzil, J. B., "The sheck dynamics of stable multi- dimen-
sione! drtonation”, Combustion and Flame, 72, 311-323 (1988).

7. Klein, R. and Stewart, .. S., "The relation betwcen curvature and rate state-
dependent detoncrion velocity”, SIAM Journal of Applied Mathematics, in
press, to appear, Oct 1993,

8. Yao, Jin and Stewart, ). S., "On the normal dctonation shock velocity cur-
vat:re relationship for materials with large activation energy.”, to appear in
Combustion and Flame.

9. Bdzil, J. B., Davis, W. C. and Critchficld, R. R. "Detonation Shock Dynamica
(DSD) 'Calibration for PBX 9502' ", , Proceedings of the Tenth Symposium
(Internatior al) on Detonation, Boston, Mass, 1993, to aprear.

10. Private con. nunication.

11. Bdzll, J. B., "Steady state two-dimensional detonation”, Journal of Fluid Me-
chanics, Vol. 108, 1981, pp. 185-226.

12. Wood, W. W. and Kirkwood, J. G. "Diameter effecta In condenscd explosives:
The rclation between velocity and radius of curvature”, Journal of Chemical
Physics, 22: 1920-1924 (1954).

13. Klein, IMA urticle

14. Stewart, D. S. and Yao, Jin, "Critical Detonation Shock Curvature and Fail-
ure Dynamics: Developments in the Thoory of Detonation Shock Dynamics”,
Development in Theoretical and Applied Mechanics, Volume XVII, page 204,
(1994).

15. Bdail, J. B. and Stcwart, D. 8., "Modeling of two- dimecnsional detonation with
detonation shock dynamics®, Physics of Fluids, A, Vel. 1, No. 7, 1261-, (1988).

6 junk

Figure 6. shows a schematic dingram of the typical edge angle evolution shown
at different times ¢;,¢2 and t3, for a) an oblique shock/edge interactlion and
relaxation and b) for a normal shock/cedge interaction. In case a) the detonatio
shock is highly oblique rclative to the edge and if the angle w is below the sonic
angle w,, the contianation Goundary conditlon is applied. As the shock cvolves
the angle eventually obtalus the sonic angle w,, where it is assumed that the
reaction zone can be affected by confined. The boundary condition model then
allows for a jump in w to we, which is characteristic of the explosive/confinement
pair. Case b) shows a different case, where the shock Is nssumed to be highly
normal to the edge, in which case the angle jumps from 90 degrees to we. I the
confinement is sufliciently weak, or thin, the angle jJumps to the sonic angle w,,
the sonic angle.

Thin artivle wis processed uving the IKIEX macro puelage with LMAMULT style



